Comment on "Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina" by Halla et al. (2021).

4 W. Brian Whalley

- 5 Department of Geography, University of Sheffield, Sheffield UK
- 7 *Correspondence to:* W. Brian Whalley (b.whalley@sheffield.ac.uk)
- 9 Abstract. Recently published work on water preservation in Chile assume that 'permafrost'
- 10 (cryogenic) rock glaciers are dominant. Melt pond development shows that rock glaciers are
- 11 glacier-derived ('glacigenic') rather than of permafrost origin.
- 12

3

6

8

13 Halla et al. (2021) make a useful contribution to estimating the water content of rock glaciers at 'Dos 14 Lenguas' in Chile [-30.2465,-69.7867] using decimal Latitude Longitude. However, their interpretation 15 (Figure 10) relies on the assumption that it is a 'talus rock glacier', a body of creeping permafrost 16 unrelated to any glacier. Although commonly held, this origin is not supported by rheology (Whalley 17 and Azizi, 1994). Further, the Dos Lenguas (DL) site shows no rock glacier formation in or from the 18 extensive local talus. The glacier ice core ('glacigenic') model better explains formation and flow 19 (Whalley and Azizi, 2003). Gruben rock glacier, taken to be a 'typical' permafrost-derived rock glacier, 20 is actually of Little Ice Age origin and is glacier-ice cored (Whalley, 2020). At DL, a small glacier 21 formed in a south-facing hollow then covered by insulating weathered rock debris. To the west (6.5 22 km) of DL there are several rock glaciers where glacier ice could collect and be buried. The largest of these (Figure 1) lies below a glacier and debris-covered glacier. Over the last 15+ years glacier melting 23 24 has produced substantial surface pools. Some 16 km [-30.1541,-69.9114] from DL, the Tapado-Las Talas glacier-rock glacier complex [-30.153,-69.916] has similar features. Monnier et al. (2014) show 25 26 a debris-covered glacier with melt (thermokarst) pools merging with a rock glacier, itself over-riding a 27 moraine sequence. Schaffer et al. (2019) considered this a complete rock glacier sequence (Tg) below 28 the Tapado glacier with the debris-covered section being 'glacigenic' (their Figure 3). The Tapado 29 glacier [-30.1510,-69.9246] is now separated from a debris-covered glacier [-30.1548,-69.9212] below 30 which is a glacigenic rock glacier component [-30.1567,-69.9128]. 31 The neighbouring Las Tolas rock glacier [-30.1541,-69.9114], was viewed as 'cryogenic' (permafrost-

- periglacial) by Schaffer et al. (2019). There is no visible glacier component in the cirque above Te the
 rock glacier, although Google Earth, GE, images (2017) show copious snow collection and crevasse
 features (noted by Schaffer et al. 2019) on the steepest section. As with the rock glaciers west of DL,
 the simplest explanation for all these features is glacigenic, i.e. glacier derived.
- The seismic traces used by Monnier et al. (2014) and evidence from Schaffer et al. (2019) to
 differentiate between glacigenic and cryogenic components Te and Tg are probably due to the complex
 relationships of glacier ice-snow and debris supply.
- 39

In summary, the geophysical data supplied by Milana and Güell (2008) and Halla et al. (2021) are useful
in the development of models to estimate water storage potential. However, their interpretation of rock
glaciers as 'permafrost' ('cryogenic' or 'cryo-conditioned') features in mountain environments neglects
the evidence in the literature of them being glacier ice-cored features as shown by the development of

- 44 surface meltwater ponds on several rock glaciers in the dry Andes.
- 45

Figure 1. A glacigenic rock glacier centred on the prominent surface melt pool at [-30.2414,-69.8541] shows ablation of massive, glacierderived, ice under a debris cover. These melt pools can be traced from the uppermost part of the rock glacier through to near the snout and are persistent over several years of Google Earth imagery. A permafrost (talusderived) feature would show 'isovolumetric' melting of ice in pore spaces and, thus have rather different water storage capability from a glacier core.

- 65 © Google Earth/CNES/Airbus
- 66 67

69

68 References

Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto, D., Hilbich, C., Hauck, C., and Schrott,
L.: Ice content and interannual water storage changes of an active rock glacier in the dry
Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-11872021, 2021.

- Milana, J. P., and Güell, A.: Diferencias mecánicas e hídricas del permafrost en glaciares de rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en El Tapado, Chile, Rev.
 Asoc. Geol. Argentina, 63, 310-325, 2008.
- Monnier, S., Kinnard, C., Surazakov, A., and Bossy, W.: Geomorphology, internal structure,
 and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro
 Tapado, upper Elqui Valley, 30 08' S., 69 55' W.), Geomorphology, 207, 126-140, 2014.
- Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a
 water resource in a changing climate in the semiarid Chilean Andes, Reg. Env. Change, 19,
 1263-1279, 2019.
- Whalley, W. B.: Gruben glacier and rock glacier, Wallis, Switzerland: glacier ice exposures
 and their interpretation, Geog. Annaler: A, 102, 141-161, 2020.
- Whalley, W. B., and Azizi, F.: Rheological models of active rock glaciers: evaluation,
 critique and a possible test, Permafrost Periglac., 5, 37-51, 1994.
- Whalley, W. B., and Azizi, F.: Rock glaciers and protalus landforms: Analogous forms and
 ice sources on Earth and Mars, J. Geophys. Res.: Planets (1991–2012), 108, 2003.
- 96 97

2