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Abstract. Cold content (CC) is an internal energy state within a snowpack and is defined by the energy deficit required to 

attain isothermal snowmelt temperature (0°C). For any snowpack, fulfilling the cold content deficit is a pre-requisite before 

the onset of the snowmelt. Cold content for a given snowpack thus plays a critical role because it affects both the timing and 

the rate of snowmelt. Estimating the cold content is a labour-intensive task as it requires extracting in-situ snow temperature 10 

and density. Hence, few studies have focused on characterizing this snowpack variable. This study describes the multilayer 

cold content of a snowpack and its variability across four sites with contrasting canopy structures within a coniferous boreal 

forest in southern Québec, Canada, throughout winter 2017-18. The analysis was divided into two steps. In the first step, the 

observed CC data from weekly snowpits for 60% of the snow cover period were examined. During the second step, a 

reconstructed time series of CC was produced and analyzed to highlight the high-resolution temporal variability of CC for the 15 

full snow cover period. To accomplish this, the Canadian Land Surface Scheme (CLASS; featuring a single-layer snow model) 

was first implemented to obtain simulations of the average snow density at each of the four sites. Next, an empirical procedure 

was used to produce realistic density profiles, which, when combined with in situ continuous snow temperature measurements 

from an automatic profiling station, provides a time series of CC estimates at half-hour intervals for the entire winter. At the 

four sites, snow persisted on the ground for 218 days, with melt events occurring on 42 of those days. Based on snowpit 20 

observations, the largest mean CC (−2.62 MJ m−2) was observed at the site with the thickest snow cover. The maximum 

difference in mean CC between the four study sites was −0.47 MJ m−2, representing a site-to-site variability of 20%. Before 

analyzing the reconstructed CC time series, a comparison with snowpit data confirmed that CLASS yielded reasonable 

estimates of the snow water equivalent (SWE) (R2 = 0.64 and percent bias (Pbias) = −17.1%), bulk snow density (R2 = 0.71 

and Pbias =1.6%), and bulk cold content (R2 = 0.90 and Pbias = −2.0%). A snow density profile derived by utilizing an 25 

empirical formulation also provided reasonable estimates of cold content (R2 = 0.42 and Pbias = 5.17%). Thanks to these 

encouraging results, the reconstructed and continuous CC series could be analyzed at the four sites, revealing the impact of 

rain-on-snow and cold air pooling episodes on the variation of CC. The continuous multilayer cold content time series also 

provided us with information about the effect of stand structure, local topography, and meteorological conditions on cold 

content variability. Additionally, a weak relationship between canopy structure and CC was identified.  30 
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1 Introduction 

The use of spatially distributed, process-based (physical) hydrological models has substantially improved decision-making in 

the area of water resources management (Wigmosta et al., 2002). The snow processes included in such models rely on the 

energy balance (EB) approach, since snow accumulation and melt depend on the exchanges of energy and mass between the 35 

snowpack and its surrounding environment (soil, atmosphere, and vegetation). The concept of snowpack energy budget was 

first introduced by the U.S. Army Corps of Engineers (1956). Since then, the single bulk layer representation (e.g Wigmosta 

et al., 1994) has evolved into multilayer schemes (Gouttevin et al., 2015; Koivusalo et al., 2001; Lehning et al., 2002; Vionnet 

et al., 2012). Recent studies have looked at the sources of uncertainty associated with snow models (Essery et al., 2013; Rutter 

et al., 2009) and revealed the importance of including some key state variables, particularly cold content, in their modelling 40 

schemes.   

Cold content (CC) is the amount of energy required for a snow cover to reach 0°C for its entire depth. Any additional energy 

input translates into melting. By definition, CC is a linear function of the snow water equivalent (SWE) and snowpack 

temperature, and is defined by: 

𝐶𝐶 = 𝑐𝑖  𝜌𝑠𝐻𝑆 (𝑇𝑠  − 𝑇𝑚)           (1) 45 

where CC is cold content (MJ m−2), ci is the specific heat of ice (2.1 × 10−3 MJ kg−1 °C−1), ρs is the snow density (kg m−3), ρw 

is the density of water (kg m−3), HS is the snow depth (m), Tm is the melting temperature (0°C), and Ts is the snowpack 

temperature (°C). Thus, CC ranges from –∞ to 0 MJ m−2, meaning that the larger the absolute value of CC, the more energy 

required for the snowpack to eventually reach a uniform temperature of 0°C, over the entire depth of the snowpack. 

CC plays a central role in delaying snowmelt (Molotch et al., 2009), as a deep, dense, and cold snowpack requires a substantial 50 

amount of energy for snow to reach 0°C and initiate melt. As such, understanding CC is essential for the accurate forecasting 

of water availability in demanding sectors such as agricultural systems, urban water supply (Barnett et al., 2005), and 

hydropower generation (Schaefli et al., 2007).  

The exact determination of CC requires direct observations of the snowpack temperature, density, and depth, usually collected 

from manual snow surveys. As manual collection is tedious and demanding, few datasets that describe snowpack CC are 55 

available. For lack of a better approach, CC is often estimated using one of the following three methods: an empirical 

formulation that relies solely on air temperature (DeWalle and Rango, 2008; Seligman et al., 2014), an empirical formulation 

based on air temperature and precipitation (Andreadis et al., 2009; Wigmosta et al., 1994), or a residual from an energy balance 

model (Marks and Winstral, 2001). Jennings et al. (2018) resorted to snowpit data, collected at alpine and subalpine sites 

within the Rocky Mountains in Colorado, to study CC. They reported a weak relationship between CC and the cumulative 60 

mean of air temperature. They also found that newly fallen snow was responsible for 84.4% and 73.0% of the daily gains in 

CC for alpine and subalpine snowpacks, respectively. Of note, a slight contrast was observed by Seligman et al. (2014), who 

reported that the contribution of spring snow storms to CC had a smaller impact on delaying snowmelt than the porous space 

from dry fresh snow. However, Jennings et al. (2018) reported shifts in the onset of snowmelt by 5.7 h and 6.7 h at alpine and 
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subalpine sites, respectively, when CC at 6:00AM was less than 0 MJ m−2. This suggests that even a small energy deficit has 65 

a substantial effect on the rate and timing of snowmelt. Overall, previous studies agree that the careful consideration of CC 

improves snowmelt simulations (Jost et al., 2012; Mosier et al., 2016; Valéry et al., 2014).  

Little to no previous research has focused on CC behaviour in forested environments. Snowpack energy exchanges within a 

forest are obviously different than those in open or alpine areas, as the presence of a canopy impacts snow accumulation and 

melt (Andreadis et al., 2009; Gouttevin et al., 2015; Mahat and Tarboton, 2012; Wigmosta et al., 2002). For instance, 70 

intercepted snow may sublimate, undergo densification, or fall beneath the canopy when maximum canopy storage is reached 

or when there are heavy winds present (DeWalle and Rango, 2008). Snow interception typically leads to shallower snow depths 

and less melt beneath the canopy (Musselman et al., 2008), even in the presence of rain-on-snow events (Marks et al., 1998). 

Frequent density profiles of the snow cover allow for the tracking of unloading episodes and the identification of spatial 

differences of CC within a forest.  75 

Despite all of the associated challenges, it is possible to simulate snow in a forested environment with some success. For 

instance, physically-based land surface models are regularly used to simulate snow at forested sites (e.g., Roy et al., 2013). 

One such example is the Canadian LAnd Surface Scheme (CLASS), which relies on a single-layer snow model articulated 

around the energy balance. In a recent study, Alves et al.(2020) used CLASS driven by ERA5 reanalysis data to model snow 

depths from four dissimilar forested sites across the Canadian boreal biome. They reported average snow persistence lengths 80 

and average spring melting periods that were similar to our field observations. By definition, CLASS considers the whole 

snowpack as a single bulk unit, and as such, is unable to simulate the multilayer behaviours that one sees in nature. One option 

for addressing this is to resort to a multilayer snow model such as SNOWPACK (Lehning et al. 2001), which was recently 

equipped with a thorough canopy module (Gouttevin et al., 2015); however, even models such as this are not free of biases. 

Alternatively, bulk snowpack values can be distributed between several layers. For instance, Roy et al. (2013) disaggregated 85 

CLASS-derived snow water equivalents into multilayer values at each time step, for the purpose of estimating the specific 

surface area (SSA) of a snowpack. They attained an acceptable root mean square error (RMSE) of 8.0 m2 kg−1 in CLASS-

derived SSA for individual layers.      

In view of the obvious lack of observational studies that are required to support model development in forested environments, 

detailed analyses of multilayer in situ snowpack CC are necessary. Building on Jennings et al. (2018), this study investigates 90 

53 snowpit-derived CC observations at four distinct coniferous forested sites, over the course of one winter. The temporal 

variability of the CC is also analysed by reconstructing time series that include bulk and multilayer CC with a 30-min time 

step, and combine automated snow temperature observations and bulk snow density estimates that was calculated using the 

CLASS model. 
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2 Methods 95 

2.1 Study sites and data collection 

Observations were collected in the Bassin Expérimental du Ruisseau des Eaux-Volées (BEREV), which is a small boreal forest 

catchment within Montmorency Forest, Quebec, Canada (Fig. 1). This region experiences substantial precipitation (1583 mm), 

with 40% falling in solid form between November and May (Isabelle et al., 2018). The boreal catchment lies in the Laurentian 

Mountains of the Canadian Shield and is characterized by a humid continental climate (Schilling et al., 2021). There are patches 100 

of forest clearings found within the basin due to past logging operations that have led to variability in stand structure (Parajuli 

et al., 2020b). 

 

Figure 1. Overview of the study area. (a) Basin 7 within BEREV showing the locations of the four study sites (A1 to A4), where 

snowpit samples were collected and snow-profiling stations were installed, (b) the location of BEREV in eastern Canada, (c) the 105 
snow profiling station installed at site A1, and (d) typical winter conditions at BEREV as seen from the flux tower at site A2.  
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Over the years, several vegetation species such as black spruce (Picea mariana (Mill.)) and white spruce (Picea glauca 

(Moench.)) were planted. However, the environment favoured the regrowth of balsam fir (Abies balsamea) stands. Isabelle et 

al. (2020) provide detailed information on the vegetation cover at the study site. The current analysis focuses on the four 

contrasting sites presented in Table 1.  110 

Inspired by Lundquist and Lott (2010), we deployed an automated snow-profiling station at each location, composed of 18 T-

type thermocouples vertically spaced 10 cm apart and of an ultrasonic depth sensor (Judd Communication, USA). An additional 

T-type thermocouple was enclosed in a radiation shield (Fig.1c) 2 m above ground for simultaneous air temperature 

measurements. 

Table 1. General canopy characteristics at the four experimental sites. 115 

Site 
Mean tree height 

(m) 

Canopy density  

(fraction) 

LAI  

(m2 m−2) 
Forest cover 

A1 1.8 0.76 2.8 sapling 

A2 8.1 0.76 3.4 juvenile 

A3 8.6 0.97 3.5 mature 

A4 12.5 0.71 2.3 mature 

 

Snowpit samples (temperature profile, depth, and density) were collected in the vicinity of the snow-profiling stations on a 

weekly basis from 17 January 2018 to 24 May 2018 (60% of the snow cover period), enabling CC calculation following Eq.1. 

Maintaining a weekly timeline was sometimes difficult due to uncontrollable circumstances such as freezing rain, rain-on-

snow events or even winter storms. During melt, from 21 April 2018 and on, it was impossible to reach all study sites because 120 

of reduced snow depths preventing the safe use of snowmobiles, except for site A2 that was more easily accessible from the 

main road. Snow-profiling stations malfunctioned occasionally (less than 1% of the time), mostly in spring. Missing values 

were filled with snowpit observations. An exponential moving average procedure was implemented to reduce noise in snow 

depth observations.  

2.2 Construction of CC time series  125 

The exercise of constructing 30-minute time series of the snowpack CC represents a certain challenge. On the one hand, it 

requires time series of the vertical profile of snow temperature, which is obtained from the snow-profiling stations. On the 

other hand, time series of the snow density profile are needed as well. This is where the main difficulty lies. A simple approach 

would be to interpolate the density values extracted from snowpits, but this would be incomplete and error-prone given their 

limited number and absence early in the season. Herein, it was opted to produce multilayer time series of snow density thanks 130 

to CLASS bulk simulations complemented with empirical formulations, as detailed below.  
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2.2.1 CLASS model 

CLASS is a physically-based land surface model that simulates the exchanges of water and energy between the Earth's surface 

and the atmosphere (Bartlett et al., 2006; Verseghy, 1991). It considers four distinct surface subareas: bare soil, canopy cover 

over bare soil, canopy with snow cover, and snow cover over bare soil (Bartlett and Verseghy, 2015; Verseghy et al., 2017). 135 

In this analysis, CLASS version 3.6 was used in offline mode and with a 30-min time step, enabling the stability of the 

prognostic modelled variables (Roy et al., 2013). CLASS allows for the inclusion of multiple soil layers and accounts for snow 

interception, snow thermal conductivity, and snow albedo, as described in Bartlett et al. (2006). The following subsections 

describe the meteorological forcing data required to run CLASS, and the methodology (CLASS + snow-profiling station) to 

produce single- and multi-layer time series of snow density, following Andreadis et al. (2009). 140 

2.2.2 CLASS setup and forcing  

The meteorological inputs required to run CLASS include precipitation rate, wind speed, air specific humidity, incoming 

shortwave and longwave radiation, air temperature, and surface atmospheric pressure (Alves et al., 2019; Leonardini et al., 

2020). As CLASS is designed to explicitly consider the energy exchanges between the soil surface, vegetation, snowpack, and 

atmosphere, above-canopy meteorological forcings are used. The model accounts for local effects associated with the presence 145 

of a canopy (e.g., attenuation of incident radiation, etc.), and incorporates user-defined parameters such as vegetation height, 

canopy density, and leaf area index (Table 2).  

Table 2. Local availability of meteorological forcing data for use in CLASS simulations. 

Inputs Site A1 Site A2 Site A3 Site A4 

Meteorological inputs     

Precipitation rate × × × × 

Incoming shortwave radiation × ×   

Incoming longwave radiation × ×   

Air temperature × × × × 

Surface atmospheric pressure × ×   

Wind speed × ×   

Air specific humidity × ×   

Vegetation information     

Leaf area index (LAI) × × × × 

Canopy height × × × × 

Canopy density × × × × 

 

 150 
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Precipitation rates were determined using a GEONOR weighting gauge equipped with a single Alter shield approximately 4 

km north of the study area, and were considered to be uniformly distributed throughout the catchment. Given the known wind-

induced bias associated with this type of gauge (Pierre et al., 2019), a simple adjustment was applied. This adjustment involved 

twice-daily manual precipitation observations from a Double Fence Intercomparison Reference (DFIR) setup close by, as in 155 

Parajuli et al. (2020a). Vegetation parameters were extracted at each site from a LiDAR dataset. Wind speed, air specific 

humidity, shortwave and longwave radiation, and surface atmospheric pressure measurements were taken from flux towers at 

sites A1 and A2. Comparable data were unavailable at sites A3 and A4 (Table 2).  

This study was carried out in a small experimental watershed with an area of 3.49 km2, where the sampling sites (A1 to A4) 

were close to one another (Fig.1) but had distinct characteristics (Table 1). Given the similarity (more or less) in canopy 160 

structure, we opted to use the inputs recorded at site A2 to run CLASS simulations at sites that lacked direct measurements of 

meteorological inputs (Table 2). Here we assumed negligible differences in the above-canopy inputs between sites A2, A3 and 

A4. The following sub-section highlights the steps adopted to generate the multilayer density estimates needed to calculate the 

CC time series for all snow layers.  

2.2.3 Reconstruction of multilayer snow density time series (a hybrid approach)  165 

The empirical formulation described in Andreadis et al. (2009), based on Anderson (1976), is used to reconstruct multiple 

layer snow density estimates by combining the CLASS-derived snow water equivalent (SWE) estimates (hereafter referred to 

as the hybrid procedure). Fresh snow density follows the formulation from Brun et al. (1989), who developed the method using 

data collected in the French Alps. We initialized the density of fresh snow by imposing a minimum snow density of 76 kg m–

3, based on available snowpit observations, and then using the equation: 170 

𝜌𝑓 = max[(109 + 6(𝑇𝑎 − 273.16) + 26√𝑢𝑚 ), 76]        (2) 

where ρf is the density of fresh snow (kg m−3), um is the wind speed (m s−1), and Ta is the air temperature (K). With the exception 

of Eq 2, both Ta and Ts are presented in degrees Celsius (°C). As snow undergoes compaction due to metamorphism and the 

increasing weight of overlying snow, density is assumed to increase according to the following rate: 

 
∆𝜌𝑠

∆𝑡
= (𝐶𝑅𝑚 + 𝐶𝑅𝑜)𝜌𝑠           (3) 175 

where t is time (s), CRm is the snow compaction due to metamorphism (kg m–3 s–1), and CRo is the compaction due to the 

weight of overlying snow (kg m–3 s–1). CRm is then calculated as (Andreadis et al., 2009): 

 𝐶𝑅𝑚 =  2.778 × 10−6𝑐3𝑐4𝑒−0.04×(273.15− 𝑇𝑠) 
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{

𝑐3 =  𝑐4 = 1                                               𝜌𝑠 ≤ 150 kg m-3  

𝑐3 =  𝑒−0.046(𝜌𝑠−150)                          𝑖𝑓 𝜌𝑠  > 150 kg m-3 

𝑐4 = 2                                                           𝜌𝑠 > 150 kg m-3

       (4) 

and CRo is calculated as (Andreadis et al. 2009):  180 

𝐶𝑅𝑜 =  
𝑃𝑠

𝑛0
× 𝑒−𝑐5 (273.15− 𝑇𝑠)𝑒−𝑐6𝜌𝑠           (5) 

where n0 = 3.6×10−6 N s m−2 is the snow viscosity, c5 = 0.08 K−1, c6 = 0.021 m3 kg−1 and Ps (N s m−2) is the load pressure for 

each layer. The load pressure is defined as:  

𝑃𝑠 =  
1

2
 𝑔𝜌𝑤(𝑊𝑛𝑠 + 𝑓𝑊𝑠 )           (6) 

where g is the acceleration due to gravity 9.8 m s−2, Wns and Ws are the amount of new snow and the snow (derived from 185 

CLASS) within the snowpack layer (mm w.e.), respectively, and f is the empirical compaction coefficient taken as 0.6 

(Andreadis et al., 2009).  

3 Results 

3.1 Local meteorological conditions 

Figure 2 displays daily air temperature and wind speed observations. The shaded zone and site-specific dots illustrate the 190 

temporal distribution of the manual snow surveys. Air temperature measurements were taken at 2 m above ground. Wind speed 

sensors were located 3 m and 2 m above ground at sites A1 and A2, respectively. To compensate for this height difference and 

enable fair comparisons between sites A1 and A2, wind speed measurements at site A1 were adjusted to a 2-m height, assuming 

a log profile. As expected, the sapling site (mean canopy of 1.8 m) experienced higher wind speeds (mean 1.3 m s–1) than the 

juvenile one (mean canopy of 8.1 m and mean wind speed of 0.12 m s–1). Air temperatures were homogenous from site to site, 195 

with average values of −6.1 °C, −6.3 °C, −6.9 °C, and −6.5 °C at sites A1, A2, A3, and A4, respectively.  
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Figure 2. (a) Daily 2-m air temperature (Ta) observations for all the study sites. (b) Daily 2-m wind speed (um) for sites A1 (sapling) 200 
and A2 (juvenile). The shaded region indicates the extensive snowpit measurement period. Coloured dots illustrate specific snowpit 

surveys. Spring melt started on 21 April 2018.  

3.2 Cold content observations from snowpit surveys  

Figure 3 illustrates 10-cm CC derived from the snowpit surveys. One has to sum up all the values of a single profile to find 

the total CC for a specific date. Variability in snow depth, mainly induced by contrasting canopy structure, is indicated in 205 

Figure 3. When comparing layer-wise (10 cm) differences (A1, A2, A3, and A4), the lowest (−0.013 MJ m−2) and peak (−0.67 

MJ m−2) CC both occurred at site A2. Unlike for spring melt, when CC is low and relatively uniform, the accumulation period 

portrays substantial layer-wise variability structured around three distinct layers. For instance, sites A1, A2, A3, and A4 

reported 9, 15, 12, and 5 observations of CC that were below −0.35 MJ m−2. Note that the occurrence of large amplitude of 

CC values was not always confined to the topmost layer, as the layer just beneath the top layer also exhibited such amplitude 210 

(see Fig. 3, week 10, site A3 at a snow depth of 106 cm, for example). However, the layers that are close to the ground 

experienced smaller amplitude of CC throughout the winter. Peak CC occurred in early February (Fig. 4 and Table 3), when 

the minimum daily air temperature fell to about –25°C (Fig. 2). At that time, the amplitude of CC was highest at site A1, which 

also had the deepest snowpack (128 cm). The total CC time series highlighted the variability of CC across the four study sites 

(Fig. 4).   215 
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Figure 3. Weekly 10-cm CC observations from snowpit surveys. The light blue shading indicates active spring melt. The colour bar 

indicates CC values in MJ m−2 

Overall, maximum snow depth occurred at site A2 (194 cm), which also experienced the largest amplitude of mean total CC 220 

(−2.62 MJ m–2), as a thicker snowpack can hold more CC (Table 3). For its part, A4 experienced the smallest maximum snow 

depth (142 cm) and the lowest amplitude of mean total CC (−2.15 MJ m−2). The CC difference across sites reached 0.47 MJ 

m–2 in total cold content, representing a variability of 20%. 
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 225 

Figure 4. Weekly snowpack total CC from snowpit surveys. The light blue shading represents active spring melt.  

Table 3. Peak total CC, date of occurrence, snow depth, mean tree height at the site, maximum snow depth, and mean total CC over 

a period of 15 weeks. 

Sites 

Peak total 

CC  

(MJ m−2) 

Date of 

occurrence of 

peak total CC 

Snow depth 

at peak total 

CC (cm) 

Tree height 

(m) 

Maximum 

snow depth 

(cm) 

Mean total 

CC (MJ m−2) 

A1 −4.05 2018-02-07 128 1.8 163 −2.45 

A2 −3.77 2018-02-13 127 8.1 194 −2.62 

A3 −3.24 2018-02-13 95 8.6 143 −2.26 

A4 −2.66 2018-02-07 100 12.5 142 −2.15 
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3.3 Analysis of reconstructed CC time series 230 

3.3.1 Snow density modelling  

A comparison of CLASS snow simulations and snowpit (manual) observations reveals that CLASS is very successful at 

simulating bulk snow density (Fig. 5; R2 = 0.71, Pbias = 1.6%), SWE (R2 = 0.64, Pbias = −17.1%), and CC (R2 = 0.90, Pbias 

= −2.0%).  

 235 

Figure 5. Observed versus CLASS-simulated bulk values of SWE, snow density, and CC. R2 denotes the coefficient of determination 

and Pbias (%) represents the percent bias.    

After confirming that CLASS successfully models bulk snow cover variables, we moved forward with the next step in our 

methodolgy. We adopted a “hybrid procedure” in which we reproduced a vertical structure following Andreadis et al. (2009). 

We compared layer-by-layer, simulated and observed CC and snow density (Fig. 6) and determined that on average (when all 240 

sites are considered), the empirical density and observed snow temperature yielded reasonable CC estimates (R2 = 0.42 and 

Pbias = −18.5 %). At each site, reasonable CC values were achieved over the entire profile (R2 = 0.51. 0.40. 0.51, and 0.19 

and Pbias = −13.3 %, −18.4 %, −20.6 %, and −24.1 % at sites A1, A2, A3, and A4, respectively) (Fig. 7). 

CCs for the top layer were more difficult to simulate (R2 = 0.36, 0.29, 0.45, and 0.03) than for the other two layers. Bottom-

layer simulations were the most successful (R2 = 0.85, 0.88, 0.90, and 0.86). Density simulations over the entire profile behaved 245 

similarly (R2 = 0.48. 0.46. 0.50, and 0.35 and Pbias = −6 %, −8.8 %, −12.3 %, and −13.5 % at sites A1, A2, A3, and A4, 

respectively). The performance of density simulations, for each layer examined individually, was much less successful, mostly 

for the top layer (R2 = 0.06, 0.32, 0.32, and 0.02 and Pbias = −32.4 %, −33.7 %, −35.1 %, and −46.6 % for sites A1, A2, A3, 

and A4, respectively). However, snow density estimates had a low impact on CC performance, as described previously. These 

results were deemed sufficient for moving forward with the fine-scale temporal analysis of the reconstructed CC.     250 
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Figure 6. Observed versus modelled snow density and CC derived from the empirical formulation described in subsection 2.2.3 

across the four sites. Snowpack layers are aggregated into three classes: top (upper 40 cm), bottom (lower 30 cm), and middle 

(remainder). 255 
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Figure 7. Performance of CC and density simulations following the adopted hybrid procedure, coefficient of determination (R2, left) 

and percent bias (Pbias, right). Pbias colour bar applies to both positive and negative values. 

3.3.2 Reconstructed CC time series  

Figure 8 illustrates reconstructed multilayer 30-min CC time series. Although larger peaks (−6.9 MJ m−2 for site A1) and 260 

smaller average values (−1.8 MJ m−2 for site A2) are observed, the high-resolution CC time series that were derived using the 

hybrid procedure followed a pattern similar to the CC observations presented in section 3.3.1 (Fig. 8, Fig. 9a, and Table 2).  

Additionally, sites with less vegetation (site A1) experienced higher peak CC than sites with mature forest (A4) (Fig. 8). 

Notably, the rain-on-snow episodes that occurred on 11 January, 20 February, and 30 March 2018 (thin vertical bands of low 

CC) were absent from the weekly series shown in Figure 3. Sites A1, A3 and A4 had a shallower snowpack and the rainfall 265 

penetrated deeper, resulting in a reduced CC throughout the snowpack. Contrarily, at site A2 which had a deeper snowpack, 

similar rain penetration into the snowpack was only observed on 11 January 2018. All snowpacks became isothermal from 21 
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April 2018 onwards, indicating the onset of spring melt. Some cold spells during spring melt were also noticeable, especially 

for the shallower snowpacks (A1, A3 and A4).   

 270 

Figure 8. Seasonal variability of 10-cm CC simulations stored at 30-min time intervals. The colour bar indicates CC values in MJ 

m−2. Light green shading represents rain-on-snow events and light blue shading represents melt. 

Due to differences in snow accumulation and melt patterns, mostly induced by differences in vegetation and topographic 

characteristics, there is noticeable site-to-site variability in CC (Fig. 8). The detailed variability of total CC across the four 

forested sites is presented in Figure 9, along with snow depth. The amplitude of total CC at site A2 was larger than at A1 275 

approximately 60% of the time. At site A3, this fraction drops to 32%.  
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Figure 9. (a) Total estimated CC from the reconstructed time series. An exponential moving average was applied for noise removal. 

(b) Snow depth observations. Spring melt period and rain-on-snow events are highlighted with light blue and light pink color, 

respectively.  280 

We examined the relationship between CC and the snow density (ρs), snow depth (HS), snowpack temperature (Ts), and air 

temperature (Ta; Fig. 10). Pearson’s correlation coefficient (r) was used to determine these relationships for the observed and 

estimated values, respectively. Snowpack temperature (r = 0.83 and 0.69) and air temperature (r = 0.56, and 0.66) exhibited a 

positive correlation. Conversely, snow depth (r = −0.5 and −0.45) exhibited a negative correlation, whereas snow density (r = 

0.4 and 0.24) showed a weak relationship.  285 

Next, we examined the relationship between each of the above-mentioned variables and CC at the individual sites. This was 

done to identify any trends in the site-wise relationship between CC and ρs, HS, Ts, and Ta. A decreasing trend in the correlation 

coefficient (r) with increasing mean tree heights was observed when we examined the snow temperature and the reconstructed 

cold content for each site (r = 0.75, 0.69. 0.67 and 0.60 for sites A1, A2, A3, and A4, respectively). Beyond that relationship, 
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we did not identify any site-wise trends between CC and the other variables, thereby suggesting a weak dependency on forest 290 

structure in the relationship between CC and other pertinent variables.    

 

Figure 10. Inter-relationship between CC and snow density, snow depth, snowpack temperature and air temperature. The colour 

bar represents the absolute value of the Pearson’s correlation coefficient (r).   

4 Discussion 295 

4.1 CC observations 

As illustrated in Figures 2 and 3, the four experimental sites exhibited unique snow depths, wind speeds, and air temperatures 

that ultimately resulted in temporal and spatial differences in CC. Variability was such that the maximum CC was not always 

exhibited by the top layer, but also by the middle layer (Fig. 11). For instance, in week 15, the snowpack was denser in the top 
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layer than in the middle layer. In week 13, the top layer snowpack was warmer than the layer beneath it. Such patterns in 300 

temperature and density are counterexamples of the general patterns depicted in Figure 11.  

 

Figure 11. 10-cm snowpack temperature (top) and density (bottom) at site A1. Light blue shading represents spring melt. 

Furthermore, the importance of snow mass on CC (total) at the study sites is highlighted in Figure 4. As expected, a deeper 

snowpack is typically associated with higher CC. For instance, CC peaked at all sites in February, but more CC was observed 305 

in the deeper A1 and A2 snowpacks. The same finding holds when CC is averaged over the 15-week period: A2 experienced 

more snow and higher CC, followed by A1. In both instances (peak and average CC conditions), a deeper snowpack led to 

larger amplitude of CC. In a similar study of alpine and subalpine snowpacks in the Rocky Mountains of Colorado, USA, 

Jennings et al. (2018) reported peak CC to be 2.6 times greater for the alpine snowpack than for the subalpine location, which 

they mostly attributed to the higher SWE accumulation at the alpine site.  310 

In early February (during peak CC conditions), the snow depth difference between sites A1 and A2 was very small (Table 3). 

Nonetheless, A1 exhibited higher CC than A2 (Fig. 4). This is because in addition to snow depth, CC values depend on the 

density and temperature of the snow (Fig. 11). The higher peak CC found at site A1 can be explained by the higher snow 
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density that is typically associated with higher wind velocities (Vionnet et al., 2012) and wind speed-induced densification. 

As illustrated in Figure 2, site A1 was windier than A2. This is expected, as it is well known that wind speed is low within 315 

forest canopies (Davis et al., 1997; Harding and Pomeroy, 1996), such as those in site A2.  

4.2 Reconstructed CC time-series 

As mentioned previously, gaps between weekly snowpit surveys failed to capture short-lived events such as warm and cold 

spells or rain-on-snow events. In an attempt to produce higher frequency CC time series, we used the CLASS land surface 

model to simulate 30-min bulk snow density and SWE (Fig. 5). Given the limitations of bulk estimations, which are often too 320 

broad to properly describe all snowpack processes (Roy et al., 2013), several studies have opted for a multilayer snow model 

(Brun et al., 1997; Lehning et al., 2002; Vionnet et al., 2012). Our study explored the (simpler) hybrid procedure proposed by 

Andreadis et al. (2009). Using this method, we generated snow density values which support the derivation of CC time series 

that are more prone to capturing short-lived events (Fig. 8). As reported in weekly snowpit surveys, the simulated CC time 

series suggest that the highest peak in CC occurred at site A1 and the highest peak in mean CC was at site A2. In both instances 325 

(snowpit observations and reconstructed CC), there was a decrease in peak CC with an increase in tree height (Fig. 8 and Table 

3). Parajuli et al. (2020b) explored the spatiotemporal variability of SWE in the same forest and reported reduced snow 

accumulation beneath canopies composed of taller trees. Initially, site A1, with lower vegetation, experienced more snow than 

the other sites (Table 3). Favourable conditions (lower temperature and deeper and denser snowpack) supported the occurrence 

of higher peak CC at this site (Fig. 2, Fig. 11 and Table 3). However, over the entire winter, site A2 experienced more snow 330 

and higher amplitude of CC values than the snowpack at site A1 (Fig. 9). In order to understand this variability in CC across 

all four sites, our analysis revealed that there were 60% occurrences where amplitude of CC was higher at site A2 than at A1, 

contributing to the overall CC at site A2. 

For site A3, there were 32% occurrences where amplitude of CC values was higher than at A1, beginning in early February 

and continuing through the rest of the study period (Fig. 9). Most of the time, the measured snow depth at site A3 was also 335 

shallower than at site A1. We hypothesized that cold air pooling might explain this phenomenon. During stable atmospheric 

boundary layer conditions, with weak synoptic forcing, there is reduced wind flow. This results in thermal decoupling in the 

valley depression, which favours the formation of a cold air pool (Fujita et al., 2010; Mott et al., 2016). This is substantiated 

by the rapid cooling of near-surface air within the valley depression, typically at night or early in the morning (Smith et al., 

2010). As site A3 is situated in a valley depression (Fig. 1), cold air pooling most likely explains the higher peak CC at this 340 

location (Fig. 2).  

Based on Figures 2 and 9, snow depth and air temperature appear to influence CC distribution across the study sites. In general, 

the observed and simulated snowpack CC values at all sites were strongly (positively) correlated with snowpack temperature 

and air temperature, and weakly correlated with the snow density and snow depth values (Figure 10). It should also be noted 

that the snowpack CC values at all sites only showed negative correlations with snow depth (Fig. 10). Based on CC 345 

observations and the hybrid procedure, we were able to identify a relationship between the mean CC and the tree height (Table 
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3 and Fig. 8).  However, we were unable to report any trends in the site-wise relationship between CC and the above-mentioned 

variables (Fig. 10). Conversely, Jennings et al. (2018) attempted to establish a relationship between CC development and the 

cumulative mean of air temperature across the alpine and sub-alpine sites in the Rocky Mountains in Colorado, USA, but were 

unsuccessful.  350 

4.3 Sources of uncertainty 

One of the shortcomings of our multilayer snowpack scheme is the use of empirical fresh snow density estimates. Russell et 

al. (2020) explored a range of fresh snow density formulations and concluded that a constant value of 100 kg m−3 provided a 

better outcome than most empirical formulations. Nonetheless, they tested some empirical formulations that omitted the 

influence of wind speed on snow densification, as in the Brun et al. (1989) method. We compare observations to snow density 355 

estimates (top 10 cm) from three empirical methods: Diamond-Lowry (Russell et al., 2020), Hedstrom-Pomeroy (Hedstrom 

and Pomeroy, 1998), and Brun (Shrestha et al., 2010; Vionnet et al., 2012) (Fig. 11). These formulations are typically used to 

determine snowpack density. Examples include a study by Gouttevin et al. (2015) where the Brun method was used, and one 

by Bartlett et al. (2006) where the Hedstrom-Pomeroy method was implemented. 

 360 

Figure12. Observed versus modelled snow densities (first 10 cm) using three different methods. 

All three empirical methods performed poorly (Diamond-Lowry [Pbias = −53.1%], Hedstrom-Pomeroy [Pbias = −51.6%], and 

Brun [Pbias = −50.2%]), greatly underestimating snow density (Fig. 7). Several multilayer snow models use the Brun 

formula/method to estimate fresh snow density (e.g. Shrestha et al., 2010; Vionnet et al., 2012). When the same (Brun method) 

empirical snow density model was adopted into our methodology, the snow density estimates (especially the top layer) were 365 

disastrous (Figure 7).  
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In a slightly different context, Raleigh and Small (2017) concluded that snow density modelling was a major source of 

uncertainty when studying catchment SWE derived from satellite data. Additionally, several errors and biases could arise due 

to poor data quality and modelling deficiencies, thereby affecting the snowmelt models (Parajuli et al., 2020a; Raleigh et al., 

2015, 2016; Rutter et al., 2009). For instance, Jennings et al. (2018) applied the SNOWPACK multilayer model and reported 370 

an overestimation in fresh-snow temperature. As reported in the present study, CC depends heavily on snowpack temperature.  

The quality of model inputs also influences model performance. For example, sites A1 and A2 benefitted from local flux tower 

measurements, but such direct measurements were not available for sites A3 and A4, for which many assumptions were 

necessary in order to create/complete missing input time series. This problem has also been observed in several other 

studies(e.g. Pomeroy et al., 2007; Qi et al., 2017). Important snowpack properties beyond just CC, such as thermal conductivity 375 

(Oldroyd et al., 2013) and snow interception (Hedstrom and Pomeroy, 1998) also need to be further addressed. Therefore, 

future research that utilizes the physically-based snow model and describes the internal snowpack processes should focus on 

improving snow density estimations.      

5 Conclusion  

The purpose of this study was to document the spatial variability of CC in a humid boreal forest, using detailed measurements 380 

supplemented by physically-based and empirical model outputs. The studied boreal forest is characterized by a non-uniform 

stand structure that led to site-to-site variations in the 10-cm weekly observations of CC. Areas with lower vegetation had the 

highest snow accumulation and thus resulted in the largest peaks in total CC, while the juvenile forest experienced the highest 

amplitude of average CC over the 15 weeks.  

The Canadian Land Surface Scheme model was then coupled with complementary empirical formulations to construct bulk, 385 

followed by 10-cm, 30-min snow density time series. Both CLASS and the empirical formulations supplied reasonable snow 

density and CC estimates. When the latter 10-cm time series were split into three layers, the bottom and the middle layers also 

resulted in reasonable simulations. However, modelling of the top layer was not as successful. The constructed time series 

were used to illustrate the influence of phenomena that are not detectable when only snowpit data are used, such as rain-on-

snow episodes or the formation of cold air pools at the bottom of the valley.  390 

We used the Pearson’s correlation coefficient (r) to identify the role of pertinent variables (snow density, snowpack 

temperature, snow depth and air temperature) that affect the distribution of CC at our boreal forest sites. Snowpack and air 

temperature appeared to be highly influential on CC distribution compared to the depth and the density of the snowpack. Our 

study was supported by 30-min time step time series of 10-cm snow temperature profiles and bias-corrected precipitation 

inputs. The inclusion of such inputs helped us to reduce errors and biases. This study also highlighted the uncertainty associated 395 

with fresh snow density estimates when simulating the physically-based snowmelt models.     

 

Data availability: The data that support the findings in this study will be available in the public repository.  

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.



22 

 

 

Author contributions: AP and DFN (occasionally) extracted the data from the field. AP, DFN and FA designed the study. AP 400 

wrote the manuscript and analyzed the data. DFN and FA provided constructive feedback to improve the quality of the 

manuscript. MA performed CLASS simulations.    

 

Conflicts of interest: Authors declare no conflicts of interest.  

 405 

Acknowledgements: This research is a part of the EVAP project which was funded by Natural Sciences and Engineering 

Council of Canada (NSERC), Ouranos (Consortium on Regional Climatology and Adaptation to Climate Change), Hydro-

Québec, Environment and Climate Change Canada, and Ministère de l’Environnement et de la Lutte aux changements 

climatiques through grant RDCPJ-477125-14. We would like to express our sincere gratitude to Professor Sylvain Jutras for 

kindly providing the necessary sensors and support for managing the logistics of the field experiment. We conducted two 410 

successful winter campaigns, thanks to the generous support from Professor André Desrochers, who provided a snowmobile. 

The authors would like to thank François Larochelle and Martine Lapointe for providing some of the equipment and helping 

in the design of the snow profiling stations. Our study would have been incomplete without support from Annie-Claude Parent 

who participated in the harsh winter field campaign, managed the necessary logistics and helped conduct the field work. We 

would like to express our deepest gratitude to Benjamin Bouchard and Médéric Girard, who assisted in data collection. The 415 

authors are indebted to the Montmorency Forest staff, including Robert Côté and Charles Villeneuve, who provided generous 

support for managing the logistics throughout the study area. Thanks to group members Bram Hadiwijaya, Pierre-Erik Isabelle, 

Oliver S. Schilling, Judith Fournier, Alicia Talbot Lanciault, Georg Lackner, Carine Poncelet, Amandine Pierre, Guillaume 

Hazemann, Marco Alves, Adrien Pierre, Antoine Thiboult, and interns Fabien Gaillard Blancard, Jonas Götte, Kelly Proteau, 

and PEGEAUX members, who participated in the challenging winter field campaign. 420 

References 

Alves, M., Music, B., Nadeau, D. F. and Anctil, F.: Comparing the performance of the maximum entropy production model 

with a land surface scheme in simulating surface energy fluxes, J. Geophys. Res. Atmos., 124(6), 3279–3300, 

doi:10.1029/2018JD029282, 2019. 

Alves, M., Nadeau, D. F., Music, B., Anctil, F. and Parajuli, A.: On the performance of the Canadian Land Surface Scheme 425 

driven by the ERA5 reanalysis over the Canadian boreal forest, J. Hydrometeorol., 21(6), 1383–1404, doi:10.1175/jhm-

d-19-0172.1, 2020. 

Anderson, E. A.: A point energy and mass balance model of a snow cover, US Department of Commerce, National Oceanic 

and Atmospheric Administration, National Weather Service, Office of Hydrology, 1976. 

 430 

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.



23 

 

Andreadis, K. M., Storck, P. and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested 

environments, Water Resour. Res., 45(5), 1–13, doi:10.1029/2008WR007042, 2009. 

Barnett, T. P., Adam, J. C. and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-

dominated regions, Nature, 438(7066), 303–309, doi:10.1038/nature04141, 2005. 

Bartlett, P. A. and Verseghy, D. L.: Modified treatment of intercepted snow improves the simulated forest albedo in the 435 

Canadian Land Surface Scheme, Hydrol. Process., 29(14), 3208–3226, doi:10.1002/hyp.10431, 2015. 

Bartlett, P. A., MacKay, M. D. and Verseghy, D. L.: Modified snow algorithms in the Canadian land surface scheme: Model 

runs and sensitivity analysis at three boreal forest stands, Atmosphere-Ocean, 44(3), 207–222, doi:10.3137/ao.440301, 

2006. 

Brun, E., Martin, E., Simon, V., Gendre, C. and Coleou, C.: An energy and mass model of snow cover suitable for operational 440 

avalanche forecasting, J. Glaciol., 35(121), 333–342, doi:10.1017/S0022143000009254, 1989. 

Brun, E., Martin, E. and Spiridonov, V.: Coupling a multi-layered snow model with a GCM, Ann. Glaciol., 25(2), 66–72, 

doi:10.1017/s0260305500013811, 1997. 

Davis, R. E., Hardy, J. P., Ni, W., Woodcock, C., McKenzie, J. C., Jordan, R. and Li, X.: Variation of snow cover ablation in 

the boreal forest: A sensitivity study on the effects of conifer canopy, J. Geophys. Res. Atmos., 102(D24), 29389–29395, 445 

doi:10.1029/97JD01335, 1997. 

DeWalle, D. R. and Rango, A.: Principles of snow hydrology, 1st ed., Cambridge University Press, New York., 2008. 

Essery, R., Morin, S., Lejeune, Y. and Ménard, C.: A comparison of 1701 snow models using observations from an alpine site, 

Adv. Water Resour., 55, 131–148, doi:10.1016/j.advwatres.2012.07.013, 2013. 

Fujita, K., Hiyama, K., Iida, H. and Ageta, Y.: Self-regulated fluctuations in the ablation of a snow patch over four decades, 450 

Water Resour. Res., 46(11), 1–9, doi:10.1029/2009WR008383, 2010. 

Gouttevin, I., Lehning, M., Jonas, T., Gustafsson, D. and Mölder, M.: A two-layer canopy model with thermal inertia for an 

improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741), Geosci. 

Model Dev., 8(8), 2379–2398, doi:10.5194/gmd-8-2379-2015, 2015. 

Harding, R. J. and Pomeroy, J. W.: The energy balance of the winter boreal landscape, J. Clim., 9(11), 2778–2787, 455 

doi:10.1175/1520-0442(1996)009<2778:TEBOTW>2.0.CO;2, 1996. 

Hedstrom, N. R. and Pomeroy, J. W.: Measurements and modelling of snow interception in the boreal forest, Hydrol. Process., 

12(10–11), 1611–1625, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4, 1998. 

Isabelle, P., Nadeau, D. F., Rousseau, A. N., Anctil, F., Jutras, S. and Music, B.: Impacts of high precipitation on the energy 

and water budgets of a humid boreal forest, Agric. For. Meteorol., 280, 1–13, doi:10.1016/j.agrformet.2019.107813, 460 

2020. 

Isabelle, P. E., Nadeau, D. F., Asselin, M. H., Harvey, R., Musselman, K. N., Rousseau, A. N. and Anctil, F.: Solar radiation 

transmittance of a boreal balsam fir canopy: Spatiotemporal variability and impacts on growing season hydrology, Agric. 

For. Meteorol., 263, 1–14, doi:10.1016/j.agrformet.2018.07.022, 2018. 

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.



24 

 

Jennings, K. S., Kittel, T. G. F. and Molotch, N. P.: Observations and simulations of the seasonal evolution of snowpack cold 465 

content and its relation to snowmelt and the snowpack energy budget, Cryosph., 12(5), 1595–1614, doi:10.5194/tc-12-

1595-2018, 2018. 

Jost, G., Moore, R. D., Smith, R. and Gluns, D. R.: Distributed temperature-index snowmelt modelling for forested catchments, 

J. Hydrol., 420–421, 87–101, doi:10.1016/j.jhydrol.2011.11.045, 2012. 

Koivusalo, H., Heikinheimo, M. and Karvonen, T.: Test of a simple two-layer parameterisation to simulate the energy balance 470 

and temperature of a snow pack, Theor. Appl. Climatol., 70(1–4), 65–79, doi:10.1007/s007040170006, 2001. 

Lehning, M., Bartelt, P., Brown, B. and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning Part III: 

Meteorological forcing, thin layer formation and evaluation, Cold Reg. Sci. Technol., 35(3), 169–184, 

doi:10.1016/S0165-232X(02)00072-1, 2002. 

Leonardini, G., Anctil, F., Abrahamowicz, M., Gaborit, É., Vionnet, V., Nadeau, D. F. and Fortin, V.: Evaluation of the soil, 475 

vegetation, and snow (SVS) land surface model for the simulation of surface energy fluxes and soil moisture under snow-

free conditions, Atmosphere, 11(3), 278, doi:10.3390/atmos11030278, 2020. 

Lundquist, J. D. and Lott, F.: Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-

covered areas, Water Resour. Res., 44(4), 1–6, doi:10.1029/2008WR007035, 2008. 

Mahat, V. and Tarboton, D. G.: Canopy radiation transmission for an energy balance snowmelt model, Water Resour. Res., 480 

48(1), 1–16, doi:10.1029/2011WR010438, 2012. 

Marks, D. and Winstral, A.: Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a 

semiarid mountain basin, J. Hydrometeorol., 2(3), 213–227, doi:10.1175/1525-

7541(2001)002<0213:COSDTS>2.0.CO;2, 2001. 

Marks, D., Kimball, J., Tingey, D. and Link, T.: The sensitivity of snowmelt processes to climate conditions and forest cover 485 

during rain-on-snow: a case study of the 1996 Pacific Northwest flood, Hydrol. Process., 12(10–11), 1569–1587, 

doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L, 1998. 

Molotch, N. P., Brooks, P. D., Burns, S. P., Litvak, M., Monson, R. K., McConnell, J. R. and Musselman, K. N.: 

Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests, Ecohydrology, 2, 129–142, 

doi:10.1002/eco.48, 2009. 490 

Mosier, T. M., Hill, D. F. and Sharp, K. V.: How much cryosphere model complexity is just right? Exploration using the 

conceptual cryosphere hydrology framework, Cryosph., 10(5), 2147–2171, doi:10.5194/tc-10-2147-2016, 2016. 

Mott, R., Paterna, E., Horender, S., Crivelli, P. and Lehning, M.: Wind tunnel experiments: Cold-air pooling and atmospheric 

decoupling above a melting snow patch, Cryosph., 10(1), 445–458, doi:10.5194/tc-10-445-2016, 2016. 

Musselman, K., Molotch, N. and Brooks, P.: Effect of vegetation on snow accumulation and ablation in a mid-latitude sub-495 

alpine forest, Hydrol. Process., 22(15), 2267–2274, doi:10.1002/hyp.7050, 2008. 

Oldroyd, H. J., Higgins, C. W., Huwald, H., Selker, J. S. and Parlange, M. B.: Thermal diffusivity of seasonal snow determined 

from temperature profiles, Adv. Water Resour., 55, 121–130, doi:10.1016/j.advwatres.2012.06.011, 2013. 

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

Parajuli, A., Nadeau, D. F., Anctil, F., Schilling, O. S. and Jutras, S.: Does data availability constrain temperature-index snow 

model ? A case study in the humid boreal forest, Water, 12(8), 1–22, doi:10.3390/w12082284, 2020a. 500 

Parajuli, A., Nadeau, D. F., Anctil, F., Parent, A.-C., Bouchard, B., Girard, M. and Jutras, S.: Exploring the spatiotemporal 

variability of the snow water equivalent in a small boreal forest catchment through observation and modelling, Hydrol. 

Process., 34(11), 2628–2644, doi:10.1002/hyp.13756, 2020b. 

Pierre, A., Jutras, S., Smith, C., Kochendorfer, J., Fortin, V. and Anctil, F.: Evaluation of catch efficiency transfer functions 

for unshielded and single-alter-shielded solid precipitation measurements, J. Atmos. Ocean. Technol., 36(5), 865–881, 505 

doi:10.1175/JTECH-D-18-0112.1, 2019. 

Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W., Granger, R. J. and Carey, S. K.: The cold regions 

hydrological model: a platform for basing process representation and model structure on physical evidence, Hydrol. 

Process., 21(19), 2650–2667, doi:10.1002/hyp.6787, 2007. 

Qi, J., Li, S., Jamieson, R., Hebb, D., Xing, Z. and Meng, F. R.: Modifying SWAT with an energy balance module to simulate 510 

snowmelt for maritime regions, Environ. Model. Softw., 93, 146–160, doi:10.1016/j.envsoft.2017.03.007, 2017. 

Raleigh, M. S. and Small, E. E.: Snowpack density modeling is the primary source of uncertainty when mapping basin-wide 

SWE with lidar, Geophys. Res. Lett., 44(8), 3700–3709, doi:10.1002/2016GL071999, 2017. 

Raleigh, M. S., Lundquist, J. D. and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based 

snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19(7), 3153–3179, 515 

doi:10.5194/hess-19-3153-2015, 2015. 

Raleigh, M. S., Livneh, B., Lapo, K. and Lundquist, J. D.: How does availability of meteorological forcing data impact 

physically based snowpack simulations?, J. Hydrometeorol., 17(1), 99–120, doi:10.1175/JHM-D-14-0235.1, 2016. 

Roy, A., Royer, A., Montpetit, B., Bartlett, P. A. and Langlois, A.: Snow specific surface area simulation using the one-layer 

snow model in the Canadian LAnd Surface Scheme (CLASS), Cryosph., 7(3), 961–975, doi:10.5194/tc-7-961-2013, 520 

2013. 

Russell, M., Eitel, J. U. H., Maguire, A. J. and Link, T. E.: Toward a novel laser-based approach for estimating snow 

interception, Remote Sens., 12(7), 1–11, doi:10.3390/rs12071146, 2020. 

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, 

H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R., 525 

Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A., Lettenmaier, D., Li, W. P., Luce, C., Martin, E., Nasonova, 

O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., 

Stöckli, R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., 

Xia, K., Xue, Y. and Yamazaki, T.: Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res. Atmos., 

114(D6), 1–18, doi:10.1029/2008JD011063, 2009. 530 

 

 

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

Schaefli, B., Hingray, B. and Musy, A.: Climate change and hydropower production in the Swiss Alps: Quantification of 

potential impacts and related modelling uncertainties, Hydrol. Earth Syst. Sci., 11(3), 1191–1205, doi:10.5194/hess-11-

1191-2007, 2007. 535 

Schilling, O. S., Parajuli, A., Tremblay Otis, C., Müller, T. U., Antolinez Quijano, W., Tremblay, Y., Brennwald, M. S., 

Nadeau, D. F., Jutras, S., Kipfer, R. and Therrien, R.: Quantifying groundwater recharge dynamics and unsaturated zone 

processes in snow‐dominated catchments via on‐site dissolved gas analysis, Water Resour. Res., 57(2), 1–24, 

doi:10.1029/2020wr028479, 2021. 

Seligman, Z. M., Harper, J. T. and Maneta, M. P.: Changes to snowpack energy state from spring storm events, Columbia 540 

River headwaters, Montana, J. Hydrometeorol., 15(1), 159–170, doi:10.1175/JHM-D-12-078.1, 2014. 

Shrestha, M., Wang, L., Koike, T., Xue, Y. and Hirabayashi, Y.: Improving the snow physics of WEB-DHM and its point 

evaluation at the SnowMIP sites, Hydrol. Earth Syst. Sci., 14(12), 2577–2594, doi:10.5194/hess-14-2577-2010, 2010. 

Smith, S. A., Brown, A. R., Vosper, S. B., Murkin, P. A. and Veal, A. T.: Observations and simulations of cold air pooling in 

valleys, Boundary-Layer Meteorol., 134(1), 85–108, doi:10.1007/s10546-009-9436-9, 2010. 545 

Tarboton, D. G., Chowdhury, T. G. and Jackson, T. H.: A spatially distributed energy balance snowmelt model, Proceedings 

of Symposium on Biogeochemistry of Seasonally Snow, 1994. 

U.S. Army Corps of Engineers.: Snow hydrology: Summary report of the snow investigations, North Pacific Division, Portland 

District, USA., 1956. 

Valéry, A., Andréassian, V. and Perrin, C.: ‘As simple as possible but not simpler’: What is useful in a temperature-based 550 

snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, J. 

Hydrol., 517, 1176–1187, doi:10.1016/j.jhydrol.2014.04.058, 2014. 

Verseghy, D., Brown, R. and Wang, L.: Evaluation of CLASS snow simulation over Eastern Canada, J. Hydrometeorol., 18(5), 

1205–1225, doi:10.1175/JHM-D-16-0153.1, 2017. 

Verseghy, D. L.: CLASS-A Canadian land surface scheme for GCMS. I. soil model, Int. J. Climatol., 11(2), 111–133, 555 

doi:10.1002/joc.3370110202, 1991. 

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E. and Willemet, J. M.: The detailed snowpack 

scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5(3), 773–791, doi:10.5194/gmd-5-773-

2012, 2012. 

Wigmosta, M., Nijssen, B. and Storck, P.: The distributed hydrology soil vegetation model., Math. Model. Small Watershed 560 

Hydrol. Appl., 7–42 [online] Available from: http://www.cabdirect.org/abstracts/20033121322.html, 2002. 

Wigmosta, M. S., Vail, L. W. and Lettenmaier, D. P.: A distributed hydrology‐vegetation model for complex terrain, Water 

Resour. Res., 30(6), 1665–1679, doi:10.1029/94WR00436, 1994. 

https://doi.org/10.5194/tc-2021-98
Preprint. Discussion started: 13 April 2021
c© Author(s) 2021. CC BY 4.0 License.


