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Abstract. Cone penetration tests have long been used to characterize the snowpack stratigraphy. With the development of so-

phisticated digital penetrometers such as the Snow MicroPenetrometer, vertical profiles of snow hardness can now be measured

at a spatial resolution of a few microns. By using small penetrometer tips at this high vertical resolution, further details of the

penetration process get resolved, leading to many more stochastic signals. An accurate interpretation of these signals regarding

snow characteristics requires advanced data analysis. Here, the failure of ice connections and the pushing aside of separated5

snow grains during cone penetration lead to a combination of a) diffusive noise, as in Brownian motion, and b) jumpy noise,

as proposed by previous dedicated inversion methods. The determination of the Kramers-Moyal coefficients enables differ-

entiating between diffusive and jumpy behaviors and determining the functional resistance dependencies of these stochastic

contributions. We show how different snow types can be characterized by this combination of highly-resolved measurements

and data analysis methods. In particular, we show that denser snow structures exhibited a more collective diffusive behavior10

supposedly related to the pushing aside of separated snow grains. On less-dense structures with larger pore space, the mea-

sured hardness profile appeared to be characterized by stronger jump noise which we interpret as related to breaking of a single

cohesive bond. The proposed methodology provides new insights into the characterization of the snowpack stratigraphy with

micro-cone penetration tests.

1 Introduction15

Snow is an essential component of our environment and can significantly impact our life: from the wishful dream of white

Christmas to the misfortune of avalanche accidents. Having a closer look at snow, one discovers many microstructural patterns

and realizes that snow on the ground undergoes constant evolution (Colbeck et al., 1990). The snow microstructure fully

controls its physical and mechanical properties, which are essential for diverse applications, such as avalanche forecasting

(Schweizer et al., 2003). A snowpack is typically structured in numerous layers composed of different snow types, where such20

stratigraphy will determine the snowpack stability. Cone penetrations tests have long been used to characterize the snowpack

stratigraphy (Bader and Niggli, 1939). The Snow Micro Penetrometer (SMP) can perform cone penetration tests of snow

in the field (Schneebeli et al., 1999). It measures the force needed to drive a cylinder with a millimetric conic tip into the
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snowpack. With its high resolution (250 measurements per mm), the measured force or hardness is supposedly linked to the

snow microstructure (Johnson and Schneebeli, 1999). A typical consequence of such a high-precision measurement is that more25

and more details of the penetration process can be resolved, leading to many more stochastic signals. In this context, it is of

particular interest to employ advanced data analysis to find out how different kinds of stochastic signals are related to different

snow types. There are also other penetrometers used as the cone penetration test in the field of snow, for example McCallum

(2013) used the large scale penetrometer with the tip diameter 36.7 mm in polar snow. For our analysis, we specifically used

the measurement data of micro-cone penetration tests from Schneebeli et al. (1999).30

Johnson and Schneebeli (1999) developed the first model to estimate micromechanical properties of snow from measured

penetration profiles. They assumed that the material compaction is negligible and that the penetration resistance is only com-

posed of friction between the penetrometer and snow grains and a superposition of spatially uncorrelated and identical brittle

failures of individual snow microstructural elements (e.g., the bonds between the snow grains). Marshall and Johnson (2009)

extended the theory of Johnson and Schneebeli (1999) to account for simultaneous ruptures by Monte-Carlo simulations. They35

precisely resolved the snow micro-mechanical parameters, such as the deflection length, rupture force, and rupture intensity.

Löwe and van Herwijnen (2012) re-stated the pioneering idea of Johnson and Schneebeli (1999) and described the fluctuating

penetration hardness as a Poisson shot noise process. In their model, the micromechanical parameters can be simply derived

from the cumulants and the co-variance of the penetration signal. Peinke et al. (2019) further extended the homogeneous Pois-

son process of Löwe and van Herwijnen (2012) so that the scale of variation of the rupture intensity can be decoupled from40

the scale of variations of the deflection length and the rupture force. These models are now commonly used to characterize the

snowpack stratigraphy from SMP measurements. Indeed, Proksch et al. (2015) related the micro-mechanical parameters de-

rived from the SMP measurements to some of the most critical snow characteristics, namely density, specific surface area, and

structural correlation length. These relations are now routinely used to quantify the snowpack stratigraphy (e.g., Calonne et al.,

2020). Besides, Reuter et al. (2019) estimated elastic modulus and fracture energy from the micro-mechanical parameters,45

which can then be used to compute point snow stability for avalanche hazard assessment (e.g., Reuter et al., 2015).

Here, we consider the measured fluctuating hardness as a consequence of summing up the interactions between the pen-

etrometer tip and individual snow particles. We describe this penetration process in analogy to the well known Brownian

motion (Einstein, 1905), where a microscopically visible particle suspended in fluid is moving randomly. Due to the sum of

several collisions with the molecules in the fluid as illustrated in Fig. 1, the large red particle undergoes a motion described50

by a stochastic process. Such a stochastic process is driven by white noise and is known as a Langevin process (see Gardiner

(1985) and Sect. 2). While very similar elementary collision events are assumed for classical Brownian motion, we also need to

consider brittle failures of individual snow microstructural elements (bonds between snow grains, crushing of grain clusters),

which cause sharp declines in penetration hardness. These brittle failures were modeled as a Poisson shot noise process by

Löwe and van Herwijnen (2012); Peinke et al. (2019). Jump noise acts as discontinuous paths inside the diffusion process, and55

low jump events can be considered as Poisson distributed noise (which corresponds to the above-mentioned shot noise). The

idea of this work is to employ a method that allows estimating the underlying stochastic differential equation from empirical
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Figure 1. (a) Penetration resistance caused by the interactions of the snow particles (gray) with the penetrometer tip (red); (b) Brownian

motion where a microscopically visible particle (red) suspended in the fluid is moving randomly due to the collisions with the molecules

(gray) in the fluid

data and differentiating between a Langevin (pure diffusive) or a jump-diffusion process (Anvari et al., 2016). Via this advanced

analysis, we seek more detailed snow characterization from micro-cone penetration test resistance data. 1

The article is organized as follows. In Sect. 2, we summarize the stochastic analysis method and show how it is possible to60

distinguish between diffusive and jump noise. In Sect. 3, the method is applied to centimetric snow samples whose microstruc-

ture is also captured by tomography. In Sect. 4, as a proof of concept, the SMP profile of a natural snowpack is analyzed with

this technique.

2 Stochastic Method

A stochastic process x(t) can be described through stochastic differential equations. This section explains the equations used to65

model cone penetration tests in snow. Since the SMP is driven by a motor with constant speed u= dz
dt (z is depth, t is time) and

samples the measurement every 4 µm, the measured penetration force or snow hardness R is considered as the depth dynamics

R(z(t)) and handled like a stochastic variable x(t).

2.1 Langevin Equation

A diffusive process x(t), which is a continuous stochastic process, follows the Langevin equation, where for a small step size70

dt has the following expression (Risken, 1984; Friedrich et al., 2011; Tabar, 2019):

dx(t) =D(1)(x,t) dt+
√
D(2)(x,t) dWt, (1)

1A direct comparison of our stochastic approach with the works based on shot noise is out of the scope of this paper.
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where D(1)(x,t) and D(2)(x,t) are the drift and the diffusion coefficients, respectively, and Wt is the Wiener process.

The drift term D(1) describes how fluctuations relax to the local mean values of x, defined by D(1)(x,t) = 0. The diffusion

term D(2) represents the amplitude of the noise. The coefficients D(1) and D(2) are also known as the first and second order75

Kramers-Moyal (KM) coefficients, respectively. In general, KM coefficients can be directly determined from the given data

x(t) using their definitions of the conditional incremental average (Friedrich et al., 2011; Tabar, 2019), i.e.,

K(j)(x,t) = lim
∆t→0

〈
(x(t+ ∆t)−x(t))

j |x(t)=x

〉
∆t

. (2)

Further details on methods of this estimation can be found in Friedrich et al. (2011) and Rinn et al. (2016) 2. The Langevin

equation describes a continuous diffusion process where K(j)(x,t) = 0 for j ≥ 3 and D(j)(x,t) =K(j)(x,t). According to80

Pawula’s theorem, all KM coefficients K(j) are vanishing for j ≥ 3 if K(4)(x,t) = 0 (Risken, 1984; Pawula, 1967). In our

case, however, the higher order coefficients are not always vanishing, hence we extend the discussion to the jump-diffusion

process (see Sect. 2.2).

For the considered SMP data, the drift term D(1) in Eq. 1 describes how hardness fluctuations relax to the local mean values

of hardness R, defined by D(1)(R,z) = 0. The diffusion D(2) term represents the amplitude of the hardness fluctuations. The85

coefficients D(1) and D(2) are z-dependent for non-stationary (inhomogeneous) processes. Here, we assume that for a chosen

small depth interval (z), D(1)(R,z) and D(2)(R,z) only depend on R (similar to Löwe and van Herwijnen (2012) for their

shot noise model).

2.2 Jump-Diffusion Dynamics

Typically, when the signal of a stochastic process presents sharp changes at some instant (discontinuities events), higher order90

Kramer-Moyal coefficients (especiallyK(4)(x,t)) become non-negligible. In this case, an extension to the Langevin-type mod-

eling with the additional jump noise is needed, (see Tankov, 2003; Stanton, 1997; Johannes, 2004; Bandi and Nguyen, 2003;

Anvari et al., 2016; Tabar, 2019). Such a jump-diffusion dynamic is given by the following stochastic differential equation:

dx(t) =D(1)(x,t) dt+
√
D(2)(x,t) dWt + ξ dJt, (3)

where, again,D(1) andD(2) are the drift and the diffusion coefficients, respectively, andWt is the Wiener process. The quantity95

ξ is the size of the jump noise and is assumed to be normally distributed, i.e., ξ ∼N(0,σ2
ξ ) where σ2

ξ (x,t) is the so-called jump

amplitude. The term Jt is the Poisson jump process, which is the zero-one jump process with a jump rate (or intensity) λ(x,t)

(Hanson, 2007; Tabar, 2019).

2KM coefficients for Langevin equation are defined asK(j)(x,t) =D(j)(x,t) = 1
j!

lim∆t→0
〈(x(t+∆t)−x(t))n|x(t)=x〉

∆t
in Friedrich et al. (2011); Rinn

et al. (2016). In order to make it consistent with the jump-diffusion process, our definition is differed by a factor of 1
j!

, in which dWt = Γ(t)·dtwhere 〈Γ(t)〉=

0 and 〈Γ(t)Γ(t′)〉= δ(t− t′). The corresponding Fokker-Planck equation will be ∂
∂t
p(x,t) =− ∂

∂x

[
D(1)(x,t) p(x,t)

]
+ 1

2
∂2

∂x2

[
D(2)(x,t) p(x,t)

]
.
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For jump-diffusion processes, the drift and diffusion coefficients (D(1), D(2)), the jump rate σ2
ξ and amplitude λ are related

to the KM coefficients as (Anvari et al., 2016):100

D(1)(x,t) =K(1)(x,t), (4)

D(2)(x,t) +λ(x,t)〈ξ2〉=K(2)(x,t), (5)

λ(x,t)〈ξj〉=K(j)(x,t), for j > 2. (6)105

The estimate of the drift coefficient is the same for the diffusion process (Eq. 1) and the jump-diffusion process (Eq. 4).

Jump amplitude σ2
ξ and rate λ can be estimated by using Eq. 6 with j = 4 and j = 6, and the Wick’s theorem (Isserlis, 1916;

Wick, 1950) for Gaussian random variables which states that 〈ξ2n〉= (2n)!
2nn! 〈ξ

2〉n:

σ2
ξ (x,t) =

K(6)(x,t)

5K(4)(x,t)
, (7)

110

λ(x,t) =
K(4)(x,t)

3σ4
ξ (x,t)

. (8)

To improve the estimation of KM coefficients K(j)(x,t) and in particular of high-order coefficients, the Nadaraya-Watson

estimator, which is a kernel estimator, can be used (Nadaraya, 1964; Watson, 1964):

K(j)(x,t) = lim
∆t→0

∑
i k(xi∆t−xh )(x(i+1)∆t−xi∆t)j∑

i k(xi∆t−xh )∆t
, (9)

where here we use a Gaussian kernel k(u) (Tabar, 2019). With the kernel-based method the conditional moments can be115

calculated more smoothly by controlling the kernel bandwidth h (Lamouroux and Lehnertz, 2009) where here we use the

kernel bandwidth h= 0.3.

For the considered SMP measurements, we also assume that for a chosen small depth interval (z), D(1)(R,z), D(2)(R,z),

σ2
ξ (R,z) and λ(R,z) only depend onR. The stochastic differential equation for the jump diffusion process thus reads, on small

depth intervals, as120

dR(z) =D(1)(R) dz+
√
D(2)(R) dWz + ξ dJz, (10)

with an analog interpretation of the drift and diffusion terms (D(1), D(2)) as for the purely diffusive process (Eq. 1), but now

extended by a jump noise term. This is the same as Eq. 3 in terms of depth z instead of time t. The jump rate λ has the

dimension of 1
[Z] and can be related to the shot noise intensity described by Löwe and van Herwijnen (2012); Peinke et al.

(2019). Typically, λ dz corresponds to the stochastic average of the number of jumps for a penetration increment of depth dz125

(Anvari et al., 2016; Tabar, 2019). The jump amplitude σ2
ξ represents the square of the typical size of a jump. Note that the
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jump can be negative (failure of a microstructural element) or positive (loading of a microstructural element). Here, we do

not consider any progressive loading of a microstructural element as described by Löwe and van Herwijnen (2012); Peinke

et al. (2019) with the microstructural deflection length δ. Here, the loading of a microstructural element and its contribution to

penetration hardness is considered instantaneous.130

2.3 Synthetic examples

In this section, we illustrate how diffusive and jump noises affect the stochastic fluctuations on a synthetic example. An

Ornstein-Uhlenbeck (OU) process x is described by a stochastic differential equation (SDE) with linear relaxation dynamics

and an additive uncorrelated noise. With an additional jump term, it is defined as

dx=−γx dt+
√
D dWt + ξ dJt. (11)135

where γ is the relaxation rate,D the constant diffusion coefficient andWt a scalar Wiener process. The noise ξ ∼N(0,σ2
ξ ) is

assumed to be normally distributed with the constant variance or jump amplitude σ2
ξ . Jt ∼ P (λt) is the Poisson jump process,

which is a zero-one jump process with constant jump rate λ. Here, we have triply stochastic processes Wt, Jt and ξ which are

assumed to be independent of each other.

Three synthetic time series of the OU-jump-diffusion process were generated for ∆t= 10−3 s with γ = 100 s−1, D =140

10 s−1 and for the additional jump terms with λ= 100 s−1 and σ2
ξ = 1. The generated data were normalized with their

respective standard deviation. In Fig. 2 the normalized timeseries of the OU-jump-diffusion processes are shown. Left, a pure

diffusion process, middle, a drift-jump process and right, the combined jump-diffusion process is shown. The fourth-order

KM-coefficients K(4)(x) of each timeseries are also plotted in Fig. 2 bottom row. K(4) of the diffusion process is negligibly

small compared to drift-jump and jump-diffusion processes.145

For a jump-diffusion process, another parameter that we considered was the ratio of diffusion and jump noise D(2)

λσ2
ξ

, which

becomes here for our OU-jump-diffusion process D
λσ2

ξ
. To validate our method, based on the KM coefficients of Eq. 5 to Eq. 8,

three pairs of parameters (i) D = 5 s−1, σ2
ξ = 1, (ii) D = 5 s−1, σ2

ξ = 0.5 and (iii) D = 20 s−1, σ2
ξ = 1 were chosen. The other

parameters are the same as the previous example. The normalized timeseries of these examples are plotted in Fig. 3 top row.

In Fig. 3 bottom row the ratio of diffusion and jump noise D
λσ2

ξ
estimated from each timeseries were compared to the expected150

values (blue lines). As we used normalization and the same noises in simulation, all timeseries are very similar, however, one

can observe clearly the more noisy fine structure in case (iii) where the diffusion coefficient is larger.

3 Application to snow measurements

In this section, our main aim is to show how the jump-diffusion model can be used to distinguish snow types from hardness

profiles measured with the SMP. Firstly, small snow samples whose microstructure was also fully characterized by tomography155

before being measured by the SMP, were used to test the developed methodology. Secondly, as a proof of concept, we ana-
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Figure 2. Normalized timeseries of Ornstein-Uhlenbeck processes with only diffusion, only jump (drift-jump) and jump-diffusion terms (top)

and their fourth-order KM coefficients K(4) (bottom). K(4) of the diffusion process is negligible compared to drift-jump and jump-diffusion

processes. For all three examples, we used the same noises in the stochastic part of the stochastic differential equation.

lyzed one penetration profile of a snowpack measured in the field and we provided the subsequent profile of microstructural

parameters. Last, the results were discussed.

3.1 Laboratory samples

3.1.1 Measurement Data160

We tested several snow samples composed of four different natural snow types, namely Precipitation Particles (PP), Depth

Hoar (DH), Rounded Grains (RG), and large Rounded Grains (RGlr) as classified in Fierz et al. (2009). The samples were

prepared by sieving snow into small sample holders (diameter and height of 20 mm) and letting them sinter for a couple of

days at -10 ◦C. Their microstructure was captured with X-ray tomography at a nominal resolution of 15 µm (Fig. 4). The cone

penetration test was conducted with a modified version of the SMP, as shown in Fig. 5. More information on sample preparation165

and the SMP measurement can be found in the study of Peinke et al. (2020). Main sample properties are summarized in Tab. 1

and the measured hardness profiles (one example for each snow type) are plotted in Fig. 6. The first 4 mm are affected by the

progressive penetration of the conic tip and were not considered in the stochastic analysis (Peinke et al., 2019). The remaining

profiles were divided into smaller segments of depth of 10 mm.

To work out the significance of advanced stochastic features for snow, we focused on the fluctuations of the hardness profiles.170

Each profile was first detrended. The trend R̄ was computed as the convolution of the original signal with a Gaussian kernel
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Figure 3. Normalized timeseries of OU-jump-diffusion processes with ∆t= 10−3 s, γ = 100 s−1, λ= 100 s−1, (i) D = 5 s−1, σ2
ξ = 1,

(ii) D = 5 s−1, σ2
ξ = 0.5 and (iii) D = 20 s−1, σ2

ξ = 1 (top) and the corresponding ratio of diffusion and jump noise D(2)

λσ2
ξ

= D
λσ2
ξ

(bottom).

Dots are results from the KM-coefficients, the blue line the theoretical values given by the constants. For all three examples, we used the

same noises in the stochastic part of the SDE.

Figure 4. Three-dimensional view of the microstructure of some representative samples: Precipitation Particles (PP1), Depth Hoar (DH1),

Rounded Grains (RG1) and large Rounded Grains (RGlr1). The ice matrix is shown in grey, the pore space is transparent. Sub-samples shown

are cubic with a side-length of 3 mm. Details on the data acquisition can be found in (Peinke et al., 2020)

.

with a standard deviation of 0.6 mm 3. The fluctuation amplitude σR was computed as the standard deviation of R− R̄. The
3The results do not change significantly if the kernel widths are changed between 0.14 mm and 0.66 mm where this range corresponds to the range of

average grain sizes of the snow types.

8



Table 1. Overview of the detailed properties of the used snow samples. Snow types were classified according to the international classification

of snow on the ground Fierz et al. (2009). The density and specific surface area (SSA) were derived from the tomographic images from Peinke

et al. (2020). Additionally, the standard deviation σR of the detrended profiles were calculated.

Sample name Snow type Sieve size Density SSA σR

[mm] [kg m−3] [m2 kg−1] [kPa]

PP1 Precipitation Particles 1.6 92 53.5 0.55

PP2 Precipitation Particles 1.6 137 41 0.81

DH1 Depth Hoar 1.6 345 16.9 4.78

DH2 Depth Hoar 1.6 364 15.9 3.67

DH3 Depth Hoar 1.6 364 16.5 3.89

RG1 Rounded Grains 1.6 289 23.0 3.29

RG2 Rounded Grains 1.6 304 23.7 3.81

RG3 Rounded Grains 1.6 325 20.6 3.63

RGlr1 Large Rounded Grains 1 530 10.1 13.20

RGlr2 Large Rounded Grains 1 544 10.3 11.78

RGlr3 Large Rounded Grains 1.6 557 9.9 8.99

RGlr4 Large Rounded Grains 1 542 9.3 14.01

RGlr5 Large Rounded Grains 1 541 9.7 20.49

RGlr6 Large Rounded Grains 1 526 10.1 17.22

detrended profiles are defined asR′ = R−R̄
σR

. The detrended profilesR′ are characterized by zero mean and a standard deviation

of 1. The average value of R̄ on the segment and the value of the standard deviation σR are shown for each segment in Tab. 1.

The detrended profiles R′ are shown in Fig. 7, for all four snow types.175

To estimate errors, we divided the detrended and normalized data into different sub-samples. Given are 2 PP, 3 DH, 3 RG

and 6 RGlr measurement profiles. These profiles were separated into smaller segments, which finally gives 4 PP, 5 DH, 5 RG

and 6 RGlr samples. We estimated the KM coefficients of each sample using Eq. 2 and averaged them over the sub-samples of

each snow type. Thus, drift, diffusion functions and jump parameters and their errors were estimated. The errors were reported

as the standard error of the means.180

3.1.2 Results

According to the description provided in Sect. 2, the drift D(1)(R′), diffusion D(2)(R′), as well as the fourth order KM-

coefficients K(4)(R′) for normalized data were determined for the four different snow types, PP, DH, RG and RGlr as shown

in Fig. 8. In addition, the autocorrelation function (AFC) was determined from the signals. If the fluctuations of R′(z), belongs

to the diffusion processes, one expects that K(4)(R′) = 0. However, we find that in general, K(4)(R′) 6= 0, and the higher185

order KM-coefficients are not negligible. This indicates the presence of discontinuities in the snow hardness profile, so that the
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Figure 5. Setup of micro-cone penetration test (Peinke et al., 2020). The cone penetration tests (CPT) were conducted by inserting a cylinder

of diameter 5 mm, with a conical tip of an apex angle of 60◦, into the snow samples. The samples were placed in the cylinder sample holder

with a diameter of 20 mm. The cone was inserted vertically at a constant speed of 20 mm s−1. The SMP force sensor (Kistler 9207) measures

forces in the range of [0, 40] N with a resolution of 0.01 N.

0 2 4 6 8 10

0
50

10
0

15
0

z [mm]

R
 [k

P
a]

PP
DH
RG
RGlr

Figure 6. Segments of snow hardness profiles of PP1, DH1, RG1 and RGlr1. These four different types occur as natural snow types.

Precipitation particles (PP) have smallest trend and fluctuation force, large rounded grains (RGlr) are the largest while depth hoar (DH) and

rounded grains (RG) have similar trend and fluctuation force between that of PP and RGlr. The first 4 mm are affected by the progressive

penetration of the conic tip and were not considered in the stochastic analysis.
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Figure 7. Detrended snow hardness profiles of four different snow types, PP, DH, RG and RGlr. For the snow type RGlr, we only show the

samples, RGlr4, RGlr5 and RGlr6, as described in Tab. 1. The detrended profiles R′(z) of each snow type were shifted vertically for better

visualization.

jump-diffusion model is considered. Therefore, we estimated jump parameters, i.e., jump amplitudes σ2
ξ (R′) and jump rates

λ(R′) from data of R′(z) in Fig. 9.

As shown in Fig. 8, the drift coefficients, D(1)(R′,z) are mostly linear functions with negative slopes, which describe

how fast the system tends back to the stable fixed point. Due to our normalization, the fixed point of dynamics is located at190

the origin, i.e., R′ = 0. Taking D(1) =−γR′, the correlation length scale is given by LC = 1
γ . For each snow type, LC was

determined for −2<R′ < 2: (PP, DH, RG, RGlr) = (0.01,0.04,0.02,0.08) mm. Comparing LC with the correlation lengths

of the autocorrelation functions,LACF: (PP, DH, RG, RGlr) = (0.006,0.025,0.016,0.038) mm, we find that both length scales

have the same ordering of their values for all snow types. The snow types PP and RG have the shorter correlation length scale,

in comparison to the snow types DH and RGlr.195

The jump amplitudes, σ2
ξ (R′), and the jump probabilities λ(R′) ∆z, are shown in Fig. 9. The jump amplitude, σ2

ξ (R′),

indicates how large the jump noise for different R′ is. The jump probability describes how probable jumps or discontinu-

ities in forces can occur. To analyze whether diffusion or jump noise is dominating, the dimensionless ratio of diffusion

and jump parameters D(2)

λσ2
ξ

(Fig. 9 bottom row) was calculated. For a rough estimation, the mean values were determined

in the range of −2<R′ < 2 and are plotted as blue horizontal lines. The mean of λ̄ can be used to define second char-200

acteristic length scale LJ = 1
λ (apart from 1

γ ). For the above-mentioned range of R′ we obtained: (PP, DH, RG, RGlr) =

(0.006,0.01,0.007,0.02) mm. Results are summarized in Table 2 and we discuss these in Sect. 4.

3.2 Application to Field Snow Data

3.2.1 Measurement Data

Next, measurements from a field campaign are presented (Hagenmuller and Pilloix, 2016). The measurements were also per-205

formed with a SMP but the tip had a slightly different shape corresponding to the standard version of the SMP (Johnson and

Schneebeli, 1999). The spatial sampling is again 4 µm. This difference in the measurement methods was irrelevant, as we
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Figure 8. State dependent drift D(1)(R′), diffusion D(2)(R′), fourth order KM-coefficients K(4)(R′), and their respective autocorrelation

functions (ACF) of four different snow types, PP, DH, RG and RGlr (left to right). The errors are shown as gray shade background. The

red lines in ACF plots indicates the correlation length scales determined from ACF. Comparing the correlation length scales LC = 1
γ

where

D(1) = −γR′ with those of the autocorrelation functions (ACF), we find that both length scales have the same ordering of their values for

all snow types.
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Figure 9. Jump amplitudes σ2
ξ(R′), jump probabilities λ(R′) ∆z and diffusion and jump ratios D(2)

λσ2
ξ

of four different snow types, PP, DH,

RG and RGlr (left to right). More data are present in the range of −2<R′ < 2; we focus our statistical analysis in this range with less

uncertainties. The errors are shown as gray shade background. The diffusion to jump ratios D(2)

λσ2
ξ

for PP and RG are minimum near zero

while maximum for DH and RGlr which means that the larger the ice structure, the stronger the diffusion noise, and vice versa. The blue

horizontal lines show the mean values of the respective parameters in the range of −2<R′ < 2.

subsequently show with these preliminary results that in principle, the stochastic methodology can also be applied to real snow

data and that qualitatively comparable results are obtained.

3.2.2 Results210

The snow hardness profile of a field measurement is shown in the left top row of Fig. 10. The measurement profile is strongly

inhomogeneous, therefore, we used the Nadaraya-Watson estimator to determine the local characteristics of the profile. Using

the moving-window technique, the profile was separated into non-overlapping window of 500 data point (2 mm) and the

detrending was performed on each window by Gaussian kernel with a kernel size of 0.6 mm, normalized with its standard
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Table 2. Summary of the results for correlation length scales LC = 1
γ

, LJ = 1
λ

, jump amplitude σ2
ξ and diffusion and jump ratio D(2)

λσ2
ξ

for all

snow types analyzed. The results were evaluated in the range of −2<R′ < 2.

Snow type LACF LC = 1
γ

LJ = 1

λ
σ2
ξ

D(2)

λσ2
ξ

[mm] [mm] [mm]

PP (0.006± 0.004) (0.0101± 0.0009) (0.0058± 0.0002) (1.21± 0.09) (0.120± 0.008)

DH (0.025± 0.004) (0.040± 0.009) (0.010± 0.001) (0.54± 0.05) (0.48± 0.09)

RG (0.016± 0.004) (0.020± 0.002) (0.0065± 0.0004) (0.68± 0.06) (0.19± 0.03)

RGlr (0.038± 0.004) (0.08± 0.02) (0.016± 0.001) (0.38± 0.07) (0.53± 0.04)

deviation as in our previous analysis of laboratory data. For each depth value z and the corresponding value R′(z) the local215

values of fourth order KM-coefficientK(4)(z) and the jump amplitude σ2
ξ (z) can be determined, as shown in Fig. 10. The local

characteristic of each snow type from the previous section is plotted in the right column of Fig. 10 for better comparison with

the field measurement data. Interpretation of these results will be discussed next.

4 Discussion

Our work is based on the proposed analogy of Brownian motion and the SMP penetration process, as illustrated in Fig. 1.220

The events of bond-breaking or, respectively, of collision with molecules sum up in a mean force and noise. For continuous

Brownian noise, we need an integration over sufficient micro-scale events, as discussed by Einstein (1905) in his original paper.

In our interpretation, it is found that sufficient large particle leads to this integration, see Fig. 1(b). To our interpretation, this

integration over discrete single events of bond-breaking in the immediate surroundings of the SMP, in addition to the pushing

aside of loose snow grains during the penetration process form continuous Brownian noise. The jump noise may represent225

the bond-breaking events occurring directly at the tip of the SMP and the amplitude of the jump noise should depend on the

strength of the ice bonds and void sizes. From this interpretation, it is clear that snow type morphology, shown in Fig. 4, is

essential for effective stochastic analysis as outlined herein.

We start the discussion with the mean values of R and the standard deviation σR (see Fig. 6 and Table 1). The less-dense

PP and the dense RGlr snow can be well separated, whereas the differences are less clear for DH and RG. In the following, we230

discuss the measured SMP penetration profiles based on our stochastic results. Since we now focus on a stochastic investigation

of the fluctuations of the penetration profiles, the detrended and normalized data are R′ used. Furthermore, we can note that

the normalization of the snow profiles does neither affect the correlation length scales LC = 1
γ from the drift coefficients nor

the jump characteristic length scales LJ = 1
λ . Because this analysis depends on the amount of available data, our discussion of

the estimated KM coefficients is limited to the range -2 < R′ < 2.235

The drift terms D(1), Fig. 8, are all monotonously decaying with increasing R′, and can be approximated by a linear decay,

D(1) =−γR′. The slope indicates how fast the signals relax to fixed point located at R′ = 0. The magnitudes of the slopes are

PP > RG > DH > RGlr, thus the PP-snow has fastest relaxation or shorter correlation length scale LC. We find that the larger
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Figure 10. The snow hardness profile of a field measurement together with its fourth order KM-coefficients K(4) and the jump amplitude

σ2
ξ(z) are shown in the left column. These parameters were determined using non-overlapping moving window with 500 data points (2 mm)

by means of Nadaraya-Watson estimator. Snow hardness profiles of the laboratory prepared snow types and their local parameters are also

plotted to enable better comparison (right column); they are shifted horizontally for better visualization. The results of field measurements

are shown at the depth of 700 mm< z < 740 mm. With reference to the local characteristic snow types from laboratory measurements, we

can see the dynamics that mixtures of different snow types are present in this section of measurement. For 732 mm< z < 740 mm, the high

K(4) and σ2
ξ indicate the presence of small and less dense structures of snow which resembles the RG-like snow types.

the ice structures, the slower (or longer) the relaxation. If we compare this result with the snow structures shown in Fig. 4, we

conclude that LC or, respectively, γ is clearly related to the size of the snow structures.240
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The results for D(2) show that about the same diffusive noise amplitude is found for all snow types. In contrast, we see clear

differences for the fourth order KM-coefficients K(4). Although always K(4) 6= 0, clear differences in the magnitude of this

KM-coefficient are found. K(4) is the largest in PP, followed by RG, DH and RGlr, respectively.

The amplitudes of jump noise, σ2
ξ , is the highest for PP, followed by RG, DH and RGlr, respectively. For the jump probabili-

ties λ ∆z, we distinguish a group composed of PP and RG, with higher values, and one composed of DH and RGlr, with lower245

values. One can interpret this finding such that for the precipitation particles (PP, recent snow) with very small ice structures

and high porosity, the breaking occurs easily and frequently which explains that the jump probability has the largest contribu-

tion here. Similarly, RG is also less dense with smaller ice structures than DH and RGlr. Thus, we can also interpret this finding

such that the smaller the ice structures and the less densely packed snow, the stronger the jump noise. For the densely packed

snow with larger ice structures, the breaking of the ice structures is less frequent, which explains a lower jump probability. The250

mean of jump rate λ̄ in the range of −2<R′ < 2 can be used to define second characteristic length scale LJ = 1
λ . Similarly to

the correlation length scale LC = 1
γ , PP has the smallest length, followed by RG, DH and RGlr.

Besides the features of the different terms in the stochastic processes, the contributions of the diffusive and the jump noise

can be compared by the dimensionless quotient of D
(2)

λσ2
ξ

, i.e., the relation between the two noise contributions. Consistent with

our earlier discussion, the smallest values for D
(2)

λσ2
ξ

are obtained for the PP, i.e., the jump noise is dominating due to the frequent255

fracture of small (soft) ice structures. For the other snow types, we see that within the range of −2<R′ < 2 the values of D
(2)

λσ2
ξ

increase with larger ice structures, in accordance with Fig. 4. The quotient D
(2)

λσ2
ξ

is smaller for PP and RG while larger for DH

and RGlr. For RGlr, the diffusive noise dominates in a broad range of R′- values. For the densely packed snow with larger

grain size, it also takes much force to push the ice grains on the side but not necessarily to break the cohesive bonds close to

the tip. Therefore the penetration signal is dominated by Brownian noise. This result is also consistent with the value of K(4)260

which is relatively smaller for RGlr. It is interesting to see that D
(2)

λσ2
ξ

and K(4) enables differentiation between RG and DH. In

contrast, according to the classical statistical features of the snow signals shown in Tab. 1, the differences for DH and RG are

less clear.

In Section 3.2, we analyze field measurement data which is highly inhomogeneous. With reference to the laboratory measure-

ments, we see dynamics that suggest mixtures of different snow types within this depth segment. For 732 mm< z < 740 mm,265

the highK(4) and σ2
ξ indicate the presence of small and less dense structures of snow which resembles the RG-like snow types.

Based on these preliminary results of real field data the developed methodology appears promising to interpret cone penetration

tests in the field, but further quantitative evaluation is required.

5 Conclusions

In conclusion, we observe that the advanced stochastic analysis of SMP measurements of snow layers allows differentiation of270

snow types. The diffusive and jump-noise contribution can be quantified and give new insights into the stochastic behaviors of

the cone penetration test in snow. For different snow types, we find an interesting mixture of diffusive- and jump-like noise.

We propose the interpretation that the dominant diffusive process is due to the pushing aside of many snow grains, whereas the
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breaking of ice structures leads to dominant jump noise. Our results show that the denser structures typical of DH and RGlr

lead to a more collective diffusive behavior, whereas for the highly-porous snow structures of PP and RG, the single breaking275

events lead to a relatively stronger jump noise. For this interpretation, all R-values were detrended and normalized, thus the

absolute values of the snow hardness R are not essential but more the resulting collective behavior of the snow types.

Finally, we would like to point out that our characterization of a complex material, snow, by a penetration process should

have the potential to be generalized to, for example, biological tissue or ground layers. Last but not least, we would like to point

out that our work provides additional insight into analyzing and modeling the complex nature of snow types, complementing280

existing methods.
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