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Abstract. Physically-based snow models provide valuable information on snow cover evolution and are therefore key to pro-

vide water availability projections. Yet, uncertainties related to snow modelling remain large as a result of differences in the

representation of snow physics and meteorological forcing. While many studies focus on evaluating these uncertainties, issues

still arise, especially in environments where sublimation is the main ablation process. This study evaluates a case study in the

semi-arid Andes of Chile and aims to compare two snow models with different complexities, SNOWPACK and SnowModel, at5

a local point, over one snow season . Their sensitivity relative i) to physical calibration for albedo and fresh snow density and ii)

to forcing perturbation is evaluated based on ensemble approaches
:::
and

::
to

:::::::
evaluate

:::::
their

::::::::
sensitivity

:::::::
relative

::
to

::::::::::::::
parameterization

:::
and

:::::::
forcing.

:::
For

::::
that

:::::::
purpose,

::::
the

:::
two

:::::::
models

:::
are

::::::
forced

::::
with

::
i)

:::
the

:::::
most

::::
ideal

:::
set

::
of

:::::
input

::::::::::
parameters,

:::
ii)

::
an

::::::::
ensemble

:::
of

:::::::
different

:::::::
physical

:::::::::::::::
parameterizations

:::
and

:::
iii)

::
an

::::::::
ensemble

::
of

:::::
biased

:::::::
forcing. Results indicate larger uncertainty depending on the

model calibration than between the two models (even though the
::::
large

:::::::::::
uncertainties

::::::::
depending

:::
on

:::::::
forcing,

:::
the

::::
snow

:::::::::
roughness10

:::::
length

:::
z0,

::::::
albedo

::::::::::::::
parameterization

:::
and

:::::
fresh

:::::
snow

::::::
density

::::::::::::::
parameterization.

::::
The

::::::::::
uncertainty

::::::
caused

::
by

:::
the

:::::::
forcing

::
is

::::::
direcly

:::::
related

::
to
:::
the

::::
bias

:::::::
chosen.

::::
Even

::::::
though

:::
the

::::::
models

:::::
show

:
significant differences in their physical complexity). We also confirm

the importance of albedo parameterization, even though ablation is driven by sublimation. SnowModel is particularly sensitive

to this choice as it strongly affects both the sublimation and the melt rates. However, the day of snow-free snow surface is not

sensitive to the parameterization as it only varies every eight days. The albedo parameterization of SNOWPACK has stronger15

consequences on melt at the end of the season leading to a date difference of the end of the season of 41 days. However, despite

these differences, the ,
:::
the

:::::
snow

:::::
model

::::::
choice

::
is

::
of

::::
least

::::::::::
importance,

:::
as

:::
the

::::::::
sensitivity

::
of

:::::
both

::::::
models

::
to

:::
the

::::::
forcing

::::
data

::::
was

::
in

:::
the

::::
same

:::::
order

::
of
::::::::::

magnitude
:::
and

::::::
highly

:::::::::
influenced

::
by

:::
the

:::::::::::
precipitation

::::::::::::
uncertainties.

:::
The

:
sublimation ratio ranges are in

agreement for the two models: 42.7-63.5
:::
36.4

::
to

::::
80.7% for SnowModel and 51.3 and 64.6

::::
36.3

::
to

::::
86.0% for SNOWPACK,

and are related to the albedo calibration
:::::::::::::
parameterization

::::
and

:::::
snow

::::::::
roughness

::::::
length choice for the two models. Finally, the20

sensitivity of both models to the forcing data was in the same order of magnitude and highly influenced by the precipitation

uncertainties.
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1 Introduction

Snow models provide valuable information on snow cover evolution and are therefore key to quantify runoff and provide

accurate water availability projections. Several models, with different complexities
::
in

:::
the

::::::::::::
representation

::
of

::::::::
different

:::::
snow25

::::::::
processes, from empirical to physical

:::::::::::::
physically-based

:
approaches, have been developed to simulate snow depth changes.

Empirical approaches, such as degree-day models (e.g. Braithwaite and Olesen, 1989; Hock, 2003) are based on a simple

statistical relationship to positive air temperatures to simulate snow melt. Comparatively, physically-based approaches consider

all energy flux exchanges at the snow surface by solving the surface energy balance equation (Oke, 2002). These approaches
:::
The

:::
use

::
of

:::
the

:::::
energy

:::::::
balance

:::::::
equation, coupled with snow models, enable

::::::
enables a more complete understanding of snow physical30

processes and are essential for understanding the interaction between snow cover evolution and climate change.

Physically-based snow models have different complexities in their physical representations, from a single layer approach

(e.g. Strasser and Marke, 2010), to more sophisticated multi-layer detailed models representing the evolution of snow mi-

crostructure and the layering of snow physical properties (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), leading to a

wide variety of snow models with a wide variety of parameterizations. In a snow model intercomparison study, Etchevers et al.35

(2004) highlighted the importance of parameterization choice, especially regarding the net longwave and albedo characterisa-

tion. After comparing 33 snow models, Rutter et al. (2009) concluded that no universal ’best’ model exists and model perfor-

mance strongly
:::::
mainly

:
depends on the study site.

:::::::::::
Furthermore,

:::
the

::::
Earth

:::::::
System

:::::
Model

::
-
::::
Snow

::::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::::::::::
(ESM-SnowMIP)

:::::::::
compared

::::::
several

:::::
snow

::::::
models

::
to

::::::::
improve

:::
the

::::::
models

::
in

:::
the

:::::::
context

::
of

:::::
local-

::::
and

:::::
global

:::::
scale

:::::::::
modelling

::::::::::::::::::::
(Krinner et al., 2018) and

::::::::
indicated

::::::::
scientific

:::
and

::::::
human

:::::
errors

::
in
:::::
snow

::::::
model

::::::::::::::
intercomparisons

::::::::::::::::::
(Menard et al., 2021),

:::
but

:::
the40

::::
study

::::
sites

:::
did

::::
not

::::::
include

::::::::
semi-arid

:::::::
regions.

In addition to the development of new models, many studies have focused on model improvements offering different parame-

terizations in a single model (e.g. Douville et al., 1995; Dutra et al., 2010)
:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Douville et al., 1995; Dutra et al., 2010; Essery, 2015).

In such frameworks, often many parameters need to be calibrated and are often difficult to be set according to local measure-

ments, such as the albedo and aerodynamic roughness length (Brock et al., 2000, 2006). To address this issue, and to consider45

and quantify parameter uncertainty propagation in simulated snow depth changes, recent studies have started to use ensemble

approaches. Here models are evaluated based on different likely combinations of values of variables such as snow albedo, snow

compaction, fresh snow density and liquid water transport (e.g. Essery et al., 2013; Lafaysse et al., 2017; Günther et al., 2019).

In addition, forcing data uncertainty has a significant influence on the simulated snow depth changes (e.g. Magnusson

et al., 2015; Raleigh et al., 2015; Günther et al., 2019) and needs to be considered in model evaluations. While point scale50

simulations forced by direct observations generally reduce forcing uncertainties, measurement errors can be considerable

due to the complexity of both measuring certain parameters as well as maintaining measurement sites (e.g. for precipitation

(MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015), sensor inclination (Weiser et al., 2016) or sensor failure).

Methods such as stochastic perturbation with random noise (e.g. Charrois et al., 2016) or following a uniform or normally

distributed bias with different magnitudes (e.g. Raleigh et al., 2015) can be used to build an ensemble of meteorological55
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forcing and explicitly simulate the consequence of forcing uncertainty on the simulated snow depth (e.g. Charrois et al., 2016;

Zolles et al., 2019; Günther et al., 2019).

Despite past efforts to improve snow models and quantify uncertainty propagation, the uncertainties regarding snow physics

representation and meteorological forcing remains (e.g. Essery et al., 2013; Raleigh et al., 2015; Günther et al., 2019);

especially
::
in

::::::::
particular

:
in regions where sublimation is the main ablation process,

:::
due

::
to
:::
the

::::
lack

::
of

:::::
snow

:::::::::
modelling

::::::
studies

::
in60

::::::::
semi-arid

::::::
regions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gascoin et al., 2013; Réveillet et al., 2020; MacDonell et al., 2013a; Mengual Henríquez, 2017).

This study aims to evaluate two physical snow models with different complexities, considering calibration
::::::::::::::
parameterization

and forcing uncertainties. There we
:::
We simulate snow depth changes in the

:::::::
semi-arid

:
Andes of Chile using data from an

automated weather station. In this semi-arid region, snow model uncertainty is a key concern as snow melt is an essential water

resource for the population (Favier et al., 2009). Despite this importance
::
the

::::::::::
importance

::
of

::::
snow

::
as
:::::
water

::::::::
resource, quantifying65

and understanding the snow cover evolution remains limited and challenging due to i) high sublimation rates related to strong

::::
high

:::::
levels

::
of

::::::::
incoming

:
solar radiation, cold air temperatures,

::::
arid

::::::::::
atmosphere, and high wind speeds (e.g. MacDonell et al.,

2013a; Réveillet et al., 2020), and ii) shallow snow depths due to very low precipitation amounts (Scaff et al., 2017; Réveillet

et al., 2020; Ayala et al., 2017). In previous studies the effect of wind on snow cover pattern distribution has been assessed by

Gascoin et al. (2013) and the relative importance of melt versus sublimation has been studied over one catchment by Réveillet70

et al. (2020), both making use of the physically-based snow model SnowModel (Liston and Elder, 2006b). The study performed

by Mengual Henríquez (2017) assessed the snow types in different Chilean regions with SNOWPACK (Bartelt and Lehning,

2002; Lehning et al., 2002b, a). Nevertheless, an accurate assessment of different snow models’ sensitivity to parameterization

choice or input forcing is currently missing, although it is expected to have a large impact.

In this work, the sensitivity of SnowModel and SNOWPACK, the common snow models previously used in this region, is75

assessed in function of parameterization choices and forcing uncertainty. First,
:::
the

::::::
models

:::
are

:::::::::
calibrated

:::::::
similarly

:::
to

:::::
allow

::::
later

::::::::::
comparisons

::::
and

:
a
:::::

most
::::
ideal

:::::
setup

:::
for

:::::
both

::::::
models

::
is

::::::::
designed

::
to

::::::
acquire

::
a
:::::::::::
precipitation

::::::
dataset

::::
that

:::::::
corrects

:::
for

:::
the

:::::::::::::
underestimation

::
of

:::::::::::
precipitation.

:::::::
Second,

:
both models are run with different combinations of parameterizations to assess the

uncertainty of parameterizations(Sect. 3.2). Second
:
.
:::::::::::
Subsequently, forcing uncertainty propagation in the snow model is

considered by running the models with 1000 sets of perturbed forcing(Sect. 3.2.1. Considering model sensitivities to calibration80

and forcing, models are compared and differences are discussed (Sect. 3.3)
:
.
::::
The

::::::::::
combination

::
of

:::::::::
sensitivity

:::::::
analysis

::
to

::::::
model

::::::::::::::
parameterizations

::::
and

::::::::::::
meteorological

::::::
forcing

::::::
allows

::
to

:::::::
evaluate

::::
and

:::::::
compare

:::
the

:::
two

:::::::
models.

2 Study area and data

We assess the sensitivity of both models using data from an AWS over the snow season of 2017. First this study area and the

meteorological observations are described, followed by the data preprocessing procedure.85
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2.1 Study area

The study area is located in the La Laguna catchment, in the Chilean Coquimbo region, close to the Argentinian border

(Fig. 1a). To assess the sensitivity
:
of

:::
the

:::::::
models

::
to

:::
the

::::::::::::
representation

:::
of

::::
snow

:::::::
physics

::::
and

::::::::::::
meteorological

:::::::
forcing,

:
we use

data from the Tapado Automatic Weather Station (AWS), a permanent station
::::::::::::
meteorological

:::::
tower

:
since 2009 located close

to the terminus of the Tapado Glacier at 30◦S, 69◦W, 4306 m a.s.l. (Fig. 1c). The site shows a complex topographic setting90

with average (maximum) wind speeds of 4.2 m s−1 (>15 m s−1) in 2017 and little precipitation (<200 mm a−1) that arrives

as snow during fewer than 10 events per year. Precipitation events mainly occur during the winter season (>90%) (Rabatel

et al., 2011; Réveillet et al., 2020). Therefore the area surrounding the AWS is only covered with snow in austral winter. At

this elevation, no vegetation is observed
::::::::
vegetation

::
is

::::::::
extremly

:::::
sparse.
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Figure 1. a) Map of Chile with the Coquimbo Region (orange) and the study area location (red box). b) Tapado AWS at the 26th of April

2018 showing the Geonor precipitation gauge (left) which is 10 m from the central mast of the AWS (right). c) Map of the borders of the La

Laguna catchment (green), with the AWS locations (red points). Landsat 8 images of 29 August 2017 are used as background and maps and

photo are made by A. Voordendag.
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2.2 Meteorological observations95

The meteorological forcing data consisted of hourly mean values of air temperature (TA), relative humidity (RH), incoming

shortwave radiation (S↓), incoming longwave radiation (L↓), wind speed (WS), wind direction (WD) and air pressure (PA)

measured by the AWS (Fig. 2, TableS1.1 in the Supplementary Material (SM)
::
1). Precipitation forcing consisted of hourly

data by a Geonor rain gauge (Fig. 1b).
:::
This

::::::
gauge

:
is
:::

an
:::::::::
unshielted,

::::::::
unheated

::::::::
weighing

::::::
bucket

:::::::::::
precipitation

:::::
gauge

:::::
filled

::::
with

:::::::::
anti-freeze

:::::
liquid

::::
and

:::
oil

::
to

:::::::
prevent

:::::::
freezing

::::
and

::::::::::
evaporation

::::::::::
respectively.

:
During the snow season, defined as the period100

with snow on the ground (i.e. between 10 May and 6 November 2017), the station recorded meteorological observations

continuously except for the TA and RH, for which gaps have been filled using three nearby AWSs (Fig. 1c, Sect. 2.3).

Hourly snow depth (SD), reflected shortwave radiation (S↑) and six-hourly means of snow water equivalent (SWE) were

also recorded at the station and used for model calibration and evaluation. SWE was measured with a CS725 sensor by Camp-

bell Scientific which passively detects the change in naturally emitted terrestrial gamma radiation from the ground after it105

passes through snow cover. It provided two independent SWE observations measuring both potassium and thallium gamma

rays (Wright, 2011). The uncertainty given by the manufacturer is ±15 mm from 0 to 300 mm and ±15% from 300 to 600 mm,

but differences of up to 82 mm w.e. between gamma ray measurements at ∼300 mm w.e. were measured. The manufacturer

suggests that the output with the higher count is generally the most reliable, which were the potassium gamma rays measure-

ments (Randall, 2018, personal communication). We display both data sets and estimate an accuracy of ±25 mm for this data110

set.

2.3 Preprocessing of forcing data

When modelling the snow evolution, we covered a period (
:::
The

::::::
period

:::::::
between

:
5 May to

:::
and

:
30 Nov

:::::::::
November 2017 )

extending outside the snow season to allow a five day spin-up phase to enable the model to reach a physical equilibrium with

the applied forcing
:::
has

::::
been

:::::::
covered

::
to

::::::
model

:::
the

:::::
snow

::::::::
evolution

::
in

:::
the

::::::
austral

::::::
winter,

::
as

::::
this

:::
was

::
a

::::::
season

:::::
where

:::::
SWE

::::
data115

:::
was

::::::::
available

::
to

:::::::
validate

:::
the

::::::
models. Since continuous data are required for both snow models, preprocessing was necessary

to fill the gaps in the TA and RH data sets (23 June 11:00 and
::
to

:
31 October 10:00 due to sensor failure) and to correct the

wind-induced undercatch in the precipitation data. Therefore, TA and RH data was interpolated based on lapse rates from

nearby AWSs (Agua Negra (4774 m a.s.l.), Llano de las Liebres (3565 m a.s.l.) and La Laguna (3209 m a.s.l.; Fig. 1c).

For TA, a daily moist adiabatic lapse rate
::::::::::
temperature

:::::
lapse

:::
rate

::::::::::::::::::::
(Blandford et al., 2008) was calculated using TA measured120

at La Laguna and Paso Agua Negra AWSs (1565 m elevation difference) between 2014 and 2017. We fitted a sinusoidal trend

over these lapse rates for the 4-year
:::::::
four-year period and found daily lapse rates with a maximum of -6.9◦C km−1 in winter

and a minimum of -8.0◦C km−1 in summer. These daily lapse rates were subsequently applied to TA observations of Llano

de las Liebres AWS which is the only AWS that covers the entire period of missing data in 2017. For RH a similar approach

was applied using the lapse rate of the daily dew point temperature between the Paso Agua Negra and La Laguna AWSs and125

applying it to data measured at the Llano de las Liebres AWS. Dew point temperature was converted to RH following Liston

6



Table 1.
:::::::
Available

::::::::::
observations,

:::::
sensor

:::::
height

::::
from

:::
the

:::::
ground

:::
and

:::
the

:::::::::::
manufacturers

:::
and

:::
type

::
of

:::
the

:::::::::::
corresponding

:::::
sensor

:
at
::::::
Tapado

:::::
AWS.

::::::::::
Measurement

:::
Unit

: :::::
Height

:::
(m)

::::::::
Brand/type

::::::::
Uncertainty

:::::
given

::
by

::::::::::
manufacturer

::::::::::
Accumulated

:::::::::
precipitation

: :::
mm

::
1.5

: :::::::::::
Geonor/T-200B

:::::::
1000mm

: ::::
0.1%

:::
Full

::::
Scale

::
Air

:::::::
pressure

:::
(Pa)

: :::
hPa

::
3.5

: ::::::::::::
Vaisala/PTB110

::::::
±1.0hPa

::
Air

:::::::::
temperature

::::
(TA)

: ::

◦C
::
3.5

: :::::::::::::
Vaisala/HMP45C

::::::
±0.3◦C

::
at

:::
0◦C

:::::::
Incoming

:::
LW

:::::::
radiation

::::
(L↓) ::

W
::::
m−2

::
3.5

: ::::
Kipp

:::
and

::::::::::
Zonen/CNR4

:::
10%

:::::
(95%

::::::::
confidence

::::
level)

:::::::
Incoming

:::
SW

:::::::
radiation

::::
(S↓) ::

W
::::
m−2

::
3.5

: ::::
Kipp

:::
and

::::::::::
Zonen/CNR4

::
5%

:::::
(95%

::::::::
confidence

::::
level)

:::::::
Outgoing

:::
LW

:::::::
radiation

::::
(L↑) ::

W
::::
m−2

::
3.5

: ::::
Kipp

:::
and

::::::::::
Zonen/CNR4

:::
10%

:::::
(95%

::::::::
confidence

::::
level)

:::::::
Reflected

:::
SW

:::::::
radiation

:::
(S↑): ::

W
::::
m−2

::
3.5

: ::::
Kipp

:::
and

::::::::::
Zonen/CNR4

::
5%

:::::
(95%

::::::::
confidence

::::
level)

::::::
Relative

:::::::
Humidity

::::
(RH)

: :
%
: ::

3.5
: :::::::::::::

Vaisala/HMP45C
::::
±2%

:::
RH

::
(0

::
to

:::
90%

::::
RH)

::::
±3%

:::
RH

::::
(90%

::
to

:::::
100%

:::
RH)

:::
and

::::::
±0.05%

::::::
RH/◦C

::::
Wind

::::
speed

:::::
(WS)

:
m
::::
s−1

::
5.4

: :::
RM

:::::::::
Young/5103

: ::::
±0.3

:::
m/s

::::
Wind

:::::::
direction

::::
(WD)

: :

◦
::
5.4

: :::
RM

:::::::::
Young/5103

: :::
±3◦

::::
Snow

:::::
depth

:::
(SD)

: :
m
: ::

3.5
: :::::::::::::

Campbell/SR50A
::
±1

:::
cm

::::
Water

::::::::
equivalent

:::::
(SWE,

:::::::
thallium,

:::
Tl)

:::
mm

::
3.5

: ::::::::::::
Campbell/CS725

: :::
±15

::::
mm

::::
from

:
0
::
to

:::
300

:::
mm

::::::
±15%

:::
from

::::
300

:
to
::::

600
:::
mm

::::
Water

::::::::
equivalent

:::::
(SWE,

:::::::::
potassium,

::
K)

:::
mm

::
3.5

: ::::::::::::
Campbell/CS725

: :::
±15

::::
mm

::::
from

:
0
::
to

:::
300

:::
mm

::::::
±15%

:::
from

::::
300

:
to
::::

600
:::
mm

and Elder (2006a). Evaluation of this lapse rate interpolation, based on 1638 overlapping observations at Tapado, shows an

uncertainty (i.e. RMSE) of 2.8◦C and 9.97% for TA and RH respectively.

Since the precipitation observations were strongly
::::::
directly

:
influenced by wind, an undercatch in the precipitation gauge is

likely (e.g., MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015). Therefore the Geonor precipitation observations130
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Figure 2. Meteorological observations at Tapado with with daily precipitation (P), average daily relative humidity (RH), temperature (TA),

wind speed (WS), air pressure (PA), incoming shortwave radiation (S↓) and incoming longwave radiation (L↓) from April to December

2017. Dotted lines indicate the TA and RH interpolations.

were corrected by applying the catch efficiency factor CE using MacDonald and Pomeroy (2007, Eq. (3)) based on WS observations

adjusted from the wind sensor height (5.4 m) to gauge height using a logarithmic wind profile (e.g., Lehning et al., 2002a) and

a roughness length of 0.001 m:

CEGeonor = 1.01exp(−0.09WS )
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This corrected precipitation is hereinafter referred to as reference precipitation (Pref ). Precipitation uncertainty was quantified135

as the difference between the uncorrected, observed precipitation and the precipitation reconstructed from the SWE observations,

which was computed using the cumulative positive SWE (potassium) changes during precipitation events (detected by the

Geonor T-200B). This cumulative SWE approach reduced the inclusion of deposition of drifting snow resulting which would

result in an overestimation of SWE. Based on thisapproach, the precipitation ranges between 190 mm a−1 (from precipitation

gauge) and 470 mm a−1 (from SWE reconstruction). The difference between these values is likely caused by the location offset140

between the precipitation gauge and the SWE and SD sensor (Fig. 1b), as the AWS is placed in a concave area that collects more

snow than the Geonor precipitation gauge
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. MacDonald and Pomeroy, 2007; Smith, 2007; Wolff et al., 2015).

:::
As

:::::
there

:::
are

:::::::
different

::::::::::
possibilities

::
to

::::::
correct

:::
for

::::
this,

:::
the

::::::::::
assimilation

:::
and

:::::::::
correction

::
of

:::::::::::
precipitation

:::
data

::
is
:::::::::
explained

::
in

::::
Sect.

:::::
3.2.2.

3 Methods

3.1 Model descriptions145

3.1.1 SNOWPACK

SNOWPACK was developed by the Swiss Federal Institute (SLF) for Snow and Avalanche Research (Bartelt and Lehning,

2002; Lehning et al., 2002a, b). It is a one-dimensional model, but can be implemented in the spatially distributed, three-

dimensional snow cover and earth surface model Alpine3D (Lehning et al., 2006). SNOWPACK includes a MeteoIO prepro-

cessing library for meteorological data (Bavay and Egger, 2014) which was not used, as we implemented a homogeneous150

preprocessing approach for both models (see Sect. 2.3). SNOWPACK is a physically-based model which has the ability to

simulate snow physical properties (e.g. snowpack temperature, layer thickness, snow microstructure and density) and snow

processes (e.g. refreezing, sublimation, melt, evaporation) for multiple layers, which are merged if layers become too thin.

Sublimation and evaporation are calculated for the top element of the snowpack and melt is simulated using a water transport

bucket scheme. In this bucket scheme, all the liquid water exceeding a threshold water content is transported downward in155

the snowpack or soil (Wever et al., 2014). An extensive description of the model can be found in Bartelt and Lehning (2002);

Lehning et al. (2002a, b).

3.1.2 SnowModel

SnowModel is a spatially distributed snowpack evolution modelling system composed of four submodels MicroMet, EnBal,

SnowPack and SnowTran3D (Liston and Elder, 2006b). MicroMet is preprocessing library for meteorological data interpola-160

tion, which was not used in this study as we focused on one location only while we implemented a homogeneous preprocessing

approach for both models (see Sect. 2.3). EnBal calculates standard surface energy balance exchanges (Liston and Hall, 1995).

SnowModel’s SnowPack subroutine is a single or multi-layer (max. six layers) snowpack evolution and runoff model that

describes snowpack changes in response to precipitation and melt fluxes defined by MicroMet and EnBal (Liston and Hall,

1995; Liston and Elder, 2006b). In SnowModel, the melted snow is redistributed through the new snow depth up to a maximum165
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density threshold of 550 kg m−3. Any additional melt water is added to the runoff. In this study the model was run with the

maximum of snow layers (i.e. six layers) to be comparable with the multiple amount of layers in SNOWPACK. Finally, the

three-dimensional model to simulate snow erosion and deposition SnowTran3D (Liston and Sturm, 1998) is not activated in

this study; this choice is discussed in Sect. 5.2.

3.2 Model calibration
::::
setup

::::
and

:::::::::
sensitivity

:::::::
analysis170

To assess the sensitivity of both models to parameterization choice and input uncertainty, we applied a three
::::
four step approach.

First, we calibrated both models similarly to allow later comparisons (Sect. 3.2.1). Second, we
:::::::
designed

:::
the

::::
most

::::
ideal

:::::
setup

:::
for

::::
both

::::::
models

::
to

::::::
acquire

:
a
:::::::::::
precipitation

::::::
dataset

:::
that

:::::::
corrects

:::
for

:::
the

:::::::::::::
underestimation

::
of

:::::::::::
precipitation.

::::::
Third,

::
we

:
varied the param-

eterization settings of each
:::::
model to determine the effect of parameterization choice (Sect. 3.2.3). Third

:::
Last, we implemented

forcing perturbations
:::::
biases

:
(Sect. 3.2.1) to evaluate model sensitivities

::
the

:::::::::
sensitivity

::
of

:::
the

::::::
models

:
to the meteorological forc-175

ing uncertainties. The combination of sensitivity analysis to model calibration
::::::::::::::
parameterizations

:
and meteorological forcing

allowed to evaluate and compare the two models (Sect. 3.3).

3.2.1 Parameter values used in both models

Initially, both models were calibrated using similar parameters to facilitate intercomparison. These parameters were derived

from observations or previous studies (Table 2). For example, the soil albedo was set to 0.15, as this is the average observed180

albedo at the moment when there is no snow. The observed daily albedo is defined as the daily sum of the average hourly

reflected shortwave (S↑ ) divided by the daily sum of average hourly incoming shortwave radiation (S↓ )(Fig. 4e,f). In the

absence of roughness length measurements, the roughness length of the bare soil is set to 0.020 m, corresponding to the default

roughness length of pebbles and rocks in SnowModel. As surface ground temperature measurements are not available, we set

it to -1◦C in both models. -1◦C is the default value in SnowModel and ensures that the first snow does not immediately melt.185

Atmospheric stability and roughness length (z0) are key parameters in semi-arid regions where sublimation is an important

process. As SnowModel only allows atmospheric stability corrections based on the Richardson number, we opted for this

method and similar roughness lengths in both models to assure intercomparability. The snow roughness length was fixed to

0.001 m based on an earlier sensitivity study (Réveillet et al., 2020) and unpublished eddy covariance measurements (MacDonell et al., 2013a).

Additionally, the sensitivity of both models to roughness length is further analysed in Sect. S3 of the SM, as it was not used to190

select the final model configurations.

3.2.2
::::::::
Idealised

:::::
setup

:::::::::
Preliminary

::::::
results

:::::::
showed

::::::::
simulated

:::::
SWE

::::
and

:::
SD

::
to

::
be

:::::
more

::::
than

::::
two

::::
times

::::::
lower

::::
than

:::
the

:::::::
observed

::::::
SWE.

::::
This

::
is

::::::
caused

::
by

:::
an

:::::::::::::
underestimation

:::
of

:::
the

::::::::::
precipitation

:::::::::::::
measurements,

::
as
::::

the
:::::
AWS

::
is

::::::
placed

::
in

:
a
::::::::

concave
::::
area

:::
that

:::::::
collects

:::::
more

:::::
snow

:::
than

:::
the

:::::::
Geonor

::::::::::
precipitation

::::::
gauge.

::::
This

::
is

::
in

:::::::::::::
correspondence

::::
with

:::::::
research

:::
by

::::::::::::::::::::::::::::
Grünewald and Lehning (2014) on

:::
the

::::::
spatial195

::::::::
variability

::
of

::::
SD

::::::::::::
measurements.

:::::::::
Therefore,

::
to

:::::::::
determine

:::
the

:::::::
optimal

::::::::::
precipitation

:::::
input

:::
for

:::
the

:::::::
models,

::
an

::::::::
idealised

:::::
setup

::
is

10



Table 2. SNOWPACK and SnowModel parameter characteristics. The possible snow albedo parameterizations and fresh snow density models

are described in Sect. S4
::
S1.

SNOWPACK SnowModel

Soil albedo 0.15 (calibrated) 0.15 (calibrated)

Max/min snow albedo None 0.6/0.9 (calibrated)

Atmospheric stability correction model Richardson number Richardson number (default)

Roughness length (soil) 0.02
:
m 0.02

:
m (default)

Roughness length (snow) 0.001m (calibrated)
::
m

:::
and

:::::
0.01 m 0.001 m (calibrated)

:::
and

:::::
0.01 m

Surface ground temperature -1◦C -1◦C (default)

Thermal conductivity Default Multilayer subroutine

Wind erosion/snow transport by wind Off Off

Maximum number of snow layers Unlimited 6 layers

Fresh snow density parameterizations 5 options 1 default options and 2 from SNOWPACK

Albedo parameterizations 6 options, 4 used 2 options

Simulated ablation processes Sublimation, runoff, evaporation Sublimation, runoff

Water transport in snowpack Bucket scheme (default) Default

::::::::
designed,

::::::
making

:::
use

:::
of

::
all

:::
the

::::
data

:::
that

:::
the

:::::::
models

:::::
allow

::
as

:::::::
forcing.

::::
Two

:::::::::
approaches

:::
are

::::::::
designed

::
to

:::::
adjust

:::
the

:::::::::::
precipitation

:::
data

::::
set.

::::
First,

::
it
::
is

::::::
chosen

::
to
:::::::::
assimilate

:
a
:::::::::::

precipitation
::::
data

:::
set,

::::::
which

::::
both

::::::
models

:::::::
perform

:::
in

:::::::
different

:::::
ways.

::::::::::::
SNOWPACK

:::::::::
assimilates

:::
the

:::
data

::
if

:::
SD

::
is

::::
given

::
as

:::::
input.

::::::::
Reflected

::::
SW

:::::::
radiation

::
is

:::
also

:::::
given

::
as

:::::
input,

::
to

:::::::
prevent

::::::::
inaccurate

:::::::::::::::
parameterizations

::
of

::
the

:::::::
albedo.

:::
The

:::::::::::
precipitation

:::
data

:::
set

::
is

:::::::::
assimilated

::::
with

:::
the

:::
five

:::::::
possible

::::
fresh

:::::
snow

::::::
density

:::::::::::::::
parameterizations

::
in

:::::::::::
SNOWPACK.200

::::::::::
SnowModel

::::::
allows

:::
the

::::::::
possiblity

::
to
:::::::::

assimilate
:::
the

:::::::::::
precipitation

:::::
when

:::::
SWE

::
is

::::::
given,

:::
but

::
is

:::
not

::::
able

::
to
:::::

cope
::::
with

::::::::
reflected

:::
SW

::::::::
radiation

::
as

:::::
input.

:::::::::
Therefore,

:::
six

:::::::::
ensembles

:::
are

:::::
made

:::
out

:::
of

:::
two

::::::
albedo

::::
and

::::
three

:::::
fresh

:::::
snow

::::::
density

:::::::::::::::
parameterizations

::
to

:::
find

:::
an

::::::::::
assimilated

:::::::::::
precipitation

::::
data

:::
set.

:::::::
Second,

::::
the

::::::::::
precipitation

::
is
::::::::::::

reconstructed
:::::
from

:::
the

:::::
SWE

:::::::::::
observations,

::::::
which

:::
was

:::::::::
computed

:::::
using

:::
the

:::::::::
cumulative

:::::::
positive

:::::
SWE

::::::::::
(potassium)

:::::::
changes

::::::
during

:::::::::::
precipitation

:::::
events

::::::::
(detected

:::
by

:::
the

:::::::
Geonor

:::::::
T-200B).

::::
This

::::::::::
cumulative

::::
SWE

::::::::
approach

:::::::
reduced

:::
the

::::::::
inclusion

::
of

:::::::::
deposition

::
of

:::::::
drifting

::::
snow

::::::::
resulting

:::::
which

::::::
would

:::::
result

::
in205

::
an

::::::::::::
overestimation

::
of

::::::
SWE.

:::::::::
Hereinafter

::::
this

::::::::::
precipitation

::::::
dataset

::
is

:::::
called

:::::::
PSWE.

::::::::::
Atmospheric

::::::::
stability

:::
and

:::::
snow

:::::::::
roughness

::::::
length

::::
(z0)

:::
are

:::
key

::::::::::
parameters

::
in

:::::::::
semi-arid

::::::
regions

::::::
where

::::::::::
sublimation

::
is

:::
an

::::::::
important

:::::::
process.

:::
As

::::::::::
SnowModel

::::
only

::::::
allows

::::::::::
atmospheric

:::::::
stability

::::::::::
corrections

:::::
based

:::
on

:::
the

::::::::::
Richardson

:::::::
number,

:::
we

:::::
opted

::
for

::::
this

::::::
method

::::
and

::::::
similar

::::::::
roughness

:::::::
lengths

::
in

::::
both

::::::
models

::
to

:::::
assure

::::::::::::::::
intercomparability.

::::
The

::
z0::::

was
::
set

::
to
::::
both

:::::::
0.001 m

::::
and

::::::
0.01 m.

:::::::
0.001 m

::
is

:::::
based

::
on

::
an

::::::
earlier

:::::::::
sensitivity

::::
study

::::::::::::::::::::::
(Réveillet et al., 2020) and

::::::::::
unpublished

:::::
eddy

:::::::::
covariance

::::::::::::
measurements210

:::::::::::::::::::::
(MacDonell et al., 2013a);

::::::
0.01 m

::
is

:::::
based

::
on

::::::::
literature

:::::::::::::::::::::::::::::::::::::::::
(e.g Brock et al., 2006; Cuffey and Paterson, 2010).

::::
The

:::
first

:::
and

::::::
second

:::::::
approach

::
of

:::
the

::::::::
idealised

:::::
setup

::
are

::::
both

::::::
tested

::::
with

::
z0::

of
:::::::
0.001 m

:::
and

::::::::
0.01 mm,

::::
thus

:::
the

:::::::
idealised

:::::
setup

::
in

::::
total

:::::::
consists

::
of

::::
four

::::
cases

::
of

:::::
each

:::
five

:::::::::::::
(SNOWPACK)

::
or

:::
six

:::::::::::
(SnowModel)

:::::::::::
simulations.

:::
The

::::::::
simulated

:::::
SWE

::::
and

:::
SD

:::
are

::::::::
compared

::
to

:::
the

::::::::
observed

11



::::
SWE

::::
and

:::
SD

:::
and

:::
the

::::::::::
assimilated

::::::::::
precipitation

::::
data

::::
sets

:::
are

::::::
shown.

::::
The

:
P
::::
that

:::::
leads

::
to

:
a
::::
best

:::::::::::::
correspondence

::
to

:::
the

::::::::
observed

::::
SWE

::::
and

:::
SD

::
is
:::::

used
::
in

:::
the

::::::
further

:::::
study.215

3.2.3 Sensitivity analysis of variable parameterizations

To assess the impact of the parameterizations on the snowpack simulation, an ensemble approach based on different com-

binations of albedo and snow density parameterizations was used (e.g. Essery et al., 2013; Lafaysse et al., 2017)
:::
and

:::
z0::::

was

::::
used

::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Essery et al., 2013; Lafaysse et al., 2017, and Sect. 3.2.2). The choice to limit the sensitivity test to these two

::::
three

parameters is discussed in Sect. 5.2.220

For SNOWPACK, 20
::
40

:
runs were performed over the 2017 season based on four different albedoand

:
, five fresh snow

density parameterizations
:::
and

::::
two

:::::::
different

:::
z0::::::

values. Each of the albedo parameterizations is based on empirical relations

derived from continuous observations at Weissfluhjoch (Lehning et al., 2002a) or on grain size (Schmucki et al., 2014), while

the fresh snow parameterizations are empirical formulas depending on the TA, RH, WS and surface temperature. More details

are found in the Sect. S4
::
S1

::::::::::::::
(Supplementary

:::::::
Material (SM))

:
and the mentioned references.225

For SnowModel, an ensemble of six
::
12

:
simulations was run, considering two albedoand

:
, three snow density parameterizations

:::
and

:::
two

::::::::
different

::
z0. The albedo parameterizations range between 0.6 and 0.9 depending i) on TA solely (more details in Liston

and Hall (1995), Liston and Elder (2006b) and in Sect. S4
::
S1 (SM)) or ii) on TA and time (Strack et al., 2004, and Sect. S4)

::::::::::::::::::::::::::
(Strack et al., 2004, and Sect. S1).

SnowModel’s default fresh snow density parameterization depends on the wet bulb temperature, but we included two fresh

snow density parameterizations from SNOWPACK depending on TA, RH, WS and surface temperature to test the model230

more extensively. In these additional parameterizations, we preserved the SnowModel defaults for minimum (50 kg m−3) and

maximum fresh snow density (158.5 kg m−3).

Each of the ensemble simulations was forced by the unperturbed measurements (Pref ,
::::::::::
observations

:
(TA, RH, PA, WS, WD,

S↓, L↓) :
as

:
described in Sect. 2.3 and

:::
the

:
P
::::
data

::::::::
acquired

::::
after

:::
the

::::::::
idealised

::::
setup

:::::
(Sect.

::::::
3.2.2).

::::
The

::::::::::
simulations

:::
are evaluated

by comparing the model output of SD, SWE and albedo with the corresponding observations. Based on this evaluation the235

simulation with the lowest RMSE and highest R2 between the observed and modelled albedo is chosen as the reference for

the forcing sensitivity analysis discussed in Sect. 3.2.1.

3.3 Forcing uncertainty estimation

3.2.1
:::::::
Forcing

::::::::::
uncertainty

:::::::::
estimation

To assess the model sensitivity to meteorological measurement uncertainties, a
::::

bias
::::

has
::::
been

:::::::
applied

::
to

:
the meteorological240

forcing presented in Sect. 2.3 is perturbed to generate an ensemble of 1000 forcing files.
:::::::::::::::::::::
Raleigh et al. (2015) have

::::::
shown

:::
that

:::
the

::::::
model

::::::
outputs

:::
are

:::::
more

::::::::
sensitive

::
to

::::::
forcing

::::::
biases

::::
than

:::::::
random

:::::
errors.

:
Therefore, all input variables except P were

modified by adding hourly perturbations
::::
biases

:
with a normal distribution N(µ= 0,σ2) with σ the uncertainty

:::::
range

:::::
taken

::::
from

:::::::::::::::::::::
Raleigh et al. (2015) and reported in Table 3. The precipitation perturbations consisted of adding random variations

N(µ= 0,σ2) to the reference precipitation (Pref,tot: 278 mm w.e. a−1) based on the mean Pmean,t between the reconstructed245
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Table 3. Forcing data for the snow models with the corresponding uncertainty σ used in the MC
:::::::
ensemble simulation. The uncertainties

:::::
ranges of PA, WS, WD

::
TA, S↓, and L↓,:::

RH
:::
and

:::
WS

:
are the uncertainties

:::::
ranges as

::::
used

::
by

::::::::::::::::
Raleigh et al. (2015).

:::
The

:::
WD

:::::
range

:
is
::::::::
according

:
to
:::

the
:::::::::
uncertainty given by the manufacturers and for TA

:::::::::
manufacturer

:
and RH, the uncertainties as

:
P
:::::
range

::
is described in Sect. 2.3 are

used
::::
3.2.1.

Observation
::::::
Forcing Uncertainty σ in MC simulation

:::::::::
Distribution

: :::::
Range

: ::::
Unit

Accumulated precipitation (P) Between 190 and 470
::::::
Uniform

:
[
::::::::
-100,+100] mm a−1, Fig. S2.1

Air pressure (PA) ±1.0hPa
:::::
Normal

:
[
::::::::
-100,+100]

::
Pa

Air temperature (TA) ±2.8
::::::
Normal [

::::::
-3.0,+3.0] ◦C

Incoming longwave radiation (L↓) 10% (95% confidence level)
:::::
Normal

:
[
::::::
-25,+25]

::
W

::::
m−2

Incoming shortwave radiation (S↓) 5% (95% confidence level)
::::::
Normal [

::::::::
-100,+100]

::
W

::::
m−2

Relative humidity (RH) ±9.97%RH
:::::
Normal

:
[
::::::::
-0.25,+0.25]

::
%

Wind speed (WS) ±0.3 m /s
:::::
Normal

:
[
::::
-3,+3]

:
m

:::
s−1

Wind direction (WD) ±
::::::
Normal [

:::
-3,+3] ◦

and measured hourly precipitation rate at every time step),
:::
The

:::::
biases

:::
has

:::::
been

::::
kept

:::::
within

::::
their

::::::::::::
corresponding

:::::
range

::::::
(Table

::
3)

::
by

::::::::
assuming

::::
that

:::
the

::::::
99.7%

::
of

:::
the

::::
bias,

::::
thus

::
3σis considered

:
,
::
is

::::::
within

:::
this

::::::
range.

::::
This

:::::::
positive

:::::::::
component

:::
of

:::
the

:::::
range

::
is

::::::
divided

::
by

:::::
three

:::
and

:::::::::
multiplied

::::
with a normally distributed random number , used as scaling factor and kept constant throughout

the time series. Based on this scaling factor, the reference precipitation for each of the
:::
and

:::::
added

::
to

:::
the

::::::::
observed

:::::::
forcing.

:::
We

::::
have

::::::
chosen 1000 simulations (Psim,t) at time t is modified using:250

Psim,t = Pref,t +σPmean,t

The precipitation distribution results are shown in Fig. S2.1a where the total precipitation
::::
runs

::
as

::
a

::::::::::
compromise

::::::::
between

:::::::::::
computational

:::::
effort

::::
and

:
a
:::::::
reliable

:::::::::
confidence

:::::::
interval.

:::
The

::::::::::
distribution

::
of

:::
the

:::::::::::
precipitation

:::::::::
uncertainty

::
is

::::::
chosen

::
to

::
be

::::::::
uniform,

::
as

:::
the

::::::::
observed

::::::::::
precipitation

::::
was

:::
low

::::
(i.e.

:::::
180.7

::::
mm

:::
w.e.

:
at the end of the seasonis normally distributed around the reference precipitation (Fig. S2.1b) .255

:
)
:::
and

:::
the

::::::
results

::
in

::::
Sect.

:::
4.1

:::::::
between

:::
the

::::::::::
assimilated

::::::::::
precipitation

::::::::::::
(SnowModel)

:::
and

::::::
PSWE

:::::
cover

:::::::
approx.

:::
200

::::
mm

::::
w.e..

Subsequently, based on the disturbed input data, 2000 snow model simulations are performed: 1000 with meteorological

perturbations
:::::
biases and 1000 with combined meteorological/precipitation perturbations

:::::
biases. This setup was chosen to enable

the differentiation between meteorological and precipitation uncertainties, which would be difficult in a combined approach

where precipitation uncertainty would dominate.260

3.3 Model evaluation

Model evaluation consists of comparing the model output of SD, SWE and albedo with the corresponding observations. For the

:::::::
idealised

::::
case

:::
this

:::::::
consists

::
of

:::::::::
evaluating

:::
the

::::::
RMSE

:::
and

:::
R2

:::::::
between

:::
the

::::::::
modelled

:::
and

:::
the

::::::::
observed

:::
SD

::
to

::::::
acquire

:::::::::::
precipitation

:::
data

::::
that

:::::::::
approaches

:::
the

::::::
correct

:::::
mass

:::::::
balance.

:::
For

:::
the

:
parameterization uncertainty, this consists of evaluating the RMSE and
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R2 between the modelled and the observed albedo, to select the best reference for each model (i.e. twenty
::
40 for SNOWPACK265

and six
::
12

:
for SnowModel). It

::
In

::::
this

::::
case,

::
it
:
is chosen to only compare between modelled and observed albedo, as this

ensures the best possible net shortwave radiation term in the energy balance equation. The forcing uncertainty is evaluated

by comparing the differences of end of snow season. Last, the differences in ablation processes of the parameterizations are

shownalong with the energy fluxes of each reference simulation.

4 Results270

4.1
:::::::

Idealised
::::::::::
simulations

:::
The

::::::::::
assimilated

::::::::::
precipitation

:::::::
datasets

::::::::
markedly

:::::
differ

:::::::
between

:::::::::::
SNOWPACK

:::
and

:::::::::::
SnowModel

::::
(blue

:::::
lines,

:::
Fig.

:::::
3e,f).

:::
For

::::::
clarity

:::
Fig.

::
3

:::::
shows

::::
only

:::
the

::::::
results

::
of

:::
the

::::::::
idealised

::::::::::
simulations

:::
for

:::
the

::
z0:::::

value
::
of

:::::
1 cm;

:::
the

::::::
results

:::
for

::::
both

::
z0::

is
::::
1 cm

::::
and

:::::
1 mm

::
is

::::::::
displayed

::
in

::::
Sect.

:::
S2.

::::
For

:::::::::::
SNOWPACK,

:::::
eight

:::
out

::
of

:::
ten

::::
runs

::::
with

:::::::
z0=1 cm

:::::::
crashed,

::::
thus

::::
only

::::
two

::::::::::
simulations

::
are

:::::::
shown.

::::::::::
Assimilation

::
of

:::
SD

::
in

:::::::::::
SNOWPACK

::::::
results

::
in

:::::
SWE

:::
that

:::::::::::
approximates

:::
the

::::::
PSWE

::::
(Fig.

:::
3),

::::::
leading

::
to

:::::::::
assimilated

:::::::::::
precipitation275

:::::::
amounts

::
of

::::
2.55

::
to

::::
3.02

::::
times

:::
the

::::::::
observed

::::::::::
precipitation

::::
and

:
a
::::
good

:::::::::::::
correspondence

::::
with

:::
the

::::::::
observed

:::
SD

:::
(i.e.

:::::::
RMSE

:::::::
between

:::
9.2

:::
and

:::::::
11.5 cm

:::
and

:::
R2

:::::::
between

::::
0.90

::::
and

::::
0.93

::::::::
calculated

::::
with

:::
the

::::::::
observed

:::
and

:::::::::
simulated

:::
SD,

::::
Fig.

::::
3a).

::::::::::
Assimilation

::
of

:::::
SWE

::
in

::::::::::
SnowModel

::::
only

::::::
adjusts

:::
the

::::::::::
precipitation

:::::::
between

:::
22

:::
and

::
27

::::
June

:::
and

::::::::
between

:
7
:::
and

:::
12

::::::
August.

::::
The

::::::
amount

::
of

:::::::::::
precipitation

::
is

:::
not

:::::::
adjusted

::
at

:::
the

::::::::
beginning

:::
of

:::
the

::::::
season

:::
and

::::
thus,

:::
the

::::::::::
assimilated

::::
data

::
by

:::::::::::
SnowModel

:::
still

:::::
leads

::
to

::
an

:::::::::::::
underestimation

:::
of

::
the

::::
SD

:::
and

:::::
SWE

::::
(Fig.

:::::
3b,d).

::::
The

::::::
missing

::::::::::
adjustment

::
of

:::
the

:::::
SWE

:
is
::::::::
probably

::::::
caused

::
by

:::::::::::
SnowModel280

:::::
taking

::
a

::::::::
maximum

:::
of

::
99

:::::
SWE

:::::::::::
observations

::::
and

:::
the

::::::::::
observations

:::
do

:::
not

:::::::
exactly

:::::
allign

::::
with

:::
the

:::::::::::
precipitation

::::::
events,

::::::
which

::::
leads

::
to

:::::::::
correction

::::::
factors

::
of

::::
one

:::
(i.e.

:::
no

:::::::
change)

::
to

:::
the

:::::::::::
precipitation

::::
data.

::::
The

:::::::::
assimilated

:::::::::::
precipitation

::
is

:::::::
approx.

:::
1.6

:::::
times

::
the

::::::::
observed

:::::::::::
precipitation

:::
and

:::
the

::::::::::::::
correspondence

::
of

:::
the

::::::::
observed

::::
with

:::
the

:::
SD

::
is

:::::
lower

::::
than

::::
with

:::::::::::
SNOWPACK

::::
(i.e.

:::::::
RMSE

:::::::
between

:::
7.1

:::
and

:::::::
17.1 cm

:::
and

:::
R2

::::::::
between

::::
0.19

:::
and

::::
0.90

:::::::::
calculated

::::
with

:::
the

:::::::
observed

::::
and

::::::::
simulated

:::
SD,

::::
Fig.

::::
3b).

::::
Both

::::::
models

:::::::::::
overestimate

:::
the

::::
SWE

:::::::
between

::::::::
mid-July

:::
and

:::::::::
September

:::::
when

::::::
PSWE

:::
was

:::::
given

::
as

::::
input

::::
(red

::::
lines

::
in

::::
Fig.

:::::
3c,d).285

::::
This

:
is
::::::
likely

::::::
caused

::
by

:::
an

::::::::::::
overestimation

::
of

:::
the

::::::
PSWE

::
at

:::
the

:::
end

:::
of

::::
June.

:::::
Only

:::::
small

:::::::
amounts

::
of

:::::::::::
precipitation

:::
are

::::::::
observed

:
at
::::

the
::::::::::
precipitation

::::::
gauge,

:::
but

:::
the

::::::::
observed

:::::
SWE

::::::::
distinctly

::::::::
increases

::::::::
probably

:::
due

:::
to

::::
snow

:::::
drift,

::
as

::::::
strong

:::::
winds

:::::
were

::::
also

::::::::
observed.

::
A

::::::
similar

::::
thing

::::::
occurs

::
at

:::
the

:::
end

::
of

::::::::::
September.

:::
The

:::::::
models

::::::::
markedly

:::::::
increase

:::
the

::::::
amount

::
of

:::::::::::
precipitation

::::::::
(between

::
97

:::
and

::::
137

::::
mm

::::
w.e.)

::
in

:::
the

:::::::::::
assimilation

::::
runs,

:::
but

::::
only

:::::
small

::::::::
amounts

::
of

::::::::::
precipitation

::::
and

::::::
strong

:::::
winds

::::
were

:::::::::
observed.

::::
This

::::::::::::
overestimation

:::
and

:::
the

:::::
need

:::
for

::::
SWE

:::
as

::::::::
validation

::::
data

:::
are

:::::::::
indications

::::
that

:::
the

::::::
PSWE

::
is

:::
not

:
a
:::::

valid
:::::::::::
precipitation

::::::
dataset

:::
for290

:::
our

:::::::::
simulations

::
,
:::
but

:
it
::
is
::::
also

:::::::::
unfeasible

::
to

:::::
select

::::
one

::
of

:::
the

:::::::::
assimilated

:::::::::::
precipitation

::::
sets

::
by

::::::::::::
SNOWPACK

::
as

:::
the

::::::
amount

:::
of

::::::::::
precipitation

::
is

::::::::
markedly

::::::::
increased

::
at

:::
the

:::
end

::
of
::::::::::
September

:::
and

:::
we

::::
want

::
to

:::
use

:::
SD

:::
as

::::::::
validation

::::
data.

:

::::::::
Therefore,

:::::
three

:::::::
different

:::::::::::
precipitation

::::::::::
corrections

::::::::
depending

:::
on

::::
WS

::::::::::::::::::::::::::::::::::::::::
(Smith, 2007; MacDonald and Pomeroy, 2007) or

:::
on

::
TA

::::
and

:::
WS

::::::::::::::::::::
(Wolff et al., 2015) were

:::::::
applied

:
to
:::
the

::::::::
observed

::::::::::
precipitation

::::
(See

:::::
Sect.

:::
S3).

:::
Eq.

::::
(12)

::::
from

::::::::::::::::::::
Wolff et al. (2015) with

:::
WS

::::::::
corrected

:::
to

:::::
gauge

::::::
height

:::::
using

::
a
::::::::::
logarithmic

:::::
wind

::::::
profile

::::::::::::::::::::::::::
(e.g. Lehning et al., 2002a) and

:
a
:::
z0::

of
:::::::

0.01 m
::
is

::::
used

:::
as295

::::::::::
precipitation

::::
data

:::
in

:::
the

::::::
further

::::::
study,

::
as

::::
this

:::::::::
correction

:::::::::
approaches

::::
the

::::::
PSWE

:::
and

::::::
shows

:::
an

:::::::
increase

::
in
:::::::::::

precipitation
:::

of

::::
2.35

::::
times

:::
the

::::::::
observed

:::::::::::
precipitation

::
at

::
the

::::
end

::
of

:::
the

::::::
season.

:
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Figure 3.
:::
a-b)

:::
SD,

::::
c-d)

:::::
SWE

:::
and

::::
e-f)

:::
the

::::::::
cumulative

:::::::::
assimilated

::::::::::
precipitation

:::
for

:::::::::::
SNOWPACK

:::::
(a,c,e)

:::
and

::::::::::
SnowModel

:::::
(b,d,f)

::::
and

:::::::::
observations

::::::
(black).

::::
The

::::::
different

::::::
forcing

::::::::
parameters

:::
are

:::::
given

::
in

::
the

:::::::
legenda.

:::
The

:::::
dotted

::::
line

::
of

::::
SWE

:::::::
indicates

:::
the

:::
less

::::::
reliable

::::::
(lower)

::::
SWE

::::::::::
measurement

::::
from

::::::
thallium

::::
rays

:::
(See

::::
Sect.

::::
2.3).

:::
The

:::::::::
simulations

:::
for

::
z0 :

=
:::::
1 mm

::
are

:::::
found

::
in

::::
Sect.

:::
S2.

4.2 Sensitivity analysis of parameterizations

The SW
:::
SD and SWE evaluation of the parameterization sensitivity analysis shows

::::
show that the simulated SD and SWE are

lower than
::
in

::::
good

:::::::::::::
correspondence

::::
with

:
the observations for both models (Fig. 4). This can be explained by the precipitation300

underestimation recorded by the precipitation gauge despite correcting for wind,
:::
but

::::
also

::::::::::
overestimate

:::
the

:::::
SWE

::
at

::
the

:::::::::
beginning

::
of

:::
the

::::::
season.

::::
The

::::::::
correction

:::
of

:::
the

::::::::::
precipitation

::::
with

:::
the

::::::::
equation

::::
from

:::::::::::::::::::::::::::
Wolff et al. (2015) overestimates

:::
the

:::::::::::
precipitation

::
in

:::
this

::::::
period,

:::
and

::::
also

:::::
leads

::
to

::
an

::::::::::::
overestimation

:::
in

::
the

::::::::::
simulations.
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For SNOWPACK, the spread of the simulated SD from the 20 different calibrations
::
40

:::::::
different

:::::::::::::::
parameterizations

::::
(20

:::::::::
simulations

:::
for

:::
z0 :

=
::::::

1 mm
:::
and

:::
20

:::
for

::
z0::

=
:::::
1 cm)

:
is the largest at the beginning (i.e. May, June) and at the end of the snow305

season (i.e. October) (Fig. 4a). The date of snow free surface ranges between
:
is
:::
the

:::::::
earliest

::
at 8 October and 19 November

::::::
exceeds

:::
the

::::::::
simulated

::::::
period (i.e. 41 days of differences

::::
after

:::
30

::::::::
November), depending on parameterization choice, and covers

the observed date of snow removal (i.e. 16 October). The different SNOWPACK parameterizations
::::::::
(equations

:::
in

::::
Sect.

::::
S1)

show a mean SD difference of 10
::
32

:
cm (which corresponds to 9

::::
28.9% of the total SD) between the minimum and maximum

simulated SD (Fig. 4a), with a maximum of 84
:::
127

:
cm observed at 12 May, the first day of snowfall

::
27

::::
June. For the SWE,310

this corresponds to a mean difference of 23.9
:::
98.3

:
mm w.e. (i.e 6.9

:::
28.2% of the total SWE) (Fig. 4c). The large modelled

SD spread in May and June can be explained by the different density parameterization choices as it is not apparent in the

SWE simulations
::::
(Fig.

:::
4g). The rapid decrease (3-8 cm d−1) of snow depth until July, caused by compaction of the snowpack,

is simulated by the majority of fresh snow density parameterizations, while only one fresh density parameterization models

a more moderate compaction (Fig. 4a
:
,g). From July onward, the measured snow depth reduces 10 centimetres per 25 days,315

which is only simulated by the fresh density parameterization that simulated moderate compaction before July.
::::
Snow

:::::::
density

:::::::::::
measurements

:::::
were

:::::::::
unavailable

:::
in

::::
2017

:::
and

:::
the

::::::::
observed

:::::
snow

::::::
density

::
in

::::
Fig.

::
4g

::
is
:::::::::
calculated

::::
with

:::::::::
SWE/SD .

::::
The

::::::::
observed

::::
snow

::::::
density

::
is
::::
only

::::::
shown

::::
until

:::
the

:::
end

::
of

:::::::
August,

::
as

:::
the

:::::::::
calculation

:::
led

::
to

:::::::::
unrealistic

:::::::::
decreasing

::::
snow

::::::::
densities

::::
after

:::::::
August,

:::::
likely

::::::
caused

::
by

::::::
higher

:::::::
readings

::
at

:::
the

:::
SD

::::::
sensor

::::
than

::
at

:::
the

:::::
SWE

::::::
sensor,

::
as

:::::
those

:::::::
sensors

::::
were

::::::
placed

::
on

::::::::
different

::::
sides

:::
of

::
the

:::::::::::::
meteorological

:::::
tower

::
or

::
to

::
a

:::
bias

::
of

:::
the

:::::
SWE

::::::
sensor

::
in

:::
the

:::::::
ablation

:::::
season

:::
as

::::::::
explained

::
by

::::::::::::::::
Smith et al. (2017).

:
320

The albedo evaluation (Fig. 4e) and corresponding statistics (Sect. S5
:::
S4) highlight one parameterization choice that outper-

forms all other parameterizations (i.e. RMSE of 0.09
::
(-)

:
and R2 of 0.85 compared to the

::::
0.86

:::::::::
calculated

::::
with

:::
the

::::::::
observed

:::
and

::::::::
simulated

:
albedo) in terms of snow compaction after snowfall events

:
,
:::
end

:::
of

::::
snow

:::::::
season, and albedo evolution (Fig. 4e).

Therefore it
:::
this

:::::::::
simulation

::::
with

:
a
::
z0:::

of
::::
1 cm is selected as the reference simulation (represented in bold lines in Fig. 4) for the

forcing uncertainty simulations.325

For SnowModel, the largest SD spread of the six ensembles
::
12

:::::::::
ensembles

::::
(six

:::
for

:::::
every

:::
z0,

::::::::
equations

::
in

:::::
Sect.

:::
S1)

:
occurs

at the end of the simulated snow season (i.e. Augustand September ,
:::::::::
September

::::
and

:::::::
October) with complete snow removal

between 19 and 27 September
::
21

:::::::
October

::::
and

::
12

:::::::::
November

:
(i.e. 8

::
22

:
days) (Fig. 4b). The mean SD difference between the

parameterizations is 11
::
20 cm (i.e. 10

::
18% of the total SD), with a maximum of 108

:::
152

:
cm at 12 May,

::
the

::::
first

::::
snow

::::
fall, while

for SWE the mean difference is 18
::
57 mm (i.e. 5.2

::::
19.2% of the total SWE) with a maximum of 187 mm at 27 and 28 June

:::
317330

:::
mm

::::
w.e.

::
at

::
12

:::::::
August (Fig. 4d).

A closer analysis of Fig. 4f shows that SnowModel’s output clusters into two groups, where the grouping is determined by

the albedo parameterization with limited influence of fresh snow density parameterizations. The differences between the two

clusters increases as the difference in albedo between the parameterizations increases at the end of May. Quantitative analysis

(Sect. S5
::
S4) shows best performance scores for the time-evolution albedo approach in combination with the reference snow335

density parameterization
:::
and

::
a

::
z0::

of
::::
1 cm

:
(RMSE of 0.123

:::::::
0.150 (-)

:
and R2 of 0.776

:::::
0.600). Therefore, these are used as the

reference simulation (bold line in Fig. 4).
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Figure 4. a-b) SD, c-d) SWEand ,
:
e-f) albedo

:::
and

:::
g-h)

::::
snow

::::::
density

:
simulations (coloured) of the ensemble approaches for SNOWPACK

(red) and SnowModel (blue) and observations (black). The bold coloured lines show the reference simulations chosen as the most op-

timal calibration
:::::::::::
parameterizaton

:::
set

:
according to the measured albedo.The dotted line of SWE indicates the less reliable (lower) SWE

measurement from thallium rays (See Sect. 2.3).

Comparison of the SNOWPACK and SnowModel output shows similar SD variations attributed to snow density parame-

terizations that simulate low density snowfall with strong subsequent compaction
::::::
notable

:::::::::
subsequent

::::::::::
compaction

:::::
(Fig.

::::
3g,h).

In reality, this happens at Tapado until June, followed by a different regime with denser fresh snow and less compaction. The340

biggest difference between the models, however, is the result of the albedo parameterizations. Where SnowModel relies on

two simplistic albedo models based on
::
TA

:::
and

:
albedo ranges, SNOWPACK relies on empirical relations which are

::::::::
calibrated

::::
with

:::::::::::
measurements

:::
in

:::::::::
Switserland

::::
and not adapted to the

:::
arid

:
Tapado climate. Nevertheless, the albedo of the reference run of

SNOWPACK performs well in a semi-arid area.
::::
Last,

:::
the

::::::::::
simulations

::
by

:::::::::::
SnowModel

::
all

:::::::::::
approximate

:::
the

:::
end

::
of

:::::
snow

::::::
season

:::::
within

::
a

:::::
period

:::
of

::
22

:::::
days,

:::::::
whereas

:::
the

::::::::::
simulations

::
at

:::
the

::::
end

::
of

::::::
season

:::::::::
noticeably

::::::
diverge

:::
for

::::::::::::
SNOWPACK.

:::::
This

::
is

:::::
likely345

:::::
caused

:::
by

:::
TA

:::::
above

:::
the

:::::::
freezing

:::::
point

::
at

:::
the

:::
end

::
of

:::::::
October

::::
and

:
a
:::
fast

::::
melt

:::::::::
simulated

::
for

:::
all

:::::::::
ensembles

::
by

:::::::::::
SnowModel.
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4.3 Sensitivity analysis of forcing data

4.3.1 Without precipitation uncertainties

The forcing perturbations
:::::
biased

::::::
forcing

:
without precipitation uncertainty show that SNOWPACK is more sensitive than

:
a

::::::
similar

::::::::
sensitivity

:::
for

::::::::::::
SNOWPACK

::::
and SnowModel (Figures 5a,c) with mean SD/SWE differences of 7.9

::
52

:
cm/17.5

:::
163350

mm w.e. for SNOWPACK and 5.7
::
47 cm/7.7

:::
172 mm w.e. for SnowModel. Also temporally, SNOWPACK shows larger

sensitivities with larger spread uncertainty throughout the season, whereas for SnowModel the spread only emerges after

mid-June
::::
The

::::::::::
simulations

::::
with

::::::::::
SnowModel

:::::
show

:::::
more

::::::::::
uncertainty

::
in

::::
the

::::::
melting

::::::
period

:::::
(e.q.

::
in

::::::::
October),

::::
but

:::::::::
otherwise,

::
the

::::::::::
simulations

::::::
mainly

:::::::
overlap. The forcing uncertainty results in complete snow removal simulations ranging from 25 Sep

- 15 Oct
::
27

::::::
August

::
to
:::

28
:::::::::
November

:
(i.e. 19

::
93 days) for SNOWPACK and 17-20 September

::
30

:::::::
August

::
to

:::
25

:::::::::
November355

(i.e. 3
::
87

:
days) for SnowModel. The larger difference between both models in terms of complete snow removal is probably

caused by precipitation input variations in SNOWPACK as result of TA, RH and S↓ constraints on snowfall in SNOWPACK.

Since these requirements are not always met when the forcing is perturbed, it may result in precipitation variations in the

input
::::::::
reference

:::::::::
simulations

:::
of

::::
both

::::::
models

:::
are

:::::::
located

::
in

:::
the

::::::
middle

::
of

:::
the

::::::
spread

::
of

:::::::::::
simulations,

:::::
which

::
is

::::::::
coherent

::::
with

:::
the

::::::
normal

:::::::::
distribution

:::
of

:::
the

:::::
biases

:::::::
applied

::
to

:::
the

::::::
forcing.

::::
The

::::::
biggest

::::::::::
differences

:::::::
between

:::
the

::::::
models

:::
are

::::::
found

::
in

:::
the

::::
way

:::
SD360

:::
has

::::
been

:::::::::
simulated.

:::
The

::::::::
reference

::::
run

:::
and

:::
the

:::::
1000

:::::::::
simulations

::::
with

::::::
biased

::::::
forcing

:::::
show

:::::::
marked

::::::
settling

::::
rates

:::::::::
througout

:::
the

:::::
season

::::
with

:::::::::::
SnowModel,

:::::::
whereas

:::
the

:::::::
settling

::
is

:::::
more

::::::::
moderate

:::
for

::::::::::::
SNOWPACK.

::::
This

:::::::
depends

::
on

:::
the

:::::::
chosen

::::
snow

:::::::
density

:::::::::::::
parameterization

::::
and

::
is

::::::::
discussed

::::::
further

::
in

::::
Sect.

::
5.

4.3.2 With precipitation uncertainties

The forcing perturbations with precipitation uncertainty shows that precipitation uncertainty has a much larger
::::
large

:
impact on365

SD and SWE ensemble spread (Fig. 5b,d). Averaged over the season this results in SD/SWE differences of 18.4
::
75 cm/52.5

:::
257 mm w.e. and 24.9

::
70 cm/63.7

:::
262

:
mm w.e. for SNOWPACK and SnowModel, respectively. Despite

:::::
Along

::::
with

:::
the similar

average spread over the entire season observed for both models, the range of the simulated day of free snow surface is higher for

SNOWPACK (i.e. 24 September and
:::
also

:::::::
similar;

:::
for

:::::::::::
SNOWPACK

:::
this

::::
date

::
is
:::::::
between

:::
29

::::::
August

::::
and

::::
later

::::
than 30 October)

than for SnowModel
::::::::
November

::::
and

:::
for

::::::::::
SnowModel

:::
this

::
is
::::::::
between

::
20

::::::
August

::::
and

::
29

:::::::::
November

:
(i.e. between 16 September370

and 6 October). Indeed, the spread at the end of the ablation season is diminishing for SnowModel while it is increasing for

SNOWPACK
:::
101

:::::
days).

::::::
Again,

:::
the

:::::
main

:::::::::
differences

:::
are

:::::
found

::
in

:::
the

::::::
settling

:::
of

::
the

:::::::::
snowpack

::::
(See

::::
Sect.

:::
5).

4.4 Consequences of the model choice and calibration
::::::::::::::::
parameterizations on sublimation

Ablation rates (Fig. 6) show that sublimation is the dominant driver for
:::::
mode

::
of

:
mass loss in both models until September

(i.e. cold period), and followed by melt from September to the end of the season (i.e. end of November, and called the melting375

period). Note that for SNOWPACK, the first day of free snow
:::::::
snow-free

:
surface of the reference run is 9

::
11

:
October and for

SnowModel 20 September
::
27

:::::::
October.
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Figure 5. Observed (black) and simulated (colour) SD and SWE by SnowPack and SnowModel forced by the 1000 ensembles of meteorolog-

ical data. The reference run (see Sect. 3.2.3) of both models is the bold coloured curve. The shaded area corresponds to the 1000 runs of a)-b)

snow depth and SWE c)-d) of SNOWPACK (red) and SnowModel (blue) for the MC run
::::
with

:::::
biased

:::::
forcing. a)-c) are without precipitation

uncertainties and b)-d) are with precipitation uncertainties.The dotted line of SWE indicates the less reliable (lower) SWE measurement from

thallium rays (See Sect. 2.3)

For SNOWPACK, the spread of the averaged sublimation rates corresponding to the ensemble runs from the first day of

snow to 15 October ranges between 1.48 and 1.61
::
20

:::::::::
September

::::::
ranges

:::::::
between

::::
1.41

::::
and

::::
2.96 mm w.e. d−1 (Fig. 6a). During

the cold period, when no melt occurs, all parameterizations result in similar sublimation amounts
::
the

::::::::::
sublimation

::::::::
amounts380

::::::
mainly

::::::
depend

::
on

:::
the

:::
z0, with sublimation rates ranging between 1.16 and 1.32

::::
1.40

:::
and

::::
3.18

:
mm w.e. d−1. At the end of the

season, the total sublimation ranges between 142 and 179
:::
153

:::
and

::::
364

:
mm w.e. (corresponding to 51.3 to 64.6

::::
36.2

::
to

::::
86.0%

of the total ablation). During the melting period, the ensemble runs show a large spread of melt rates ranging between 2.15 to

9.05
:::
0.97

:::
to

::::
17.7 mm w.e. d−1. The total amount of runoff is between 60 and 105

::::
28.9

:::
and

::::
236 mm w.e. for SNOWPACK and

this model also simulates evaporation, which contributes for 7.3 to
::::::
between

:::
2.5

::::
and 10.2% of total ablation (Fig. 6a).385
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For SnowModel, sublimation differences between the parameterizations are larger
::::::
similar (Fig. 6b) with average sublimation

rates from the first day of snow to 20 September ranging between 1.26 to 2.04
:::
1.27

:::
to

::::
2.79

:
mm w.e. d−1, and it is worth

noting that significant differences are also observed during the cold season (Fig. 6a). At the end of the winter season the

sublimation totals range between 119 and 176
:::
154

:::
and

::::
342 mm w.e. (which corresponds to 42.7 to 63.5

::::
36.4

::
to

::::
80.7% of the

total ablation). Significant differences are also calculated during the melting period, when the simulated melt rate leads to a390

total melt difference of 58
:::
The

:::::
runoff

::
is

:::::::
between

::::
81.7

::::
and

:::
269

:
mm w.e.at the end of the season. .

::
A

:::::
closer

:::::::
analysis

::
of
::::

Fig.
:::
6b

:::::
shows

:::
that

::::::::::::
SnowModel’s

:::::
output

:::::::
clusters

:::
into

::::
four

:::::::
groups,

:::::
where

:::
the

:::::::
grouping

::
is

::::::::::
determined

::
by

:::
the

::::::
albedo

:::::::::::::
parameterization

::::
and

::
z0::::

with
::::::
limited

::::::::
influence

::
of

:::::
fresh

::::
snow

:::::::
density

:::::::::::::::
parameterizations.

::::
The

:::
two

:::::
lower

:::::::
clusters

:::
are

:::::
linked

::
to
:::
the

:::
Z0:::::

value
::
of

::::::
1 mm.

:::
The

::::::::::
differences

:::::::
between

:::::::
clusters

:::
for

:::::::
different

:::
z0::::::

values
:::::::
increase

::
as

:::
the

:::::::::
difference

::
in

::::::
albedo

::::::::
between

:::
the

:::::::::::::::
parameterizations

:::::::
increase

:
at
:::
the

::::
end

::
of

:::::
June.395

The spread of the ensemble runs for both sublimation and melt simulated by SnowModel can be attributed to the choice of

the albedo parameterization. While the ensemble calibration
::::::::::::::
parameterization simulations do not lead to significant differences

in the modelled end date of the snow season (i.e. difference of eight
::
22

:
days), the parameterization strongly impacts

::::::
albedo

:::::::::::::
parameterization

::::
and

::
z0:::::

value
::::::
directly

::::::
impact

:
the proportion of sublimation versus melt to the total ablation (Fig. 6b,d). During

the cold period, simulations considering the lowest albedo
:::
and

::
z0::

of
:::::
1 cm (the reference simulation), lead to a higher sublima-400

tion rate (Fig. 6b). Indeed, a lower albedo increases the energy absorbed by the snowpack, and as the temperature is below the

freezing point, this energy leads to an increase in the sublimation.
:
A
::::::
higher

::
z0::::::::

enhances
:::
this

:::::::
process

::::
even

:::::
more

::
as

:::
this

:::::
leads

::
to

:
a
:::::
more

:::::::
negative

:::::
latent

:::
heat

:::::
flux. Second, the increase of net SW

::::::::
shortwave radiation also affects the physical properties of the

snowpack resulting in an increase of compaction (Fig. 4b
::
,h). The snow density of the snowpack is therefore higher(Fig. S6.1 in

SM), which directly affects the thermal conductivity of the upper snow layers (Yen, 1981). Changing the surface temperature405

::::::
Surface

::::::::::
temperature

::::::::
variation is directly linked to the latent heat flux and therefore to the sublimation, explaining the different

sublimation ratios simulated depending on the albedo parameterizations
:::
and

::
z0::::::

values.

Contrary
:
In
::::::::

contrast to SnowModel, the albedo parameterization of
::
in SNOWPACK does not affect the sublimation but

strongly
::::::::
noticeably

:
influences the melting speed

:::
rate

:
(Fig.6

:
c), which can be attributed to the more complex characteristics of410

this model. SNOWPACK allows refreezing and evaporation of melting snow within the snowpack, which can lead to a longer

melt season, whereas calculated evaporation leads to a lower amount of runoff from melt. Also, SNOWPACK considers a more

complex representation of snow physics, such as the grain size and the snow surface area (SSA), which directly impacts the

albedo and can help to explain the wide diversity of melt simulations.

415

When comparing the ablation and energy fluxes (Fig. 6 and ??), it is clear that the sublimation rates of both reference runs

are very similar (difference of 27.6 mm w.e. of the cumulative sublimation at 1 September), whereas subtle differences are

related to differences in turbulent and latent heat fluxes (average cold period QL is -28.3 W m−2 for SNOWPACK vs. -34.5 W

m−2 for SnowModel).
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Figure 6. Cumulative sublimation (a,b) and runoff from melt (c,d), simulated by SNOWPACK (red) and SnowModel (blue). For SNOW-

PACK the cumulative evaporation from melt is shown (purple lines in a). Results for all the ensemble calibrations
:::::::
ensembles

:::
of

:::::::::::::
parameterizations are shown and the bold lines correspond to the reference simulations of each model.

At the end of the season, the cumulative melt is comparable between the reference simulations of the two models (90.8420

mm w.e. for SNOWPACK and 86.5 mm w.e. for SnowModel, Fig. 6c,d), although with large differences in melt distribution.

For SnowModel, the entire snowpack melts within a few days (i.e. 11.2 mm w.e. d−1 between 12 and 19 September) while

melt is later and slower in SNOWPACK (7.3 mm w.e. d−1 between 18 and 27 September). This corresponds to higher net SW

radiation and lower albedo simulations in SnowModel during the melting period (Fig. ??), which increases the energy available

for melt and subsequent runoff.425

Evaporation and refreezing of meltwater also explain part of the differences in ablation results between the models. SNOWPACK

simulates 0.30 mm w.e. d−1 of evaporation of the liquid water contained in the snowpack (10% of total ablation corresponding

to a total of 28 mm) and also allows for refreezing due to the low temperature during the night. These processes, not considered
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by SnowModel, reduce the runoff simulated by SNOWPACK, whereas SnowModel often encounters the snowpack threshold

density to activate direct run-off in the bucket scheme.430

Stacked daily averages of the modelled heat fluxes at Tapado AWS simulated with the reference runs of a) SNOWPACK and

b) SnowModel. SWnet is net shortwave radiation, LWnet is net longwave radiation, QS is the sensible heat flux, QL is the

latent heat flux, QG is the heat flux from the ground (only simulated by SNOWPACK), and QM is the energy consumed by

melt. The fluxes are only plotted at the times where the models simulate snow.

5 Discussion435

5.1 Model sensitivity and comparison

Our results show the importance of model parameterization and model structure
:::::::::::::::
parameterizations

:::
and

::::::
model

::::::
forcing over the

snow model choice, despite the limited model options chosen for the ensemble approach, and the large differences in the two

model complexities chosen in this study. This conclusion, found here in an arid environment, is in total agreement with the

studies performed in Alpine
::::
other

:::::
alpine

:
areas (Etchevers et al., 2004; Günther et al., 2019). Günther et al. (2019) highlighted440

for instance the importance of the model structure as being higher than the choice of the parameter values.

In this study, the albedo parameterization appears the most important parameter
:::
one

::
of

:::
the

:::::
most

::::::::
important

:::::::::
parameters

:
to be

properly assessed
:::
(Fig.

::
4,
:::

6), as also reported by the studies performed in Alpine regions (Etchevers et al., 2004; Zolles et al.,

2019). This can be surprising at first glance as in the semi-arid Andes the ablation is mainly driven by the sublimation and

the albedo calibration
:::::::::::::
parameterization

:
is generally crucial to accurately simulate the melt. However, according to the results445

presented here, the two models agree with the larger sensitivity to the albedo parameterization.

:::
The

:::::::
biggest

:::::::::
differences

::::::::
between

:::
the

:::::::
models

:::
are

:::::
found

:::
as

:::
the

:::::
snow

::::::
settles

::::
and

::::::::
therefore

:::::::
depends

:::
on

:::
the

:::::
snow

:::::::
density

::::::::::::::
parameterization.

::::
The

::::::::
challenge

::
in

:::
this

:::::
study

::::
was

:::
that

:::
the

:::::
snow

::::::
settling

:::::::
showed

:::
two

:::::::
distinct

:::::::
regimes.

:::::
From

::::
May

::
to

:::::::::
mid-June,

::::
high

::::::::::
compaction

::::
rates

:::::
were

:::::
found,

::::::::
whereas

:::
the

::::::::::
compaction

:::::::::
afterwards

::::
was

:::::
more

::::::::
moderate.

::::::::::::
SNOWPACK

::
is

::::
able

::
to

::::::
model

::::
both

:::::::
moderate

::::
and

::::
high

::::::::::
compaction,

:::::::::
depending

::
on

:::
the

::::::::::::::
parameterization

:::::::
chosen,

:::
but

:::
the

:::::
mode

::
of

:::::::::
compaction

:::::::
remains

:::
the

:::::
same450

:::
over

::::
the

::::::
season.

::::::::::
SnowModel

:::::::::
simulates

::::
high

::::::::::
compaction

::::
rates

:::
for

:::
all

:::::::::::::::
parameterizations,

::::::
which

::
is

::::::
correct

:::
for

:::
the

::::
start

:::
of

:::
the

:::::
season

::::
but

::
an

:::::::::::::
overestimation

::::
after

:::::::::
mid-June.

:::::
These

::::::::::
compaction

:::::
rates

::::::::
implicate

:::::::
changes

::
in
::::

the
::::::
thermal

:::::::::::
conductivity

:::
of

:::
the

::::::::
snowpack

:::
and

::::
thus

:::::::
changes

:::
in

:::
the

:::::::
melting.

:::
The

::::::::
different

:::::
snow

::::::
density

:::::::::::::::
parameterizations

::
in

:::::::::::
SNOWPACK

:::
are

::::
still

:::::::::
developed

:::
and

::::::::
improved

:::::::::::::::::::::
(e.g. Keenan et al., 2021),

:::
but

:::
an

:::::::::::
improvement

::
of

:::::
snow

::::::
density

:::::::::::::::
parameterizations

::
in

::::::::
semi-arid

:::::::
regions

:::::
shows

::
a

::::::
demand

:::
for

:::::
snow

::::::
density

:::::::::::::
measurements,

::
as

::::::::::
observations

:::
are

::::::
biased

::::::::::::::::
(Smith et al., 2017).

:
455

This is likely related to the absence of the consideration of the
:::
The uncertainty associated to the turbulent fluxes parameteriza-

tion in the ensemble approach
::
is

:::
only

::::::::::
considered

::
by

::::::::::::
implementing

:::
two

:::::::
different

:::
z0 :::::

values, while it can have major implications

in surface energy balance modelling (e.g. Dadic et al., 2013; Conway and Cullen, 2013; Litt et al., 2017; Réveillet et al., 2020).

The representation of turbulent fluxes in snow models is commonly based on the bulk method, and the Richardson number is

usually used
::::
often

:::::
used,

:::::::
together

::::
with

:::
the

::::::::::::::
Monin–Obukhov

:::::::::
similarity

::::::
theory, to evaluate the atmosphere stability (e.g. Liston460

and Hall, 1995; Vionnet et al., 2012). The roughness value is therefore used to parameterize the turbulent fluxes
:::::
Here,

::::
only

:::
the
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:::::::::
Richardson

:::::::
number

::
is

::::
used

::
as

::::
both

:::::::
models

::::::
offered

::::
this

:::::
option. While the stability function cannot be compared between the

two models chosen in this study, the sensitivity of SNOWPACK to the six possibilities available in the current version is low

(i.e. max SD difference of few centimeters, results not shown). In a study over Brewster Glacier in New-Zealand, Conway and

Cullen (2013) pointed out the importance of the stability functions to properly simulate the heat fluxes with low wind speed465

and large temperature gradients and also that the modelled latent heat fluxes were unaffected by the choice of exchange coef-

ficient parameterization. The
::::::
present study takes place in a dry and windy environment without

:
a large temperature gradient

and thus, this explains the low
:::
this

:::::
helps

::
to

::::::
explain

:::
the

:::::
small

:
differences observed related to the chosen atmospheric stability

function
:::::::
different

::::::::::
atmospheric

:::::::
stability

::::::::
functions. The turbulent fluxes parameterization is sensitive to the roughness

::
z0 value

and observations,
:
such as Eddy Covariance measurements

:
, are essential to accurately parameterize the turbulent fluxes (e.g.470

Conway and Cullen, 2013; Litt et al., 2017; Réveillet et al., 2018).

Due to the absence of such measurements, and also due to the strong
::
the

:
variability of this value over the time (e.g. MacDonell et al., 2013b; Pellicciotti et al., 2005; Nicholson et al., 2016) ,

a sensitivity analysis was performed (see Sect. S3) . Here we varied the value within a random range and found a larger range

of uncertainty for SNOWPACK than for SnowModel . This is likely due to the higher complexity in physical representation

of SNOWPACK, but it does not allow us to conclude if this uncertainty is higher than the albedo parameterization
::::
time475

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. MacDonell et al., 2013b; Pellicciotti et al., 2005; Nicholson et al., 2016) and

::::
due

:
to
:::::
other

:::::
values

::
in

::::::::
literature

::
at

::::
other

::::::::
locations

:::::::
showing

:
a
::::
wide

::::::
variety

::::
(two

::::::
orders

::
of

:::::::::
magnitude)

::
of

:::
the

:::::
snow

::::::::
roughness

:::::
length

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gromke et al., 2011; Poggi, 1977; Bintanja and Broeke, 1995; Andreas et al., 2005),

:
it
::::
was

:::::::
decided

::
to

:::
use

:::
two

::::::::
different

:::::
values

:::
for

:::
z0 :::::

(1 mm
::::
and

:::::
1 cm).

:::::::
Similar

:::::::
sensitity

::::::
ranges

:::
for

:::::::::::
SNOWPACK

:::
and

:::::::::::
SnowModel

::::
were

:::::
found

::::
(e.g.

::::
Fig.

:::
4),

::::
along

:::::
with

::::::
similar

::::::::::
sublimation

::::
rates,

:::
but

::::
this

::::::
directly

:::::::::
depended

::
on

:::
the

:::::
value

:::
for

:::
z0.

:::
For

::::
both

:::::::
models,

:
a
::
z0:::

of
::::
1 cm

:::
led

:::
to

:::::
better

::::::::::
simulations

::::
(Fig.

::
3,
:::

4),
::::

but
::
as

::::::
applied

:::::
more

::::::
often,

:::
this

::::
can

::::
also

::
be

::::
seen

:::
as

:::::::::
optimizing

:::::::::
parameter480

::::::::::::::::::::
(e.g. Stigter et al., 2018).

::
In

:::::
future

:::::
work,

:::
the

:::
z0 :::

can
::
be

:::::::
verified

::::
with

::::
eddy

::::::::::
covariance

:::::::::::
measurements.

The impact of parameterization choice differs for the two models as the uncertainty is directly related to the difference

in snow physical representation and the characteristics of the models. Indeed, the range of the ensemble approach simulated

by SNOWPACK is higher than that simulated by SnowModel directly related to both higher calibration choice
::::::
number

:::
of

:::::::::::::
parameterization

::::::::::
possibilities

:
for SNOWPACK and more complex physical representation of the processes.485

Likewise, results presented here show that the main sensitivity remains in the forcing uncertainty, in agreement with previous

studies (Magnusson et al., 2015; Günther et al., 2019; Raleigh et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Magnusson et al., 2015; Günther et al., 2019; Raleigh et al., 2015; Schlögl et al., 2016).

For instance, (Magnusson et al., 2015)
::::::::::::::::::::
Magnusson et al. (2015) found that the models of different complexity (temperature-

index models vs. physical models) show similar ability to reproduce daily observed snowpack runoff, and concluded that the

forcing uncertainties is the greatest factor affecting model performance, rather than model parameterizations. However, as men-490

tioned by Raleigh et al. (2015), simulated SD and SWE are critically sensitive to the relative magnitude of errors in forcing.

They
:::::::::::::::::::
Raleigh et al. (2015) and

::::::::::::::::::
Schlögl et al. (2016) also mentioned that precipitation bias

::
(or

:::::::::
correction

::
of

:::
the

:::::::::
undercatch

:::
of

::
the

:::::::::::
precipitation

::::::
gauge) was the most important factor, in agreement with the findings of our study.

Finally, while Rutter et al. (2009) pointed out that no universal ’best’ model exists and model performance strongly
::::::
directly

depends on the study site, here .
:::::
Here we show, that in a semi-arid environment, the conclusions are similar for Alpine envi-495

ronments in that model structure and parameterization choices represent an important step to improve model performance.
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5.2 Limitations of the study and further works
::::
work

The sensitivity study of the two models to the forcing is done by perturbing
:::::
adding

::
a
::::
bias

::
to

:
the meteorological variables

with random noise and
:::::
ranges

:::::::
derived

::::
from

:::::::::
literature.

::
It

:::
was

::::
also

::::::::
possible

::
to

::::
add

::::::
random

:::::
noise

:::
to

:::
the

::::
data,

::::
but

:::
this

:
does

not necessarily preserve the physical consistency . Some studies (e.g. Charrois et al., 2016) maintained this consistency by500

applying
:::
and

:::::
would

::::
lead

::
to
::::

low
:::::::::
sensitivity

::
of

:::
the

:::::::
models

::::::
(results

::::
not

:::::::
shown),

::
as

:::::::
random

:::::
noise

:::::::::::::
counterbalances

:::::
each

:::::
other,

:::::
which

:::
has

::::
also

:::::
been

::::::::::
investigated

::
by

::::::::::::::::::
Raleigh et al. (2015).

::
It

::::::
would

::::
also

::::
have

::::
been

::::::::
possible

::
to

:::::
apply

:
a random perturbation

:::::::::::::::::::::
(e.g. Charrois et al., 2016) using a first-order auto-regressive model (Deodatis and Shinozuka, 1988). However, the forcing

perturbation
::::
bias does not affect the conclusion of the relative comparison of the two models which only requires the exact

same forcing as input to be relevant. For the same reason, the choice of method applied for the forcing correction (i.e. for505

precipitation) and reconstruction (i.e. for the TA and RH) would not affect the conclusions of the model comparison. However,

due to the forcing
::::::::::
precipitation

:
uncertainty related to measurements errors, and also because the sensor locations may not be

representative of the area, only a qualitative comparison between the simulated and observed SWE and SD measurement is done

in this work. Günther et al. (2019)
:::::::
different

:::::
ways

::
to
:::::::

correct
:::
the

:::::::::::
precipitation

::::
data

::::
were

:::::::::
proposed.

:::::::::::::::::::::
Günther et al. (2019) and

::::::::::::::::::::::::::
Grünewald and Lehning (2014) already outlined that the snow cover is spatially heterogeneous even at very small scales due510

to topographic and microclimatic effects on accumulation, redistribution, and ablation processes, introducing an uncertainty

in validation data. We also show that in any case, due to i) the question of the sensor location representativity of the area, ii)

the precipitation undercatch because of the wind, and, iii) the strong
:::
high

:
sensitivity of models to precipitation uncertainty,

this study highlights the complexity and necessity of accurately measuring precipitation.
:::::::::::
Additionally,

:::::::
possible

::::::::::
corrections

:::
also

:::::::
depend

::
on

:::
the

::::::::::
availability

::
of

::::::::::::
observations,

:::
but

:::
this

:::::
study

::::
was

::::::::
restricted

::
to
::::

not
:::::
using

:::::
SWE

:::
and

:::
SD

:::
as

:::::::
forcing,

::
as

:::::
these515

:::::::::
parameters

::::
were

::::::
needed

::
as

:::::::::
validation

::::
data.

:::::::::
Therefore,

:
a
:::::::::::
precipitation

::::::::
correction

::::
has

::::
been

::::::
chosen

:::
that

::::::::::::
overestimates

:::
the

::::
start

::
of

::
the

:::::::
season,

:::
but

::::
also,

:::
for

::::::::
example,

::::
does

:::
not

::::
take

:
a
::::
rise

::
of

:::
SD

:::
and

:::::
SWE

::::::::
mid-June

::::
into

:::::::
account

::::::
leading

::
to

:::::
good

:::::::::::::
correspondence

::
of

::::::::
simulated

:::
and

::::::::
observed

:::::
SWE

::::
from

:::
the

::::
start

::
of

::::
July

::::
(e.g.

::::
Fig.

::
4).

The ensemble approach of the calibration
:::
with

::::::::
different

::::::::::::::
parameterizations

:
is built considering limited parameterization op-

tions, contrary to other studies where a large number of physical options are considered (e.g. Essery et al., 2013; Lafaysse520

et al., 2017; Zolles et al., 2019). In our case, choosing snow models with different physical complexities limits the number of

calibration possibilities, as calibration of
::
the

::::::::::::::
parameterization

::
of

:::
the

:
same variables are chosen for the comparison. Thus, some

parameterizations, such as the choice of atmospheric stability correction only available in SNOWPACK, were excluded and

this model is calibrated following the same options found in SnowModel (Sect. 3.2.1).

Testing different albedo parameterizations is chosen as i) different options are possible in both models and ii) previous stud-525

ies concluded that the largest absolute uncertainties originate from the shortwave radiation and the albedo parameterizations

(e.g. Zolles et al., 2019). The sensitivity test to different fresh snow density parameterizations was also chosen as previous

studies identified this calibration
:::::::::::::
parameterization

:
as a significant uncertainties

:::::::::
uncertainty in model calibration (e.g. Essery

et al., 2013). Finally, energy balance models are known to be sensitive to z0, especially in cold and dry regions where subli-

mation is the main ablation process (e.g. Réveillet et al., 2020). However, due to this important sensitivity and the absence of530
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measurements to properly calibrate this value, the sensitivity test by changing the value within a random range is performed

independently (see Sect. S3)
:::
two

::::::
values

:::
for

::
z0:::::

were
:::::::::::
implemented,

:::
but

::::
this

::::
still

:::::
might

::::::::::::
underestimate

:::
the

:::::::
possible

:::::
range

::
of

:::
z0

:::::
values.

Otherwise, despite the choice of limiting the calibration
::::::::::::::
parameterization options, SNOWPACK’s sensitivity to model calibration

::::::::::::::
parameterizations

:
is evaluated based on 20

::
40

:
simulations, whereas SnowModel’s evaluation is based on six

::
12 simulations535

only. However, the difference of the number of simulation
:::::::::
simulations does not impact the conclusion, as the width of the

spread of different calibrations
::::::::::::::
parameterizations

:
was not quantitatively assessed.

Among the possible calibrations
::::::
settings

:::
of

:::
the

::::::
model, the snow transport option has not been activated, while the option is

available in both models. However, due to the strong wind speed characteristics of the study area (Gascoin et al., 2013, and

Fig. 2), snow transport is expected to be considerable. Yet, snow transport estimation remains out of the scope of this study,540

focused on energy balance comparisons, mainly to assess differences in sublimation rates. Also, in a study performed in the

Pascua-Lama catchment, a region to the north of Tapado AWS, Gascoin et al. (2013) highlighted that the inclusion of Snow-

Tran3D does not change the fact that the model is unable to capture the small-scale snow depth spatial variability (as captured

by in-situ snow depth sensors). Last
:::::
Finally, snow transport in SNOWPACK can only be simulated with a SD assimilation,

which
::
in

:::
the

:::
3D

::::::
domain

:::::
with

:::
SD

::
as

:::::::
forcing,

:::::
which

::::
then could not be used as validation data. However, due to the importance545

and complexity in modelling snow transport, properly assessing its impact could be assessed in future work.

6 Conclusion
::::::::::
Conclusions

:::::
Snow

::::::
models

:::
are

:::
key

::
to

:::::::
quantify

:::::
runoff

::::
and

::::::
provide

:::::::
accurate

:::::
water

::::::::::
availability

:::::::::
projections.

:
The aim of this study is to compare

two snow models, SNOWPACK and SnowModel, and evaluate their sensitivity relative to calibration
:::::::::::::
parameterization

:
and550

forcing. For that purpose, the two models are run over the 2017 snow season, at local point, and forced with i)
::
the

:::::
most

::::
ideal

:::
set

::
of

::::
input

::::::::::
parameters,

:::
ii) an ensemble of different physical calibrations and ii

::::::::::::::
parameterizations

:::
and

::
iii) an ensemble of

perturbed
:::::
biased

:
forcing.

:::
The

::::
most

:::::
ideal

::
set

::
of

:::::
input

:::::::::
parameters

::::::::
consisted

::
of

:::::::
observed

:::::::
forcing

:::
and

:::
the

::::::::
validation

:::::::::
parameters

::::
(SD

:::
and

:::
S↓ ::

for
::::::::::::
SNOWPACK;

::::
SWE

:::
for

::::::::::::
SnowModel)

:::::
given

::
as

::::::
input.

::::::
Hence,

::::
the

::::::
models

:::::
were

::::
able

:::
to

::::::::
assimilate

::::
the

::::::
forced

:::::::::::
precipitation

::
to

:::::::
correct

:::
for555

:::::::::
undercatch

::
in

:::
the

::::::::::
precipitation

::::::
gauge.

::::::::::::
SNOWPACK

:
is
::::
able

::
to
::::::::
approach

:::
the

::::::::::
observation

::::
very

::::
well

::::
(i.e.

::::
min.

::::::
RMSE

::
of

:::::::
9.2 cm,

::::
max.

:::
R2

:::
of

::::
0.93

:::::::::
calculated

:::::
with

:::
the

::::::::
observed

::::
and

::::::::
simulated

:::::
SD),

:::
but

:::::::::::
SnowModel

::::
only

::::::
adjusts

::::
the

:::::::::::
precipitation

::
at

::::
two

::::::::::
precipitation

::::::
events,

::::
still

::::::
leading

::
to

::::::::::
undercatch.

::::
The

::::
final

::::::::
correction

::
of

:::
the

:::::::::::
precipitation

::::
data

:::
was

:::::
done

::::
with

::
an

::::::::
equation

:::::
based

::
on

:::
TA

:::
and

::::
WS,

:::
as

:
it
::::
was

::::::::
unwanted

::
to

::::::
adjust

:::
the

::::::::::
precipitation

::::
with

:::::::::::::
SNOWPACK’s

::::::::::
assimilated

::::
data,

::
as

:::
this

::::::::::
assimilated

::::
data

::
is

::::
built

::::
from

::::
data

:::
that

::
is
::::::
needed

::
as

:::::::::
validation

::::
data.

:
The calibration ensemble simulations were built

:::::::::::::
parameterization

::::::::::
simulations560

::::
were

::::
done

:
considering different parameterizations of the albedo and the fresh snow density

:::
and

:::::::
different

::::::
values

:::
for

::
z0. Results

indicated a significant difference related mainly to the calibration
:::::::::::::
parameterization

:
choice of the albedo

:::
and

:::
z0. However,

the impact of this choice
:::
the

::::::
albedo affects the two models differently. For SnowModel, the albedo parameterization has a
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significant impact on the simulated sublimation during the cold period (i.e. difference of ∼40 mm w.e.) while SNOWPACK

simulates similar sublimation rates for all the possible calibrations. The albedo parameterization of SNOWPACK has stronger565

:::::::::::::::
parameterizations.

:::
The

::::::
choice

:::
of

:::::
albedo

::::::::::::::
parameterization

:::
in

:::::::::::
SNOWPACK

:::
has

::::::
direct consequences on melt at the end of the

seasonleading to a difference of 45 mm w.e. of the total melt, and a difference of the end of the season of 41 days, related to the

calibration chosen. This .
::::

The
:
model differences are mainly related to the model characteristics (i.e.

:::
e.g.

:
the consideration of

the water evaporation and refreezing into the snowpack), and the more complex representation of the snow physics in SNOW-

PACK.
::::::::
However,

:::
the

::::::
models

:::
are

::::
both

:::::::
sensitive

::
to
:::
the

::::::
chosen

:::
z0,

:::::::
leading

::
to

::::::::::
sublimation

::::
rates

::::::
ranging

::::
rom

::::
36%

:::
up

::
to

:::::
86%.570

In addition, results presented in this study highlight a larger uncertainty depending on the model calibration
::::::::::::::
parameterization

(despite the limited number of options chosen) than between the two models (even though the significant differences in their

physical complexity).

The sensitivity of both modelsto the forcing data is highly influenced by the precipitation uncertainties. As for ensemble

calibration study, SNOWPACK shows larger uncertainty in modelling the end of the season (i.e. difference of 36 days)575

compared to SnowModel (i.e. 20 days), likely related to more complex physical processes. SnowModel shows larger uncertainty

during the start of the melting period, but , a small difference on the simulated date of the end of the season. This is attributed

to the fast melt of the entire snowpack (i.e. few days) simulated by this model.

Otherwise, for both models, results show uncertainty of similar magnitude between the calibration and forcing. However,

this result strongly depends on the bias chosen for the forcing perturbation as well as the number of calibrations selected, which,580

here, does not enable us to draw a conclusion about the larger source of uncertainty or the most appropriate model to model

snow depth evolution in the semi-arid Andes.
:
,
::::::
results

:::::
show

::::
high

:::::
levels

::
of

::::::::::
uncertainty

::::::
related

:::
to

:::::::
forcings

:::::
which

::
is
:::::::

direcly

:::::
related

:::
to

:::
the

::::
bias

:::::::
chosen,

:::
but

:::
the

::::::
spread

::
of

:::
the

::::::::::
uncertainty

:::
for

::::
both

:::::::
models

::
is

::::::::::::
approximately

:::
the

::::::
same.

:::::::::::
SNOWPACK

::::
and

::::::::::
SnowModel

:::
are

:::::
highly

:::::::::
influenced

:::
by

::::::::::
precipitation

:::::::::::
uncertainties.

:::::
Both

::::::
models

:::::
show

::::::
similar

:::::
levels

::
of

::::::::::
uncertainty,

::
in

:::::::::
modelling

::
the

::::
end

::
of

:::
the

::::::
season.

:
585

.

This study is performed over one winter season providing conclusions of the model sensitivity, specific for this winter.

In further studies, simulations could be performed over a larger time period, and at distinct places to reinforced and discuss

the conclusions presented here. In addition, the model choice could be extended to other models, and in particular snow

models with similar physical complexity. Such work would provide additional information of the calibration
::::::::::::::
parameterization590

sensitivity by allowing a comparison based on a larger choice of possible calibrations
::::::::::::::
parameterizations.

Data availability. Part of the data used in this paper (AWS data) can be accessed at https://www.ceazamet.cl. SnowModel can be accessed

by contacting the administrator, Glen E. Liston. SNOWPACK is an Open Source and can be accessed at https://models.slf.ch/p/snowpack/.

For any other access to the data presented in this study, please contact the authors.
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Nicholson, L. I., Pętlicki, M., Partan, B., and MacDonell, S.: 3-D surface properties of glacier penitentes over an ablation season, measured

using a Microsoft Xbox Kinect, The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, 2016.

Oke, T. R.: Boundary layer climates, Routledge, 2002.

Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced temperature-index glacier melt model including705

the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland, Journal of Glaciology, 51, 573–587,

https://doi.org/10.3189/172756505781829124, 2005.

Poggi, A.: Heat Balance in the Ablation Area of the Ampere Glacier (Kerguelen Islands), Journal of Applied Meteorology (1962-1982), 16,

48–55, https://doi.org/10.1175/1520-0450(1977)016<0048:hbitaa>2.0.co;2, http://www.jstor.org/stable/26177592, 1977.

Rabatel, A., Castebrunet, H., Favier, V., Nicholson, L., and Kinnard, C.: Glacier changes in the Pascua-Lama region, Chilean Andes (29° S):710

recent mass balance and 50 yr surface area variations, The Cryosphere, 5, 1029–1041, https://doi.org/10.5194/tc-5-1029-2011, 2011.

Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based snow simulations

within a global sensitivity analysis framework, Hydrology and Earth System Sciences, 19, 3153–3179, https://doi.org/10.5194/hess-19-

3153-2015, 2015.

30

https://doi.org/10.1175/jhm486.1
https://doi.org/10.1175/jhm548.1
https://doi.org/10.3189/s0022143000016245
https://doi.org/10.3189/s0022143000002021
https://doi.org/10.5194/tc-11-971-2017
https://doi.org/10.5194/tc-7-1513-2013
https://doi.org/10.1007/s00704-012-0675-1
https://doi.org/10.1002/2014wr016498
https://doi.org/10.1175/bams-d-19-0329.1
https://doi.org/10.5194/tc-10-1897-2016
https://doi.org/10.3189/172756505781829124
https://doi.org/10.1175/1520-0450(1977)016%3C0048:hbitaa%3E2.0.co;2
http://www.jstor.org/stable/26177592
https://doi.org/10.5194/tc-5-1029-2011
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5194/hess-19-3153-2015


Randall, K. L.: Campbell Scientific Web Request (case:83574), Personal communication, 2018.715

Réveillet, M., Six, D., Vincent, C., Rabatel, A., Dumont, M., Lafaysse, M., Morin, S., Vionnet, V., and Litt, M.: Relative performance of

empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps),

The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, 2018.

Réveillet, M., MacDonell, S., Gascoin, S., Kinnard, C., Lhermitte, S., and Schaffer, N.: Impact of forcing on sublimation simulations for a

high mountain catchment in the semiarid Andes, The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020, 2020.720

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra,

E., Elder, K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas,

T., Koren, V., Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova, O., Pumpanen, J., Pyles, R. D., Samuelsson, P.,

Sandells, M., Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka,

K., Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes models725

(SnowMIP2), Journal of Geophysical Research, 114, https://doi.org/10.1029/2008jd011063, 2009.

Scaff, L., Rutllant, J. A., Rahn, D., Gascoin, S., and Rondanelli, R.: Meteorological Interpretation of Orographic Precipitation Gradients

along an Andes West Slope Basin at 30°S (Elqui Valley, Chile), Journal of Hydrometeorology, 18, 713–727, https://doi.org/10.1175/jhm-

d-16-0073.1, 2017.

Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of Alpine3D modeled snow cover to modifications in730

DEM resolution, station coverage and meteorological input quantities, Environmental Modelling & Software, 83, 387–396,

https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites

in Switzerland using SNOWPACK simulations driven by different meteorological data input, Cold Regions Science and Technology, 99,

27–37, https://doi.org/10.1016/j.coldregions.2013.12.004, 2014.735

Smith, C. D.: Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield, in:

87th American Meteorological Society Annual Meeting, San Antonio, TX, 2007.

Smith, C. D., Kontu, A., Laffin, R., and Pomeroy, J. W.: An assessment of two automated snow water equivalent instruments during the

WMO Solid Precipitation Intercomparison Experiment, The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017, 2017.

Stigter, E. E., Litt, M., Steiner, J. F., Bonekamp, P. N. J., Shea, J. M., Bierkens, M. F. P., and Immerzeel, W. W.: The Importance of Snow740

Sublimation on a Himalayan Glacier, Frontiers in Earth Science, 6, https://doi.org/10.3389/feart.2018.00108, 2018.

Strack, J. E., Liston, G. E., and Pielke Sr, R. A.: Modeling snow depth for improved simulation of snow-vegetation-atmosphere interactions,

Journal of Hydrometeorology, 5, 723–734, 2004.

Strasser, U. and Marke, T.: ESCIMO.spread - a spreadsheet-based point snow surface energy balance model to calculate hourly snow

water equivalent and melt rates for historical and changing climate conditions, Geoscientific Model Development, 3, 643–652,745

https://doi.org/10.5194/gmd-3-643-2010, 2010.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Moigne, P. L., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus

and its implementation in SURFEX v7.2, Geoscientific Model Development, 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.

Weiser, U., Olefs, M., Schöner, W., Weyss, G., and Hynek, B.: Correction of broadband snow albedo measurements affected by unknown

slope and sensor tilts, The Cryosphere, 10, 775–790, https://doi.org/10.5194/tc-10-775-2016, 2016.750

Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff

estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014.

31

https://doi.org/10.5194/tc-12-1367-2018
https://doi.org/10.5194/tc-14-147-2020
https://doi.org/10.1029/2008jd011063
https://doi.org/10.1175/jhm-d-16-0073.1
https://doi.org/10.1175/jhm-d-16-0073.1
https://doi.org/10.1175/jhm-d-16-0073.1
https://doi.org/10.1016/j.envsoft.2016.02.017
https://doi.org/10.1016/j.coldregions.2013.12.004
https://doi.org/10.5194/tc-11-101-2017
https://doi.org/10.3389/feart.2018.00108
https://doi.org/10.5194/gmd-3-643-2010
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/tc-10-775-2016
https://doi.org/10.5194/tc-8-257-2014


Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment

function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrology and Earth System Sciences,

19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015.755

Wright, M.: Performance Analysis of CS725 Snow Water Equivalent Sensor, Edmonton, AB: Campbell Scientific Corp, 2011.

Yen, Y.-C.: Review of thermal properties of snow, ice, and sea ice, vol. 81, US Army, Corps of Engineers, Cold Regions Research and

Engineering Laboratory, 1981.

Zolles, T., Maussion, F., Galos, S. P., Gurgiser, W., and Nicholson, L.: Robust uncertainty assessment of the spatio-temporal transferability

of glacier mass and energy balance models, The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, 2019.760

32

https://doi.org/10.5194/hess-19-951-2015
https://doi.org/10.5194/tc-13-469-2019

