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Abstract.  Meltwater from Himalayan glaciers sustains the flow of rivers such as the Ganges and Brahmaputra on which over 

half a billion people depend for day-to-day needs. Upstream areas are likely to be affected substantially by climate change, 10 

and changes in the magnitude and timing of meltwater supply are likely to occur in coming decades. About 10 % of the 

Himalayan glacier population terminates into proglacial lakes and such lake-terminating glaciers are known to exhibit higher 

than average total mass losses. However, relatively little is known about the mechanisms driving exacerbated ice loss from 

lake-terminating glaciers in the Himalaya. Here we examine a composite (2017-2019) glacier surface velocity dataset, derived 

from Sentinel 2 imagery, covering Central and Eastern Himalayan glaciers larger than 3 km2. We find that centre flow line 15 

velocities of lake-terminating glaciers are on average more than double those of land-terminating glaciers (18.8(18.5 – 19.1) 

vs 8.24(8.17 – 8.35) m yr-1) and show substantially more heterogeneity than land-terminating glaciers around glacier termini. 

We attribute this large heterogeneity to the varying influence of lakes on glacier dynamics, resulting in differential rates of 

dynamic thinning, which causes about half of the lake-terminating glacier population to accelerate at the glacier termini. 

Numerical ice-flow model experiments show that changes at the frontal boundary condition are likely to play a key role in 20 

accelerating the glacier flow at the front, with variations in basal friction only being of modest importance. The expansion of 

current glacial lakes, and the formation of new meltwater bodies will influence the dynamics of an increasing number of 

Himalayan glaciers in the future and these factors should be carefully considered in regional projections.   
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1 Introduction  25 

Himalayan glaciers provide an important baseline supply of meltwater for downstream areas (Bolch, 2017; Immerzeel et al., 

2010; Pritchard, 2019; Viviroli et al., 2007). A large decrease in runoff from the rivers that drain this mountain range will have 

major implications for downstream water security, particularly in the populous catchments of the Ganges, Indus, and 

Brahmaputra rivers. Although a drastic reduction in glacier area and mass is projected in the Himalaya over the 21st century 

(Kraaijenbrink et al., 2017; Rounce et al., 2020), large uncertainties in the pace of the loss exist (Lutz et al., 2013). Hence, 30 

there are also large uncertainties in future melt water supply, and an improved understanding of the evolution of Himalayan 

glaciers is needed. 

Himalayan glaciers have been retreating and losing mass since the mid-19th century and rates of mass loss have been increasing 

over at least the last four decades (Azam et al. 2018; Bhattacharya et al., 2021; Bolch et al., 2012, 2019; Brun et al., 2017; 

King et al., 2019; Maurer et al., 2019). Various studies report Himalayan averaged glacier mass losses of around −0.40 ± 0.10 35 

m.w.e. yr-1 since the beginning of this century (Brun et al., 2017; Shean et al., 2020), which roughly translates into a total mass 

loss of 7.5 Gt yr-1. However, within the Himalayan mountains, large intra-regional variability in glacier mass loss exists (Azam 

et al., 2018; Bolch et al., 2012; Brun et al., 2017; King et al., 2019; Maurer et al., 2019), which indicates that there are factors 

capable of exacerbating -or reducing- glacial mass losses that are at least partially decoupled from climate. 

The development of proglacial lakes in direct contact with the glacier terminus has been linked with enhanced glacier mass 40 

loss in the Himalayan region (King et al., 2019; Maurer et al., 2019). This contrast in mass loss with land-terminating glaciers 

manifests itself in two ways, namely by elevated terminal retreat rates and by enhanced surface lowering towards the terminus 

of the lake-terminating glaciers (King et al., 2019). The latter indicates that proglacial lakes can influence the flow 

characteristics of their host glacier through dynamic thinning. 

A factor that further complicates the dynamics and mass loss rate of lake-terminating glaciers in the Himalayas is the presence 45 

of a thick layer of debris, which is widespread on Himalayan glaciers (Herreid and Pellicciotti, 2020). The low-gradient, debris-

covered portions of many Himalayan glaciers are preconditioned for meltwater ponding and eventually proglacial lake 

development, which often result from a deepening and coalescence of supraglacial lakes (Benn et al., 2012; Quincey et al., 

2007) which are bounded by a stagnant, ice-cored moraine dam. The combination of the morphology, insulating characteristics 

of debris and lake development may cause a response to climate forcing that is strongly non-linear (Benn et al., 2012), though 50 

only little is known how such a transition develops.  

Two key factors can be identified which make lake-terminating glaciers distinctively different from their land-terminating 

counterparts, namely the stresses at the bed and the terminus of the glacier. Firstly, a body of water exerts a buoyancy force 

on the host glacier, reducing the effective pressure and consequently reducing the basal resistance, which ultimately can result 

in faster glacier flow (Benn et al., 2007b). Secondly, dynamical changes can result from a force imbalance processes that act 55 

at the terminus and trigger a retreat and reduce along-flow resistive stresses (Nick et al., 2009)., This which can be especially 

important in rapidly evolving environments (Benn et al., 2007b), such as the Himalayan region where the number and area of 
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proglacial lakes are rapidly increasing. In alpine settings, the transition from a land-terminating glacier to a lake-terminating 

glacier could therefore change the dynamic regime of the glacier, and such a transition might be partially decoupled from 

climate (Benn et al., 2012).  60 

Several recent remote sensing-based studies on glacier surface velocity indicated the divergent evolution of the dynamics of 

lake- and land-terminating glaciers. Dehecq et al. (2019) documented widespread land-terminating glacier slowdown since the 

start of the 21st century across High Mountain Asia (HMA) in response to diminished driving stress caused by long-term ice 

thinning. In contrast, more localised studies have shown several examples of lake-terminating glacier flow acceleration over a 

similar time period (King et al., 2018; Liu et al., 2020; Song et al., 2017; Tsutaki et al., 2019). The number and total area of 65 

proglacial lakes in the Himalayan region has increased (Nie et al., 2017; Shugar et al., 2020; Zhang et al., 2015), a trend which 

is likely to continue in the near future, as many glacier beds are characterised by overdeepenings (Linsbauer et al., 2016).  

Therefore, a robust understanding of the behaviour of lake-terminating glaciers is crucial. However, a spatially comprehensive 

assessment of the contrasting dynamics between land-terminating and lake-terminating glaciers has yet to be undertaken. 

Numerical ice-flow models have been utilised to investigate the dynamic thinning of marine-terminating outlet glaciers (Benn 70 

et al., 2007a; Enderlin et al., 2013; Nick & Oerlemans, 2006; Vieli et al., 2001; Vieli & Nick, 2011) and more recently of lake-

terminating glaciers in alpine regions (Sutherland et al., 2020; Tsutaki et al., 2019). Tsutaki et al. (2019) employed a diagnostic 

2-d model setup to show that the transition from a land to a lake-terminating boundary condition will significantly increase the 

surface flow velocities near the calving front. Sutherland et al. (2020) used a numerical transient model setup to show that a 

proglacial lake was a dominant control on the ice velocity during times of glacial lake growth after the Last Glacial Maximum 75 

in New Zealand. Ice thickness data and a quantification of the hydrological characteristics of a glaciers proglacial lake are 

important components of such model setups (Carrivick et al., 2020), but these data are very limited in the Himalayas, making 

a realistic model setup problematic. 

The main aim of this study is to examine the influence of proglacial lakes on Himalayan glacier dynamics, in order to improve 

the current understanding of the large subregional heterogeneity of glacier behaviour. More specifically, we seek to investigate 80 

the attribution of changes in the velocity field to dynamic thinning and investigate the role that debris cover plays on glacier-

lake dynamics. To achieve this, do so we used Sentinel-2 satellite imagery to derive a large-scale contemporary Himalayan 

glacier velocity dataset at an improved resolution compared to studies to date. We compare the velocity dataset against surface 

elevation change data (King et al. 2019) to discuss the role of proglacial lakes and debris cover on glacier dynamics. Finally, 

we employ a numerical flow model to investigate the factors that dominate the lake-terminating dynamics and explore their 85 

potential to accelerate current and future mass losses. 
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2 Study Area  

Our study area covers five sub-regions within the Central and Eastern (CE) Himalaya (Fig. 1) in which glacial lake has been 

widespread over an extended time period. Glaciers in the CE Himalaya cover an area of ∼13,900 km 2, which is about 60 % 90 

of the glacierised area of the total Himalayan arc (Bolch et al., 2012). The Himalayas are located around the southern rim of 

the Tibetan Plateau (TP), and the CE Himalayas are the source of two major trans-boundary rivers, namely the Ganges and the 

Brahmaputra. The extreme Himalayan topography exerts a strong influence on north-south contrasting precipitation patterns 

by forming an orographic barrier and depleting the monsoonal air of the bulk of its moisture on southern windward slopes, 

resulting in relatively dry slopes on the TP (Ageta and Higuchi, 1984).  95 

 

Figure 1: Map showing the regional subdivisions (red rectangles) with the associated glacier characteristics, including terminus type 

and surface cover as a fraction of the total sub-regional glacierised area. The excluded fraction represents the glacierised area from 

glaciers smaller than 3 km2. The names of the subregions are in accordance with King et al. (2019). Country boundaries are tentative 

and for orientation only. This figure was generated using Matplotlib 3.1.2, together with Python 3.7. 100 

Related to this stark contrast in north-south relief is the distribution of clean-ice and debris-covered glaciers (Scherler et al., 

2011). Glaciers in low-relief areas, sloping northwards and facing the TP generally show little or no debris cover and have 

extensive accumulation areas. In contrast, glaciers surrounded by much steeper topography on the southern side of the main 

orographic divide receive a large proportion of their accumulation by snow avalanching from steep hillslopes. Steep hillslopes 

supply large fluxes of rocky material to the glacier and, as a result, glaciers in such settings often have an extensive debris 105 

cover, which can range from a few centimetres to several meters in thickness (Scherler et al., 2011). 

In this study we only focus on glaciers with an area larger than 3 km2, compared to the 5 km2 previously utilised by Dehecq et 

al. (2019), which enables us to add substantially more glaciers to our dataset (Fig. 6b). We used glacier outlines and 

corresponding surface area from The Randolph Glacier Inventory (RGI 6.0) (The RGI Consortium, 2017). Glaciers smaller 

than 3 km2 are often located at a high elevation and do not typically host a proglacial lake, and thus fall beyond the scope of 110 
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our study. Also, glacier volume scales exponentially with glacier surface area, which increases the representativeness of our 

study onto potential ice volume losses. For the  glacier outlines and corresponding surface area we used the dataset from tThe 

Randolph Glacier Inventory (RGI 6.0) (The RGI Consortium, 2017). 

To study glacier-lake dynamics, we select five sub-regions within the CE Himalayas with a high density of proglacial lakes, 

according to the lake inventory of Zhang et al. (2015) (Fig.1; Table 1). We classify glaciers as lake-terminating when the 115 

glacier shows a clear terminal ice cliff in direct contact with the lake and base our classification on the glacial lake inventory 

of Wangchuk & Bolch (2020) and Zhang et al. (2015) using multiple sources of satellite imagery. The classification of debris 

cover is binary (debris-covered or clean-ice) and for this we follow the criteria defined by Brun et al. (2019), classifying 

glaciers as debris-covered where more than 19 % of their area was mantled by debris. 

 120 

Table 1: Regional distribution of lake-terminating, land-terminating, debris-covered and clean-ice glaciers. *The coverage over the 

whole region is relatively low since it also incorporates all CE Himalayan glaciers outside the five subregions. 

 Terminus Type Surface Cover Area Coverage 

 Number of Glaciers & (% Area)     

Subregion Lake Land Debris Clean   

Central West 1 6  (24 %) 33 (76 %) 7 (12 %) 32 (88 %) 920 km2 40 % 

Central 1 16 (18 %) 53 (82 %) 36 (66 %) 33 (34 %) 1098 km2 69 % 

Central 2 10 (15 %) 57 (85 %) 44 (87 %) 23 (13 %) 1404 km2 66 % 

Cenrtral East 17 (21 %) 57 (79 %) 34 (62 %) 40 (38 %) 1130 km2 59 % 

East Himalaya 20 (27 %) 49 (73 %) 19 (29 %) 50 (71 %) 1238 km2 63 % 

All 70 (21 %) 249 (79 %) 139 (57 %) 178 (43 %) 5781 km2 41 % * 

 

 

  125 



6 

 

3 Methods  

3.1 Surface Ice Velocity 

3.1.1 Sentinel-2 Satellite Imagery 

The European Copernicus Sentinel-2 series consists of two satellites; Sentinel-2a, launched in June 2015 and Sentinel-2b, 

launched in March 2017. The two satellites have a combined revisit time of 5 days and their orthorectified image products 130 

(Level-1C) are freely available at https://earthexplorer.usgs.gov/ and https://scihub.copernicus.eu/.  In this study the 10 m near-

infrared band (band 8) was used to exploit the contrasting spectral properties of fresh snow, firn and clean ice at this 

wavelength, an approach which has proven to work well for feature tracking on a variety of glacier surfaces (Kääb et al., 2016).  

Throughout most of its mission, the multi-temporal co-registration accuracies of Sentinel-2 products from the same orbit have 

been below 12 m (95.5 % confidence interval), which is reported monthly by the European Space Agency (ESA). When co-135 

registering two Level-1C images from the same relative orbit (repeat-orbit), DEM effects will be present but have the same 

pattern in both datasets (because they have a similar off-nadir cross-track look angle) so that they can be eliminated by 

calculating the average offset field obtained from correlating the two images. Products acquired from neighbouring overlapping 

swaths translate into additional offsets of up to 5.9 m (Kääb et al., 2016), and have therefore been omitted in this study. 

3.1.2 Image Pair Selection 140 

We selected multiple image pairs of the same locality to maximise the velocity field coverage, which is often limited by 

shadows, cloud cover, low visual contrast, or sensor saturation. The selection of multiple image pairs over the same location 

also increases the overall confidence in the velocity estimates. The final velocity field is then an average of all the valid velocity 

estimates, a strategy explored by several studies (i.e., Dehecq et al., 2015; Scherler et al., 2011; Willis et al., 2012). The 

maximum number of image pairs separated by one year was selected for the month of November. We limit the image selection 145 

to this month because (1) from April until October, the optical satellite imagery is largely obscured by monsoonal cloud cover 

and (2) from December until April, the glacier surface contrast is generally low due to low altitude, westerly induced, fresh 

snow cover, causing the image matching algorithm to perform poorly. Also, after a certain number of image pairs the reduction 

of the residual error in the averaged velocity field is only marginal (Dehecq et al., 2015).   This approach produced a dataset 

of 149 images and 427 image-pairs with a central date of 24 August 2018 (Table 2). Note that due to the lower Sentinel-2 150 

repeat cycle in 2016, this central date is centred towards the end of the November 2016 - November 2019 interval. 

3.1.3 Image Processing 

To reduce computational costs, a mask was applied over all non-glacierised areas and glaciers with an area below 3 km2. For 

this mask we used the glacier outlines from tThe Randolph Glacier Inventory (RGI 6.0) (The RGI Consortium, 2017). Heid & 

Kääb (2012) evaluated several feature tracking methods and showed that orientation correlation performed best under most 155 

circumstances, which we employ in this study. This method, developed by Fitch et al. (2002), creates two complex orientation 
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images from the original image pairs. Each pixel represents the orientation of intensity gradient in the x- and y- direction at 

that pixel, making the method invariant to illumination change, which is a desired property for feature tracking algorithms. 

 

Table 2: November Sentinel-2 images, image pairs and central date between 2016 – 2019. 160 

Satellite Tile Number of Images Number of Pairs  Central Date 

T44RPU 15 46 16–10–2018  

T44RPT 16 58 28–10–2018  

T45RTN 14 39 07–07–2018  

T45RTM 13 34 25–05–2018  

T45RUM 12 26 08–07–2018  

T45RVM 19 76 20–09–2018  

T45RVL 12 29 31–05–2018  

T45RWL 11 25 01–07–2018  

T45RXL 11 22 23–09–2018  

T45RYM 13 34 09–10–2018  

T46RBS 13 38 09–12–2018  

Total 149 427 24–08–2018  

 

From the two orientation images a search window (i.e., a squared collection of pixels) and a reference window  centred around 

the same location (x, y) were extracted and matched using correlation computed in the frequency domain with Fast Fourier 

Transforms (FFTs), according to the convolution theorem (McClellan et al., 1999). 

We matched the orientation of the intensity gradient that is contained in the phase of the orientation image. After this initial 165 

estimate we then refined the maximum estimation by upsampling the product of the two orientation images in the frequency 

domain in a small neighbourhood of the initial maximum (Guizar-Sicairos et al., 2008). This matching process was repeated 

over all the glacierised areas with steps equalling half of the search window size, for all image pairs. This leaves us with n-

pairs of velocity data matrices (x- and y-displacement) with a resolution of half times the search window size for each given 

satellite scene (Table 3). 170 

 

Table 3: Parameters used in image matching using Sentinel-2 10 m pixel resolution imagery. 

Image Matching Parameters Number of Pixels Size  

Search window size 

Reference window size 

Search limit 

16 × 16 

46 × 46 

23 

160 m × 160 m 

460 m × 460 m 

230 m 
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Iteration step 8 80 m 

Subpixel resolution 1/16 0.625 m 

 

To remove matching blunders present in the derived velocity fields we largely adopted a strategy proposed by Gardner et al. 

(2020):. WWith this strategy, we used a disparity filter consists of two components. First, the filter checks for the uniqueness 175 

of each x- and y-displacement by comparing each element with their surrounding neighbours that are co-located in a 5 by 5 

kernel. If less than 9 of the 25 co-located are within a 25 % range of the search limit of the algorithm, the x- and y-displacement 

pair is disregarded. Secondly, an x- and y-displacement pair is also considered to be a blunder when one of the two elements 

deviates more than three times the interquartile range from the median of all co-located pixels. 

To calculate the median offset in x- and y-direction we selected fFor each 100 by 100 km tile we also selected, in addition to 180 

the glacieriszed areas, a large stable area of which we can reasonably assume the displacement to be zero, to calculate the 

median offset in x- and y-direction. We therefore avoided extremely high alpine terrain that might be abundant with 

perigglacial features such as rock glaciers or solifuction lobes, as we do not expect these surfaces to remain motionless through 

time. However, topography that characterises the general environment of mountain glaciers is required, and we therefore also 

avoided the selection of flat terrain, something which is anyhow scarce in the proximity of the Himalayas. The stable area of 185 

each image tile is of sufficient width such that it covered multiple granules (± 25km in width). To reduce the noise in the 

velocity data, we subtracted this median offset from the whole (glacierised and stable) x- and y-displacement field. The final 

2017-2019  x- and y-displacement field was then created by taking the median of all the image pairs for both velocity 

components. Finally, as the displacement at these stable areas is expected to be zero, we used these displacement results in 

these stable areas to evaluate the precision and uncertainty of the feature tracking algorithm.  190 

3.2 Uncertainty of the Velocity Field 

Uncertainties of the median velocity field are dominated by the precision of the feature-tracking algorithm, the coregistration 

error, the temporal variability of glacier flow and the number of velocity estimates. For the estimation of the 95 % confidence 

interval (CI95) of each median velocity component, we adopted the methodology of Dehecq et al. (2015), and expect the CI95 

to conform to: 195 

CI95 = κ
MADdisp

Nα ,            (2) 

where MADdisp is the dispersion at each velocity location of the N number of estimates:  

MADdisp(i, j) = 1.483 × mediant∈T{|V(i, j, t) − V(i, j)|},       (3) 

where T is the collection of N velocity estimates V(i, j, t) merged to obtain the median velocity V(i, j) at pixel (i,j). Parameters 

κ and α determine the width and the thickness of the tail of the distribution and have yet to be estimated. Equation (2) leaves 200 
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us with three unknowns but can be solved at stable areas where CI95 can be determined as a function of MADdisp and N for 

each tile location with its corresponding stable area, providing an uncertainty estimation for areas with actively flowing ice.  

3.3 Glacier Group Uncertainty 

The glacier group uncertainty (i.e., the uncertainty in the median velocity of a collection of glaciers along the normalised 

flowline) depends on the uncertainty of the individual glacier velocity measurements (CI95), the spread between the velocity 205 

points 𝑢𝑐 among the sample group and the number of velocity points N𝑢. We estimated this uncertainty by applying a Monte 

Carlo simulation which draws 200 random points from the uncertainty distribution of each individual velocity point 𝑢𝑐in the 

region of interest, where 𝑢𝑐  is the centreline velocity (section 3.4). Then for each sample round, following the bootstrap 

method, we drew N𝑢  samples with replacement to calculate the median, and repeated this 500 times. This results in 105 

estimates of the median from which we determined the interquartile range (IQR), and we used this as primary estimator of our 210 

regional mean median velocity uncertainty. 

 

 

3.4 Glacier Centre Flow Line Analysis 

We analysed surface velocity, elevation change and slope (section 3.5) along the main glacier centre flow line (hereafter, 215 

centreline), an approach adopted by several earlier studies (i.e., Liu et al., 2020; Nagler et al., 2015; Scherler et al., 2011). 

Centrelines were produced with the Open Global Glacier Model (OGGM) (Maussion et al., 2019) using a slightly adapted 

algorithm from Kienholz et al. (2014), and glacier outlines from RGI 6.0 using the SRTM DEM. All centrelines were manually 

adapted using 2019 Sentinel-2 satellite data and velocity data from this study to ensure that the centrelines end at the 2019 

terminus position and that they follow the main flow tributary.  220 

To extract centreline velocity data, we conducted a nearest neighbour sampling every 80 meters, and averaged the velocity 

estimate by using a 3 by 3 (240 m by 240 m) Gaussian window: 

uc = ∑
ui,j

(CI95i,j
)

2 e
−

1

2

i2+j2

σ21
j,i=−1 ,          (4) 

where u is the velocity estimate at pixel (i,j), CI95
−2 is the weighting factor and where σ = 0.7 is the standard deviation of the 

Gaussian window. This approach increases the overall confidence of our median velocity estimates. The Gaussian window 225 

also prevents pixels further away from the centre flow line skewing the averaged data, which may result in an underestimation 

of the velocity values.   

Then, to compare the velocity profiles for multiple glaciers at the ablation zone, we normalised the glacier centrelines 

horizontally along their ablation zone length. To achieve this, we first selected all discrete centreline velocity data points 

starting at the ELA, and upsampled all centrelines with an ablation area length below 4000 m and downsampled the rest. We 230 
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took 4000 m as the most representative length as the results showed that this approaches the overall median length of the 

ablation zone for the whole glacier population. Our choice to analyse the centreline data along the normalised length of the 

ablation zone provides information on the dynamic influence of terminus type and surface cover but limits our ability to 

evaluate the effect of climate on surface elevation change, such as done by King et al. (2019) and Maurer et al. (2019). This 

also restricts the possibility to quantitively attribute contrasting surface elevation change rates of lake-terminating and land-235 

termination glaciers to dynamic thinning, which is especially true for clean-ice glaciers whose thinning rates appear to be 

highly dependent on climate, hence elevation (Scherler et al., 2011). Therefore, this study will be restricted to a qualitative 

analysis when evaluating the velocity data in the context of surface elevation change rates.  

 

3.5 Surface Elevation Change, Estimation of ELA and Surface Slope 240 

We examined ice thinning rates using the surface elevation change (dh dt-1) dataset from King et al. (2019). The elevation 

change field is a mean estimate derived from 499 DEMs generated from WorldView and GeoEye optical stereo pairs spanning 

the period 2012-2016, with a central date around mid-2015 (Shean, 2017), and the Shuttle Radar Topographic Mission (SRTM) 

DEM from 2000. The central dates of our elevation change and surface velocity datasets are therefore separated by ~3 years. 

Considering an average retreat rate of 26.8 ± 1.4 m yr-1 for lake-terminating glaciers (King et al. 2019) the lowermost 100 m 245 

of lake-terminating glaciers are likely to be devoid of surface velocity data when the two datasets are compared. However, this 

could be considerably more for fast retreating glaciers, which must be considered when interpreting our results. 

In this study we focused our analyses on the ablation zone of glaciers, for which we need an estimation of the equilibrium-line 

altitude (ELA). We followed the approach of Braithwaite & Raper (2009) and considered the median altitude of each glacier 

as a proxy for the ELA, defined by the elevation of the 50th percentile in glacier area. This estimate of the ELA is available 250 

within the Randolph Glacier Inventory (RGI- 6.0) by the RGI Consortium (2017) (Pfeffer et al., 2014).  

To calculate the slope of the ablation zone we used the Advanced Land Observing Satellite (ALOS) World 3D DEM (Tadono 

et al., 2014), which is available at a 30 m resolution and is based on DEMs generated from stereo image pairs collected over 

the period 2006-2011.  

 255 

3.6 Numerical Flowline Model 

3.6.1 Model Description 

Substantial variability in the behaviour of calving glaciers is common even when they are located in similar environmental 

and therefore climatic settings (Enderlin et al., 2013; Truffer and Motyka, 2016). Such variability is often attributed to factors 

such as glacier shape (Enderlin et al., 2013), the thermal regime of the proglacial water body (Truffer and Motyka, 2016) and 260 

glacier bed topography (Benn et al., 2011). Similar variability can be expected for lake-terminating glaciers in the Himalaya, 



11 

 

where glacier morphology and glacial lake geometry is diverse, but little work has been done to examine why the frontal 

dynamics of the lake-terminating glaciers may vary. In combination with our analyses of remotely sensed glacier surface 

velocities, we carried out a synthetic diagnostic numerical experiment to examine the response of terminus proximal flow rates 

of lake-terminating glaciers to adjustments in glacier geometry (thickness, slope, width) and lake depth. We use a flowline 265 

model that was previously utilised on predominantly marine terminating outlet glaciers (Enderlin et al., 2013; Nick et al., 2010; 

Nick et al., 2009; Vieli & Payne, 2005; Vieli & Nick, 2011). The depth integration of the model implicitly employs the Shallow 

Shelf Approximation (SSA), which is not fully appropriate for the entire model domain. However, the model results in the 

ablation zone, where the surface slope is generally low and where we assume sliding to dominate the glacier flow (Liu et al., 

2020; Tsutaki et al., 2019), should still be adequate to provide us useful insight in the relevant physical processes in operation 270 

(Le Meur et al., 2004). The governing force balance equation determined through conservation of momentum is (Nick et al., 

2010): 

2
∂

∂x
(𝐻𝑣

∂U

∂x
)   +  𝐴𝑠 [(𝐻 −

ρ𝑤

ρ𝑖
𝐷) 𝑈]

1

𝑚
  +  

𝐻

𝑊
(

5𝑈

2𝐴𝑊
)

1

3
=  ρ𝑖gH

∂h

∂x
,      (5) 

where U is the vertically averaged horizontal ice velocity,  𝜌𝑖= 917 kg m−3 is the density of ice, 𝜌𝑤= 1000 kg m−3 is the density 

of fresh water, 𝐻 is the ice thickness, 𝐴𝑠 is the sliding parameter, D is the ice thickness submerged under the lake level, W is 275 

the glacier width, g is gravitational acceleration, h is the ice surface elevation, 𝑚 is the bed friction exponent, and v is the depth 

averaged effective viscosity, which is defined as follows:   

v = 𝐴
−1

3⁄ |
∂U

∂x
|

−
2

3
            (6) 

The right-hand side of Eq. (5) is the gravitational driving stress, which is balanced by gradients in longitudinal stress (1st term 

left hand side), basal resistance (2nd term), and lateral resistance (3rd term). A is the temperature-dependent rate factor and 280 

increases from a minimum of 3.5 × 10−25 Pa−3 s −1 at the divide to a maximum of 1.7 × 10−24 Pa−3 s−1 at the calving front, 

corresponding to a depth-averaged ice temperature range of −10° C to −2° C at the ablation zone (Cuffey and Paterson, 2010), 

for which we follow Enderlin et al. (2013). 

The assumption is made that basal drag depends on sliding velocity and effective basal pressure nonlinearly (Bindschadler, 

1983; van der Veen & Whillans, 1996; Vieli & Payne, 2005), for which we choose m = 3. Resistance from drag along the 285 

lateral margins is estimated by integrating the force-balance equation over the width of the glacier assuming a constant ice 

thickness that lateral drag supports the same fraction of driving stress along a transect across the glacier. Consequently, the 

model assumes a flow through a rectangular basin, with lateral support that is independent from effective pressure. The up-

glacier boundary is the upper bound of the glacier (U = 0) and at the calving front the longitudinal stress is balanced with the 

difference in hydrostatic pressure between the ice and lake water, which results in the following depth-averaged stretching 290 

rate: 
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)]

3

.          (7) 

The synthetic model domain extends 8000 m horizontally, 1000 m vertically and resembles the main characteristics of 

relatively large clean-ice lake-terminating glacier of which numerous examples can be found flowing northwards onto the TP 

(Fig. A1, in the appendix). We assumed a concave-up profile resulting in a slope of about 4.5° within 2 km of the terminus, 295 

and our interpretation in the results will solely be focused on this part of the glacier. For glacier width (W), we used a value of 

600 m at the terminus which increases to 2.5 km up-glacier to reduce the influence of lateral margins. We used a maximum 

ice thickness (H) of 230 m and an ice thickness of 120 m at the terminus (Ht), values in line with ice-thickness estimates of the 

larger Himalayan glaciers (Farinotti et al., 2019). Subglacial water pressure is assumed to follow a piezometric surface rising 

up-glacier (Benn et al., 2007b), and we estimated the piezometric surface to be equivalent to 60 % of the ice thickness away 300 

from the calving front, accounting for a simplified basal hydrology. We then tuned  (As) such that the maximum velocity near 

the ELA of the larger clean-ice lake-terminating glaciers reaches a typical value of 50 m yr-1 (Dehecq et al., 2019a; Gardner et 

al., 2020) and found a value of As = 2.5 × 106 Pa m-2/3 s1/3. 

3.6.2 Experimental Design 

To examine the importance of the frontal boundary condition, we varied the height of the terminal ice cliff above buoyancy 305 

by lowering the lake level by 

𝐷 =
ρ𝑖

ρ𝑤
𝐻𝑡 + ∆𝐷,            (8) 

where D was the ice thickness submerged under the lake level (i.e., the lake depth at the terminus), Ht is the ice thickness at 

the terminus and ∆𝐷 is the lake surface level change. We examined the glacier dynamics when the calving front is exactly 

buoyant (i.e., ∆𝐷 = 0𝑚) and for an increased ice cliff height resulting from a lake surface level change of -10 m and -15 m, 310 

keeping the terminus position and ice thickness constant. The varying height of the terminal ice cliff above buoyancy are 

chosen to fall within a realistic range based on the limited observational evidence on terminal ice cliffs (Watson et al., 2020).   

For each ice cliff height (i.e., lake surface level) configuration, we also ran the numerical model by keeping the basal friction 

independent from the effective pressure (H −
ρw

ρi
D = 1), ruling out the effect of the lake on basal friction, and used a 

corresponding roughness parameter of As = 9 × 10^6 Pa m-1/3 s1/3. Note that lowering the lake surface is just one way of 315 

manipulating the frontal boundary condition, and that an instantaneous glacier retreat could be an alternative way to alter this 

balance. Also note that this experimental design investigates lake-terminating glaciers under varying frontal and basal 

conditions and prohibits the analysis of a land-terminating glacier, which would ask for a different glacier terminus 

morphology. 

We performed a basic sensitivity analysis in the situation of ∆𝐷 = −10 𝑚 by varying the glacier width by ±300 m, ice 320 

thickness uniformly by ±50 m and surface slope by ±1.5°. We performed additional analyses to investigate the model 
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sensitivity to the large current uncertainty of ice-thickness estimates for Himalayan glaciers (Farinotti et al., 2019) by varying 

the ice thickness again but keeping the maximum velocity at 50 m yr-1 by tuning As accordingly. 

4 Results  

4.1 Algorithm Performance  325 

The coregistration error calculated on non-glacierised, stable areas enabled us to reduce the dispersion (MADdisp) by 56 %, 

resulting in a MADdisp distribution with a median at 4.15 m yr-1 (Fig. 2a). The distribution is heavy tailed, with the largest 

uncertainties found over accumulation zones where the algorithm was unable to remove all mismatches (Fig. A2, in the 

appendix). Another large source of uncertainty is the interannual variability in glacier flow, resulting in high dispersion in 

areas with an overall high flow velocity. The CI95 distribution is slightly less heavy-tailed than MADdisp, with a median 330 

uncertainty just below 3 m (Fig. 2b).  

 

 

Figure 2: Dispersion (MADdisp) (a) and 95 % confidence interval (CI95) (b) of the velocity estimates at glacierised areas.  (a) The red 

distribution represents the MADdisp before subtracting Voff from each image pair, which realised a 56% reduction of the median 335 
dispersion, resulting in the grey dispersion distribution.  (b) CI95 resulting from the estimated distribution of median displacement 

vector as a function of the number of velocity estimates and MADdisp (Eq. 2). 

  

When evaluating the CI95 along the centrelines, a consistent trend is apparent (Fig. 3). The uncertainty decreases from the ELA 

moving further into the ablation zone due to the enhanced pixel contrast. Close to the terminus however, the uncertainty rises 340 

again, which can be related to relatively large interannual changes in surface properties, resulting in reduced algorithm 

performance. Interestingly, lake-terminating glaciers have consistently higher uncertainty along the ablation zone, which likely 

results from the large velocity differences between lake-terminating and land-terminating glaciers (Section 4.3). The approach 

of applying a gaussian window to the velocity estimates reduced the mean CI95 of lake-terminating and land-terminating 

glaciers by 24% and 21% respectively. In the following sections we consider velocity estimates with a CI95 larger than 5 m yr-345 

1 too uncertain, and these estimates are removed from further analyses. 
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Figure 3: Median CI95 (m yr-1) of the velocity estimates for lake-terminating and land-terminating glaciers along the normalised 

glacier centre flow line at the ablation zone, with the terminus positioned at the right end of the figure.  The spread of CI95 along the 

centre flow line among the glacier population is represented by the interquartile range (IQR). Velocity estimates above the CI95 350 
threshold (5 m yr-1) are removed from the dataset.  

4.2 Comparison to Other Glacier Velocity Datasets 

The lack of ground-truth velocity measurements hinders simple evaluation of remotely sensed measurements in most cases 

(Scherler et al., 2008). To assess the quality of our measurements we compare them with two region-wide velocity datasets, 

both processed with predominantly Landsat-8 imagery. Dehecq et al. (2019a) produced a composite glacier surface velocity 355 

field for the Pamir-Karakoram-Himalaya for the years 2013-2015. Velocity fields are available at a 120 m resolution and 

produced using a 240 m reference window (Dehecq et al., 2015). Another region-wide dataset is generated using auto-RIFT 

(Gardner et al., 2020) and provided by the NASA MEaSUREs ITS_LIVE project (Gardner et al., 2020). This velocity field 

spans from 1985 to 2020, but we compare our data to an ITS_LIVE velocity field with a central date of around spring 2018, 

which is available at a 120 m resolution and again is computed using a 240 m reference window.  360 

Substantial differences exist in the region-wide median centreline surface velocity (later referred to as velocity) between the 

three datasets, with maxima ranging from just above 5 m yr-1 (Gardner et al., 2019) to well above 13 m yr-1 in our study (Fig. 

4a). Velocity measurements from the three datasets agree reasonably well close to the terminus (within 0.5 m yr-1 range) where 

velocities are expected to be close to stagnant, which indicates that differences between flow fields are proportional to the 

magnitude of the regional median centre line velocity. Dehecq et al. (2019) observed a slowdown of glacier velocities for all 365 

our subregions, ranging from -14.5 ± 1.3 % to -21.0 ± 2.3 % per decade, in response to climate induced changes in slope and 

ice thickness. These reductions in surface velocity only partly explain the differences in velocity between Dehecq et al. (2019a) 

and Gardner et al. (2019).  

The limited width of some Himalayan valley glaciers, which can be as little as 300 m, may explain discrepancies in the velocity 

fields derived using different methods. Narrow valley glaciers are subject to considerable lateral stress induced transverse 370 

velocity gradients. A large reference window size (gc) might consequently result in an underestimation of the centreline 

velocity as it is simply unable to resolve this velocity gradient. The usage of a variable reference window size by Dehecq et al. 
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(2019a) and Gardner et al. (2020) up to 4 times the original reference window size could also potentially explain these 

differences, although we are unable to verify this as the spatial variability of the effective reference window size is not 

documented in these datasets. Selecting only large glaciers, often with a wider ablation zone, largely diminishes this 375 

discrepancy (Fig. 4b), which supports our hypothesis, indicating that the employment of the Sentinel-2 satellites improved the 

resolution and therefore the analytical potential of the glacier centreline velocity data. 

 

 

Figure 4: Regional median centre flow line surface velocity (m yr-1) comparison between Dehecq et al. (2019b), Gardner et al.  (2019) 380 
and this study of glaciers greater than 3 km2 in area (a) and glacier greater than 10 km2 in area (b).   

4.3 Terminus Type Variability in Velocity 

Our velocity analysis shows (Fig. 5a) that the along-flowline mean of median centreline surface velocities (later referred to as 

mean velocity) of lake-terminating glaciers (18.8(17.50 – 18.01) m yr-1) is substantially higher than the mean velocity of land-

terminating glaciers (8.24(8.17 – 8.35) m yr-1) (Table 4). Differences are negligible at the ELA but become steadily larger 385 

throughout the ablation zone. Over the lower ablation zone, the differences in surface velocity reach 13.8 m yr-1 (mean velocity 

of 17.7(17.41 – 18.02) m yr-1 for lake-terminating and 3.9(3.84 – 3.97) m yr-1 for land-terminating glaciers) (Table A1). Land-

terminating glaciers show a stagnant terminus with only little spread around the median velocity among the glacier population. 

On the contrary, the median velocity of lake-terminating glaciers decreases only slightly, but show a very large spread, 

indicating a large heterogeneity in lake-terminating dynamical behaviour.  390 

Overall, lake-terminating glaciers cover a larger surface area and show a slightly higher mean surface slope over the ablation 

zone (Table 5), which might partially contribute to the overall contrast in the mean velocities (Bahr et al., 1997; Scherler et 

al., 2011). However, this does not explain the large contrast in velocity or heterogeneity at the glacier terminus. Interestingly, 

when only focusing on the lowermost portion of the ablation zone, where lake-land terminating velocity contrast is greatest, 

the mean surface slope of lake-terminating glaciers (-7.2(-9.7 – -4.9) °) is within the range of the slope of land-terminating 395 

glaciers (-8.2(-11.4 – -5.5) °) (Table A1), suggesting that factors other than slope are responsible for the velocity contrast close 

to the glacier terminus.  
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Figure 5: Median centre flow line surface velocity (m yr-1) (a) and coverage (%) of the velocity estimates (b).  (a) The spread of the 

velocity along the centre flow line among the glacier population is represented by the IQR. (b) The coverage is defined by the 400 
percentage of valid velocity estimates (CI95  <  5 m yr-1) at a given position along the centre flowline. 

Table 4: The median of the along-flowline mean regional centre flow line velocities of lake-terminating and land-terminating glaciers. 

Uncertainty estimates are represented by the IQR of the sample median estimates, calculated according to section 3.3. For the 

location of the subregions see Fig. 1. 

 Terminus Type   

Subregion Lake (m yr-1) Land (m yr-1) Both (m yr-1) 

Central West 1 20.0(18.92 – 21.08) 13.1(12.83 – 13.41) 13.0(12.78 – 13.36) 

Central 1 18.3(17.95 – 18.68) 5.44(5.35 – 5.56) 6.72(6.61 – 6.83) 

Central 2 11.8(10.25 – 13.16) 6.03(5.91 – 6.17) 6.56(6.44 – 6.69) 

Central East 18.2(17.48 – 19.01) 8.89(8.71 – 9.11) 10.2(10.07 – 10.35) 

East Himalaya 27.7(26.02 – 29.45) 10.6(10.38 – 10.88) 13.1(12.86 – 13.36) 

All 18.8(18.55 – 19.06) 8.24(8.17 – 8.35) 9.39(9.32 – 9.48) 

 405 

Table 5: Median key characteristics of lake-terminating and land-terminating glaciers. The spread among these parameters is 

represented by the IQR. 

 Terminus Type   

Glacier Feature Lake Land Both 

ELA (m.a.s.l.) 5750(5620 – 5887) 5630(5418 – 5874) 5670(5452 – 5905) 

Total Area (km2) 7.48(5.08 – 10.21)  6.40(4.51 – 8.72)  6.68(4.69 – 9.03)  

Ablation Length Ablation 

Area (m) 

3720(2992 – 4520)  3920(2989 – 5118)  3840(2949 – 5088)  
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Slope (degrees) -8.8(-11.1 – -6.9)  -8.5(-10.7 – -6.8) -8.6(-10.8 – -6.8) 

 

4.4 Velocity Dependence on Orientation and Surface Area 

We noted that glaciers flowing north onto the TP typically have larger accumulation zones and less debris cover compared to 410 

glaciers located in catchments draining to the south of the main Himalayan orographic divide, as also reported elsewhere 

(Scherler et al., 2011). Visual inspection indicated that highest velocities are found at such localities, especially in Central 

West 1, Central 1 and East Himalaya, implying a positive correlation between glacier orientation and mean velocity. 

Concurrently, a large fraction of the total number of lake-terminating glaciers are orientated northwards, which might falsify 

the apparent relationship between surface velocity and terminus type proposed in previous section.  415 

To investigate the link between the dynamics and orientation we therefore subdivided our dataset dependent on the orientation 

of the glacier ablation zone (Fig. 6a). The results show a large heterogeneity for lake-terminating glaciers, with highest 

velocities shown for glaciers with their ablation zone orientated to the north. Notwithstanding, for all orientations, lake-

terminating glaciers show a higher mean velocity than land-terminating glaciers, although the contrast is minor for glaciers 

flowing east- or southwards. When only considering the lower half of the ablation zone however, the lake-land terminating 420 

velocity contrast becomes substantial for all orientations (Fig. A3a, in the appendix). 

 

 

Figure 6: Boxplot showing the mean velocity contrast between lake-terminating and land-terminating glaciers depending on the 

orientation of the ablation zone (a) and surface area (b). The IQR (boxes) represents the spread within the mean sample group. 425 
Points outside of the 3rd quartile plus 1.5 times the IQR range are plotted explicitly. 

We examined the relationship between glacier surface area and mean glacier velocity by separating glaciers into three area 

bins with equal sample sizes. Higher mean velocities are apparent for lake-terminating glaciers for each glacier area bin (Fig. 

6b), with the largest contrast for glaciers greater than 10 km2. Note that in the largest size bin glaciers are not bounded by an 

upper area limit, but nevertheless show a comparable median area of 19.2(14.01 – 24.07) km2 for lake-terminating glaciers 430 

and 18.70(12.97 – 24.72) km2 for land-terminating glaciers. Velocity outliers are particularly abundant at large (>10 km2) 

northward flowing land-terminating glaciers, such as the clean-ice Zeng Glacier (28°14’ N, 90°14’ E) in East Himalaya which 
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shows a mean velocity of about 93 m yr-1. Again, contrasting velocities between lake-terminating and land-terminating glaciers 

increase when solely considering the lowermost portion of the ablation zone (Fig. A3b, in the appendix), indicating that 

regardless of orientation and size, substantial contrast in glacier surface velocity is related to terminus type, and increases 435 

towards the glacier tongue. 

4.5 Regional Variability 

We find large variability in mean velocities between different regions (Fig. 7), with highest mean velocities in Central West 1 

(13.0(12.78 – 13.36) m yr-1) and East Himalaya (13.1(12.86 – 13.36) m yr-1) (Table 4), areas with the largest proportions of 

clean ice. All regions show higher mean velocities for lake-terminating glaciers than for land-terminating glaciers, though 440 

large variability between regions is apparent. In Central 2 mean velocity differences between lake-terminating (11.8(10.25 – 

13.16) m yr-1) and land-terminating glaciers (6.03(5.91 – 6.17) m yr-1) are relatively modest and coincide with a high proportion 

of debris-covered glaciers for both terminus types. For Central 1 and East Himalaya, a substantial part of the velocity contrast 

can be attributed to the relatively high abundance of lakes at large clean-ice northward flowing glaciers, explaining the large 

velocity contrast which is already substantial at the ELA. Finally, in the regions Central West 1 and Central 1 we observe an 445 

increase in velocity towards the terminus, indicating that most of the glaciers accelerate towards the ice-water interface. Trends 

in velocity of lake-terminating glaciers in these regions should the treated with caution however, as the population of lake-

terminating glaciers is very limited (N = 6, 10). Nonetheless, all regions show a large contrast in heterogeneity close to the 

terminus, suggesting that the influence of proglacial lakes on glacier dynamics is a region-wide phenomenon.  

 450 

 

Figure 7: Subregional glacier median centre flow line velocity estimates and their location along the CE Himalaya (red rectangles).  

The spread of the velocity along the centre flow line among the glacier population is represented by the IQR, with the number of 

glaciers shown in the legend between the brackets.  This figure was generated using Matplotlib 3.1.2, together with Python 3.7. 
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4.6 Impact of Surface Cover on Glacier-Lake Dynamics 455 

To examine the role of debris cover on glacier-lake dynamics, we subdivided our dataset into glaciers with >19% debris cover 

and those with < 19% debris cover, which we classify as clean-ice glaciers (Fig. 8a, c, e). We measured substantially higher 

velocities for lake-terminating glaciers, both debris covered and clean ice (Fig. 8c, e; Table 6), although large differences are 

apparent depending on surface type. Most notably, the absolute lake-land mean velocity contrast of debris-covered glaciers 

(11.5(11.11 – 11.98) m yr-1 vs 5.96(5.90 – 6.05) m yr-1) is lower than for clean-ice glaciers (22.5(22.21 – 22.83) m yr-1 vs 460 

10.3(10.11 – 10.33) m yr-1) but indicate for both surface types a doubling in surface velocity when a lake is present.  

 

Figure 8: Glacier median centre flow line velocity (m yr-1) (a, c, e) and surface elevation change (dh dt-1) estimates (after King et al. 

(2019)) (b, d, e) for lake-terminating land-terminating glaciers. A further subdivision is made between debris-covered (c, d) and 

clean-ice glaciers (e, f). The spread of the velocity along the centre flow line among the glacier population is represented by the IQR. 465 

For both surface types, higher velocities for lake-terminating glaciers are coincident with elevated surface lowering over 

coincident portions of glacier ablation zones (Fig. 8b, d, f). Again, large differences exist depending on surface type, with a 
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very large contrast in surface lowering close to the termini of lake and land-terminating debris-covered glaciers (about 1.5 m 

yr-1) and less pronounced contrast for clean-ice glaciers (0.5 m yr-1). We relate this to the distinct differences in surface mass 

balance properties between clean-ice and debris-covered glaciers, which becomes clearly visible for land-terminating glaciers.  470 

For lake-terminating clean-ice glaciers, the velocity profile remains close to constant towards the terminus and shows a very 

large spread among the glacier population (Fig. 8e). Enhanced surface lowering at lake-terminating clean-ice glaciers steadily 

grows to -0.5 m yr-1 towards the terminus and is less pronounced than the surface lowering contrast at debris-covered glaciers. 

We find no substantial differences in altitudinal distribution between lake-terminating and land-terminating glaciers that could 

partly explain this difference. The large velocity contrast coincides with a larger surface area of lake-terminating, clean-ice 475 

glaciers compared to land-terminating, clean-ice glaciers (8.4(5.01 – 11.92) km2 vs 4.7(3.6 – 5.7) km2), and longer ablation 

areas of lake-terminating, clean-ice glaciers (3800(2910 – 4721) m) compared to land-terminating, clean-ice glaciers 

(3040(2497 – 3541) m).  

 

Table 6: The median of the along-flowline mean regional centre flow line velocities of lake-terminating and land-terminating glaciers, 480 
subdivided by surface type.  Uncertainty estimates are represented by the IQR of the sample median estimates, calculated according 

to section 3.3.  

 Terminus Type   

Surface Type Lake Mean (m yr-1) Land Mean (m yr-1) Both Mean (m yr-1) 

Clean-ice 22.5(22.21 – 22.83) 10.3(10.11 – 10.33) 12.1(11.97 – 12.24) 

Debris-covered 11.5(11.11 – 11.98) 5.96(5.90 – 6.05) 6.38(6.30 – 6.47)  

All 18.8(18.55 – 19.06) 8.24(8.17 – 8.35) 9.39(9.32 – 9.48) 

 

Debris-covered, lake-terminating glaciers do not have the same concave-up velocity profile which characterizes their land-

terminating counterparts. Their velocity profiles show a larger spread than land-terminating, debris-covered glaciers close to 485 

their termini. Lake-terminating, debris-covered glaciers show distinctly enhanced surface lowering very close to their termini, 

with rates of surface lowering exceeding those on the ablation zone of land-terminating glaciers. Notably, these lake-

terminating glaciers are generally smaller in surface area (6.778(4.23 – 9.11) km2 vs 9.42(5.92 – 13.02) km2) and the ablation 

zones are much shorter (2720(1834 – 3680) m vs 5680(4003 – 7218) m) than clean-ice, lake-terminating glaciers. Many of the 

proglacial lakes in front of these small, lake-terminating debris-covered glaciers are between 1 and 4 km in length, which likely 490 

explains the difference in debris-covered glacier length depending on terminus type.  

4.7 Synthetic Numerical Experiment 

Analyses of our glacier surface velocity dataset indicates substantial glacier and regional scale variability in terminus proximal 

ice flow. With the synthetic numerical experiment, we can gain useful insights into the potential drivers of this glacier scale 

variability in ice flow. The results indicate that both changes at the frontal boundary condition and in basal friction can alter 495 
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lake-terminating glacier dynamics (Fig. 9), with velocities at the terminus increasing in response to a reduction in effective 

pressure and in response to lake surface lowering. When the glacier front reaches flotation (∆𝐷 = 0 m), the velocity within ~1 

km proximity of the terminus increases significantly if the glacier bed friction is dependent on the effective pressure. An 

acceleration towards the terminus is shown when the ice cliff height increased through a sufficient lowering of the surface lake 

level (∆𝐷 ≥ 10 m), resulting in a larger frontal imbalance. We find that a smaller cliff height (∆𝐷 < 10 m) only has only a 500 

limited effect on the glacier dynamics as the basal drag quickly increases when moving away from a buoyant situation, which 

is related to the non-linear sliding law we adopted in this study (m = 3).  Beyond a certain increase of the cliff height (∆𝐷 >

10 m), a further increase of the cliff height above buoyancy through lowering of the lake level rapidly increases the surface 

velocity.  

 505 

Figure 9: Velocity results from the numerical experiment for three varying lake levels (∆𝑫), for both effective pressure dependent 

roughness parameter and a constant roughness parameter (As). Blue dotted line indicates the piezometric surface for when ∆𝑫 = 0 

m. 

Our sensitivity experiments show a high dependence on ice thickness (Fig. 10a, b) for both a constant roughness parameter As 

and for a varying As to account for the ice thickness uncertainty. This is a direct result of the frontal dynamic boundary 510 

condition, (Eq. 7) which is a function of the ice-thickness. Also, the velocity sensitivity at the terminus to ice thickness might 

explain the limited dynamic impact at debris-covered glaciers, which are often relatively thin at their termini. Glacier width or 

surface slope also modify the velocity field substantially, but do not heavily influence the relative change in velocity towards 

the glacier terminus (Fig. 10c, d).  
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 515 

Figure 10: Velocity sensitivity experiment to ice thickness (a), ice thickness with varying roughness factor (b), terminus width (c) 

and slope (d). 

 

 

520 
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5 Discussion  

5.1 Dynamic Heterogeneity of Lake-Terminating Glaciers  

The contrasting morphological attributes of lake-terminating glaciers on either side of the main orographic divide likely 

substantially influences their flow regime and tendency to retreat. Clean-ice, lake-terminating glaciers, mainly found on the 

north facing slopes of the TP, are larger in size and have a longer ablation zone than clean-ice land-terminating glaciers. Debris-525 

covered, lake-terminating glaciers, predominantly found on the southern side of the main orographic divide, are generally 

much smaller and have shorter ablation zones than their land-terminating counterparts. This contrast in glacier dimensions 

illustrates how the evolution and occurrence of lake-terminating glaciers must be put in context of the surface cover properties 

of lake-terminating glaciers, which is related to the morphological settings in which clean-ice and debris-covered glaciers are 

prone to develop. 530 

Clean-ice land-terminating glaciers with extensive accumulation zones, often flowing onto the TP, possessed enough erosive 

power to form overdeepenings and large terminal moraines (Scherler et al., 2011). Overdeepenings beneath glaciers flowing 

onto the TP plateau are not only promoted by terminal moraines but are inherent features of the reversed slope of the TP itself 

(Royden et al., 2008), making these localities a hot spot of proglacial lake development. Therefore, clean-ice, lake-terminating 

glaciers are often large and show consequently higher velocities over the entire ablation length than their land-terminating 535 

counterparts. 

Unlike for clean-ice glaciers, our results suggest that there is no clear glacier surface area related preference for proglacial lake 

development on debris-covered glaciers. Akin to previous studies, we find that low-gradient, debris-covered ablation zones of 

many Himalayan glaciers (Steiner et al., 2019; Wijngaard et al., 2019) are the result of a concave-up SMB gradient (Bisset et 

al., 2020), which act as a sweet spot for proglacial lake development (Benn et al., 2012; Quincey et al., 2007) and become 540 

bounded by a stagnant, ice-cored moraine dam. The development of a proglacial lake leads to a transformation which is 

associated with a drastic increase in retreat rates (Basnett et al., 2013; King et al., 2019; Watson et al., 2020), and results in 

lake-terminating glaciers of shorter length than land-terminating glaciers.  

As a result, lake-terminating debris-covered glaciers develop from the glaciers whose area is close to the median of the land-

terminating glacier population, whereas lake-terminating clean-ice glaciers predominantly evolve from larger land-terminating 545 

glaciers. This, together with the over-representation of clean-ice glaciers in the total lake-terminating glacier population (50 

out of 70), explains a large part of the lake-land velocity contrast (Fig. 8a). Also, this over-representation of clean-ice glaciers 

in the lake-terminating glacier population explains a significant part of the contrasting thinning observed in Fig. 8b, which 

makes it erroneous to attribute this contrast entirely to dynamic thinning. Notwithstanding, the large spread at the terminus of 

lake-terminating glaciers, with accelerating velocity for almost half of the population (Fig. A4, in the appendix), and elevated 550 

surface lowering for both debris-covered and clean-ice lake-terminating glaciers clearly shows that dynamic thinning is a 

process that must be considered.  
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5.2 Drivers of Dynamic Thinning  

The acceleration at the terminus of half of the lake-terminating glaciers in our study area (Fig. A4, in the appendix) strongly 555 

indicates an influence of lakes on glacier dynamics. A visual inspection of Fig. 11 underlines the regional extent over which 

dynamic thinning can be observed, although again, a large heterogeneity in the acceleration at the terminus is visible. Our 

numerical experiment indicates that the frontal boundary condition, ice thickness and to a lesser degree basal friction likely 

play a profound role in accelerating the glacier terminus. As a consequence, large heterogeneity in the acceleration might be 

at least partly attributed to the varying influence of these factors. However, region-wide measurements in the Himalayas of the 560 

ice cliff heights, or ice thickness are absent or highly uncertain, restricting us to a mainly qualitative evaluation of processes 

that drive dynamic thinning.  

 

Figure 11: Examples of lake-terminating glacier accelerating towards their terminus with glacier attributes within 2 km of the 

terminus. White numbers represent the glacier surface velocity in m yr-1. Colour scale of plotted velocity data is indicative and varies 565 
among glaciers. Velocity data and RGB images are retrieved from Sentinel-2 MSI data. 

A reduction in basal friction caused by the development of a proglacial lake is often designated as one of the main drivers of 

dynamic thinning (Carrivick et al., 2020; King et al., 2018; Liu et al., 2020; Sutherland et al., 2020; Tsutaki et al., 2013, 2019) 

though several remarks must be made when evaluating the importance of this resisting force. Before the development of a 

proglacial lake, a hydrological base level is already present due to impermeable moraine at the front. The hydraulic potential 570 

at the glacier bed in these overdeepening localities cannot be less than that at base level, and the presence of a proglacial lake 
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will therefore be of no influence on the effective pressure if the glacier surface had no time to dynamically adjust, as described 

by Tsutaki et al. (2019). In that case, the force balance at the glacier front entirely determines the dynamic influence of a glacier 

lake and results from a reduction in buttressing caused by a hypothetical instantaneous expansion of the proglacial lake at the 

expense of the glacier front. 575 

However, such a situation might be unrealistic, as we have just concluded that a glacier will dynamically respond and thin, 

bringing the calving front closer to flotation. The reduction in basal stress then largely depends on the sliding law, for which 

we took a non-linear Weertman-type that includes effective pressure dependency (m = 3). Here, basal stress dramatically 

decreases when the glacier front approaches flotation which in turn leads to further acceleration of glacier flow (Benn et al., 

2007b). Nevertheless, as our model results suggest, the reduction in the force imbalance at the front through thinning might 580 

dominate in the dynamic response, resulting in an overall decelerating flow when the glacier reaches flotation. This indicates 

for a dynamic regime where imbalances at the frontal boundary, through for example glacier retreat rates or a lake-level 

lowering, are balanced by enhanced dynamic thinning rates, resulting in a reduced acceleration of the flow, which is 

conceptually in line with Nick et al. (2009). 

At an early stage of lake development, however, when a clear calving front is yet absent, Tsutaki et al. (2013) showed that a 585 

reduction in basal friction can have a key control on the velocity evolution of the glacier through dynamic thinning and 

subsequently promoting the development of transverse crevasses and a disintegration over the expanded area. Also, when the 

glacier only thins locally at the calving front, the increase in surface slope might promote an acceleration of the flow again 

(Benn et al., 2007a), something this study has not been able to test without violating the assumptions of the SSA model and 

requires the use of a higher-order model for further investigation. 590 

The scarcity of local data on glacier ice thickness or lake depth at the calving front makes it difficult to evaluate the 

representativeness of the frontal configuration we used in our experimental setup. Watson et al. (2020) found a mean calving 

front height of three Nepalese lake-terminating debris-covered glaciers varying between 27 m and 41 m, which indicates that 

we can assume with relative high confidence that these glaciers are at least 10 m above flotation, considering the upper-range 

ice thickness estimates from Farinotti et al. (2019). Also, for all three glaciers, a surface acceleration in the proximity of the 595 

glacier front was observed (Watson et al., 2020), indicating that the force balance at the boundary condition might dominate 

over the importance of an in-situ reduction in basal drag. Remarkably, these lake-terminating glaciers were heavily debris-

covered, indicating that also for these glaciers similar processes are relevant.  

The frontal ice thickness itself is a variable that needs more consideration when evaluating drivers of frontal ice velocity. 

Evidently, lake-terminating glaciers are thicker near the terminus thant land-terminating glaciers, since they end at a calving 600 

cliff rather than at a front that thins to zero. As ice thickness drives ice flow (see the right-hand side of Eq. (5)), a substantial 

part of the terminal velocity contrast between lake-terminating and land-terminating glaciers could then be attributed to this 

difference in ice thickness. Indeed, comparison of the median ice thickness of our glacier sample group (Fig. A5), using the 

ice thickness estimates from Farinotti et al. (2019), indicates that lake-terminating glaciers are on average thicker over the 

ablation zone (mean thickness: ~110 m) than land-terminating glaciers (~100 m)., This difference in thickness which becomes 605 
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especially substantially thicker near the terminus. Using the approach of Dehecq et al (2019b), where changes in surface 

velocity are related to changes in driving stress, a first order approximation can be made to estimate the importance of the ice 

thickness onto glacier dynamics, assuming factors such as surface slope and glacier width remaining constant and a proglacial 

lake playing no role in controlling the surface velocity. This approximation only holds in the limit of 𝛿𝐻
𝐻⁄ ≪ 1, and therefore 

only the ice thickness contrast over the entire ablation zone is considered. Here, we find that 28 % to 64 % of the observed 610 

velocity contrast can be explained by this approximation, indicating gthat factors other than ice thickness play a role in 

controlling the ice dynamics. 

As such, this mayThis nonetheless suggestis indicates that ice thickness is a significant factor in determining the frontal ice-

flow velocity. However, Fig. A5 also shows a clear decrease in ice thickness for both land-terminating and lake-terminating 

glaciers towards the terminus. At the same time, the lake-terminating glacier velocity does not show a deceleration towards 615 

the terminus, and even accelerates for half for the glacier sample group (Fig. 5). Similarly, we measured substantially faster 

flow over lake-terminating glaciers within the same area classes as land-terminating glaciers (Fig. 6b) and as ice thickness 

generally correlates with glacier area (Bahr et al., 2015), it is not unreasonable to expect glaciers within these same area classes 

to be of comparable thickness. This indicates that ice thickness data is unable to explain the whole velocity contrast at the 

glacier terminus. Concurrently, it is worth considering that the difference in ice thickness between land-terminating and lake-620 

terminating glaciers is also due to the very presence of a lake. Whilst this suggests no direct positive feedback mechanism is 

displayed by which ice mass loss is enhanced through dynamic thinning, a causal relation between the presence of a lake and 

elevated terminal velocities maycan still be inferred. It is noteworthy that uncertaintiesrrors in these ice thickness estimates 

are significant and errors could be systematic depending on surface type, which might be especially true near the terminus. 

Therefore, these results should be treated with caution until a sufficient number of direct measurements of terminus ice 625 

thickness are available.  

Lake-terminating glacier dynamics can only be understood as inseparable parts of an intricately coupled system with frontal 

ablation (Benn et al., 2007b), consisting of mechanical calving and subaqueous melt (Carrivick and Tweed, 2013). If frontal 

ablation rates are considerably high, dynamic thinning rates are expected also to be high, to bring the ice front closer to a 

balanced state. This is in line with annual velocity and glacier retreat observations at the Longbasada Glacier, where Liu et al. 630 

(2020) found the glacier acceleration to be driven by glacier retreat through calving since the mid-1990’s. Interestingly, an 

above average glacier acceleration was observed in 2006 after 5.6 m surface lake lowering as a mitigation measure in 2005 

(Xiao & Dai, 2011). Again, a local increase in the surface slope as a result from dynamic thinning could play a key role here 

by promoting calving fluxes under close to buoyant conditions (Benn et al., 2007b). 

Another important factor is the reverse gradient of the bed slope, which is an inherent property of Himalayan proglacial lakes 635 

(i.e., Somos-Valenzuela et al., 2014), resulting in an instability as the force imbalance at the front will increase with a glacier 

retreating to deeper water with greater ice thickness. This phenomenon is known for marine ice sheets as marine ice sheet 

instability (MISI) (Katz and Worster, 2010; Weertman, 1974), and is shown to be also an important mass loss feedback 
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mechanism in lake-terminating settings (Sutherland et al., 2020). For all these rapid changes, the longitudinal stress gradient 

plays a large role by distributing the dynamic response triggered at the calving front from the reduction of buttressing (Benn 640 

et al., 2007b). This is in line with findings on Alaskan lake-terminating glaciers, where the specific geometry and topographic 

setting of proglacial lakes are suggested to play a key control on glacier evolution (Field et al., 2021).  

Finally, it needs to be considered that glacier width and surface slope are further relevant factors in the dynamic evolution of 

lake-terminating glaciers, as local variations of glacier width or high slopes in the close proximity of the terminus are known 

to be imperative in the context of the transient evolution of these glaciers (Benn et al., 2007b). However, in this study we 645 

merely focus on direct processes that accelerate the glacier terminus and drawing conclusions about these factors in a transient 

context would be outside the scope of this study. 

5.3 Implications for Future Evolution of Himalayan Glaciers 

Regional ice loss through lake-terminating dynamics will remain important in the near future, given the sustained expansion 

of proglacial lakes across the Himalayan region (Chen et al., 2021; Nie et al., 2017; Zhang et al., 2015) and the susceptibility 650 

of many debris-covered glaciers for proglacial lake development. Our results also emphasise the importance of clean-ice, lake-

terminating glaciers terminating in overdeepenings (Linsbauer et al., 2016) and their future contribution to regional ice loss 

might be disproportionately large, considering their active flow and propensity to thin dynamically. Many of these clean-ice 

glaciers drain northwards into the tributaries of the Brahmaputra, a river of which the melt water supply is of high importance 

during the dry season (Pritchard, 2019), and changes in ice mass loss projections are of essential importance for millions of 655 

people in downstream regions (Immerzeel et al., 2020). 

In order to better understand the impact of proglacial lakes onto glacier dynamics and to find out whether the contribution of 

lake-terminating glaciers to Himalayan ice mass loss may increase further, spatially resolved, multi-temporal analyses of  

glacier-lake dynamics is needed, such as those by Liu et al. (2020) and Watson et al. (2020). In this context, measurements of 

lake-depth, ice cliff height, ice thickness and surface slope in the proximity of the calving front are essential and will help to 660 

constrain factors controlling the dynamics of these lake-terminating glaciers. There is also a need for more detailed modelling 

studies on glacier-lake dynamics with a particular focus on basal friction during the transient evolution of lake-terminating 

glaciers in alpine settings with respect to the importance of the force balance at the glacier front. Finally, considerable progress 

still can be made by linking frontal mass loss processes that are found to be characteristic for lake-terminating settings (Watson 

et al., 2020) to glacier dynamics as a fully intercoupled system. 665 

6 Conclusions  

In this study, we documented 2017-2019 surface velocities in the ablation zone of glaciers larger than 3 km2 by analysing 

Sentinel-2 optical satellite imagery at five proglacial lake-prevalent subregions in the Himalayas. Our results show that the 

enhanced resolution of Sentinel-2 (NIR band, 10m) with respect to Landsat-8 (10 m vs NIR band 30m, panchromatic band 15 
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m) improves image-matching and yields a better resolved velocity field over small glaciers, and thereby improving the potential 670 

for the analysis of glacier centreline velocities.  

Analysis of the centreline velocity profiles revealed that lake-terminating glaciers display substantially higher flow velocities 

than land-terminating glaciers (18.8(18.55 – 19.06) m yr-1 vs 8.24(8.17 – 8.35) m yr-1). This finding is consistent regardless of 

the orientation, glacier size and subregion of the glacier population. The velocity contrast between lake-terminating and land-

terminating clean-ice glaciers is much greater than for debris-covered glaciers, and we showed thattherefore a major 675 

contribution of the mean velocity difference can be attributed to the overrepresentation of large clean-ice glaciers in the lake-

terminating population.  

Notwithstanding, both clean-ice and debris-covered lake-terminating glaciers show heterogeneous behaviour at the glacier 

terminus, remain dynamically active along the entire flow, and show an accelerating trend for almost half of the glacier 

population, revealing that dynamic thinning is prevalent in the Himalayan region. In line with this, we found that a positive 680 

correlation between high terminal velocities and elevated surface lowering is evident for both surface types.  

Our synthetic numerical ice-flow model experiment revealeds that the surface flow velocity is most sensitive to changes in the 

boundary condition at the terminus of a lake-terminating glacier, with variations in basal friction playing a less prominent role 

in our model set-up. Rapid changes in terminus position or proglacial lake level could therefore contribute greatly to the 

dynamic evolution of the glacier front itself. Further analysis emphasiseds the importance of ice thickness in the glacier-lake 685 

dynamics, which might explain the limited dynamic impact at the, often relatively thin, termini of debris-covered glaciers.  

The contribution of ice mass loss and, hence, runoff from lake-terminating glaciers is unlikely to diminish in the near future, 

but the exact contribution to downriver melt water supply in the next decades is still highly uncertain. An improved 

understanding of lake-terminating glacier dynamics, both by field observations and numerical studies, is therefore imperative 

for the future of those people that depend on a year-round meltwater supply from the major Himalayan rivers. 690 
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Appendices 

 

Figure A1: Examples of lake-terminating glacier with glacier attributes within 2 km of the terminus. RGB images are retrieved from 

Sentinel-2. 695 

 

Figure A2: Velocity dispersion (MADdisp). Yellow colours indicate a dispersion >10 m yr-1.  The hHillshade is produced using ALOS 

World 3D DEM. 

 

 700 
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Table A1: The median of the along-flowline mean regional centre flow line velocities and median slope of lake-terminating and land-

terminating glaciers for the second half of the ablation zone.  Uncertainty estimates for the velocities are represented by the IQR of 

the sample median estimates, calculated according to section 3.3. The spread among the slope is also represented by the IQR. 

 Terminus Type   

Glacier Features Lake Land Both 

Slope (degrees) -7.2(-9.7 – -4.9) -8.2(-11.4 – -5.5) -8.0(-11.1 – -5.6) 

Velocity (m yr-1) 17.7(17.41 – 18.02) 3.9(3.84 – 3.97) 5.2(5.15 – 5.28) 

 

 705 

 

Figure A3: Boxplot showing the mean velocity contrast between lake-terminating and land-terminating glaciers depending on the 

orientation of the second half of the ablation zone (a) and surface area (b). The IQR (boxes) represents the spread within the mean 

sample group. Points outside of the 3rd quartile plus 1.5 times the IQR range are plotted explicitly. 

 710 

 

Figure A4: Separation of accelerating and decelerating lake-terminating glaciers. Glacier is considered to be accelerating if the 500 

m in the proximity of the terminus shows higher surface velocities van the 500 – 1500 m proximity range. The spread of the velocity 

along the centre flow line among the glacier population is represented by the IQR. 
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Figure A5: Ice thickness estimates for land-terminating and lake-terminating glaciers, using the dataset of Farinotti et al. (2019). 

The spread of the ice thickness along the centre flow line among the glacier population is represented by the IQR. 
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