

1 **Comment on "Ice content and interannual water storage changes of an active rock**
2 **glacier in the dry Andes of Argentina" by Halla et al. (2021).**

3 W. Brian Whalley

4 Department of Geography, University of Sheffield, Sheffield UK

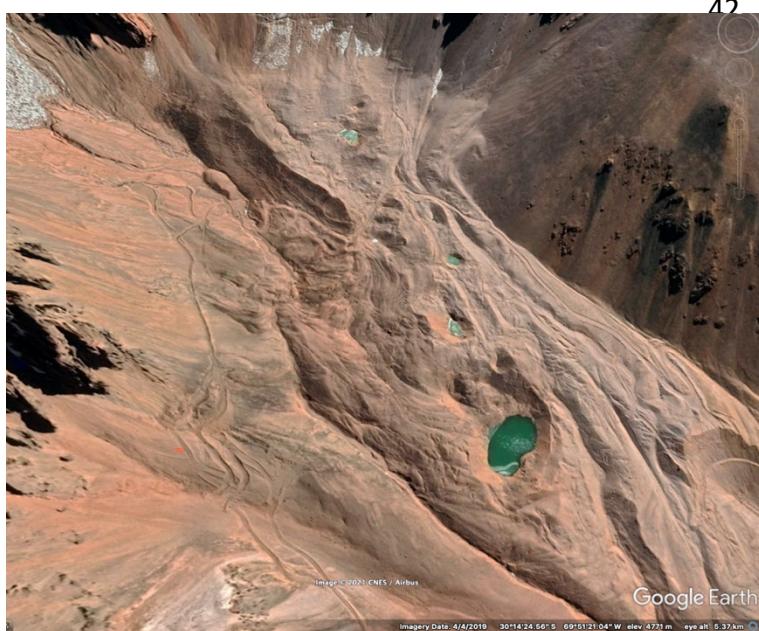
5 *Correspondence to:* W. Brian Whalley (b.whalley@sheffield.ac.uk)

6

7 **Abstract.** Recently published work on water preservation in Chile assume that 'permafrost'
8 (cryogenic) rock glaciers are dominant. Melt pond development shows that rock glaciers are
9 glacier-derived ('glacigenic') rather than of permafrost origin.

10

11


12

13 Halla et al. (2021) make a useful contribution to estimating the water content of rock glaciers at 'Dos
14 Lenguas' in Chile [-30.2465,-69.7867] using decimal Latitude Longitude. However, their interpretation
15 (Figure 10) relies on the assumption that it is 'talus rock glacier', a body of creeping permafrost unrelated
16 to any glacier. Although commonly held, this origin is not supported by rheology (Whalley and Azizi,
17 1994). Further, the Dos Lenguas (DL) site shows no rock glacier formation in or from the extensive
18 local talus. The glacier ice core ('glacigenic') model better explains formation and flow (Whalley and
19 Azizi, 2003). Gruben rock glacier, taken to be a 'typical' permafrost-derived rock glacier, is actually of
20 Little Ice Age origin and is glacier-ice cored (Whalley, 2020). At DL, a small glacier formed in a south-
21 facing hollow then covered by insulating weathered rock debris. To the west (6.5 km) of DL there are
22 several rock glaciers where glacier ice could collect and be buried. The largest of these (Figure 1) lies
23 below a glacier and debris-covered glacier. Over the last 15+ years glacier melting has produced
24 substantial surface pools. Some 16 km [-30.1541,-69.9114] from DL, the Tapado-Las Tolas glacier-
25 rock glacier complex has similar features. Monnier et al. (2014) show a debris-covered glacier with
26 melt (thermokarst) pools merging with a rock glacier, itself over-riding a moraine sequence. Schaffer
27 et al. (2019) considered this a complete rock glacier sequence (Tg) below the Tapado glacier with the
28 debris-covered section being 'glacigenic' (their Figure 3). The neighbouring Las Tolas rock glacier (Tc)
29 was viewed as 'cryogenic' (permafrost-periglacial). There is no visible glacier component in the cirque
30 above Tc, although Google Earth, GE, images (2017) show copious snow collection and crevasse
31 features (noted by Schaffer et al.) on the steepest section. As with the rock glaciers west of DL, the
32 simplest explanation for all these features is glacigenic. The seismic traces used by Schaffer et al. to
33 differentiate between Tc and Tg are probably due to the complex relationships of ice-snow and debris
34 supply.

35

36 In summary, the geophysical data supplied by Milana and Güell (2008) and Halla et al. (2021) are useful
37 in the development of models to estimate water storage potential. However, their interpretation of rock
38 glaciers as 'permafrost' ('cryogenic' or 'cryo-conditioned') features in mountain environments neglects
39 the evidence in the literature of them being glacier ice-cored features as shown by the development of
40 surface meltwater ponds on several rock glaciers in the dry Andes.

41

42
 Figure 1. A glacigenic rock glacier centred on the prominent surface melt pool at [-30.2414,-69.8541] shows ablation of massive, glacier-derived, ice under a debris cover. These melt pools can be traced from the uppermost part of the rock glacier through to near the snout and are persistent over several years of GE imagery. A permafrost (talus-derived) feature would show 'isovolumetric' melting of ice in pore spaces and thus have rather different water storage capability from a glacier core.

61 © Google Earth/CNES/Airbus
 62
 63

64 References

65
 66 Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto, D., Hilbich, C., Hauck, C., and Schrott,
 67 L.: Ice content and interannual water storage changes of an active rock glacier in the dry
 68 Andes of Argentina, *The Cryosphere*, 15, 1187–1213, <https://doi.org/10.5194/tc-15-1187-2021>, 2021.
 69
 70
 71 Milana, J. P., and Güell, A.: Diferencias mecánicas e hídricas del permafrost en glaciares de
 72 rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en El Tapado, Chile, *Rev.*
 73 *Asoc. Geol. Argentina*, 63, 310-325, 2008.
 74
 75 Monnier, S., Kinnard, C., Surazakov, A., and Bossy, W.: Geomorphology, internal structure,
 76 and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro
 77 Tapado, upper Elqui Valley, 30 08' S., 69 55' W.), *Geomorphology*, 207, 126-140, 2014.
 78
 79 Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a
 80 water resource in a changing climate in the semiarid Chilean Andes, *Reg. Env. Change*, 19,
 81 1263-1279, 2019.
 82
 83 Whalley, W. B.: Gruben glacier and rock glacier, Wallis, Switzerland: glacier ice exposures
 84 and their interpretation, *Geog. Annaler: A*, 102, 141-161, 2020.
 85
 86 Whalley, W. B., and Azizi, F.: Rheological models of active rock glaciers: evaluation,
 87 critique and a possible test, *Permafrost Periglac.*, 5, 37-51, 1994.
 88
 89 Whalley, W. B., and Azizi, F.: Rock glaciers and protalus landforms: Analogous forms and
 90 ice sources on Earth and Mars, *J. Geophys. Res.: Planets (1991–2012)*, 108, 2003.
 91
 92
 93