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Abstract. Debris-covered glaciers are widespread in high mountain ranges on Earth. However, the dynamic evolution of 

debris-covered glacier surfaces is not well understood, in part due to difficulties in mapping debris-cover thickness in high 

spatiotemporal resolution. In this study, we present land surface temperatures (LST) of supraglacial debris cover and its diurnal 10 

variability measured from an unpiloted aerial vehicle (UAV) at a high (15cm) spatial resolution. We test two common 

approaches to derive debris thickness maps by (1) solving a surface energy balance model (SEBM) in conjunction with 

meteorological reanalysis data and (2) least squares regression of a rational curve using debris thickness field measurements. 

In addition, we take advantage of the measured diurnal temperature cycle and estimate the rate of change of heat storage within 

the debris cover. Both approaches resulted in debris thickness estimates with an RMSE of 6 to 8 cm between observed and 15 

modelled debris thicknesses, depending on the time of the day. Although the rational curve approach requires in-situ field 

measurements, the approach is less sensitive to uncertainties in LST measurements compared to the SEBM approach. 

However, the requirement of debris thickness measurements can be an inhibiting factor that supports the SEB approach. 

Because LST varies throughout the day, the success of a rational function to express the relationship between LST and debris 

thickness also varies predictably with the time of day. During the warming phase of the debris cover, the LST depends strongly 20 

on the terrain aspect, rendering clear-sky morning flights that do not account for aspect-effects problematic. We find the 

rational curve approach with LST measured in the evening hours to yield the best result. Our sensitivity analysis of various 

parameters in the SEBM highlights the relevance of the effective thermal conductivity when LST is high. The residual and 

variable bias of UAV-derived LST during a flight requires calibration, which we achieve with bare ice surfaces. The model 

performance would benefit from more accurate LST measurements, which are challenging to achieve with uncooled sensors 25 

in high mountain landscapes.  

1 Introduction  

Debris-covered glaciers are common in many mountain ranges globally (Herreid and Pellicciotti, 2020; Scherler et al., 2018). 

Although debris cover is generally rather thin, usually less than a meter, it can profoundly influence surface melt rates, and 

thus the mass balance of glaciers (Rounce et al., 2021). Whereas thin debris cover (< 2 cm) accelerates melt rates, due to the 30 

lower albedo compared to clean ice, thick debris cover insulates the ice surface and reduces melt rates (e.g., Østrem, 1959; 

Nicholson and Benn, 2006). Consequently, glaciers with widespread and thick debris cover can persist longer at lower 

elevations than debris-free glaciers (Scherler et al., 2011a). Debris-free glaciers worldwide respond to climate change by 

thinning and retreating (Bolch et al., 2012; Hock et al., 2019; Hock and Huss, 2021). Debris-covered glaciers in contrast show 

a broad range of responses to climate change with some glaciers being stationary and some retreating.(Scherler et al., 2011b; 35 

Benn et al., 2012; Gardelle et al., 2012; Kirkbride and Deline, 2013; Benn and Evans, 2014). Therefore, regional to global 

scale predictions of glacier evolution in response to climate change need to account for debris cover (Rounce and McKinney, 

2014; Pellicciotti et al., 2015). 
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Complex interactions between the various elements of debris-covered glaciers, including differential melt, the overall down 

glacier thickening of the debris layer, and the presence of ice cliffs and surface ponds remain not well understood (Benn et al., 40 

2012; Anderson et al., 2021; Kirkbride, 1993; Irvine-Fynn et al., 2017; Miles et al., 2018; Anderson and Anderson, 2018). 

Processes responsible for the extent and thickness of debris cover are the rate of debris supply from bedrock hillslopes, the 

rate of ablation, which exposes englacially transported debris, and surface processes as well as ice dynamics (Hartmeyer et al., 

2020a, 2020b; Kirkbride and Deline, 2013). As all these processes vary with time, supraglacial debris cover ought to change 

in time, too. Indeed, recent studies document changes in debris-cover thickness in various mountain ranges on Earth. Most 45 

studies, however, focus on changes in the extent of debris cover  (Shukla et al., 2009; Bhambri et al., 2011; Glasser et al., 

2016; Tielidze et al., 2020, Kaushik et al., 2022), whereas studies documenting changes in thickness are relatively rare (Stewart 

et al., 2021; Gibson et al., 2017). In addition, debris-thickness observations based on satellite imagery are at best limited to a 

relatively coarse spatial resolution of tens of meters. In particular, the abundance of supraglacial streams, ponds and ice cliffs 

can increase or decrease rapidly across the glacier surface (Anderson et al., 2021). A better understanding of transport and the 50 

emergence of supraglacial debris over short timescales requires the development of quantitative models. Therefore, 

comprehensive observations of debris-cover extent and thickness at high resolution are essential for understanding the dynamic 

evolution of debris-covered glacier surfaces. 

Existing approaches to spatially quantify debris thickness comprise (1) the extrapolation of point or cross-section field data 

(McCarthy et al., 2017; Nicholson and Mertes, 2017), (2) the exploitation of the relationship between the land surface 55 

temperature (LST) and debris thickness (Nakawo and Young, 1981), (3) the estimation of sub-debris melt by DEM differencing 

and converting melt rate to debris thickness based on the Østrem-curve  (Rounce et al., 2018), (4) a combination of 2 and 3 

(Rounce et al., 2021) and (4) the use of synthetic-aperture radar (Huang et al., 2017). It has been shown that the LST can be 

related to debris thickness by fitting empirical functions (e.g. linear, exponential, rational) using ground data (Mihalcea et al., 

2008; McCarthy, 2019; Boxall et al., 2021; Gibson et al., 2017) Klicken oder tippen Sie hier, um Text einzugeben., exponential 60 

scaling assuming the lowest measured LST corresponds to 1 cm debris thickness (Kraaijenbrink et al., 2017), or solving a 

surface energy balance model for debris thickness with meteorological data input from either automated weather stations or 

reanalysis data (Zhang et al., 2011; Foster et al., 2012; Rounce and McKinney, 2014; Schauwecker et al., 2015; Stewart et al., 

2021). 

Most LST-based approaches to estimate debris-cover thickness have focussed on satellite imagery, whereas studies employing 65 

near-ground image acquisition in high resolution are less frequent. LST can be measured in high resolution using uncooled 

microbolometers applied either obliquely from the ground surface (Hopkinson et al., 2010; Aubry-Wake et al., 2015; Aubry-

Wake et al., 2018) or in nadir mounted to an unpiloted aerial vehicle (UAV) (Kraaijenbrink et al., 2018). Debris thickness was 

recently mapped using oblique LST (Herreid, 2021), but the quantification of debris thickness from UAV thermal imagery has 

remained elusive. The possibility to measure the spatiotemporal variability of LST from the ground or UAV is a particular 70 

advantage, as most thermal infrared measurements from space do not have a sub-daily temporal resolution.      

Here, we present UAV-derived LST and its diurnal variability to estimate debris thickness as it varies in space at various times 

of the day. To estimate debris thickness we, solve a surface energy balance model using ERA-5 reanalysis data and the 

measured LST. We take advantage of the diurnal measurements and consider the debris's change in heat storage as part of the 

surface energy balance model. We then compare the results with debris thickness maps derived from the empirical relationship 75 

of LST and in-situ measured debris thicknesses using a rational curve. 

2 Study Area 

Tsijiore-Nouve Glacier (TNG) (Fig. 1) located in southwest Switzerland (46.01 °N, 7.46 °E) is around 5 km long with 

an average width of ~300 m. The surface area of TNG covers ~2.73 km². The glacier is characterized by an ice fall in the 
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central part, separating the debris-covered and the debris-free part of the surface. The flow direction is north and shows a 80 

strong eastward knickpoint within the ablation zone. The lateral moraines are very steep and partly vegetated. The surface of 

TNG hosts steep ice cliffs (Fig. 1b), supraglacial streams, debris-free bare ice parts, partly continuous as well as partly patchy 

debris-cover of heterogenic thicknesses and grain sizes. The glacier is easily accessible at day and night and therefore well 

suited for our study. The study focuses on a nearly continuously debris-covered portion of TNG. A relatively small study area 

of 60000 m² allowed for 8 UAV flights covering the entire study area throughout the day. 85 

 

Fig. 1. Overview of study area on Tsijiore-Nouve Glacier, Switzerland. (a) Orthomosaic from optical unpiloted aerial vehicle (UAV) 

data obtained on 30.08.2019. Yellow triangles indicate locations of debris thickness measurements, and green squares indicate 

ground control points. The histogram shows the distribution of the debris thicknesses measured in the field. (b) Slope map obtained 

from UAV-derived digital elevation model (15 cm resolution). (c) UAV-derived land surface temperature (LST) at 13h. Blue areas 90 
depict LST < 0.5 °C. The inset scatter plot shows in-situ debris thickness measurements versus LST. Black dashed lines in (b) and 

(c) indicate profiles shown in (d) (elevation) and (e) (LST).  
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3 Materials & Methods 

3.1 Field Data 

Field data were collected on 30.08.2019 on an area of approximately 60000 m2 (Fig. 1a), under blue sky conditions 95 

(isolated clouds in the late afternoon). Spatially distributed debris surface temperature was measured between 9 h and 22 h at 

2-h intervals to capture the diurnal temperature cycle. Temperature measurements were done using a radiometric uncooled 

microbolometer (FLIR Tau2 longwave infrared thermal camera) mounted to a DJI Mavic Pro UAV. The UAV followed the 

same pre-defined path for all 8 flights at 80 m elevation above the glacier surface (terrain adjusted). Optical UAV imagery (12 

MP) was recorded simultaneously with the thermal images. The thermal sensor operates within a temperature range of -40 °C 100 

to 160 °C, has a resolution of 640x512 pixels, which, given the flight altitude, yields a thermal image resolution of 

approximately 0.17m x 0.16 m, and measures longwave radiation within a range of 7.5 to 13.5 μm. Recording of the thermal 

infrared images was done in conjunction with the ThermalCapture 2.0 OEM (Teax Technology GmbH), allowing for the 

storage of images on an SD card. The recording was done with a reduced framerate (default 9 Hz). Each flight took between 

12 and 15 minutes and captured around 600 thermal images. The setup is suitable for high-mountain UAV applications due to 105 

its very low size and weight. Prior to the UAV flights 6 ground control points (GCPs) were distributed across the area of 

interest (Fig. 1a). The GCPs were made from aluminium foil to be clearly recognizable in the thermal images due to the very 

low emissivity.  

Debris thickness measurements were made at 90 locations within the study area (Fig. 1). Coordinates of measurement 

locations were documented using a Garmin Handheld GPS device (horizontal accuracy: ±3.6 m). The debris cover on the 110 

TNG is generally thin: measured thicknesses are below 30 cm, with a mean of 9 cm, a median of 5 cm, and a standard deviation 

of 10 cm. The debris cover close to lateral moraines consists of very large boulders (>0.5 m) that rendered measurements 

impractical and thus introduced a bias on the point measurements. Furthermore, it was not entirely clear where debris-covered 

ice transitioned to lateral moraines near the glacier margin.  

3.2  Thermal drift and offset correction 115 

Uncooled microbolometers are sensitive to environmental temperature fluctuations (Heinemann et al., 2020). 

Specifically, the sensor’s detector focal plane array, the sensor housing, and the lens of uncooled microbolometers are sensitive 

to temperature changes. Accurate radiometric temperature measurements require a thermal equilibrium between the sensor’s 

components and the environment. Unbalanced thermal conditions (e.g. the sensor cools down after UAV take-off, changing 

wind conditions, or heats up by direct incident shortwave radiation) introduce a temperature bias. The thermal adjustment of 120 

the sensor can thus lead to changes in measurements, known as thermal drift: the recorded temperature changes while the 

object’s temperature remains the same (Ribeiro-Gomes et al., 2017; Malbéteau et al., 2018; Dugdale et al., 2019a; Aragon et 

al., 2020). Furthermore, the ever-changing micro-meteorological conditions under a drone prevent the perpetuation of a 

thermal equilibrium and hamper accurate radiometric measurements. 

The FLIR Tau2 sensor performs an internal calibration, the flat field correction (FFC), to correct for non-uniformities 125 

by lens distortions and variations in the thermal pixel-to-pixel sensitivity. FFC is performed using the shutter at power up, 

when the camera changes temperature, and periodically during operation. The shutter is considered to be a uniform temperature 

source for each pixel and is used to update the offset correction coefficients. This internal calibration leads to in-flight 

temperature jumps that are accounted for in a post-processing step, called drift compensation. The occurrence of the FFC 

events is used to calculate linearly backwards an offset value for each frame (Teax, personal communication). Usually, this is 130 

done automatically by the ThermalViewer software but in our case, the reduced framerate resulted in the loss of several frames 

containing the FFC occurrence metadata entry. A drawback of the system one should be aware of. However, we identified the 

frames following the internal calibration and implemented the drift compensation ourselves (Fig. 2b). To find the temperature 
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jumps within the images, we used a threshold of 2 K differences in the mean temperature of the overlapping part in consecutive 

image pairs. The temperature jumps are clearly visible in the histogram time series (Fig. 2a) and we found this threshold to 135 

match the temperature jumps best. The overlap was defined as the bounding box of matching keypoints detected in successive 

images using the Oriented FAST and Rotated BRIEF (ORB) algorithm (Rublee et al., 2011) implemented in the scikit-image 

python library (Van Der Walt et al., 2014). 

 

Fig. 2. Thermal correction and calibration using bare ice temperatures on 2019-08-30 at 11:00 local time. Histogram time series, 140 
each vertical stripe shows the frequency of measured temperatures of one thermal infrared image. (a) Raw at-sensor (brightness) 

temperature with detected flat field correction events (black triangles). The temperatures of the focal plane array (FPA) and housing 

case returned by the sensor are shown in orange and bold black dashed line. (b) Drift compensated temperatures with ice surface 

temperatures (red dots) and thermal drift correction offset (dashed line). The black line shows the spline interpolation of the 

measured ice surface temperatures with the edges set to a constant value. (c) Offset corrected temperatures, each frame based on 145 
the spline interpolation that the ice surface temperatures are at 0 °C. 

Despite the successful detection of FFC events and applied drift compensation during postprocessing of the 

temperature data, we still observed bare-ice surfaces with considerable temperature deviations from 0 °C, the expected 

temperature for a melting ice surface. Furthermore, the remaining temperature bias appears to be not constant with time (Fig. 

2b). Therefore, we applied a further calibration step that employs the ice surface as a reference. The air temperature during the 150 

day of measurements was well above 0 °C and the ice surface, where visible was melting. Therefore we assume the LST of 

the ice surface to be at 0 °C. The extraction of the ice surface was done by a color-based segmentation algorithm using k-

means clustering (Pedregosa et al., 2011) and subsequently manually confirmed, similar to the approach of Aubry-Wake et al. 

(2015). We then interpolated the ice temperatures using splines and calculated an offset correction for each frame, in a manner 

that the LST of the ice will be 0 °C (Fig. 2c). The drift and offset were similar for most flights, but the evening flights showed 155 

less variation in the ice temperatures. However, for large ice temperature variations, the spline interpolation may not capture 

the temperature offset as shown in Fig. 2c (frame ~250). The correction and calibration procedure was applied for each flight. 

3.3 Orthomosaic generation (photogrammetry) 

Each flight yielded around 600 thermal infrared frames (Fig. 2), of which around 400 have been used to generate 

orthomosaic maps and 200 were omitted as they recorded the take-off and landing of the UAV. The diurnal variation of the 160 

surface temperature and relatively low contrast of thermal images led to spatiotemporal variations in the reconstruction of the 



6 

 

3D point clouds. Instead of additional point cloud alignment (Rusinkiewicz and Levoy, 2001), we orthorectified the thermal 

images using the same digital surface model (DSM) obtained from simultaneously recorded optical images. Therefore, we 

identified and marked all GCPs in both the optical and thermal images prior to the photogrammetric processing to improve the 

image alignment and improving the calculation of the camera calibration parameters (Cook, 2017). As the footprint of the 165 

images is relatively large with respect to our area of interest, the 6 GCPs were visible in almost all thermal images. The 

generated DSM from the optical images was then used as the basis for the thermal image orthorectification. The overlapping 

parts were reduced by a weighted average during the orthomosaic generation. Agisoft Metashape software offers several 

options on how to handle overlap areas and we found the default setting to produce the most reasonable results.  

3.4 Land surface temperature (LST) 170 

The temperature measured by the sensor, the brightness temperature, is influenced by (1) the upward-directed path radiance, 

(2) the radiation emitted by the surface towards the sensor and (3) the reflected portion of the incoming atmospheric longwave 

radiation. Due to the low flight elevation of 80 m above ground we neglect the path radiance. The reflected portion of incoming 

atmospheric longwave radiation (3) was taken from the downward thermal flux of ERA5 Land hourly reanalysis data (Muñoz 

Sabater, 2019) with respect to the time of flight. The large footprint of the reanalysis data (0.1° × 0.1°) compared to the small 175 

test site (~150 m × 350 m) might introduce additional uncertainties. However, the influence on the LST is small, as the 

magnitude of the reflected radiation is also very small. The retrieval of the LST (2) is then a function of the emissivity of the 

surface material and the atmospheric transmissivity between the ground and the sensor. We assume the transmissivity to be 

negligible under the meteorological conditions and flight altitude (Kraaijenbrink et al., 2018; Malbéteau et al., 2018). 

Following Stefan-Boltzmann law we calculated the LST using:  180 

 LST =  √
𝜎𝑇𝑟𝑎𝑑

4 − (1 − 𝜀) ∙ 𝐿𝑊 ↓

𝜎𝜀

4

 
Eq. 1, 

            

where σ is the Stefan-Boltzmann constant (5.67 × 108 Wm−2K−4), ε the emissivity of the surface type (debris=0.94, rough 

ice=0.97) (Rounce and McKinney, 2014; Aubry-Wake et al., 2015), and LW↓ the incoming longwave radiation (Wm−2). Some 

authors point out the relevance of atmospheric transmissivity (Torres-Rua, 2017; Herreid, 2021), while others neglect it due 

to low UAV flight elevations above the ground surface (D. G. Sullivan et al., 2007; Hill-Butler, 2014). We think radiation 185 

attenuated by water vapour in the atmosphere between the sensor and ground would be spatially uniform and thus compensated 

by our calibration procedure.  To assign emissivity values across the glacier surface, we distinguished between ice and debris 

using a supervised random forest classification with manually created training data (Breiman, 2001). By comparison with the 

optical imagery and according to the algorithm’s mean prediction error, we found the best classification results when the 

temperature differences between ice and debris were the largest, at 15 h. Data from this flight were used to classify the thermal 190 

imagery.  

3.5 Surface energy balance model 

Thermal energy fluxes at the earth’s surface are described in the surface energy balance approach used here. For a 

layer of supraglacial debris, the rate of change of heat stored in the debris (∆S) must balance all incoming and outgoing energy 

fluxes (all fluxes have units of Wm−2 and are positive when directed towards the debris layer): 195 

 ∆𝑆 = 𝑆𝑊 + 𝐿𝑊 + 𝐿𝐸 + 𝐻 + 𝐺 Eq. 2, 

where SW and LW are the net shortwave and longwave radiation fluxes, H and LE are the sensible and latent heat fluxes, and 

G is the conductive heat flux from the debris into the underlying ice. The parameters used in the surface energy balance are 

listed in Table 1. 
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Table 1 Parameters used in the surface energy balance model  

Model parameter  Symbol Unit Value 

Debris albedo αd - 0.30 

Ice albedo αi - 0.64 

Debris emissivity εd - 0.94 

Ice emissivity εi - 0.97 

Effective thermal conductivity k W m-1 K-1 0.96 

Surface roughness length z0 m 0.016 

Measurement height air temperature zt m 2 

Measurement height wind speed zu m 10 

Debris density ρd kg m-3 1496 

Debris specific heat capacity cd J kg-1 K-1 948 

Specific heat capacity of dry air ca J kg-1 K-1 1010 

Standard sea-level pressure P0 Pa 101325 

Air density at sea-level elevation ρair kg m-3 1.29 

 200 

The net shortwave radiation is a function of the albedo and the amount of incoming solar radiation. We assumed a constant 

debris surface albedo of 0.3 (Rounce and McKinney, 2014; Schauwecker et al., 2015). Computation of the insolation at the 

time of the UAV flights was done using a python implementation of the R package ‘insol’ (Corripio, 2003). The model 

determines the solar geometry (Iqbal, 1983) and estimates the atmospheric transmissivities (Bird and Hulstrom, 1981) based 

on a digital elevation model, which in our case was generated from the optical UAV images. Atmospheric attenuation was 205 

calculated using the relative humidity and air temperature, from ERA5 Land hourly reanalysis data at each time of flight 

(Muñoz Sabater, 2019). We also accounted for cast shadows by the surrounding topography, based on a 0.5-m resolution 

digital elevation model with a larger footprint (Swisstopo, 2010).  

Net longwave radiation results from the difference between incoming longwave radiation (LW↓) and outgoing longwave 

radiation (LW↑). LW↓ is the same as in Eq. 1 and based on ERA5 Land data (see section 0). LW↑ is a function of the LST and 210 

the surface emissivity (see section 0) and calculated following Stefan-Boltzmann’s law 𝐿𝑊 ↑ = εσ𝐿𝑆𝑇4. The latent heat flux 

(LE) is assumed to be 0, as the debris surfaces were dry during the UAV flights.  

The sensible heat flux H was estimated using the bulk aerodynamic approach assuming a neutral atmosphere (Nicholson and 

Benn, 2006; Steiner et al., 2018; Nakawo and Young, 1982; Rounce and McKinney, 2014):  

 𝐻 = 𝜌𝑎𝑖𝑟

𝑃

𝑃0

𝑐𝑎𝐶𝑏𝑡𝑢(𝑇𝑎𝑖𝑟 − 𝐿𝑆𝑇) Eq. 3, 

where 𝜌𝑎𝑖𝑟 is the air density at sea level pressure (kg m−3), 𝑃0 is atmospheric pressure at sea level (Pa) and 𝑃 atmospheric 215 

pressure at site elevation (Pa), calculated following Iqbal (1983), 𝑐𝑎 is the specific heat capacity of air (J−1kg−1K−1) (Brock 

et al., 2010; Barry et al., 2021), u the wind speed (ms−1), Tair the air temperature and  𝐶𝑏𝑡 the bulk transfer coefficient given 

as: 

 𝐶𝑏𝑡 =  
𝑘∗

2

ln(
𝑧𝑢

𝑧0
) ln(

𝑧𝑡

𝑧0
)
 Eq. 4, 

where k* is the Kármán constant (0.41), z0 is the surface roughness length (Rounce and McKinney, 2014; Stewart et al., 2021) 

and zu and zt are the measuring height (m) for wind speed and air temperature. The meteorological input data  𝑢 and 𝑇𝑎𝑖𝑟  were 220 

taken from ERA5 Land hourly reanalysis data (Muñoz Sabater, 2019).   

The conductive heat transfer through the layer of debris and into the ice can be described by Fourier’s law assuming a 

homogeneous layer of debris: 

 𝐺 =  −𝑘
𝜕𝑇

𝜕𝑧
 ≈  −𝑘 

𝐿𝑆𝑇 − 𝑇𝑑𝑖

𝑑
 Eq. 5, 
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where 
𝜕𝑇

𝜕𝑧
 is the temperature gradient in the debris layer and k the effective thermal conductivity (W m−1K−1). We assume a 

linear temperature gradient in the debris layer and thus 
𝜕𝑇

𝜕𝑧
 to be equal to the difference between the LST and the temperature 225 

of the debris-ice interface (𝑇𝑑𝑖), which we assume to be at the melting point 0 °C. The assumption of a linear temperature 

gradient applies only approximately and for thin debris thicknesses (<10 cm) (Conway and Rasmussen, 2000; Nicholson and 

Benn, 2006; Rounce and McKinney, 2014). The average diurnal temperature profile through a layer of debris can be considered 

linear but at sub-daily time intervals, the profile varies in its degree of linearity (Reid and Brock, 2010). We will come back to 

this point in the discussion.    230 

Solving the surface energy balance at sub-daily time intervals requires knowledge of the energy flux due to the change of heat 

stored in the layer of debris (∆S) (Brock et al., 2010). 

 ∆𝑆 =  𝜌𝑑𝑐𝑑

𝜕𝑇𝑑

𝜕𝑡
𝑑 Eq. 6, 

where 𝜌𝑑 is the debris density (kg m−3), 𝑐𝑑 is the specific heat capacity of debris (J kg−1K−1), d the debris thickness (m) and 

𝜕𝑇𝑑

𝜕𝑡
 the average rate of mean debris temperature change (K s−1) with 𝑇𝑑 as the mean debris temperature, (𝐿𝑆𝑇 + 𝑇𝑑𝑖)/2, and t 

the time. Our sub-daily multitemporal LST measurements allow us to estimate temporal changes in LST, but these are very 235 

sensitive to uncertainties in the LST measurements (see section 3.2). To avoid such issues, we rely on the diurnal temperature 

cycle and fitted a linearized harmonic sine function (Shumway and Stoffer, 2016) to the temperature data of each pixel. The 

first derivative with respect to time of this function is the warming/cooling rate and can be used to calculate the change in the 

heat storage term. 

 240 

3.6 Debris thickness estimation 

As both the stored heat flux (∆S) and the conductive heat flux (G) in the surface energy balance model (SEBM) are a function 

of the debris thickness, the surface energy balance model (section 3.5) can be described by a quadratic equation in form of: 

 𝑑2 (−𝑝𝑑  𝑐𝑑

𝜕𝑇𝑑

𝜕𝑡
) + 𝑑(𝑆𝑊 + 𝐿𝑊 + 𝐻) − 𝑘(𝐿𝑆𝑇 − 𝑇𝑑𝑖) = 0 Eq. 7, 

Solving for debris thickness was done using the quadratic formula: 

 𝑑 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 Eq. 8, 

with 𝑎 = −𝜌𝑑𝑐𝑑
𝜕𝑇𝑑

𝜕𝑡
, 𝑏 = 𝑆 + 𝐿 + 𝐻  and 𝑐 =  −𝑘(𝐿𝑆𝑇 − 𝑇𝑑𝑖) . Note that the quadratic equation has mathematically two 245 

solutions whereas only one is physically plausible. 

In addition to the SEBM approach, we also estimated debris thickness for each LST map using a rational curve (McCarthy, 

2019; Boxall et al., 2021) of the form 

 𝑑 =
𝐿𝑆𝑇

𝑐1 + 𝑐2𝐿𝑆𝑇
 Eq. 9, 

where 𝑐1 and 𝑐2 are empirically derived coefficients by a least squares regression. 

To evaluate the performance of the two approaches for predicting debris thickness, we used the RMSE between the predicted 250 

and the observed debris thickness at the sites surveyed in the field (section 3.1). To account for the accuracy of the handheld 

GPS device, we used the mean variable values within a 2-m-radius buffered region around the GPS coordinate.  Sites for which 

the SEBM approach did not yield a real and positive number were excluded from the comparison. We discuss the causes for 

these unphysical solutions in detail in section 5.1. To evaluate the least squares regression of the rational curve we divided the 

observed debris thickness data into a testing (n=45) and training (n=45) dataset. The training dataset has been used to derive 255 
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the model coefficients 𝑐1and 𝑐2 while the testing dataset was used to compare the modelled debris thickness estimates with the 

field observations. 

4 Results 

4.1 Land surface temperature and its diurnal variation 

The LST changes over the day in a cyclic manner (early morning cool – afternoon hot – evening cool) and consequently the 260 

ability to estimate debris thickness using LST changes accordingly (Fig. 3). Unlike satellite-derived LST observations, our 

diurnal LST measurements allow us to show how this relationship changes throughout the day.  

  

Fig. 3. Spatiotemporal distribution of the land surface temperature (LST).  The panels (a-h) show the 8 individual flights describing 

a large fraction of the diurnal land surface temperature variation. The maps have a spatial resolution of 15 cm and are colorized in 265 
dark blue for LST < 0.5 °C. Due to the residual uncertainties of the LST, ice surface geometries appear inconsistent with time. The 

southeast region of the panel (b) (11 h) shows an unreasonable cold temperature due to a failed calibration.  

LST and debris thickness are generally positively correlated, but the suitability of a linear model to describe the relationship 

varies throughout the day with better correlation for cooler temperatures in the evening hours (Fig.4f-h). In the afternoon hours 

when the debris surface reaches its maximum diurnal temperature, the relationship between debris thickness and LST shows 270 

its non-linear nature (Fig. 4c-e). Additionally, we observe the influence of the terrain aspect: east and south-facing slopes heat 

up earlier compared to west and north-facing slopes (Fig. 4a, b) (Crameri et al., 2020).  
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Fig. 4. The temporal variation of the land surface temperature (LST) against in-situ measured debris thickness. Panels (a-h) show 

the arithmetic mean land surface temperature of a 2 m buffered region around the GPS coordinates of debris thickness 275 
measurements colorized for terrain aspect with 0/360 ° facing north. The LST of the warming phases (a-d) is stronger influenced by 

the aspect than the cooling phases (e-h). The non-linear nature of the relationship between the LST and debris thickness is noticeably 

pronounced for higher LST (c-e) while the correlation for low LST appears more linear (f-h). 

The effect of the terrain aspect is not evident during the cooling phase in the afternoon and evening. The spatial and temporal 

variability of the LST (Fig. 3) shows that at all flight times, surface temperatures are higher at the edges of the glacier (NW 280 

and SE) and lower in the central part of the test area.  This pattern corresponds to high debris thicknesses at the glacier margins 

and thin debris thicknesses or no debris occurrence in the middle part. The mean LST of the debris cover follows the expected 

pathway of a diurnal temperature cycle (Table 2).  

 

Table 2 Mean LST and standard deviation (1σ) of the debris and ice surface type. 285 

Local flight  

time (h) 

Mean ± 1σ 

(debris) °C 

Mean ± 1σ 

(ice) °C 

09 h 7.28 ± 4.60 1.71 ± 1.43 

11 h 10.68 ± 7.69 0.87 ± 1.87 

13 h 19.52 ± 7.13 1.43 ± 2.87 

15 h 21.44 ± 6.16 1.51 ± 2.32 

17 h 13.31 ± 4.46 2.26 ± 2.84 

19 h 8.10 ± 3.76 1.16 ± 1.56 

21 h 5.31 ± 2.80 1.31 ± 1.56 

22 h 4.59 ± 2.99 0.72 ± 0.77 

 

While the general spatial and temporal pattern of LST seems to be reasonable, some areas of concern exist locally. First, the 

southeastern region of the 11 h flight shows an unreasonable cold temperature patch, which most likely does not represent the 

actual LST at that time. Instead, we suspect that this artefact corresponds to an uncorrected bias of the thermal correction and 

calibration process. We will come back to this point in the discussion. Second, the 15 h flight shows a centrally located, 290 

transverse-oriented strip of higher LST, which seems to follow the flight path of the UAV. The directional temperature 

mismatch could be related to an oblique viewing angle of the sensor as the nadir alignment was set up manually and the angle 

of observation might partly control the amount of radiation received by the sensor and thus the temperature measurement 

(Norman and Becker, 1995).   

In the absence of any other means to assess the precision of the LST values, we suggest that the variability of the bare ice 295 

surface temperatures, which ought to be at 0°C, might indicate the bias and precision of the LST. The LST values of ice surface 

temperatures vary by several degrees with a standard deviation of up to 2.87 °C (Table 2). Mean ice LST range between 0.72 
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and 2.26 °C throughout the day (Table 2). Field observations show that ice cliffs on TNG are often sprinkled with small rocks 

and/or a thin layer of dust, which might influence the ice LST towards warmer temperatures. 

Based on the LST measurements, we estimated the diurnal variation of the depth-integrated mean debris temperature. The 300 

pixel-wise fitted harmonic sine functions allow us to estimate the spatially distributed warming and cooling rates, as the first 

derivative with respect to time. The RMSE of the fit (𝑚𝑒𝑎𝑛 ± 1𝜎) is 1.51 ± 0.54°C. The spatial distribution of the RMSE 

(Fig. 5b) is relatively continuous but shows variability where the before mentioned local LST discrepancies occur. Fig. 5a 

shows that, depending on the aspect, at 13 h and 15 h the debris surface reaches its maximum LST and consequently the 

temperature change rate converges to zero. 305 

 

Fig. 5. Sinusoidal regression of mean debris temperature (𝑻𝒅), estimated from LST (Eq. 6,) for each pixel. (a) The panel shows the 

time at which 𝑻𝒅 reaches its maximum diurnal temperature and thereby emphasizes the effect terrain aspect. (b) The RMSE of the 

regression for each pixel. The south-eastern region with larger errors is due to the anomalies in the LST at 11 h, see text for details. 

The spatial mean of the RMSE is 1.51 °C and the standard deviation is 0.54 °C. The panels (c-f) are example points of the sine 310 
function used to derive the warming/ cooling rate in each pixel. Locations of the examples are indicated in panels (a) and (b). 

4.2 Surface energy balance modelling 

To solve the surface energy balance (Eq. 2) we determined the LST-independent energy flux component SW and the LST-

dependent components LW, H, ∆S and G based on the UAV-derived LST maps shown in Fig. 3. In Fig. 6, we show the diurnal 

variation of each component, evaluated at all locations where we obtained debris thickness measurements.  315 
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Fig. 6. Energy fluxes at debris thickness measurement locations. Diurnal variations of (a) land surface temperature, LST, (b) net 

shortwave radiation, SW, (c) net longwave radiation, LW, and (d) sensible heat flux, H, with lines colorized by terrain aspect with 

0/360 ° facing north. Diurnal variations of (e) the change in heat storage, ∆S, and (f) the conductive heat flux, G, with lines colorized 

by debris thickness measured in the field. Note that only SW (b) is independent of LST, whereas data in panels (c-f) are a function 320 
of LST. 

East and south-facing slopes receive their maximum net shortwave radiation (SW) prior to the west and north-facing slopes 

(Fig. 6b), which explains their earlier increase in LST (Fig. 6a). By 15 h, all sites attained the daily maximum LST and cool 

down from then on. Despite the remaining differences in SW, no more aspect-related differences in LST can be observed. All 

the remaining SEBM components are a function of the LST and thus also show an aspect dependency before 15 h. The net 325 

longwave component (LW) expectedly mirrors the LST (Fig. 6c). The sensible heat flux (H), calculated using the bulk approach 

(Eq. 3), attains only low flux values close to 0, which is likely related to the low wind velocities (<1 ms−1) obtained from 

reanalysis data (Table 3). The rate of change in heat storage within the debris (∆S) and the conductive heat flux (G) are, besides 

the LST, a function of the debris thickness (Eq. 6, Fig. 6e, f). Whereas ∆S attains the largest magnitudes in the morning and 

evening hours and where the debris is thick, the opposite is true for G, which is largest at 15h and where the debris is thin. 330 

 

Table 3 ERA5 Land hourly reanalysis data on 30.08.2019 interpolated at Tsijiore-Nouve Glacier, Switzerland (46.01° N, 7.46° E) 

Local flight 

time (h) 

Incoming longwave 

radiation, 𝑳𝑾 ↓ (W m-2) 

Wind speed, 

u (m s-1) 

Air temperature, 

𝑻𝒂 (°C) 

09 h 311.03 0.35 6.64 

11 h 304.38 0.45 10.29 

13 h 304.05 0.48 11.69 

15 h 307.31 0.85 12.09 

17 h 308.26 0.87 10.24 

19 h 307.46 0.41 8.98 

21 h 306.71 0.46 7.74 

22 h 306.19 0.60 7.20 
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4.3 Debris thickness estimates from SEBM 

The SEBM-derived predictions of debris thickness (Fig. 7) show a general pattern that matches observations in the field and 

the pattern of measured LST. Predicted debris thicknesses generally range between 0 and 30 cm. Given the chosen input 335 

parameters, Eq. 8 cannot be solved for all pixels in the first half of the day (9 h to 15 h) (Fig. 7a-d).  

 

Fig. 7. Estimated debris thicknesses for each flight time. White regions show regions where the surface energy balance model has no 

valid solution for debris thickness due to high uncertainties in the land surface temperature and reanalysis data. The histograms 

show the distribution of the predicted debris thicknesses displayed in the maps. 340 

At these times the quantities of the surface energy balance components and the relatively low LST, lead to a negative term 

under the root in Eq. 8, and thus to no valid solution. Predictions of thicker (>10 cm) debris are primarily found in the afternoon 

and evening hours (17 h to 22 h) and the pattern of thin debris  (<10 cm) predictions, primarily in the central part of the glacier, 

is relatively consistent in time.  

Comparing the predictions to field observations (Fig. 8) shows that the accuracy of the prediction remains comparable 345 

throughout the day with an RMSE of 6 to 8 cm. For most of the flights, we find a positive correlation between the predictions 

and observations, even if they do not follow the 1:1 line. During the warming phase of the day, when the aspect has a strong 

influence on LST (Fig. 4a-c), the associated debris predictions do not show an aspect-related pattern. In contrast, debris 

thickness predictions based on the afternoon flights at 17 h and 19 h, seem to correlate with aspect whereas the LST data does 

not. 350 
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Fig. 8. Comparison of modelled and observed debris thickness for each flight time (a-h) with RMSE values (m) for model evaluation. 

Sample points are colorized by terrain aspect and the grey dashed line shows the 1:1 line. RMSE for flights (a, b and c) is based on 

a reduced sample number.  

Absolute values of predicted thin debris cover are less sensitive to the time of the day, compared to thick debris. Figure 9a 355 

shows the variation of the predicted thicknesses with time along the profile introduced in Fig. 1b as the mean value ±1𝜎. The 

spatial variability of the standard deviation is shown in Fig. 9d. As the SEBM does not yield a valid solution for all times of 

the day, Fig. 9e additionally shows the number of valid predictions in time. Towards the glacier edges where the debris is 

greater than 10 cm, the spread in the standard deviation increases, compared to the central part, showing that the prediction of 

thick debris cover varies stronger in time than for thin debris cover.  360 

 

Fig. 9. Diurnal mean ± 1σ debris thickness predictions along the profile line shown in Figure 1. (a) The predictions using the surface 

energy balance model (SEBM) show a larger spread of the standard deviation (grey) towards the edges and smaller towards the 

central part corresponding to regions of ticker and thinner debris cover. Panel (b) shows the results of the rational curve 

extrapolation approach. A smaller spread indicates greater consistency in the prediction over the day. (c) The diurnal variability of 365 
the land surface temperature along the profile line. Panel (d, f) shows the spatial variation of the standard deviation and (e) the 

number of valid solutions in the SEBM approach.   

 

4.4 Debris thickness estimates by extrapolating a rational curve 

The debris thickness maps created by the extrapolation approach using a rational curve result in slightly thicker predictions 370 

than following the SEBM approach (Fig. 10). The general pattern of the spatial debris thickness distribution follows the field 

observations and the pattern of measured LST, similar to the results of the SEBM approach. The modelled debris thicknesses 

vary between 0 cm and 30 cm, but with early flights at 9 h and 11 h lacking predictions greater than 10 cm (Fig. 10a, b).  
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Fig. 10. Estimated debris thickness using a rational function for each flight time. The histograms show the distribution of the 375 
predicted debris thicknesses displayed in the maps. 

We divided (Pedregosa et al., 2011) the dataset of n = 90 samples into a training (n = 45) and testing (n = 45) dataset. Fig. 11 

shows training and testing data for each flight time including the coefficients 𝑐1 and 𝑐2, derived by least squares regression 

of  Eq. 9 and the RMSE between the predictions and the observations of the testing data (Fig. 11). Similar to the SEBM, the 

RMSE ranges between 6 cm and 8 cm, but debris thicknesses > 10 cm are better represented in the extrapolation approach and 380 

thus follow more closely the 1:1 line. At 9 h, 11 h and 15 h the RMSE is highest at 8 cm and the shape of the curve already 

shows that the model does not represent the data well. The aspect dependency of the LST at these times (Fig. 4, a,b) was not 

considered as an additional parameter for the regression and thus, results in a curve that does not represent the shape of the 

data well (Fig. 11a,b). The afternoon flights between 17 h and 22 h have the lowest RMSE with 6-7 cm.  

 385 

Fig. 11. Least squares regression of a rational function of 50 % of the debris thickness measurements (n=45) with the arithmetic 

mean land surface temperature of a 2 m buffered region around the GPS coordinates of debris thickness measurement locations 

(training data) (a-h). The adjacent panels show the comparison of modelled and observed debris thickness of the other 50 % (n=45) 

with RMSE values to evaluate the prediction (testing data). Sample points are colorized by terrain aspect. 

 390 

The diurnal stability in predicting debris thickness (Fig. 9. Diurnal mean ± 1σ debris thickness predictions along the profile 

line shown in Figure, f) shows that thin debris cover, as found in the central part of the profile line, remains stable throughout 
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the day and is thus comparable to the results of the SEBM approach. For thicker debris the spread of the standard deviation is 

higher, showing that predicting thick debris cover depends more on the time of the day than thin debris. Even though the range 

of the RMSE throughout the day remains comparable to the SEBM results, for some flights (e.g., 19 h) the average prediction 395 

accuracy improves by about 2 cm. 

5 Discussion 

5.1 Predicted versus observed debris thickness 

Debris thickness predictions with the SEBM approach yielded mixed results. The fact that the modelled debris thickness does 

not vary in unreasonable ways across the glacier surface, but in a systematic pattern, shows that mapping high-resolution debris 400 

thickness with UAVs has some potential.  During most of the flights, we observe a general positive correlation between the 

modelled and observed debris thickness (Fig. 8b-h). The overall relationship between higher surface temperature and thicker 

debris that is evident in the input data (Fig. 4) can be reproduced. However, given the chosen parameters, we are unable to 

obtain a non-biased match between the observed and modelled debris thickness. The SEBM approach mostly underestimates 

debris thickness at all flight times compared to field measurements. For thick debris cover, this underestimation is more 405 

pronounced than for thin debris (<10 cm).  

Over the course of the day, the RMSEs between observed and predicted debris thicknesses range from 6 to 8 cm. For many 

pixels in the flights at 9 h, 11 h, and 13 h and some pixels at 15 h (Fig. 7 a-d) the quadratic equation (Eq. 7) has no real solution, 

and the SEB cannot be solved for debris thickness. The reason for this is a negative term in the square root of Eq. 8, which 

occurs if 𝑏2 < 4𝑎𝑐. Recall that b accounts for the radiative and sensible heat fluxes (SW+LW+H), whereas a and c are the 410 

conductive heat flux and the storage term, respectively. As long as LST > 0 °C, 𝑐 is always negative. The inequality condition 

above can thus only occur if also 𝑎 is negative, which is only possible when the debris is heating up, in our case until about 15 

h (Fig. 5a, Fig. 6e). That explains, why many pixels in the morning flights have no debris thickness solution. Furthermore, at 

9 h, the term b2 is rather small, mostly because of low SW values. However, at 11 h and,13 h southeast-exposed pixels receive 

higher SW (Fig. 6b), which causes b to increase, making the inequality condition less likely. The most likely reason for no 415 

physical solution to Eq. 7 is inaccurate values of LST and reanalysis-derived variables. Mostly during the morning, even small 

deviations from true values are sufficient to find no physically meaningful debris thickness solution. For thin debris (< 2cm), 

G is very sensitive to uncertainties in LST and leads to large negative numbers. This is a major drawback of the SEB approach, 

and it highlights the sensitivity of the approach to uncertainties in the input data. We note that these uncertainties prevail, even 

if a solution is found. However, compared to the ground observations of debris thickness the model predictions show a positive 420 

correlation.    

As a result of spatially incomplete debris thickness maps, the number of sample points to evaluate the quality of the prediction 

is reduced (see low ‘n’ in Fig. 8a-c) and should be kept in mind when comparing the RMSE with respect to the time of the 

day. Previous studies did not face this issue, in part because ∆S was incorporated as a fraction of the conductive heat flux G, 

which is always negative (Foster et al., 2012; Schauwecker et al., 2015). Comparison of ∆S and G for the sites where we 425 

measured debris thickness shows that such an assumption appears to be invalid for most times of the day (Fig. 5). By estimating 

∆S using the warming/cooling rate from multitemporal LST measurements, we can better account for this energy balance 

component, but these estimates are also prone to uncertainties in LST. In general, however, the magnitude and distribution of 

SW, LW and ∆S for most of the sample locations compare well to values determined by Brock et al. (2010) with an automatic 

weather station (AWS) at the Miage Glacier at comparable latitude, time of the year, and elevation (500 m difference). 430 

Debris thickness predictions below ~10 cm seem to correlate reasonably well with field observations, whereas predictions of 

thicker debris cover are generally too low (Fig. 8). This may indicate that uncertainties in parameters that are unlikely to vary 

spatially or as a function of debris thickness are not particularly relevant. To further test this hypothesis, we performed 



17 

 

sensitivity tests of SEBM-derived debris thickness estimates to variations in the input parameters air temperature, wind speed, 

thermal conductivity, albedo, and surface roughness length (Fig. 12). Variations of the parameters air temperature, albedo, and 435 

surface roughness length across value ranges commonly found in the literature (Brock et al., 2000; Foster et al., 2012; 

Schauwecker et al., 2015; Shaw et al., 2016; Miles et al., 2017) result in generally small variations of the mean debris thickness 

(averaged across the entire studied surface). In consequence, the impact on the RMSE when evaluated against our field 

observations of debris thickness is also small. Only the flights at 9 h, 11 h, and 13 h show more significant variations in the 

RMSE, but these correspond to simultaneously low coverage of valid predictions and thus only small numbers of sample points 440 

to estimate the RMSE (Fig. 9. Diurnal mean ± 1σ debris thickness predictions along the profile line shown in Figure).  

 

Fig. 12 Sensitivity of debris thickness prediction using a surface energy balance model (SEBM) to the parameters air temperature, 

wind speed, effective thermal conductivity, albedo and surface roughness length. For each flight time, each parameter was varied 

across a range of values and debris thickness maps were created. Each column shows colorized (1) the modelled mean debris 445 
thickness averaged over all pixels in the test area, (2) the RMSE between the observed and predicted debris thicknesses and (3) the 

coverage of valid predictions as the surface energy balance model cannot always be solved. The white dot in modelled mean debris 

thickness shows the mean debris thickness observed in the field.  

The same is essentially true for wind speed, which is a notoriously difficult parameter to constrain in any surface energy 

balance model (Schauwecker et al., 2015; Stewart et al., 2021) and is a strong control of the sensible heat flux (Eq. 3). ERA5-450 

derived wind speed during the time of our experiment is relatively low at <1 m s-1, whereas wind speeds of ~2-4 m s-1 are not 

uncommon in the vicinity of glaciers (e.g., Oerlemans and Greuell, 1986; Brock et al., 2010; Steiner et al., 2018). During a 

different visit to the TNG in 2021, we operated a small AWS for a full day and obtained wind speeds of 2.5-4 m s-1, which 

were higher than ERA5-derived wind speeds of 0.5-2 m s-1 for the same day. Although we don’t know what the actual wind 

speed was during our experiment in 2019, increasing the wind speed and solving for debris thickness has a minor effect on 455 

flights from 17 h onwards, whereas for earlier flights, the coverage quickly drops to low values. This is related to the fact that 

larger negative H values reduce 𝑏 (i.e., the sum of the radiative and sensible heat fluxes, SW+LW+H), thereby increasing the 

likelihood to obtain a negative term in the square root of Eq. 8. Similar effects also account for changes in coverage for the 

other parameters. We thus emphasize that changes in RMSE during flights until about 15 h that are associated with changes in 

coverage do not necessarily indicate better model performance. The high sensitivity of the SEBM approach to uncertainties in 460 

LST and the reanalysis data reduces the suitability to reliably estimate debris thickness. 

The only tested parameter that has a more pronounced effect on the mean debris thickness and RMSE without changing the 

coverage is the thermal conductivity (k) through its influence on the conductive heat flux, G. Higher k values result in greater 
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energy losses to the ice and a higher debris thickness for the same LST. A similar effect has been achieved by Rounce and 

McKinney (2014) by introducing a factor to account for the non-linearity of the temperature profile in the debris cover. (Bird 465 

and Hulstrom, 1981) 

It should also be noted that the effective thermal conductivity k is likely to vary spatially, as thick debris cover can hold more 

moisture, which thus leads to higher values of k (Steiner, 2021). Additionally, a thin debris cover composed of smaller grain 

sizes may have different pore space than a layer of thick debris cover consisting of larger grain sizes. The bulk debris-void 

space and thus the effective conductivity could vary with debris thickness, too. Because the effective thermal conductivity of 470 

a debris layer and its spatial variability is a rather complex quantity that is not easily measured, this parameter could be used 

as a free parameter to tune the debris thickness map against field observations. 

Debris thickness predictions using least squares regression of a rational curve yield RMSE values between 6 and 8 cm, similar 

to the results of the SEBM approach. The pattern of spatially distributed debris thickness estimates (Fig. 10) follows the 

expected spatial pattern of the LST for each time of the day. The range of predicted debris thicknesses corresponds to the field 475 

observations with values similar to the SEBM approach, between 0 cm and 30 cm. As the LST varies throughout the day, the 

suitability of the rational curve regression to estimate debris thickness varies too. For instance, at 9 h and 11 h, LST depends 

strongly on the terrain aspect and thus the results are biased towards the aspect (Fig. 11a,b). Nevertheless, at 13 h the RMSE 

between observations and predictions (Fig. 11c, testing data) is still 7 cm. This suggests that during the times when the debris 

is heating up, the regression of a rational curve would benefit from taking the terrain aspect into account, i.e., by fitting a 480 

parametric surface to the data. In addition, the strongly non-linear relationship between LST and debris thickness at 9 h and 

11 h limits predicted debris thicknesses to <10 cm. The predictions at these flight times show unrealistic uniform values in the 

same regions at which the SEBM approach cannot be solved. This supports the SEBM approach and indicates that the LST at 

this time is too low to relate it to debris thickness. When the debris is cooling down in the evening (Fig. 11e-h), the aspect has 

a minor effect, and the curve appears to satisfy the available data. When LST is low (morning and evening), the relationship 485 

between LST and debris thickness seems to be almost linear, and a simple linear regression is expected to result in comparable 

accuracy. This agrees with the findings of Boxall et al. (2021), based on satellite-derived LST.  

5.2 Opportunities and limits of UAV-derived LST for debris thickness mapping 

High-resolution studies can improve our understanding of processes that move and distribute debris on glacier surfaces 

(Westoby et al., 2020). Spatiotemporal debris thickness estimates using UAV-derived thermal images have the potential to 490 

serve as a new approach to quantify how debris is mobilised across the surface of the glacier over short times scales. The 

detailed representation of surface features, such as ice cliffs, large boulders (Fig. 13), or surface ponds makes UAV-derived 

LST measurements a valuable tool for debris cover research.  
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Fig. 13. High-resolution subsection of the unpiloted aerial vehicle imagery (UAV) with debris cover, large boulders and ice cliff. The 495 
panels show (a) the RGB image, (b) the land surface temperature at 15 h, (c) debris thickness prediction using the rational curve 

approach and (d) debris thickness prediction by solving the surface energy balance model. The difference map (e) and 2d histogram 

(f) show how the model predictions compare spatially. 

So far, the conversion of LST to debris thickness in high resolution was only studied using ground-based oblique viewing 

angles (Herreid, 2021) using empirical equations. However, challenges in this approach include (1) the area covered by the 500 

field of view, (2) the variable path radiance and (3) the viewing angle that controls the amount of radiation received by the 

sensor. UAV offers opportunities to overcome these issues, but also face challenges that we discuss here. These challenges 

stem from the specifics of image acquisition, limited battery lifetime, post-processing requirements, and the conversion of 

the brightness temperature to LST. 

All high-resolution studies, including ours, have so far used uncooled microbolometers, a sensor type that requires thermal 505 

equilibrium between the sensor device and the environment for accurate measurements (Budzier and Gerlach, 2015). As these 

conditions are difficult to achieve and maintain in high mountain settings, the obtained thermal infrared images require 

calibration and correction. The ambient temperature difference between the ground and the flight elevation requires the sensor 

device to thermally adjust after take-off, which thus introduces a measurement bias that varies with time (Fig. 2a). While this 

effect is primarily relevant for UAV applications, the maintenance of stable environmental conditions (e.g., changing wind 510 

speeds) cannot be guaranteed even for ground-based measurements and temporal variance of the measurement bias should be 

considered. While the sensor device cools down after take-off due to flight altitude, direct incident shortwave radiation may 

cause the device to heat up (Dugdale et al., 2019). The change in the measurement bias with time, the thermal drift, is partially 

balanced by the internal in-flight calibration of uncooled microbolometers (Mesas-Carrascosa et al., 2018), leading to recurring 

systematic jumps in the measured temperature (Fig. 2) that can be compensated for in a postprocessing step (see section 3.2). 515 

Long flight times, slow flight speeds and no direct shortwave radiation would thus minimize the effect of thermal drift but 

would likely not substitute for additional calibration. 

The thermal correction during post-processing in our case included (1) recovering the occurrence of flat field correction (FFC) 

events that were “lost” by the reduced sampling rate, (2) identifying and correcting the thermal drift, and (3) correcting the 

residual measurement bias using bare ice surfaces. During all flight times, thermal drift corrected for by FFC events was rather 520 

large and resulted in changes by up to ~8 K over 50 frames (Fig. 2a). With a frame rate of 1/s, this means a thermal drift of up 
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to 0.16 K s-1. Assuming that the thermal drift is indeed linear with time, the in-flight FFC or, as in our case, post-processing 

identification of FFC is relatively straightforward, due to the step change in LST across an FFC event. Figure 2a also shows 

the internal housing temperature and the temperature of the focal plane array, as recorded by the thermal sensor. The rapid 

decline, in the beginning, shows the thermal adjustment due to the vertical temperature gradient between the ground and flight 525 

elevation. While UAVs with larger battery capacity might offset this effect to some extent, our setup was limited at that point. 

To convert the brightness temperature to LST, we accounted for the reflected portion of the incoming longwave radiation and 

surface-type emissivity but neglected the path radiance between the sensor and the ground. As the elevation of the UAV above 

ground does not change significantly throughout the flight, the potential measurement bias of longwave radiation emitted by 

atmospheric water vapour content is minimized and assumed to be constant. Our ‘bulk’ calibration approach using spline 530 

interpolation of measured ice surface temperatures compensates for the systematic temporal variability of the measurement 

bias (Fig. 2b) introduced by (1) thermal adjustment after take-off, (2) fluctuations of atmospheric conditions by wind or 

incident direct shortwave radiation or (3) longwave radiation emitted from atmospheric water vapour content or the 

surrounding terrain (Aubry-Wake et al., 2015; Aragon et al., 2020; Herreid, 2021).  

Because of the need to calibrate all thermal images, the requirement of spatially well-distributed reference temperatures is the 535 

main drawback of the proposed method. In our case, bare ice surfaces were present in the central part but not at the glacier’s 

sides. Two image regions are found to be severely erroneous, an anomalously low-temperature patch on the eastern edge at 11 

h and a warm temperature stripe in the centre that seems to follow the flight path of the UAV at 15 h (Fig. 3b,d). We think the 

cold region at 11 h could be due to a failed drift compensation, as the spline interpolation assumes a constant correction value 

before the first and after the last occurrence of bare ice in the thermal images. The warm temperature strip could be related to 540 

an oblique viewing angle of the sensor during that flight, as the sensor alignment was done manually (Sobrino and Cuenca, 

1999; Byerlay et al., 2020; FLIR, 2020). 

So far, we discussed the challenges and needs to derive glacier surface LST. Provided the measurements obtained in our 

experiment, we also observed differences in the resulting debris thickness that we derived from the SEBM and the rational 

curve approaches. The SEBM approach requires meteorological input data, assumptions on debris properties (in space and 545 

time) and substantial simplifications of SEB components. Because the conservation of energy represents a balance among all 

energy fluxes, it follows that any simplification in one component will have a quantitative effect on the others (Price, 1985). 

However, when comparing the diurnal variation of the energy flux components with measured quantities in a comparable 

setting regarding location, time, and debris thickness (Brock et al., 2010), we find good agreement in magnitude and 

distribution for net shortwave, net longwave and change in heat storage and the conductive heat flux (Fig. 6). The possibility 550 

to estimate sub-daily surface energy balance components improves our understanding of ∆S. Repeated LST measurements 

might additionally increase understanding of the spatial variability of debris properties (e.g., thermal conductivity, debris 

density or specific heat capacity) by quantifying the thermal inertia. 

The accuracy of predicting debris thickness using a SEBM and empirically using a rational curve yielded comparable results 

with RMSEs of 6-8 cm depending on the time of the day. Both methods yield a terrain aspect bias. The SEBM approach 555 

compensates for the terrain effect to some degree as the amount of incident shortwave radiation is a function of aspect, too. 

The terrain bias in the early flights using the rational curve approach is more pronounced as it is only based on the LST. 

However, as this approach is less sensitive to uncertainties in LST, we recommend the rational curve approach to estimate 

debris thickness as long as enough debris thickness measurements are available. Steep moraines of debris or hummocky-

shaped debris-covered surfaces are likely to introduce bias via mixed-pixel effects, when predicting debris thickness using 560 

coarse spatial resolution LST from remote sensing data, especially in the case of empirically derived debris thicknesses. For 

example, the time of overpass of the Landsat satellite is typically between 10 h to 11 h locally, a time when debris cover is 

still heating up. Therefore, the effect of aspect on satellite-derived LST debris thickness estimates should be studied in more 

detail. 
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6 Conclusions 565 

In our experiment, we mapped supraglacial debris cover using high-resolution UAV-derived LST measurements at various 

times of the day and using two common approaches to create debris thickness maps: a surface energy balance model approach 

and a simple extrapolation approach using a rational curve that relies on field measurements. We conclude that: 

 

1) Measuring the LST from a UAV using an uncooled microbolometer requires temperature calibration that varies with 570 

time. Here we determine an offset correction value for each thermal infrared frame by interpolating splines of spatially 

well-distributed bare ice surfaces, assuming the ice to be at melting point of 0 °C. This bulk correction compensates 

for several sources of uncertainties but requires the presence of bare ice surfaces. 

2) Quantifying the surface energy balance components based on the UAV-derived LST measurements led to debris 

thicknesses predictions with an RMSE of 6-8 cm, depending on the time of the day. Debris thicknesses were 575 

underestimated at all flight times. Measuring the diurnal variability of LST allowed us to extend the commonly used 

surface energy balance approach by quantifying the rate of change of heat storage.  

3) The non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best 

empirical function for predicting debris thickness thus depends on the time of the day. Morning conditions yield a 

strong terrain aspect bias, which is better accounted for in the SEBM approach. When the LST reaches its diurnal 580 

maximum, here at 13 h or 15 h, the non-linearity is most evident. Towards the evening the relationship between debris 

thickness and LST appears almost linear and aspect plays a minor role. 

4) Practical considerations for quantifying supraglacial debris cover using UAV-derived LST comprise LST calibration, 

choosing the model based on the time of the day and debris thickness measurements for evaluation. In our case, the 

ultra-lightweight UAV set-up was suitable for remote high mountain field work but had a significant drawback due 585 

to the limited battery capacity, resulting in short flight times of 10 to 15 minutes and small spatial coverage. 

Consequently, the thermal adjustment of the device led to strong thermal drift and thus to many in-flight calibration 

events that had to be considered. Maximizing the flight time by using a larger UAV could offset this effect to some 

degree. The measurement bias varies with time and spatially well-distributed reference temperatures should be used 

for calibration.  590 
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