Supplementary Material Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile

Annelies Voordendag, Marion Réveilet, Shelley MacDonell, Stef Lhermitte

Meteorological observations $\mathbf{S1}$

Table S1.1: Available observations, sensor height from the ground and the manufacturers and type of the corresponding sensor at Tapado AWS.

Measurement	Unit	Height	Brand/type	Uncertainty given by manu-
		(m)		facturer
Accumulated precipitation	mm	1.5	Geonor/T-200B 1000mm	0.1% Full Scale
Air pressure (Pa)	hPa	3.5	Vaisala/PTB110	$\pm 1.0 h Pa$
Air temperature (TA)	°C	3.5	Vaisala/HMP45C	$\pm 0.3^{\circ}$ C at 0° C
Incoming LW radiation (L_{\downarrow})	${ m W}~{ m m}^{-2}$	3.5	Kipp and Zonen/CNR4	10% (95% confidence level)
Incoming SW radiation (S_{\downarrow})	${ m W}~{ m m}^{-2}$	3.5	Kipp and Zonen/CNR4	5% (95% confidence level)
Outgoing LW radiation (L_{\uparrow})	${ m W}~{ m m}^{-2}$	3.5	Kipp and Zonen/CNR4	10% (95% confidence level)
Reflected SW radiation (S_{\uparrow})	${ m W}~{ m m}^{-2}$	3.5	Kipp and Zonen/CNR4	5% (95% confidence level)
Relative Humidity (RH)	%	3.5	Vaisala/HMP45C	$\pm 2\%$ RH (0 to 90% RH)
				$\pm 3\%$ RH (90% to 100% RH)
				and $\pm 0.05\%$ RH/°C
Wind speed (WS)	${\rm m~s^{-1}}$	5.4	RM Young/5103	$\pm 0.3 \text{ m/s}$
Wind direction (WD)	0	5.4	RM Young/5103	$\pm 3^{\circ}$
Snow depth (SD)	m	3.5	Campbell/SR50A	$\pm 1 \text{ cm}$
Water equivalent (SWE, thallium, Tl)	mm	3.5	Campbell/CS725	$\pm 15 \text{ mm}$ from 0 to 300 mm
				$\pm 15\%$ from 300 to 600 mm
Water equivalent (SWE, potassium, K)	mm	3.5	Campbell/CS725	± 15 mm from 0 to 300 mm
				$\pm 15\%$ from 300 to 600 mm

Figure S2.1: The a) distribution of 1000 perturbed precipitation sets. b) The amount of precipitation accumulated at the end of the season is normally distributed around the reference precipitation (red curve).

S3 Analysis of roughness lengths

The selection of the roughness length has been done by running the model 100 times with roughness lengths evenly distributed on a logarithmic scale between 10^{-4} and 10^{-2} m. Figure SS3.1 displays 100 runs for the snow depth and SWE of both SNOWPACK and SnowModel. Lower roughness lengths increase the correlation with the observations and decrease the RMSE. The end of the snow season is between 16 and 20 September for different roughness lengths for SnowModel, where the earliest date corresponds to a roughness length of 10^{-2} m. SNOWPACK simulates an end of season between 23 September and 14 October, and thus the influence of z_0 is smaller for SnowModel than for SNOWPACK. As roughness lengths lower than 1 mm are not realistic in the study area, the best R^2 and RMSE are not considered with the z_0 uncertainty but a roughness value of 1 mm is kept as reference (MacDonell et al., 2013; Pellicciotti et al., 2005).

Figure S3.1: Measured (black) and simulated (colour) SD and SWE based of 100 runs with roughness lengths between 10^{-4} and 10^{-2} m. The reference run of both models is the bold coloured curve. The shaded areas correspond to the a) SD and b) SWE of SNOWPACK (red) and SnowModel (blue).

S4 Albedo and fresh snow density parameterizations

Table S4.1: Fresh snow density parameterizations SNOWPACK			
Lehning (old)	$\rho_{fs} = 70 + 30 TA + 10 TSS + 0.4 RH + 30 WS + 6 TA TSS - 3 TA WS - 0.5 RH WS$		
Lehning (new)	Lehning et al. (2002, eq.(2)) with $\alpha = 90$		
Zwart	Zwart (2007)		
Bollairo	$\rho_{fs} = exp(3.946 + 0.07703TA + 0.0001701HH + 0.02222\log(WS) - 0.05371TA\log(WS))$		
Denane	HH is the altitude above sea level		
Pahaut	Vionnet et al. $(2012, eq(1))$		

 Table S4.1: Fresh snow density parameterizations SNOWPACK

Table S4.2: Albedo parameterizations SNOWPACK. The exact equations can be found in SNOWPACK's code.					
Lehning (0)	Statistical model of surface snow albedo based on measurements from Weissfluhjoch study plot				
Lehning (2)	Statistical model of surface snow albedo based on measurements from Weissfluhjoch study plot				
Schmucki (GSZ)	Statistical model based on S_{\downarrow} and S_{\uparrow} at 4 Swiss stations and the grain size				
Schmucki (OGZ)	Statistical model based on S_{\downarrow} and S_{\uparrow} at 4 Swiss stations and the optical equivalent grain size				

Table S4.3: Fresh snow density parameterizations SnowModel

Default	Cascoin et al $(2013 \text{ eq} (1))$	
Delault	Gasconi et al. (2015, eq. (1))	
Lohning (old)	$\rho_{fs} = 70 + 30 TA + 10 TSS + 0.4 RH + 30 WS + 6 TA TSS - 3 TA WS - 0.5 RH WS$	
Lemmig (old)	with $\rho_{fs} = 50$ if $\rho_{fs} < 50$ and $\rho_{fs} = 158.8$ if $\rho_{fs} > 158.8$	
Lobning (now)	Lehning et al. (2002, eq.(2)) with $\alpha = 90$ and $\rho_{fs} = 50$ if $\rho_{fs} < 50$	
Denning (new)	and $\rho_{fs} = 158.8$ if $\rho_{fs} > 158.8$	
Table S4.4: Albedo parameterizations SnowModel		
	$\alpha = 0.9$ for $TA < 0$	
D 4 1		

Default	$\alpha = 0.6$ for $TA > 0$
	$\alpha = 0.15$ for no snow
Time-evolution	Strack et al. $(2004, eq.(3-4))$

S5 Statistics of model calibrations

Table S5.1: *RMSE* of calibrations of SNOWPACK. *Lehning 0, Lehning 1, Schmucki GSZ* and *Schmucki OGS* are the albedo parameterizations as named in the model and *Lehning (old), Lehning (new), Bellaire, Zwart* and *Pahaut* are the fresh snow density parameterizations. The calibrations chosen as reference is given in bold.

	Lehning 0	Lehning 1	Schmucki GSZ	Schmucki OGS
Lehning (old)	0.094	-	0.130	0.117
Lehning (new)	0.104	-	0.135	0.111
Bellaire	0.121	0.137	0.134	0.138
Zwart	0.109	0.143	0.133	0.134
Pahaut	0.105	-	0.136	0.137

Table S5.2: R^2 of calibrations of SNOWPACK. Lehning 0, Lehning 1, Schmucki GSZ and Schmucki OGS are the albedo parameterizations as named in the model and Lehning (old), Lehning (new), Bellaire, Zwart and Pahaut are the fresh snow density parameterizations. The calibrations chosen as reference is given in bold.

	Lehning 0	Lehning 1	Schmucki GSZ	Schmucki OGS
Lehning (old)	0.851	-	0.693	0.778
Lehning (new)	0.814	-	0.656	0.827
Bellaire	0.735	0.380	0.601	0.614
Zwart	0.799	0.452	0.680	0.691
Pahaut	0.812	-	0.612	0.643

Table S5.3: *RMSE* of calibrations of SnowModel. *Default* and *Strack (Strack et al., 2004)* are the albedo parameterizations as named in the model and *Default, Lehning (old)* and *Lehning (new)* are the fresh snow density parameterizations. The calibrations chosen as reference is given in bold.

The cambrations enobed as reference				
	Default	Strack		
Default	0.153	0.123		
Lehning (old)	0.156	0.125		
Lehning (new)	0.153	0.125		

Table S5.4: R^2 of calibrations of SnowModel. *Default* and *Strack (Strack et al., 2004)* are the albedo parameterizations as named in the model and *Default*, *Lehning (old)* and *Lehning (new)* are the fresh snow density parameterizations. The calibrations chosen as reference is given in bold.

	Default	Strack
Default	0.778	0.776
Lehning (old)	0.778	0.773
Lehning (new)	0.777	0.773

Figure S6.1: Snow density simulations of the complete snowpack for a) 20 calibrations for SNOWPACK (red) and b) 6 calibrations for SnowModel. The reference runs are bold. Snow density measurements were unavailable.

References

- Gascoin, S., Lhermitte, S., Kinnard, C., Bortels, K., and Liston, G. E.: Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile, Advances in Water Resources, 55, 25–39, https://doi.org/10.1016/j.advwatres.2012.11.013, 2013.
- Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation, Cold Regions Science and Technology, 35, 169–184, https://doi.org/10.1016/s0165-232x(02)00072-1, 2002.
- MacDonell, S., Kinnard, C., Mölg, T., Nicholson, L., and Abermann, J.: Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile, The Cryosphere, 7, 1513–1526, https://doi.org/10.5194/tc-7-1513-2013, 2013.
- Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland, Journal of Glaciology, 51, 573–587, https://doi.org/10.3189/172756505781829124, 2005.
- Strack, J. E., Liston, G. E., and Pielke Sr, R. A.: Modeling snow depth for improved simulation of snow-vegetationatmosphere interactions, Journal of Hydrometeorology, 5, 723–734, 2004.
- Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Moigne, P. L., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geoscientific Model Development, 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
- Zwart, C.: Significance of new-snow properties for snowcover development, Master's thesis, Institute for Marine and Atmospheric Research; University of Utrecht, 2007.