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Abstract. Four calving events of Petermann Glacier happened in 2008, 2010, 2011, and 2012, which resulted in the drift and 

deterioration of numerous ice islands, some reaching as far as offshore Newfoundland. The presence of these ice islands in 10 

the eastern Canadian Arctic increases the risk of interaction with offshore operations and shipping activities. This study used 

the recently developed Canadian Ice Island Drift, Deterioration and Detection database to investigate the fracture events that 

these ice islands experienced, and presented a probabilistic model for the conditional occurrence of such events by analyzing 

the atmospheric and oceanic conditions that drive the causes behind the ice island fracture events. Variables representing the 

atmospheric and oceanic conditions that the ice islands were subjected to were extracted from reanalysis datasets and then 15 

interpolated to evaluate their distributions for both fracture and non-fracture events. The probability of fracture event 

occurrence for different combinations of input variable conditions were quantified using Bayes theorem. Out of the seven 

variables analyzed in this study, water temperature and ocean current speed were identified as the most and least important 

contributors, respectively, to the fracture events of the Petermann ice islands. It was also revealed that the ice island fracture 

probability increased to 75% as the ice islands encountered extreme (very high) atmospheric and oceanic conditions. A 20 

validation scheme was presented using cross-validation approach and Pareto principle, and an average error of 13-39% was 

reported in the fracture probability estimations. The presented probabilistic model has a predictive capability for future 

fracture events of ice islands and could be of particular interest to offshore and marine activities in the eastern Canadian 

Arctic. Future research, however, is necessary for model training and testing to further validate the presented ice island 

fracture model. 25 

1 Introduction 

With the advancement of offshore operations and shipping activities into the harsh environment in the eastern Canadian 

waters, these activities are being subjected to greater risks from glacial ice features (Saper, 2011). The shipping and resource 

extraction industries in this region, therefore, require a better understanding of the dynamics and physical properties of these 

ice features to be able to devise appropriate ice management strategies for safe operations. Specifically, a more solid 30 

understanding of the drift and deterioration characteristics of icebergs and ice islands (large tabular icebergs) is needed for 
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risk management strategies. However, due to the occasional presence of ice islands in regions with lower latitudes such as 

offshore Newfoundland and Labrador (Johannessen et al., 2011), there has been limited research on the dynamics of ice 

islands, when compared to the research concerning annual presence of smaller icebergs in the region. Ice island research 

studies have been mainly focused on their potential risks to shipping activities and offshore operations (Peterson, 2011; 35 

Mueller et al., 2013; Fuglem and Jordaan, 2017), as well as their meltwater input as they deteriorate and melt over large 

regions (Stern et al., 2015; Merino et al., 2016; Wagner et al., 2017; Crawford et al., 2018d). 

For offshore operations, whether or not a drifting ice feature is manageable, or if activities should be suspended, 

depends on its speed, mass, and the number of ice features approaching the vicinity. Mass and distribution frequency are 

both dependent on the deterioration of each ice feature via melting and/or fracturing, processes that are associated with 40 

several atmospheric and oceanic variables that need to be considered. Therefore, it is important to evaluate the effect of 

metocean (meteorology and oceanography) variables on the deterioration of ice islands. However, the harsh conditions in the 

marine environment in the eastern Canadian Arctic make it very challenging to collect in-situ metocean data. Also, due to 

the difficulties involved in tracking a large number of ice islands over their lives (Merino et al., 2016; Rackow et al., 2017; 

Stern et al., 2016), it has been a challenge to investigate the conditions that lead to ice island deterioration. An alternative 45 

way to track a large number of ice islands and monitor their deterioration is using remote sensing observations. Unlike 

optical methods, Synthetic Aperture Radar (SAR) imagery can produce images of ice islands even when the amount of 

daylight is low and cloud cover is high (Jeffries, 2002). The recent calving events of Petermann Glacier (2008-2012) and 

other northern Greenland glaciers have been accompanied by high-resolution satellite imagery (July 2008 to December 

2013), which allowed tracking the ice islands throughout their periods of drift and deterioration. Through a collaboration 50 

between the Canadian Ice Service (CIS) and Water and Ice Research Lab (WIRL) at Carleton University, a large number of 

SAR images from the CIS archive were analyzed using a geographical information system to develop a geospatial database 

associated with the ice islands originally calved from Petermann Glacier in 2008-2012, as well as the Ryder, Steensby, C.H. 

Ostenfeld, and North Greenland ice tongues (Crawford et al., 2018a). The ice islands were delineated and monitored as they 

deteriorated (via melting and/or fracturing) down to a threshold of 0.25 km2 in surface area (Crawford et al., 2018d), and the 55 

information was recorded in the Canadian Ice Island Drift, Deterioration and Detection (CI2D3) database. The calving 

events of the Petermann Glacier in 2008, 2010, 2011, and 2012 corresponded to the removal of 36, 302, 4, and 145 km2 from 

the Petermann Ice Tongue, respectively (Crawford et al., 2018a). The calving event that occurred in 2010 was the most 

significant of all and resulted in the loss of about 25% of the Petermann Glacier ice tongue (Nick et al., 2012). These calving 

events generated numerous smaller ice islands that drifted southwards toward the Labrador Sea, which were tracked in the 60 

CI2D3 database. More information on the CI2D3 database and its documentation can be found in Desjardins et al. (2018) 

and Crawford et al. (2018b). 

1.1 Past studies on iceberg deterioration 

A key component for a reliable ice drift model and risk assessment of icebergs is the ability to estimate their mass (Crawford 
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et al., 2018c), a variable that constantly changes as a result of melting and small/large scale fracturing as it drifts. This can be 65 

investigated through melt rate and small-scale physical calving models, field measurements, or remote sensing observations. 

Iceberg melt rate models predict processes such as forced convection caused by air at the iceberg sail and water at the keel, 

solar radiation on the iceberg sail, natural convection on sidewalls, and sidewall erosion at the waterline caused by waves 

(Job, 1978; El-Tahan et al., 1987; Savage, 2001). The resulting iceberg calving caused by wave erosion were modeled using 

an empirical model (White et al., 1980; Savage, 2001) and a physical model (Wagner et al., 2014). Savage (2001) studied the 70 

relative contribution of each of these mechanisms to the overall deterioration of three different icebergs and found that wave 

erosion at the waterline was the dominant mechanism in contributing to the overall iceberg deterioration (by 50-65%), 

followed by the resultant wave-induced calving events (by 20-30%). Savage (2001) also found that surface melt played a 

minor role in the deterioration of icebergs, but it was revealed in another study that the deterioration of ice islands was 

significantly influenced by the surface melt due to the large surface area ice islands (Crocker et al., 2013). Kubat et al. (2007) 75 

used the deterioration mechanisms described by Savage (2001) to build an operational iceberg forecasting model for the CIS. 

The sensitivity of the deterioration model to various metocean variables was examined, and it was revealed that the overall 

deterioration of icebergs was most significantly influenced by wave height (via erosion at the waterline and calving of the 

overhanging slabs), followed by water temperature (Kubat et al., 2007). The importance of waves and calving in the overall 

deterioration of icebergs was also highlighted by Rackow et al. (2017) who investigated the influence of the wave-induced 80 

calving, basal melt, and buoyant convection on the deterioration of 6912 icebergs with varying sizes (0.3-4717.6 km2) in the 

Antarctic. Rackow et al., 2017 highlighted the importance of iceberg size in their thermodynamic characteristics and that 

while waves played the most important role in the decay of smaller icebergs (<10 km), basal melt was an important 

contributor to the overall mass loss of giant icebergs (>10 km). In a similar study, Stern et al. (2017) presented a novel 

framework to simulate drifting tabular icebergs for climate studies. The authors modeled the melt of tabular icebergs 85 

submerged in the ocean in the Antarctic through the three mechanisms that were used in Rackow et al. (2017). Crawford et 

al. (2015) modeled the energy fluxes at the surface using the bulk aerodynamic approach to estimate the surface melt of an 

ice island, and validated the results against three surface ablation models (Kubat et al., 2007; Ballicater Consulting Ltd., 

2012; Hock, 2003). Zeinali-Torbati et al. (2020) estimated the reduction in the mass of four ice island fragments offshore 

Newfoundland using a surface ablation model (Hock, 2003), a basal ablation model (Crawford, 2018), and the observed 90 

areal surface reduction from SAR images. The authors revealed that basal melt had a greater contribution to the overall 

thickness melt of the ice island fragments, which was in agreement with the results of the thickness melt model in Crawford 

(2018). In a field study (Halliday et al., 2012), however, the melt and thinning rate of an ice island offshore Labrador was 

measured using ablation stakes and ground penetrating radar, and it was revealed that surface ablation contributed more than 

basal ablation to the overall thinning rate of the ice island. In other fieldwork, Crawford et al. (2020) deployed an ice-95 

penetrating radar on an ice island originated from 2012 calving event of Petermann Glacier to measure the surface and basal 

ablation rates over an 11-month period. It was revealed that while basal ablation contributed to 73% of the total thinning rate, 

it played a minimal role in the ice island overall mass loss when compared to areal surface reduction likely caused by wave 
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erosion, wave-induced calving, and fracture events. The authors, however, stated that basal ablation significantly influences 

the thickness of ice islands, which would likely increase the probability of large-scale fracture event occurrence (Crawford et 100 

al., 2020).  

The deterioration mechanisms mentioned earlier describe formulations for the melt rates and small-scale calving 

events of icebergs caused by various metocean conditions. However, there are other mechanisms associated with iceberg 

deterioration (e.g., large-scale fracture caused by internal stress and convection caused by iceberg rolling), which have 

generally been neglected due to their infrequent occurrence. It has also been difficult to model these processes using physical 105 

models due to the lack of quantitative theories to explain these mechanisms (Savage, 2001). To date, there is no deterministic 

model to describe the large-scale fracture mechanisms as a function of the metocean conditions that govern these events. 

Additionally, the accuracy of deterministic deterioration models for glacial ice will be limited by the uncertainty in the 

physical parameters that govern the deterioration processes. Iceberg fracture processes have previously been studied using 

numerical methods to investigate fracture events for different iceberg geometries (Bassis and Jacobs, 2013), as well as due to 110 

the accumulation of microcracks in the ice structure (Bahr, 1995). Also, a recent study (Smith, 2020) investigated the 

fracture events of ice islands when a large protuberance develops on their keels, where a finite element analysis was used to 

estimate the buoyancy-driven bending stress and predict the associated fractures. However, these models did not account for 

the relative role of metocean conditions in the fracture processes. Probabilistic methods, however, have the ability to account 

for the relative contribution of meteorological and hydrological conditions to the fracture events of glacial ice features. To 115 

date, no previous research has adopted probabilistic methods (e.g., Bayesian approach) to investigate ice island fracture 

events under the influence of the metocean conditions that control these events, likely due to the lack of reliable data. 

However, several studies have adopted a probabilistic approach using a Bayesian belief network and hydro-meteorological 

variables for navigational risk assessment of ships (Zhang et al., 2013) or to estimate the conditional probability of ship 

besetting in sea ice covered waters (Turnbull et al., 2019; Fu et al., 2016; Montewka et al., 2015; Montewka et al., 2013). 120 

This study uses the CI2D3 database and adopts a similar methodology to that used in Turnbull et al. (2019), Fu et al. (2016), 

Montewka et al. (2015), and Montewka et al. (2013) to present a probabilistic fracture model for ice islands as a function of 

the metocean conditions. 

The CI2D3 database was previously used by Crawford et al. (2018d) to investigate the size distributions and 

meltwater flux of Petermann ice islands. The analysis of size distribution revealed that small ice islands constituted a 125 

significant proportion of ice island population, but large ice islands contributed the most to the total mass and melt water flux 

(Crawford et al., 2018d). The authors also revealed that fracture processes significantly contributed to the overall 

deterioration of Petermann ice islands as the ice island size distribution followed a power law model, which was 

corroborated by Stern et al. (2016), Tournadre et al., (2016), and Enderlin et al. (2016). 

This study uses the CI2D3 database to study fracture events of the ice islands which originated from the calving 130 

events of Petermann Glacier in 2008-2012. Various atmospheric and oceanic variables are analyzed to probabilistically 

determine the set of conditions that lead to the highest chance of fracture event occurrence. This study first presents a 
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description of the data structure in the CI2D3 database. Then, an overview of the results from a preliminary data analysis on 

the deterioration of Petermann ice islands is presented, followed by the results of the probabilistic fracture model. Finally, a 

validation scheme is presented to quantify the accuracy of the probabilistic fracture model. 135 

2 Methodology 

2.1 Data extraction from CI2D3 database 

The CI2D3 database (version 1.1) contains data extracted from around 25,000 satellite imagery observations of ice islands 

from various glaciers, including the Petermann, Ryder, Steensby, C.H. Ostenfeld, and North Greenland glaciers. The data 

contains a geospatial polygon and 28 attribute fields for each observation. An algorithm was developed in MATLAB 140 

(version R2017b) to extract the data subsets associated with the 2008, 2010, 2011, and 2012 Petermann ice islands (17,755 

observations). For each observation, the spatial and temporal data (latitude, longitude, and time) were extracted. Here it 

should be noted that the “birth” or beginning of a given ice island is considered to be immediately after it calved from 

another ice island (or glacier), and the “death” or end of that feature is taken as when it calves into two or more fragments. 

By this definition, 845 ice islands were tracked in the CI2D3 database, and the lineage (parent-child relationship) between 145 

the ice islands was captured as fracture events happened. To identify the parent-child relationship, the unique identifier for 

each ice island observation was extracted and matched with the lineage and mother fields. This permits identification of the 

previous observations of each ice island back to the time it was born, which were later used for estimating the cumulative 

effect of variables (e.g., air and water temperatures, and waves) that each ice island experienced over its lifespan. The 

algorithm also used the ddinfo field to identify if the ice island was grounded or drifting at the time of observation. This was 150 

used to estimate the grounding time over the lifespan of each ice island. 

2.2 Atmospheric and oceanic data extraction 

A series of atmospheric and oceanic data were collected from reanalysis databases in the region of interest between 

northwest Greenland and offshore Newfoundland (46-83 °N, 45-95 °W) from July 2008 to December 2013. Daily average 

values (0.3° spatial resolution) for zonal-meridional components of 10-m wind velocity (𝑚 𝑠−1) and 2-m air temperature (℃) 155 

were extracted from the North American Regional Reanalysis (NARR); daily average values (1/12°) for zonal-meridional 

components of ocean current velocity (𝑚 𝑠−1) and potential water temperature (℃) in 25 depth layers (down to 156 m) from 

the Global Ocean Physics Reanalysis model in Copernicus Marine Environment Monitoring Service (CMEMS); six-hourly 

values (1/8°) for significant height of combined wind waves and swell (𝑚) and mean wave period (𝑠) from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim Reanalysis; and sea ice concentration (%) from the 160 

CIS digital daily ice charts. The extracted metocean data were linearly interpolated in space and time to the positions and 

times of the ice island centroids recorded in the CI2D3 database to represent the distribution of atmospheric and oceanic 

conditions over the drift tracks of the ice islands. 
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The temporal resolution of the satellite observations in the CI2D3 database were not consistent for all ice islands 

over their drift periods. The reanalysis variables used in this study were usually available sub-daily (hourly, three-hourly, or 165 

six-hourly), but the temporal resolution of the images used to create the CI2D3 database range periodically from sub-daily to 

bi-weekly. Therefore, all atmospheric and oceanic data were extracted or averaged as daily values and then interpolated in 

space and time to the positions and times of the ice island observations. 

2.3 Probabilistic model development 

To evaluate the conditional dependence of ice island fracture events on atmospheric and oceanic variables, a Bayesian 170 

approach was employed. Bayesian analysis is a well-used method in probabilistic studies to evaluate the probability of a 

certain outcome using the most salient variables (Gutierrez et al., 2011). This method is recognized by its strong reasoning 

ability in uncertain situations and its ability to combine and analyze data from various datasets (Fu et al., 2016). Using the 

Bayesian method, the dependency and independency of a set of variables (Figure 1-a) were analyzed via a directed acyclic 

graph (Figure 1-b). Initially, the distribution of 10 atmospheric and oceanic variables were studied. These included wind 175 

speed (𝑉𝑤), air temperature (𝑇𝑎), ocean current speed (𝑉𝑐), water temperature (𝑇𝑤), wave energy index (𝐸𝑤), lifetime mean air 

temperature (𝑇𝑎_𝑎𝑣𝑔), lifetime mean water temperature (𝑇𝑎_𝑎𝑣𝑔), lifetime mean wave energy index (𝐸𝑤_𝑎𝑣𝑔), grounding time 

(𝑡𝑔), and sea ice concentration (𝐶𝑠𝑖). Wind and current speeds were estimated as the magnitude of the extracted zonal-

meridional components for wind and ocean currents, respectively. Water temperature was estimated as the average of water 

temperatures at all layers from the water surface down to a depth of 50 m. Given that wave energy flux is proportional to 180 

mean wave period and significant wave height squared (Christakos et al., 2020; Akpınar et al., 2019; Waters, 2008; Falnes, 

2007), the wave energy index was defined as: 

𝐸𝑤 = (𝐻𝑤𝑎𝑣𝑒)2(𝑇𝑤𝑎𝑣𝑒) , (1) 

where 𝐻𝑤𝑎𝑣𝑒  represents the significant height of combined wind waves and swell (𝑚) and 𝑇𝑤𝑎𝑣𝑒  represents the mean wave 

period (𝑠). Time since previous calving was also explored as a variable, but this had very little predictive power and was 

excluded from subsequent analyses. However, in order to capture the cumulative effect of temperature and waves over the 185 

lifespan of the ice island, we first identified all previous observations of each ice island back to the time and location that it 

was born. Then, the air and water temperatures, and wave energy index were interpolated spatially and temporally to all 

previous observations. To exclude the effect of observation frequency, these variables were interpolated in space and time to 

a daily interval. The cumulative values were then calculated as the sum of the daily-average variables over the lifespan of the 

ice island. These cumulative values were then normalized by the lifespan of the ice island to effectively compute the lifetime 190 

mean wave energy index, as well as the mean air and water temperatures over the lifespan of the ice island, which differ 

from positive degree day calculations that are often used in ice melt rate models (e.g., Hock, 2003). Grounding time was 

estimated by adding the number of days that an ice island was grounded over its lifespan. The distribution of these variables 

around fractured ice islands and all ice island observations were investigated and compared. However, further analysis of 
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𝐸𝑤_𝑎𝑣𝑔 and 𝑡𝑔 distributions for fracture events and all observations identified no correlation between these variables and the 195 

occurrence of fracture events, so they were excluded from the Bayesian fracture model development. Also, studying the sea 

ice cover around the ice island observations showed that sea ice concentrations were less than 3/10ths for about 99% of the 

observations, so it was discarded from further analysis as a model input variable. 

 

Figure 1. The classification of variables for the Bayesian fracture network (a), and the associated directed acyclic graph that 200 

shows the inter-relationship between the variables with the arrowheads showing the causality (b) 

The distribution of the metocean variables presented in Fig. 1 were studied for all ice island observations and 

compared against the variable distributions at the time of fracture events. However, the extracted reanalysis data revealed 

different number of data points available for the analysis of the seven variables presented. For example, for wind speed and 

air temperature, 17735 data points were available for all observations of Petermann ice islands. For current speed and water 205 

temperature, 16791 and 16784 data points were available for all observations of Petermann ice islands, respectively. These 

points covered most of the spatial and temporal records from the CI2D3 database. However, for wave energy index, only 

3985 data points from all observations were available during the same time period. Similarly, different number of data points 

were available for each variable during the fracture events. The different numbers of data points for each variable are likely 

due to the fact that the ice islands drifted some time near coastlines, and these data were extracted from reanalysis models 210 

that have insufficient spatial resolution to model data close to the coastlines. Therefore, the distributions of the studied 

variables from all observations and fractured subset are represented by relative frequencies to allow for consistent 

comparison of these distributions. 

The correlation between a pair of variables was investigated using the Pearson Product-Moment Correlation 

coefficient (𝑟), given by (Freedman et al., 2010): 215 

𝑟 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖

√∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖 √∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖

 , 
(2) 

where 𝑥𝑖, 𝑦𝑖  are a pair of variables for the 𝑖th set of data and 𝑥, 𝑦 are the means of variables 𝑥, 𝑦 from all observations (𝑛). 

The full set of data was used to perform the correlation analysis, and the inter-relationships between the variables is 
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presented in Figure 1-b. Directed arrows were drawn from each variable to all of the variables that showed a correlation 

coefficient greater than 0.35. 

The probability of fracture event occurrence in extremely high metocean conditions was investigated using a full set 220 

of model criteria with the high state (> 𝑥∗) of each variable. The selected criteria (𝑥∗) for each variable were identified by 

varying each criterion over the range of each variable from the fracture subset to maximize the fracture event probability. 

The distribution of conditional posterior probability was calculated through Bayes’ Theorem, given by (Stuart and Ord, 

1994): 

𝑃(𝑋|𝑌) =
𝑃(𝑋)𝑃(𝑌|𝑋)

𝑃(𝑌)
 , 

(3) 

where 𝑃(𝑋) is the prior probability of fracture event occurrence, 𝑃(𝐹𝑟𝑎𝑐); 𝑃(𝑌|𝑋) is the likelihood of a specific criteria set 225 

occurrence during fracture events, 𝑃(𝑉𝑤 , 𝑇𝑎 , 𝑉𝑐 , 𝑇𝑤 , 𝐸𝑤 , 𝑇𝑎_𝑎𝑣𝑔, 𝑇𝑤_𝑎𝑣𝑔|𝐹𝑟𝑎𝑐); and 𝑃(𝑌)  is the evidence of the criteria set 

occurrence for all observations, 𝑃(𝑉𝑤 , 𝑇𝑎, 𝑉𝑐 , 𝑇𝑤, 𝐸𝑤 , 𝑇𝑎_𝑎𝑣𝑔 , 𝑇𝑤_𝑎𝑣𝑔). The probabilities in Eq. (3) should be recalculated when 

new evidence become available, a process that reduces the dependence of the posterior probability on the original estimated 

prior probability (Eleye‐Datubo et al., 2006). The values of 𝑃(𝑌|𝑋) and 𝑃(𝑌) were determined using the relative frequency 

of the set of states in fracture events and all observations, respectively. The relative frequency is given by (Bonafede and 230 

Giudici, 2007): 

𝑃(𝑆𝑖) =
𝑛𝑖

𝑛
 , (4) 

where 𝑆𝑖 represents a set of the variables’ states, 𝑛𝑖 represents the frequency of the observed set of the states in fracture 

events or all observations, and 𝑛 represents the total number of fracture events or all observations in the dataset. 

Table 1. Various states of atmospheric and oceanic variables for the Bayesian fracture model 

Variables Unit State 1 State 2 

Wind Speed (𝑽𝒘) (𝑚 𝑠−1) ≤ 𝑉𝑤−𝑥
 > 𝑉𝑤−𝑥 

Air Temperature (𝑻𝒂) (℃) ≤ 𝑇𝑎−𝑥 > 𝑇𝑎−𝑥 

Current Speed (𝑽𝒄) (𝑚 𝑠−1) ≤ 𝑉𝑐−𝑥 > 𝑉𝑐−𝑥 

Water Temperature (𝑻𝒘) (℃) ≤ 𝑇𝑤−𝑥 > 𝑇𝑤−𝑥 

Wave Energy Index (𝑬𝒘) (𝑚2 𝑠) ≤ 𝐸𝑤−𝑥 > 𝐸𝑤−𝑥 

Lifetime Mean Air Temperature (𝑻𝒂_𝒂𝒗𝒈) (℃) ≤ 𝑇𝑎_𝑎𝑣𝑔−𝑥̃ > 𝑇𝑎_𝑎𝑣𝑔−𝑥̃ 

 Lifetime Mean Water Temperature (𝑻𝒘_𝒂𝒗𝒈) (℃) ≤ 𝑇𝑤_𝑎𝑣𝑔−𝑥 > 𝑇𝑤_𝑎𝑣𝑔−𝑥 

-𝑥̅ represents the median value in the distribution of the given variable 235 

To calculate the probability of fracture events in different metocean conditions, the ranges of atmospheric and 

oceanic variables at the time of fracture events were first divided into two states (Table 1) using the variable distribution 

medians (as specified by 𝑥̃). The conditional fracture probabilities were then estimated using a similar Bayesian approach 
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(Eq. (3)) through analyzing concurrent atmospheric and oceanic conditions at the time of fracture events that were extracted 

from the entire record for all ice island observations. Due to the limited number of fracture events (328), the number of state 240 

combinations in the presented model needed to be reduced to avoid model saturation and increase the model reliability. 

Among the atmospheric and oceanic variables analyzed in this study, current speed played an insignificant role in the 

fracture events of the ice islands, so it was not considered for further analysis. 

3 Results and discussion 

3.1 Preliminary analysis of ice island fracture events 245 

The descendants of ice islands resulting from the calving events of Petermann Glacier in 2008, 2010, 2011, and 2012 

generally drifted in a southward direction toward the Labrador Sea (Figure 2-a). These ice islands experienced 328 fracture 

events over their lives (Figure 2-b), which resulted in 845 ice islands. The 2010 event calved the largest ice island (Table 2), 

which generated 637 ice islands through its fractures (242 times), some of which drifted as far as offshore Newfoundland 

(Figure 2-a). The second largest calving event happened in 2012 which generated 169 ice islands through 73 fracture events, 250 

but the resulting ice islands were only recorded as far as offshore Iqaluit, given that the monitoring period in the CI2D3 

database ended in December 2013. The other two calving events (2008 and 2011) generated 29 and 10 ice islands, which 

resulted from nine and four calving events, respectively. The size distribution of ice islands showed that large ice islands 

(>10 km2) drifted longer before undergoing a fracture event and split into greater numbers of pieces per fracture event. 

Examples of this are two large ice islands (~137 km2 and 60 km2) originating from the 2010 calving event, which generated 255 

nine distinct pieces upon fracturing. However, around 70% of all fracture events generated only two daughter ice islands. A 

more detailed drift and deterioration analysis of the Petermann ice islands is presented in Zeinali-Torbati et al. (2019). 

 

https://doi.org/10.5194/tc-2021-83
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

Figure 2. The drift trajectories (a) and the locations of fracture events (b) for the ice islands originating from the calving 

events of the Petermann Glacier in 2008 (red), 2010 (blue), 2011 (yellow), and 2012 (green) 260 

Table 2. Description of the ice islands originating from the massive calving events of Petermann Glacier in 2008, 2010, 

2011, and 2012 

Glacier 

calving  

year 

Main 

calving  

date 

Surface 

area 

(km2) 

Number of 

digitized 

polygons 

Number of 

fracture 

events 

2008 10 July 36.4 332 9 

2010 5 August 302.4 9658 242 

2011 
16 August 

21 September 
4.3 502 4 

2012 17 July 144.6 7263 73 

3.2 Distributions of atmospheric and oceanic variables 

The atmospheric, oceanic, and lifetime mean variables shown in Figure 1 were examined at the time of ice island fracture 

events, and then compared with the metocean conditions for all ice island observations using the methodology described 265 

earlier. Figure 3 through Figure 5 show the summary statistics and histogram plots of the relative frequency of regional 

metocean variables surrounding the Petermann ice islands from all observations (blue), as well as from the fracture events 

(red). 

Figure 3-a shows that the mean water temperature surrounding all Petermann ice islands was negative (-0.8 ℃) 

indicating that they mainly drifted within cold waters; however, the water temperature values reached up to 10.4 ℃. The 270 

statistics for lifetime mean water temperature from all observations (Figure 3-c) were almost the same as water temperature: 

a negative mean value of -0.8 ℃ and a range of -1.8 ℃ to 10.4 ℃. Comparing the distribution of water temperatures in 

Figure 3-a,b reveals that fracture events happened at higher water temperatures; while only 20% of ice islands from the 

entire dataset were surrounded by water temperatures above 0 ℃, 42% of fractured ice islands were subjected to positive 

water temperatures. In a similar way, it was revealed from long-term water temperature distributions that only 13% of the ice 275 

islands from all observations drifted in positive lifetime mean water temperatures (Figure 3-c). This, however, corresponded 

to about 34% of the ice islands in the fracture subset (Figure 3-d). The summary statistics presented in Figure 3 reveal that 

water temperature and lifetime mean water temperature played significant roles in the fracture events of Petermann ice 

islands; compared to the temperature records for all ice island observations, the ice islands at the time of fracture events 

experienced, on average, 1.1 ℃  and 0.8 ℃ greater values of water temperature and lifetime mean water temperature, 280 

respectively. This indicates the important contribution of warm waters to faster deterioration of glacial ice features (as stated 

by Kubat et al., 2007), likely due to higher internal stress caused by the increased heat transfer from water to the ice feature. 
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Figure 3. Relative frequency histogram plots of water temperature (a; n=16784, b; n=298) and lifetime mean water 

temperature (c; n=13537, d; n=256) surrounding Petermann ice islands for all observations (a,c), and for the fracture events 285 

(b,d) 

Figure 4-a shows that the air temperatures to which the ice islands were subjected ranged from -35.6 ℃ to 17.9 ℃ 

for all observations, but the mean air temperature of -9.4 ℃ reveals that the ice islands drifted a significant amount of time in 
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cold air temperatures. Similarly, the Petermann ice islands were mainly subjected to negative lifetime mean air temperatures 

with an average of -11.6 ℃ ranging from -33.7 ℃ to 17.9 ℃ (Figure 4-c). Investigation of air temperature and its long-term 290 

effect at the time of fracture events (Figure 4-b,d) revealed that, on average, the ice islands were subjected to much higher 

values of these variables. The average air temperature at the time of fracture events was -5.2 ℃, which was 4.2 ℃ higher 

than the mean air temperature surrounding all ice islands. In a similar way, the ice islands from the fracture subset were, on 

average, subjected to 5.7 ℃  higher lifetime mean air temperature than the ice islands from all observations. The air 

temperature distributions (Figure 4-a,b) show that while the air temperatures associated with all ice island observations were 295 

most frequent around 0 ℃, the values associated with the fracture events were most frequent between 0 ℃ and 4 ℃. This, 

along with a 4.2 ℃ higher mean air temperature value from the fracture subset indicate that higher air temperature values are 

likely linked with the occurrence of fracture events. The analysis of lifetime mean air temperature distributions over the 

lifespan of each ice island (Figure 4-c,d) revealed that while only 14% of all ice island observations experienced lifetime 

mean air temperatures greater than 0 ℃, about 35% of the ice islands from the fracture subset were subjected to positive 300 

lifetime mean air temperatures. This indicates that the long exposure of ice islands to relatively warm air temperatures was 

likely an important factor in the occurrence of the fracture events.  
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Figure 4. Relative frequency histogram plots of air temperature (a; n=17735, b; n=328) and lifetime mean air temperature (c; 

n=17755, d; n=328) surrounding Petermann ice islands for all observations (a,c), and for the fracture events (b,d) 305 

The results associated with all observations of waves (Figure 5-a) show that while the wave energy index values 

varied from 0.1 𝑚2 𝑠 to 62.1 𝑚2 𝑠, the ice islands were mainly subjected to relatively low wave energy index with an 

average value of 5.3 𝑚2 𝑠. Similarly, the regional wind and current speeds surrounding the ice islands from all observations 

were often relatively low, with a mean value of 2.9 𝑚 𝑠−1  and 0.08 𝑚 𝑠−1 , respectively (Figure 5-c,e). The summary 
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statistics of the records from the fracture events (Figure 5-b,d,f) revealed that the regional mean wave energy index, wind 310 

speed, and current speed around the ice islands at the time of fracture events were slightly stronger (by 38%, 17%, and 38%, 

respectively) when compared to the associated values for all ice islands observations. The analysis of wave energy index 

distributions around the Petermann ice islands presented in Figure 5-a,b show that only 30% of Petermann ice islands 

encountered wave energy index values greater than 6 𝑚2 𝑠. The fracture events, however, occurred at greater wave energy 

index values, where 46% of ice island observations experienced wave energy index values greater than 6 𝑚2 𝑠. The analysis 315 

also shows that while relatively high values of wave energy index most likely contribute to the occurrence of ice island 

fracture events, this variable by itself does not lead to a high fracture probability of Petermann ice islands. Investigation of 

wind speeds over the ice islands (Figure 5-c,d) showed that the ice islands from all observations were subjected most 

frequently to weak winds (~1-3 𝑚 𝑠−1). Similarly, at the time of fracture events, the ice islands were most frequently 

subjected to weak winds (~2-4 𝑚 𝑠−1). The fact that there is little difference in these distributions suggests that wind speed 320 

by itself was not a significant variable in the fracture of ice islands. The comparison of ocean current speed records around 

the studied ice islands (Figure 5-e,f) revealed that the current speed values from the fracture subset were slightly greater than 

the full observational records. However, similar to all records, the fractured ice islands were mainly subjected to weak 

regional current speeds, which suggests minor contribution of current speed to the fracture event occurrence. 
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Figure 5. Relative frequency histogram plots of wave energy index (a; n=3985, b; n=131), wind speed (c; n=17735, d; 

n=328), and current speed (e; n=16791, f; n=296) surrounding Petermann ice islands for all observations (a,c,e), and for the 

fracture events (b,d,f) 

The pairwise correlation between the metocean variables revealed that water temperature was positively correlated 

with the air temperature, a finding that was stated in a number of other studies (e.g., Morrill et al., 2001; Erickson and 330 

Stefan, 2000). Table 3 also revealed a correlation between the wind speed and wave energy index, which was expected as the 

wave energy index is dependent on the significant wave height (Eq. (1)). The positive correlation between wind speed and 

wave height was also stated in Fu et al. (2016). Other inter-relationships between the variables include the correlations 

between the daily-average air/water temperatures and the lifetime mean air/water temperatures. These correlations are 

expected given that the lifetime mean variables were defined as the time-average of daily-average variables over the life of 335 

each ice island.  

Table 3. Pearson product-moment correlation coefficients of the metocean variables in the developed fracture model. The 

variables included water temperature (𝑻𝒘), wind speed (𝑽𝒘), air temperature (𝑻𝒂), current speed (𝑽𝒄), wave energy index 

(𝑬𝒘), lifetime mean air temperature (𝑻𝒂_𝒂𝒗𝒈), and lifetime mean water temperature (𝑻𝒘_𝒂𝒗𝒈) 

Variable 𝑽𝒘 𝑻𝒂 𝑽𝒄 𝑻𝒘 𝑬𝒘 𝑻𝒂_𝒂𝒗𝒈 𝑻𝒘_𝒂𝒗𝒈 

𝑽𝒘 1       

𝑻𝒂 0.132 1      

𝑽𝒄 0.097 0.079 1     

𝑻𝒘 0.236 0.547 0.076 1    

𝑬𝒘 0.403 0.046 0.066 0.232 1   

𝑻𝒂_𝒂𝒗𝒈 0.216 0.650 0.145 0.581 0.097 1  

𝑻𝒘_𝒂𝒗𝒈 0.265 0.366 0.153 0.847 0.297 0.647 1 

The associated p-values for all correlations show significance at the level of 0.00005 (p-value<0.00005). 340 

3.3 Metocean conditional criteria sets and fracture event frequency 

To examine the probability of fracture event occurrence in very high states of metocean conditions, a full set of 

model criteria associated with the atmospheric and oceanic conditions at the time of fracture events was obtained and 

presented as criteria set i=6 (Table 4), using the methodology described earlier. The same approach was employed to 

investigate the influence of simplifying the fracture model using fewer number of variables, and the results were presented 345 

by criteria sets i=1-5 in Table 4).  

Table 4. Fracture model conditional criteria sets and the associated conditional probability (𝑃𝑓𝑟𝑎𝑐). The variables included 

water temperature (𝑇𝑤), wind speed (𝑉𝑤), air temperature (𝑇𝑎), current speed (𝑉𝑐), wave energy index (𝐸𝑤), lifetime mean air 

temperature (𝑇𝑎_𝑎𝑣𝑔), and lifetime mean water temperature (𝑇𝑤_𝑎𝑣𝑔) 
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Criteria 

Set i 

𝑻𝒘 

(℃) 

𝑽𝒘 

(𝒎 𝒔−𝟏) 

𝑻𝒂 

(℃) 

𝑽𝒄 

(𝒎 𝒔−𝟏) 

𝑬𝒘 

(𝒎𝟐 𝒔) 

𝑻𝒂_𝒂𝒗𝒈 

(℃) 

𝑻𝒘_𝒂𝒗𝒈 

(℃) 

𝑷𝒇𝒓𝒂𝒄 

(%) 

1 >4       16 

2 >4 >6      28 

3 >4 >6 >7     45 

4 >4 >6 >7 >0.1    60 

5 >4 >6 >7 >0.1 >5   75 

6 >4 >6 >7 >0.1 >5 >0 >0 75 

 350 

The fracture probability (𝑃𝑓𝑟𝑎𝑐) for a given set of concurrent atmospheric and oceanic criteria sets were estimated 

using Eq. (3). To calculate the relative frequencies 𝑃(𝑌|𝑋) and 𝑃(𝑌) in Eq. (3), the number of events from the fracture 

subset and all observations meeting the given criteria sets were identified and divided by the total number of observations in 

each subset. Considering criteria set i=2 as an example, which accounts for only water temperature and wind speed, there are 

five events from the fracture subset and 18 events from all observations that have water temperature greater than 4 ℃ and 355 

wind speed greater than 6 𝑚 𝑠−1. Given that the number of fracture events was 328 and the total number of observations was 

17755, the relative frequency was estimated from Eq. (4) and integrated into Eq. (3) to calculate the conditional fracture 

probability for criteria set i=2, given by: 

𝑃(𝐹𝑟𝑎𝑐|𝑇𝑤 > 4 ℃, 𝑉𝑤 > 6 𝑚 𝑠−1) =
𝑃(𝐹𝑟𝑎𝑐)𝑃(𝑇𝑤 > 4 ℃, 𝑉𝑤 > 6 𝑚 𝑠−1|𝐹𝑟𝑎𝑐)

𝑃(𝑇𝑤 > 4 ℃, 𝑉𝑤 > 6 𝑚 𝑠−1)
=

328
17755

×
5

328
18

17755

≈ 0.28 , 

(5) 

The calculated value in Eq. (5) indicates that if the conditions associated with the criteria set i=2 hold, there is a 28% chance 

that these conditions lead the ice islands to fracture and split into two or more pieces. For each criteria set in Table 4, the 360 

same approach was employed to estimate the fracture probability as different conditions are added. 

Table 4 has a predictive capability for the occurrence of fracture events for the Petermann ice islands under 

different atmospheric and oceanic conditional criteria sets. Some features of the criteria sets presented in Table 4 and their 

associated fracture event probability are noteworthy. An important implication of the results in Table 4 is the predominant 

link between the daily-average variables (i.e., 𝑇𝑤, 𝑉𝑤 , 𝑇𝑎, 𝑉𝑐 , and 𝐸𝑤) with the fracture event occurrence. When only the 365 

criteria for the air and water temperatures, wind and current speeds, and wave energy index are considered without 

accounting for the lifetime mean variables (criteria set i=5), 75% of all events meeting these criteria occurred for the ice 

islands from the fracture subset. However, when only the high states of one or two variables are considered, the fracture 

probability drops to less than 30%, which indicates the strong effect of concurrent atmospheric and oceanic conditions on the 

occurrence of ice island fracture events. Also, the criteria set i=6 in Table 4 reveals that, the addition of the lifetime mean 370 

variables did not increase the fracture probability above 75%. This is due to the fact that the criteria set i=5 narrowed down 

the atmospheric and oceanic conditions to a condition that already meets the criteria added in criteria set i=6, implying that 
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the conditions presented in criteria set i=5 are enough to predict a fracture event probability up to 75%. It is worth noting that 

the criteria sets represented in Table 4 implicitly account for the inter-relationship between the variables. For example, the 

criteria set i=3, which considers high air and water temperatures, accounts for the correlation between air and water 375 

temperatures (Table 3), indicating that there is a high chance for the coincident occurrence of high air and water 

temperatures. It is also important to note that Table 4 only shows the criteria sets associated with the fracture events of ice 

islands originating from the calving events of the Petermann Glacier in 2008, 2010, 2011, and 2012. If more data become 

available from other fracture events of the Petermann ice islands, where the fracture events occur under different 

combinational criteria sets of atmospheric and oceanic conditions, then the variable ranges, the number of criteria sets, and 380 

the fracture probabilities presented in Table 4 would need to be updated. 

The atmospheric and oceanic conditional criteria sets presented in Table 4 only show some specific criteria sets and 

clearly do not represent all possible combinations of the conditions. These criteria sets were selected by the progressive 

addition of one or two conditions to the previous criteria set, so that the associated conditional fracture probability would 

increase. However, to account for all possible conditions of the variables, the ranges for the atmospheric and oceanic 385 

variables were divided into two states using the methodology described earlier in Table 1. The elimination of current speed 

variable (as explained in the Sect. 2.3) reduced the number of state combinations from 128 to 64, which allowed for a greater 

number of occurrences for each combination of the states, with bin edges previously described in Table 1. Through an 

iterative process, the conditional fracture probability for each combination of the states was then calculated using Bayes 

Theorem (Eq. (3)). Due to the large number of elements (64 values) in the conditional probability table, it is not possible to 390 

illustrate all combinations of the variable states (Table 1) and their associated probability. So, the model description is 

limited to its qualitative part. 

The results obtained from the presented Bayesian approach provide a framework to probabilistically forecast the 

future fracture events of ice islands originally calved from the Petermann Glacier. This probabilistic model can provide 

supplementary information to the available deterministic ice dynamic prediction models by quantifying the probability of ice 395 

island fracture event occurrence under various sets of concurrent atmospheric and oceanic conditions. To use this model, one 

needs to first identify the spatial and temporal coordinates of a given ice island and then extract or forecast the six daily-

average and lifetime mean variables discussed earlier. Then, the obtained set of conditions is identified in the developed 

conditional probability table to quantify the associated probability of fracture event occurrence under the given set of 

atmospheric and oceanic conditions. 400 

To better describe the utility of the developed fracture model, a case study was conducted on a descendant of ice 

islands resulting from the calving event of Petermann Glacier in 2010. This ice island was selected for a case study due to its 

drift characteristics. The ice island drifted for a long period (>7 months) and experienced a significant change in latitude 

(>15º). This ice island was born when its parent ice island broke into three pieces on 26 November 2010, and then fractured 

later into two pieces on 5 July 2011. The spatial and temporal data for consecutive observations of this ice island were 405 

identified using the CI2D3 database. The atmospheric and oceanic variables were extracted from reanalysis databases and 
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then interpolated to the positions and times of the given observations. The lifetime mean variables were also estimated using 

the methodology explained earlier, and the variables were all used as input to the presented fracture model to study the 

conditional fracture probabilities of the ice island over its drift path (Figure 6-a). To investigate the effect of different 

atmospheric and oceanic conditions on the fracture events of the same ice island, the metocean data during 2017-2018 were 410 

extracted and interpolated to the same positions as the case mentioned earlier, assuming that the time gaps between the 

observations are the same as the 2010-2011 case. Here it was assumed that the same drift trajectory applies, however, this 

would not likely be the case given that iceberg drift models are largely governed by the real-time metocean conditions 

(Lichey and Hellmer, 2001; Kubat et al., 2005; Eik, 2009; Keghouche et al., 2009; Rackow et al., 2017; Zeinali-Torbati et 

al., 2020). This would be, however, an area for future work, where a drift model needs to be integrated into the proposed 415 

fracture model to have a reliable estimation of ice island positional data. The interpolated metocean data for the 2017-2018 

case were then used in the presented fracture model to investigate how the fracture probability map would change under the 

influence of different atmospheric and oceanic conditions (Figure 6-b). The fracture probability map for the 2010-2011 case 

(Figure 6-a) reveals that the ice island drifted some time (~14 days) in the medium-high fracture probability zone (shown by 

the orange and red colors) before breaking up into two pieces. This, however, was not the case for the 2017-2018 ice island 420 

during the same time period (Figure 6-b) as this ice island only spent some time (~14 days) in the small-medium fracture 

probability zone (shown by the green and orange colors) towards the end of its drift period off Labrador coast. The 

hypothetical 2017-2018 ice island, in fact, never experienced the metocean conditions that lead to a high probability of 

fracture events. This is likely due to the fact that the 2017-2018 ice island was generally exposed to lower water temperature 

(~24% on average) over its drift. This result is expected given that water temperature was identified as the most important 425 

contributor to the fracture events of Petermann ice islands analyzed in this study. 
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Figure 6. The fracture probability map for a descendant of the Petermann ice island from the 2010 calving event (a), 

compared against the projected fracture probabilities for the same ice island in 2017-2018 (b). The filled dots show the 

positions of the ice island at the time it was born and the time it fractured 430 

While a Bayesian network has never been employed for forecasting ice island fracture events, the probabilistic 

model presented in this paper was developed based on the methodology used in Turnbull et al. (2019) and Fu et al. (2016), 

where the Bayesian approach was used to predict vessel besetting events in pack ice. The study by Fu et al. (2016) used a 

Bayesian network to investigate the inter-relationship between nine variables (i.e., ship speed, engine power, wind speed, air 

temperature, low visibility, sea temperature, ice concentration, ice thickness, and wave height), as well as their influence on 435 

the probability of a ship getting stuck in ice while navigating through the Northern Sea Route. Using a similar Bayesian 

approach, Turnbull et al. (2019) studied two pack ice besetting events of the Umiak I and developed a probabilistic forecast 

model for future besetting events experienced by Umiak I under the influence of nine ice and metocean variables (i.e., ice 

concentration, ice thickness, floe size, minimum coast distance, wind-coast direction, wind speed, current-coast direction, 

current speed, and wind divergence). While this approach has not been used in a past iceberg fracture model, there are some 440 

deterioration models such as the one by Kubat et al. (2007) that account for the influence of metocean variables (e.g., wind 

speed, current speed, water temperature, wave height, and wave period) on the calving events of the overhanging slabs 

resulting from the repeated action of waves. Kubat et al. (2007) revealed that wave height and water temperature dominate 

effects on iceberg deterioration through melt and small-scale wave-induced calving events. However, the probabilistic model 

presented here accounts for the large-scale fracture events in ice islands under the influence of various metocean conditions 445 

that govern the occurrence of these events. To date, no probabilistic or deterministic models have been presented to 
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investigate the atmospheric and oceanic conditions that lead to the highest probability of large-scale fracture event 

occurrence for ice islands. Therefore, it is impossible to compare the methodologies and results of the presented Bayesian 

fracture model with an existing physical ice island fracture model. Hence, the presented model was validated using a well-

known scheme in probabilistic data analysis studies, which is described in Sect. 4.    450 

4 Probabilistic model validation 

The developed probabilistic model was validated using a resampling approach. The results presented earlier were 

developed using all fracture event data from the Petermann ice islands; however, the Pareto principle (Macek, 2008) 

suggests 80% of the data be used for model training and development, and 20% be reserved for testing the developed model 

(Suthaharan, 2016). To reduce the effect of variation in the subset selection and have a more robust evaluation of the 455 

developed model, a k-fold cross-validation approach (Ozdemir, 2016) was used (k=5). So, input variables associated with the 

fracture and non-fracture data were randomly partitioned into five disjoint subsets of approximately equal size, where each 

time one of these subsets served for model testing, and the rest were used to train the model. This corresponded to the 

selection of training subsets with approximately 14205 data points (262 fracture events and 13943 non-fracture events) and 

test subsets with approximately 3550 data points (66 fracture events and 3484 non-fracture events). The conditional fracture 460 

probabilities of ice islands for the given criteria sets were calculated using the atmospheric and oceanic conditions for each 

test subset and then cross-validated against the predicted values associated with its corresponding training set (Table 5). 

Table 5. Model validation for some of the criteria sets in the model (e.g., criteria set i=5 shows one of the 64 state 

combinations of the six variables; criteria set i=4 represents one of the 16 state combinations of the four variables). The 

variables included water temperature (𝑇𝑤), wind speed (𝑉𝑤), air temperature (𝑇𝑎), wave energy index (𝐸𝑤), lifetime mean air 465 

temperature (𝑇𝑎_𝑎𝑣𝑔), and lifetime mean water temperature (𝑇𝑤_𝑎𝑣𝑔). Model error is derived through statistical comparison of 

fracture probability estimations from training sets and test sets, obtained using 5-fold cross-validation method 

Criteria 

Set i 

𝑻𝒘 

(℃) 

𝑽𝒘 

(𝒎 𝒔−𝟏) 

𝑻𝒂 

(℃) 

𝑬𝒘 

(𝒎𝟐 𝒔) 

𝑻𝒂_𝒂𝒗𝒈 

(℃) 

𝑻𝒘_𝒂𝒗𝒈 

(℃) 

𝑷𝒇𝒓𝒂𝒄_𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
1 (%) 𝑷𝒇𝒓𝒂𝒄_𝒕𝒆𝒔𝒕

1 (%) 𝑷𝒂𝒊𝒓𝒘𝒊𝒔𝒆 % 𝑬𝒓𝒓𝒐𝒓2 𝑷𝒇𝒓𝒂𝒄_𝒂𝒍𝒍
1 

(%) Mean Std.3 Mean Std.3 Test vs. Training 

1 >-0.5      3.3 0.1 3.4 0.4 13 3.3 

2 >-0.5 >2.8     3.4 0.2 3.5 0.9 20 3.5 

3 >-0.5 >2.8 >-2.1    3.8 0.3 3.8 1.2 24 3.8 

4 >-0.5 >2.8 >-2.1 >5.1   6.1 0.6 6.0 2.4 33 6.2 

5 >-0.5 >2.8 >-2.1 >5.1 >-3.5 >-0.7 6.5 0.9 6.6 3.4 39 6.7 

1 𝑃𝑓𝑟𝑎𝑐_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑃𝑓𝑟𝑎𝑐_𝑡𝑒𝑠𝑡, and 𝑃𝑓𝑟𝑎𝑐_𝑎𝑙𝑙  represent the fracture probability estimations from the training subsets, test subsets, 

and all data points, respectively 
2 Absolute error between the fracture probability estimations from the training and test subsets 470 
3 Standard deviation  

The results of the fracture model validation analysis for the selected criteria sets (Table 5) reveal that the mean 
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fractures probabilities estimated from the test subsets are in agreement with the mean estimations from the training subsets as 

the ranges for the fracture probability values overlap. Investigation of the errors between the pairwise (test vs. training) 

fracture probability values show that the test sets selected using the 5-fold cross-validation approach are able to provide 475 

estimations that are, on average, within 13-39% of the values forecasted using the training sets. It was also revealed from the 

standard deviation values that the presented model is more reliable when a fewer number of variables or state combinations 

are considered (e.g., criteria set i=1). This is because, as the number of variables or state combinations increase, there are 

fewer fracture events and the ranges of atmospheric and oceanic conditions become more constrained, so the number of 

events meeting these given criteria decreases. With fewer observations, there will be more variability and consequently a 480 

higher error in the predicted fracture probability values. If more fracture data in each criteria set become available, the model 

will become more robust and the error in fracture probability estimations is expected to reduce. 

The 5-fold cross-validation analysis presented in Table 5 only shows some of the possible combinations of variable 

states. This corresponds to 1/2 one-variable combinations (i=1), 1/4 two-variable combinations (i=2), 1/8 three-variable 

combinations (i=3), 1/16 four-variable combinations (i=4), and 1/64 six-variable combinations (i=6). However, the model 485 

skill was also analyzed for the remaining combinations, and it was revealed that the model does not perform well under 

implausible combinations of the atmospheric and oceanic conditions, which are not likely to be encountered and do not 

hinder the model most of the time. For example, based on the extracted/interpolated metocean data for the full model with all 

six variables, 36 combinations (out of 64) never occurred, so the fracture probabilities under such conditions are unknown. 

However, the remaining 28 combinations that were met revealed a larger error (~100-200%) between the probability 490 

estimations from the training and test subsets, when the associated combination was unlikely to occur (<1%). For instance, 

due to the very few data points existing for these improbable combinations, there were some cases that were not observed in 

the test subsets but were observed only a few times in the training subsets, which inflated an error of 100%. However, our 

model showed higher reliability under plausible combination of metocean conditions, such as the criteria sets i=1-5 in Table 

5 (13-39% error), or when fewer number of variables were used in the model that generated much less error between the 495 

probability estimations from the test and training subsets (e.g., 11-97% for 1-4 variables). 

5 Conclusions and future work 

This study presented a probabilistic forecast model for the fracture events of ice islands through the analysis of the relative 

influences of atmospheric and oceanic forces. The recurrent deterioration of the ice islands originating from four recent 

calving events of Petermann Glacier were studied using the data in the CI2D3 database to probabilistically investigate the 500 

conditions that lead to fracture event occurrence of the ice islands. It was revealed in Figure 3 through Figure 5 that while 

fracture events generally occurred when the ice islands were subjected to more severe atmospheric and oceanic conditions 

(e.g., high wind and current speed, air and water temperature, wave energy index, and lifetime mean air and water 

temperature), warm water temperature played the most important role in the large-scale fracture events of Petermann ice 

islands. The results also showed that ice islands subjected to high values of daily-average metocean variables (as specified in 505 
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Table 4), are expected to have a 75% chance of fracturing. The model validation was performed using k-fold cross-validation 

approach based on the Pareto principle, and it was found that the error between the estimated fracture probabilities from 

training and test sets ranged from 13% when only water temperature criterion is considered, to 39% for the full set of 

criteria. 

The results of this study provide an important step toward the development of a probabilistic forecast model for 510 

fracture events of ice islands. The model presented here was built on the fracture event data associated with the ice islands 

that originated from Petermann Glacier, and therefore applies only to specific ice islands which share similar ice strength 

properties. Ice islands from other glaciers may have higher or lower ice strength characteristics and could experience fracture 

events under narrower or wider ranges of metocean conditions than presented in this study. The atmospheric and oceanic 

conditions, and their corresponding fracture event probabilities presented in Table 4 and Table 5 need to be updated if more 515 

deterioration data become available to improve the model accuracy. The atmospheric and oceanic conditions in the presented 

model were extracted from reanalysis datasets; however, for the presented model to have an operational forecast use, the 

metocean conditions and fracture event probabilities should be estimated using the inputs from deterministic models that 

have the ability to provide short-term forecasts. The results of this study can be used with a limited number of variables. For 

example, in case only daily-average wind and air/water temperature data for the ice islands are available, the model should 520 

be restricted to criteria sets i=1–3. Once more variable data become available (e.g., wave and lifetime mean variables), then 

the probabilistic fracture event estimations may take into account the expanded criteria sets (e.g., i=4-5). 

Future work should focus on improving this model through expanding the deterioration database of Petermann ice 

islands, as well as evaluating the fracture event data associated with other ice islands. The presented model was developed 

based on the data from 328 fracture events; however, more data are needed to train and test this model. The probabilistic 525 

model presented here only considered two states for each variable to avoid model saturation given the limited number of data 

points. If more data become available, one can improve the model resolution by using a greater number of variable states 

(e.g., three or four). While this study used seven input variables to develop a probabilistic fracture model, future research can 

also investigate the role of other variables such as sea ice concentration/thickness and ice island size on fracture events of ice 

islands. Also, the incorporation of in-situ measured metocean data can contribute significantly to further validation of the 530 

presented ice island fracture model. Finally, for this model to have a forecast capability for future ice island fracture events, 

the presented fracture model needs to be coupled with a drift model able to reliably forecast the positional data. A 

probabilistic drift model for the Petermann ice islands in the CI2D3 database is currently under development by the same 

authors, which will then be integrated into the presented fracture model to ultimately present a coupled ice island drift and 

deterioration forecast model. 535 

The research presented here fills some of the critical knowledge gaps in glacial ice deterioration forecasts. The 

results of this study provide an important step in characterizing the atmospheric and oceanic conditions that govern the large-

scale fracture events of ice islands, which are important for improving the calibration of operational ice dynamics models. 

The increase in the air and water temperatures due to the climate change is expected to drive more frequent massive calving 
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events of Petermann Glacier in the future (Münchow et al., 2016), which could lead to the generation of numerous drifting 540 

ice islands off the east coast of Canada. The ability to predict fracture events of these ice islands could contribute to the 

development of more reliable strategies to mitigate the risks associated with the presence of glacial ice features, which is 

necessary for supporting safe offshore operations and marine activities in the ice-prone waters off the east coast of Canada. 
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