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Abstract. Four calving events of Petermann Glacier happened in 2008, 2010, 2011, and 2012, which resulted in the drift and 

deterioration of numerous ice islands, some reaching as far as offshore Newfoundland. The presence of these ice islands in the 10 

eastern Canadian Arctic increases the risk of interaction with offshore operations and shipping activities. This study uses the 

recently developed Canadian Ice Island Drift, Deterioration and Detection database to investigate the fracture events that these 

ice islands experienced, and presents a probabilistic model for the conditional occurrence of such events by analyzing the 

atmospheric and oceanic conditions that drive the causes behind the ice island fracture events. Variables representing the 

atmospheric and oceanic conditions that the ice islands were subjected to are extracted from reanalysis datasets and then 15 

interpolated to evaluate their distributions for both fracture and non-fracture events. The probability of fracture event 

occurrence for different combinations of input variable conditions are quantified using Bayes’ theorem. Out of the seven 

variables analyzed in this study, water temperature and ocean current speed are identified as the most and least important 

contributors, respectively, to the fracture events of the Petermann ice islands. It is also revealed that the ice island fracture 

probability increases to 75% as the ice islands encounter extreme (very high) atmospheric and oceanic conditions. A validation 20 

scheme is presented using cross-validation approach and Pareto principle, and an average error of 13-39% is reported in the 

fracture probability estimations. The presented probabilistic model has a predictive capability for future fracture events of ice 

islands and could be of particular interest to offshore and marine ice/risk management in the eastern Canadian Arctic. Future 

research, however, is necessary for model training and testing to further validate this ice island fracture model. 

1 Introduction 25 

With the advancement of offshore operations and shipping activities into the harsh environment in the eastern Canadian waters, 

these activities are being subjected to greater risks from glacial ice features (Saper, 2011). The shipping and resource extraction 

industries in this region, therefore, require a better understanding of the dynamics and physical properties of these ice features 

to be able to devise appropriate ice management strategies for safe operations. Specifically, a better understanding of the drift 

and deterioration characteristics of icebergs and ice islands (large tabular icebergs) is needed for risk management strategies. 30 

However, due to the occasional presence of ice islands in regions with lower latitudes such as offshore Newfoundland and 
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Labrador (Johannessen et al., 2011), there has been limited research on the dynamics of ice islands, when compared to the 

research concerning annual presence of smaller icebergs in the region. Ice island research studies have been mainly focused 

on their potential risks to shipping activities and offshore operations (Peterson, 2011; Mueller et al., 2013; Fuglem and Jordaan, 

2017), as well as their meltwater input as they deteriorate and melt over large regions (Stern et al., 2015; Merino et al., 2016; 35 

Wagner et al., 2017; Crawford et al., 2018d). 

For offshore operations, whether or not a drifting ice feature is manageable, or if activities should be suspended, 

depends on its velocity, mass, and the number of ice features approaching the vicinity. Mass and size distribution are both 

dependent on the deterioration of each ice feature via melting and/or fracturing, processes that are associated with several 

atmospheric and oceanic variables. Therefore, it is important to evaluate the effect of metocean (meteorology and 40 

oceanography) variables on the deterioration of ice islands. However, the harsh conditions in the eastern Canadian marine 

environment make it very challenging to collect in-situ metocean data. Also, due to the difficulties involved in tracking a large 

number of ice islands over their lives (Merino et al., 2016; Rackow et al., 2017; Stern et al., 2016), it has been a challenge to 

investigate the conditions that lead to ice island deterioration. An alternative way to track a large number of ice islands and 

monitor their deterioration is using remote sensing observations. Unlike optical methods, Synthetic Aperture Radar (SAR) 45 

imagery can produce images of ice islands even when the amount of daylight is low and cloud cover is high (Jeffries, 2002). 

The recent calving events of Petermann Glacier (2008-2012) and other northern Greenland glaciers have been accompanied 

by SAR satellite imagery (July 2008 to December 2013), which allowed tracking the ice islands throughout their periods of 

drift and deterioration. Through a collaboration between the Canadian Ice Service (CIS) and Water and Ice Research Lab 

(WIRL) at Carleton University, a large number of SAR images from the CIS archive were analyzed using a geographical 50 

information system to develop a geospatial database associated with the ice islands originally calved from Petermann Glacier 

in 2008-2012, as well as the Ryder, Steensby, C.H. Ostenfeld, and North Greenland ice tongues (Crawford et al., 2018a). The 

ice islands were delineated and monitored as they deteriorated (via melting and/or fracturing) down to a threshold of 0.25 km2 

in surface area (Crawford et al., 2018d), and the information was recorded in the Canadian Ice Island Drift, Deterioration and 

Detection (CI2D3) database. The calving events of the Petermann Glacier in 2008, 2010, 2011, and 2012 corresponded to the 55 

removal of 36, 302, 4, and 145 km2 from the Petermann Ice Tongue, respectively (Crawford et al., 2018a). The calving event 

that occurred in 2010 was the most significant of all and resulted in the loss of about 25% of the Petermann Glacier ice tongue 

(Nick et al., 2012). These calving events generated numerous smaller ice islands that drifted southwards toward the Labrador 

Sea, which were tracked in the CI2D3 database. More information on the CI2D3 database and its documentation can be found 

in Desjardins et al. (2018) and Crawford et al. (2018b). 60 

1.1 Past studies on iceberg deterioration 

A key component for a reliable ice drift model and risk assessment of icebergs is the ability to estimate their mass (Crawford 

et al., 2018c), a variable that constantly changes as a result of melting and small/large scale fracturing as it drifts. This can be 

investigated through melt rate and small-scale physical calving models, field measurements, or remote sensing observations. 
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Iceberg melt rate models predict processes such as forced convection caused by air at the iceberg sail and water at the keel, 65 

solar radiation on the iceberg sail, natural convection on sidewalls, and sidewall erosion at the waterline caused by waves (Job, 

1978; El-Tahan et al., 1987; Savage, 2001). The resulting iceberg calving caused by wave erosion has been modeled using 

empirical models (e.g., White et al., 1980; Savage, 2001) and physical models (e.g., Wagner et al., 2014). Savage (2001) 

studied the relative contribution of each of these mechanisms to the overall deterioration of three different icebergs and found 

that wave erosion at the waterline was the dominant mechanism in contributing to the overall iceberg deterioration (by 50-70 

65%), followed by the resultant wave-induced calving events (by 20-30%). Savage (2001) also found that surface melt played 

a minor role in the deterioration of icebergs, but it was revealed in another study that the deterioration of ice islands was 

significantly influenced by the surface melt due to the large surface area of ice islands (Crocker et al., 2013). Kubat et al. 

(2007) used the deterioration mechanisms described by Savage (2001) to build an operational iceberg forecasting model for 

the CIS. The sensitivity of the deterioration model to various metocean variables was examined, and it was revealed that the 75 

overall deterioration of icebergs was most significantly influenced by wave height (via erosion at the waterline and calving of 

the overhanging slabs), followed by water temperature (Kubat et al., 2007). The importance of waves and wave-related calving 

in the overall deterioration of icebergs was also highlighted by Rackow et al. (2017) who investigated the influence of the 

wave-induced calving, basal melt, and buoyant convection on the deterioration of 6912 icebergs with varying sizes (0.3-4717.6 

km2) in the Antarctic. Rackow et al., 2017 highlighted the importance of iceberg size in their thermodynamic characteristics 80 

and that while waves played the most important role in the decay of smaller icebergs (<10 km), basal melt was an important 

contributor to the overall mass loss of giant icebergs (>10 km). In a similar study, Stern et al. (2017) presented a novel 

framework to simulate drifting tabular icebergs for climate studies. The authors modeled the melt of tabular icebergs 

submerged in the ocean in the Antarctic through the three mechanisms that were used in Rackow et al. (2017). Crawford et al. 

(2015) modeled the energy fluxes at the surface using the bulk aerodynamic approach to estimate the surface melt of an ice 85 

island sail, and validated the results against three surface ablation models (from Kubat et al., 2007; Ballicater Consulting Ltd., 

2012; Hock, 2003). Bouhier et al. (2018) studied the observed vertical melt of two large Antarctic icebergs through the 

combined analysis of satellite altimetry and imagery and compared this against melt rate estimates from two different models: 

a forced convection approach and a thermal turbulent exchange approach. While the former approach was found to 

underestimate the iceberg melt rates, the latter approach was more reliable in modeling iceberg thickness variations. Zeinali-90 

Torbati et al. (2020) estimated the reduction in the mass of four ice island fragments offshore Newfoundland using a surface 

ablation model (from Hock, 2003), a basal ablation model (from Crawford, 2018), and the observed areal surface reduction 

from SAR images. The authors revealed that basal melt had a greater contribution to the overall thickness melt of the ice island 

fragments, which was in agreement with the results of the thickness melt model in Crawford (2018) and Bouhier et al. (2018). 

In a field study (Halliday et al., 2012), however, the melt and thinning rate of an ice island offshore Labrador was measured 95 

using ablation stakes and ground penetrating radar, and it was revealed that surface ablation contributed more than basal 

ablation to the overall thinning rate of the ice island. In other fieldwork, Crawford et al. (2020) deployed an ice-penetrating 

radar on an ice island originated from the 2012 calving event of Petermann Glacier to measure the surface and basal ablation 
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rates over an 11-month period. It was revealed that while basal ablation contributed to 73% of the total thinning rate, it played 

a minimal role in the ice island overall mass loss when compared to areal surface reduction likely caused by wave erosion, 100 

wave-induced calving, and fracture events. The authors, however, stated that basal ablation significantly influences the 

thickness of ice islands, which would likely increase the probability of large-scale fracture event occurrence (Crawford et al., 

2020).  

The deterioration mechanisms mentioned earlier describe formulations for the melt rates and small-scale calving 

events of icebergs caused by various metocean conditions. However, there are other mechanisms associated with iceberg 105 

deterioration such as large-scale fracture caused by internal stress and convection caused by iceberg rolling (Kubat et al., 

2007). While fracture mechanisms play a more important role than melting in the overall deterioration of large icebergs 

(Bouhier et al., 2018), they are not as well studied and are often neglected due to the infrequent occurrence of fracture events 

(Kubat et al., 2007). It has also been difficult to model these processes using physical models due to the lack of quantitative 

theories to explain these mechanisms (Savage, 2001). To date, there are only a few deterministic models to describe the large-110 

scale fracture mechanisms for icebergs (e.g., Diemand et al., 1987; Wagner et al., 2014; Bouhier et al., 2018; England et al., 

2020). Additionally, the accuracy of deterministic deterioration models for glacial ice will be limited by the uncertainty in the 

physical parameters that govern the deterioration processes. Iceberg fracture processes have previously been studied using 

numerical methods to investigate fracture events for different iceberg geometries (Bassis and Jacobs, 2013), due to buoyancy-

driven flexure (Sazidy et al., 2019), as well as due to the accumulation of microcracks in the ice structure (Bahr, 1995). Also, 115 

a recent study (Smith, 2020) investigated the fracture events of ice islands when a large protuberance develops on their keels, 

where a finite element analysis was used to estimate the buoyancy-driven bending stress and predict the associated fractures. 

However, these numerical models did not account for the relative role of metocean conditions in the fracture processes. 

Probabilistic methods, however, have the ability to account for the relative contribution of meteorological and hydrological 

conditions to the fracture events of glacial ice features. Bouhier et al. (2018) investigated the fracture-related decay of two 120 

large Antarctic icebergs through analyzing the correlation between their relative volume loss and environmental variables (sea 

surface temperature, current speed, difference of iceberg and current velocities, significant wave height, wave peak frequency, 

and wave energy at the bobbing period). The authors found that while wave-related quantities had no significant impact on the 

relative volume loss, sea surface temperature and iceberg velocity showed the highest correlation with the observed volume 

loss. Based on these two salient variables, Bouhier et al. (2018) characterized fracture events using a probability distribution 125 

and presented a deterministic bulk fracture model, which performed successfully in the estimation of iceberg relative volume 

loss. However, they noted that given the stochastic nature of fracturing process, individual fracture events cannot be predicted. 

England et al. (2020) presented an approach for modelling the fracture events of large tabular icebergs by incorporating a 

stochastic representation of the “footloose mechanism” (Wagner et al., 2014) into the analytical iceberg drift by Wagner et al. 

(2017). The authors showed that coupling their fracture model with an analytical drift model significantly impacted the iceberg 130 

meltwater distribution and resulted in improved simulated iceberg trajectories. England et al. (2020), however, noted that the 

fracture mechanism in their model is simplified based on several assumptions, a key one being the probability of a child iceberg 
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fracturing from the parent iceberg is set as constant in time. However, this parameter should be, in fact, dependent on the 

environmental variables such as sea surface temperature. 

The fracture models noted above are not able to quantify the probability of fracture events under different atmospheric 135 

and oceanic conditions, a quantity that can be estimated using Bayesian approach. To date, no previous research has adopted 

Bayesian approach to predict the probability of ice island fracture events under the influence of the metocean conditions that 

control these events, likely due to the lack of reliable data. However, several studies have adopted a probabilistic approach 

using a Bayesian belief network and hydro-meteorological variables for navigational risk assessment of ships (Zhang et al., 

2013) or to estimate the conditional probability of ship besetting in sea ice covered waters (Turnbull et al., 2019; Fu et al., 140 

2016; Montewka et al., 2015; Montewka et al., 2013). This study uses the CI2D3 database and adopts a similar methodology 

to that used in these besetting studies to present a probabilistic fracture model for ice islands as a function of the metocean 

conditions. 

The CI2D3 database was previously used by Crawford et al. (2018d) to investigate the size distributions and meltwater 

flux of Petermann ice islands. The analysis of size distribution revealed that small ice islands constituted a significant 145 

proportion of ice island population, but large ice islands contributed the most to the total mass and melt water flux (Crawford 

et al., 2018d). The authors also revealed that fracture processes significantly contributed to the overall deterioration of 

Petermann ice islands as the ice island size distribution followed a power law model, which corroborated the results of Stern 

et al. (2016), Tournadre et al., (2016), Enderlin et al. (2016), Bouhier et al. (2018), and Barbat et al. (2019). 

This study uses the CI2D3 database to study fracture events of the ice islands which originated from the calving 150 

events of Petermann Glacier in 2008-2012. Various atmospheric and oceanic variables are analyzed to probabilistically 

determine the set of conditions that lead to the highest chance of fracture event occurrence. This study first presents a 

description of the data structure in the CI2D3 database. Then, an overview of the results from a preliminary data analysis on 

the deterioration of Petermann ice islands is presented, followed by the results of the probabilistic fracture model. Finally, a 

validation scheme is presented to quantify the accuracy of the probabilistic fracture model. 155 

2 Methodology 

2.1 Data extraction from CI2D3 database 

The CI2D3 database (version 1.1) contains data extracted from around 25,000 satellite imagery observations of ice islands 

from various glaciers, including the Petermann, Ryder, Steensby, C.H. Ostenfeld, and North Greenland glaciers. The data 

contains a geospatial polygon and 28 attribute fields for each observation. An algorithm was developed in MATLAB (version 160 

R2017b) to extract the data subsets associated with the 2008, 2010, 2011, and 2012 Petermann ice islands (17,755 

observations). For each observation, the spatial and temporal data (latitude, longitude, and time) were extracted. Here it should 

be noted that the “birth” or beginning of a given ice island is considered to be immediately after it calved from another ice 

island (or glacier), and the “death” or end of that feature is taken as when it calves into two or more fragments. By this 
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definition, 328 fracture events and 845 ice islands were identified. The ice islands were tracked in the CI2D3 database, and the 165 

parent-child relationship between the ice islands was captured as fracture events happened. To identify the parent-child 

relationship, the unique identifier for each ice island observation was extracted and matched with the lineage and mother fields 

(i.e., fields in the database structure that tie subsequent observations together and relate the ice islands to their parents). This 

permits identification of the previous observations of each ice island back to the time it was born, which were later used for 

estimating the cumulative effect of variables (e.g., air and water temperatures, and waves) that each ice island experienced 170 

over its lifespan. The algorithm also used the ddinfo field to identify if the ice island was grounded or drifting at the time of 

observation. This was used to estimate the grounding time over the lifespan of each ice island. 

2.2 Atmospheric and oceanic data extraction 

A series of atmospheric and oceanic data were collected from reanalysis databases in the region of interest between northwest 

Greenland and offshore Newfoundland (46-83 °N, 45-95 °W) from July 2008 to December 2013. Daily average values (0.3° 175 

spatial resolution) for zonal-meridional components of 10-m wind velocity (𝑚𝑚 𝑠𝑠−1) and 2-m air temperature (℃) were 

extracted from the North American Regional Reanalysis (NARR); daily average values (1/12°) for zonal-meridional 

components of ocean current velocity (𝑚𝑚 𝑠𝑠−1) and potential water temperature (℃) in 25 depth layers (down to 156 m) from 

the Global Ocean Physics Reanalysis model in Copernicus Marine Environment Monitoring Service (CMEMS); six-hourly 

values (1/8°) for significant height of combined wind waves and swell (𝑚𝑚) and mean wave period (𝑠𝑠) from the European 180 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim Reanalysis; and sea ice concentration (%) from the CIS 

digital daily ice charts. The extracted metocean data were linearly interpolated in space and time to the positions and times of 

the ice island centroids recorded in the CI2D3 database to represent the distribution of atmospheric and oceanic conditions 

over the drift tracks of the ice islands. 

The temporal resolution of the satellite observations in the CI2D3 database were not consistent for all ice islands over 185 

their drift periods. The reanalysis variables used in this study were usually available sub-daily (hourly, three-hourly, or six-

hourly), but the temporal resolution of the images used to create the CI2D3 database range periodically from sub-daily to bi-

weekly. Therefore, all atmospheric and oceanic data were extracted or averaged as daily values and then interpolated in space 

and time to the positions and times of the ice island observations. 

2.3 Probabilistic model development 190 

To evaluate the conditional dependence of ice island fracture events on atmospheric and oceanic variables, a Bayesian approach 

was employed. Bayesian analysis is a well-used method in probabilistic studies to evaluate the probability of a certain outcome 

using the most salient predictive variables (Gutierrez et al., 2011). This method is recognized by its strong reasoning ability in 

uncertain situations and its ability to combine and analyze data from various datasets (Fu et al., 2016). Using the Bayesian 

method, the dependency and independency of a set of variables (Fig. 1-a) were analyzed via a directed acyclic graph (Fig. 1-195 

b). Initially, the distribution of 10 atmospheric and oceanic variables were studied. These included wind speed (𝑉𝑉𝑤𝑤), air 
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temperature (𝑇𝑇𝑎𝑎), ocean current speed (𝑉𝑉𝑐𝑐), water temperature (𝑇𝑇𝑤𝑤), wave energy index (𝐸𝐸𝑤𝑤), lifetime mean air temperature 

(𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎), lifetime mean water temperature (𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎), lifetime mean wave energy index (𝐸𝐸𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎), grounding time (𝑡𝑡𝑎𝑎), and sea 

ice concentration (𝐶𝐶𝑠𝑠𝑠𝑠 ). Wind and current speeds were estimated as the magnitude of the extracted zonal-meridional 

components for wind and ocean currents, respectively. Water temperature was estimated as the average of water temperatures 200 

at all layers from the water surface down to a depth of 50 m. Given that wave energy flux is proportional to mean wave period 

and significant wave height squared (Christakos et al., 2020; Akpınar et al., 2019; Waters, 2008; Falnes, 2007), the wave 

energy index was defined as: 

𝐸𝐸𝑤𝑤 = (𝐻𝐻𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤)2(𝑇𝑇𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤) , (1) 

where 𝐻𝐻𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤 represents the significant height of combined wind waves and swell (𝑚𝑚) and 𝑇𝑇𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤 represents the mean wave 

period (𝑠𝑠). Time since previous calving was also explored as a variable, but this had very little predictive power and was 205 

excluded from subsequent analyses. However, in order to capture the cumulative effect of temperature and waves over the 

lifespan of the ice island, we first identified all previous observations of each ice island back to the time and location that it 

was born. Then, the air and water temperatures, and wave energy index were interpolated spatially and temporally to all 

previous observations. To exclude the effect of observation frequency, these variables were interpolated in space and time to 

a daily interval. These daily-average values were then averaged over the number of days the ice island drifted to effectively 210 

compute the lifetime mean wave energy index, as well as the mean air and water temperatures over the lifespan of the ice 

island, which differ from positive degree day calculations that are often used in ice melt rate models (e.g., Hock, 2003). To 

better capture the short-lived extreme conditions in air and water temperatures prior to fracture events, the two-week mean 

values for air and water temperatures were also tested, but they did not make significant difference in the outcome and brought 

no improvement to the model performance, so they were subsequently excluded from the model inputs.  Grounding time was 215 

estimated by adding the number of days that an ice island was grounded over its lifespan. The distribution of these variables 

around fractured ice islands and all ice island observations were investigated and compared. However, further analysis of 

𝐸𝐸𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑡𝑡𝑎𝑎 distributions for fracture events and all observations identified no correlation between these variables and the 

occurrence of fracture events, so they were excluded from the Bayesian fracture model development. Also, studying the sea 

ice cover around the ice island observations showed that sea ice concentrations were less than 3/10ths for about 99% of the 220 

observations, so it was discarded from further analysis as a model input variable. Sea ice, however, may play a role in fracture 

events of ice islands in other regions (e.g., England et al., 2020), so the presented model would need to be extended for 

application in such regions. 
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 225 
Figure 1. The classification of variables for the Bayesian fracture network (a), and the associated directed acyclic graph that 

shows the inter-relationship between the variables with the arrowheads showing the causality and the r values showing the 

associated correlation coefficients (b) 

The distribution of the metocean variables presented in Fig. 1 were studied for all ice island observations and 

compared against the variable distributions at the time of fracture events. However, the extracted reanalysis data revealed 230 

different number of data points available for the analysis of the seven variables presented. For example, for wind speed and 

air temperature, 17735 data points were available for all observations of Petermann ice islands. For current speed and water 

temperature, 16791 and 16784 data points were available for all observations of Petermann ice islands, respectively. These 

points covered most of the spatial and temporal records from the CI2D3 database. However, for wave energy index, only 3985 

data points from all observations were available during the same time period. Similarly, different number of data points were 235 

available for each variable during the fracture events. The different numbers of data points for each variable are likely due to 

the fact that the ice islands drifted near the coastlines at times, and these data were extracted from reanalysis models that have 

insufficient spatial resolution to model data close to the coastlines. Therefore, the distributions of the studied variables from 

all observations and fractured subset are represented by relative frequencies to allow for consistent comparison of these 

distributions. 240 

The correlation between a pair of variables was investigated using the Pearson Product-Moment Correlation 

coefficient (𝑟𝑟), given by (Freedman et al., 2010): 

𝑟𝑟 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)𝑛𝑛
𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2𝑛𝑛
𝑖𝑖 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2𝑛𝑛

𝑖𝑖
 , 

(2) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are a pair of variables for the 𝑖𝑖th set of data and 𝑥𝑥, 𝑦𝑦 are the means of variables 𝑥𝑥, 𝑦𝑦 from all observations (𝑛𝑛). The 

full set of data was used to perform the correlation analysis, and the inter-relationships between the variables is presented in 

Fig. 1-b. Directed arrows were drawn from each variable to all of the variables that showed a correlation coefficient greater 245 

than 0.35. 

The probability of fracture event occurrence in extreme metocean conditions (i.e., conditions where the values of the 
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model variables were extremely high) was investigated using a full set of model criteria with the high state (> 𝑥𝑥∗) of each 

variable. States here refer to the variable intervals defined based on a threshold. The selected criteria (𝑥𝑥∗) for the extreme 

condition of each variable was identified by varying each criterion over the range of each variable from the fracture subset to 250 

maximize the fracture event probability. The distribution of conditional posterior probability was calculated through Bayes’ 

Theorem, given by Stuart and Ord (1994): 

𝑃𝑃(𝑋𝑋|𝑌𝑌) =
𝑃𝑃(𝑋𝑋) × 𝑃𝑃(𝑌𝑌|𝑋𝑋)

𝑃𝑃(𝑌𝑌)  , 
(3) 

where 𝑃𝑃(𝑋𝑋) is the prior probability of fracture event occurrence, 𝑃𝑃𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓; 𝑃𝑃(𝑌𝑌|𝑋𝑋) is the likelihood of a specific criteria set 

occurrence during fracture events, 𝑃𝑃�𝑉𝑉𝑤𝑤 ,𝑇𝑇𝑎𝑎,𝑉𝑉𝑐𝑐 ,𝑇𝑇𝑤𝑤 ,𝐸𝐸𝑤𝑤 ,𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎,𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎�𝐹𝐹𝑟𝑟𝑓𝑓𝑓𝑓� ; and 𝑃𝑃(𝑌𝑌)  is the evidence of the criteria set 

occurrence for all observations, 𝑃𝑃�𝑉𝑉𝑤𝑤 ,𝑇𝑇𝑎𝑎,𝑉𝑉𝑐𝑐 ,𝑇𝑇𝑤𝑤 ,𝐸𝐸𝑤𝑤 ,𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎,𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎�. The probabilities in Eq. (3) should be recalculated when 255 

new evidence become available, a process that reduces the dependence of the posterior probability on the original estimated 

prior probability (Eleye‐Datubo et al., 2006). Given the large size of the CI2D3 database, the value of 𝑃𝑃(𝑋𝑋) was estimated as 

the frequency of fracture events (i.e., the number of fracture events divided by the total number of observations) before any 

criteria set based on metocean conditions was considered. The values of 𝑃𝑃(𝑌𝑌|𝑋𝑋) and 𝑃𝑃(𝑌𝑌) were determined using the relative 

frequency of the set of states in fracture events and all observations, respectively. The relative frequency is given by Bonafede 260 

and Giudici (2007): 

𝑃𝑃(𝑆𝑆𝑖𝑖) =
𝑛𝑛𝑖𝑖
𝑛𝑛

 , (4) 

where 𝑆𝑆𝑖𝑖 represents a set of the variables’ states, 𝑛𝑛𝑖𝑖 represents the count of the observed set of the states in fracture events (or 

all observations), and 𝑛𝑛 represents the total number of fracture events (or all observations) in the dataset. 

To calculate the probability of fracture events in different metocean conditions, the ranges of atmospheric and oceanic 

variables at the time of fracture events were first divided into two states using the variable distribution medians from the 265 

fracture subset (Table 1). The conditional fracture probabilities were then estimated using a similar Bayesian approach (Eq. 

(3)) through analyzing concurrent atmospheric and oceanic conditions at the time of fracture events that were extracted from 

the entire record for all ice island observations. Due to the limited number of fracture events (328), the number of state 

combinations in the presented model needed to be reduced to avoid model saturation and increase the model reliability. Among 

the atmospheric and oceanic variables analyzed in this study, current speed played an insignificant role in the fracture events 270 

of the ice islands, so it was not considered for further analysis. 

Table 1. Various states of atmospheric and oceanic variables for the Bayesian fracture model 

Variables Median 1 Unit State 1 State 2 

Wind Speed (𝑽𝑽𝒘𝒘) 2.8 𝑚𝑚 𝑠𝑠−1 ≤ 2.8 > 2.8 

Air Temperature (𝑻𝑻𝒂𝒂) −2.1 ℃ ≤ −2.1 > −2.1 

Water Temperature (𝑻𝑻𝒘𝒘) −0.3 ℃ ≤ −0.3 > −0.3 
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Wave Energy Index (𝑬𝑬𝒘𝒘) 5.1 𝑚𝑚2 𝑠𝑠 ≤ 5.1 > 5.1 

Lifetime Mean Air Temperature (𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂) −3.5 ℃ ≤ −3.5 > −3.5 

 Lifetime Mean Water Temperature (𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂) −0.7 ℃ ≤ −0.7 > −0.7 

1 Median values in the distributions of the given variables from the fracture subset 

The developed probabilistic model was validated using a resampling approach based on the Pareto principle (Macek, 

2008), which suggests 80% of the data be used for model training and development, and 20% be reserved for testing the 275 

developed model (Suthaharan, 2016). To reduce the effect of variation in the subset selection and have a more robust evaluation 

of the developed model, a k-fold cross-validation approach (Ozdemir, 2016) was used (k=5). So, input variables associated 

with the fracture and non-fracture data were randomly partitioned into five disjoint subsets of approximately equal size, where 

each time one of these subsets served for model testing, and the rest were used to train the model. This corresponded to the 

selection of training subsets with approximately 14204 data points (262 fracture events and 13942 non-fracture events) and 280 

test subsets with approximately 3551 data points (66 fracture events and 3485 non-fracture events). The conditional fracture 

probabilities of ice islands for the given criteria sets were calculated using the atmospheric and oceanic conditions for each 

test subset and then cross-validated against the predicted values associated with its corresponding training set. 

3 Results and discussion 

3.1 Preliminary analysis of ice island fracture events 285 

The descendants of ice islands resulting from the calving events of Petermann Glacier in 2008, 2010, 2011, and 2012 generally 

drifted in a southward direction toward the Labrador Sea (Fig. 2-a). These ice islands experienced 328 fracture events (Fig. 2-

b), which resulted in 845 ice islands. The 2010 event calved the largest ice island (Table 2), which generated 637 ice islands 

through its fractures (242 times), some of which drifted as far as offshore Newfoundland (Fig. 2-a). The second largest calving 

event happened in 2012 which generated 169 ice islands through 73 fracture events, but the resulting ice islands were only 290 

recorded as far as offshore Iqaluit, given that the monitoring period in the CI2D3 database ended in December 2013. The other 

two calving events (2008 and 2011) generated 29 and 10 ice islands, which resulted from nine and four calving events, 

respectively. The size distribution of ice islands showed that large ice islands (>10 km2) drifted longer before undergoing a 

fracture event and split into greater numbers of pieces per fracture event. Examples of this are two large ice islands (~137 km2 

and 60 km2) originating from the 2010 calving event, which generated nine distinct pieces upon fracturing. However, around 295 

70% of all fracture events generated only two children ice islands. A more detailed drift and deterioration analysis of the 

Petermann ice islands is presented in Zeinali-Torbati et al. (2019). 
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Figure 2. The drift trajectories (a) and the locations of fracture events (b) for the ice islands originating from the calving events 

of the Petermann Glacier in 2008 (red), 2010 (blue), 2011 (yellow), and 2012 (green) 300 

Table 2. Description of the ice islands originating from the massive calving events of Petermann Glacier in 2008, 2010, 2011, 

and 2012 

Glacier 

calving  

year 

Main 

calving  

date 

Surface 

area 

(km2) 

Number of 

digitized 

polygons 

Number of 

fracture 

events 

2008 10 July 36.4 332 9 

2010 5 August 302.4 9658 242 

2011 
16 August 

21 September 
4.3 502 4 

2012 17 July 144.6 7263 73 

3.2 Distributions of atmospheric and oceanic variables 

The atmospheric, oceanic, and lifetime mean variables shown in Fig. 1 were examined at the time of ice island fracture events, 

and then compared with the metocean conditions for all ice island observations using the methodology described earlier. Figure 305 

3 through Fig. 5 show the summary statistics and histogram plots of the relative frequency of regional metocean variables 

surrounding the Petermann ice islands from all observations (blue), as well as from the fracture events (red). 

Figure 3-a shows that the mean water temperature surrounding all Petermann ice islands was negative (-0.8 ℃) 
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indicating that they mainly drifted within cold waters; however, the water temperature values reached up to 10.4 ℃. The 

statistics for lifetime mean water temperature from all observations (Fig. 3-c) were almost the same as water temperature: a 310 

negative mean value of -0.8 ℃ and a range of -1.8 ℃ to 10.4 ℃. Comparing the distribution of water temperatures in Fig. 3-

a,b reveals that fracture events happened at higher water temperatures; while only 20% of ice islands from the entire dataset 

were surrounded by water temperatures above 0 ℃, 42% of fractured ice islands were subjected to positive water temperatures. 

In a similar way, it was revealed from long-term water temperature distributions that only 13% of the ice islands from all 

observations drifted in positive lifetime mean water temperatures (Fig. 3-c). This, however, corresponded to about 34% of the 315 

ice islands in the fracture subset (Fig. 3-d). The summary statistics presented in Fig. 3 reveal that water temperature and lifetime 

mean water temperature played significant roles in the fracture events of Petermann ice islands; compared to the temperature 

records for all ice island observations, the ice islands at the time of fracture events experienced, on average, 1.2 ℃  and 0.8 ℃ 

greater values of water temperature and lifetime mean water temperature, respectively. This indicates the important 

contribution of warm waters to faster deterioration of glacial ice features (as stated by Kubat et al., 2007), likely due to higher 320 

internal stress caused by the increased heat transfer from water to the ice feature. The significant contribution of water 

temperature to fracturing process was corroborated by Bouhier et al. (2018), where a significant correlation between iceberg 

relative volume loss and sea surface temperature was found. Warm surface waters also plays an important role in the initiation 

of fractures on large tabular Antarctic icebergs (England et al., 2020) through edge-wasting (c.f., Scambos et al., 2005). 
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 325 
Figure 3. Relative frequency histogram plots of water temperature (a; n=16784, b; n=298) and lifetime mean water temperature 

(c; n=13537, d; n=256) surrounding Petermann ice islands for all observations (a,c), and for the fracture events (b,d) 

Figure 4-a shows that the air temperatures to which the ice islands were subjected ranged from -35.6 ℃ to 17.9 ℃ for 

all observations, but the mean air temperature of -9.4 ℃ reveals that the ice islands drifted a significant amount of time in cold 

air temperatures. Similarly, the Petermann ice islands were mainly subjected to negative lifetime mean air temperatures with 330 
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an average of -11.6 ℃ ranging from -33.7 ℃ to 17.9 ℃ (Fig. 4-c). Investigation of air temperature and its long-term effect at 

the time of fracture events (Fig. 4-b,d) revealed that, on average, the ice islands were subjected to much higher values of these 

variables. The average air temperature at the time of fracture events was -5.2 ℃, which was 4.2 ℃ higher than the mean air 

temperature surrounding all ice islands. In a similar way, the ice islands from the fracture subset were, on average, subjected 

to 5.7 ℃ higher lifetime mean air temperature than the ice islands from all observations. The air temperature distributions (Fig. 335 

4-a,b) show that while the air temperatures associated with all ice island observations were most frequent around 0 ℃, the 

values associated with the fracture events were most frequent between 0 ℃ and 4 ℃. This, along with a 4.2 ℃ higher mean air 

temperature value from the fracture subset indicate that higher air temperature values are likely linked with the occurrence of 

fracture events. The analysis of lifetime mean air temperature distributions over the lifespan of each ice island (Fig. 4-c,d) 

revealed that while only 14% of all ice island observations experienced lifetime mean air temperatures greater than 0 ℃, about 340 

35% of the ice islands from the fracture subset were subjected to positive lifetime mean air temperatures. This indicates that 

the long exposure of ice islands to relatively warm air temperatures was likely an important factor in the occurrence of the 

fracture events.  
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Figure 4. Relative frequency histogram plots of air temperature (a; n=17735, b; n=328) and lifetime mean air temperature (c; 345 

n=17755, d; n=328) surrounding Petermann ice islands for all observations (a,c), and for the fracture events (b,d) 

The results associated with all observations of waves (Fig. 5-a) show that while the wave energy index values varied 

from 0.1 𝑚𝑚2 𝑠𝑠 to 62.1 𝑚𝑚2 𝑠𝑠, the ice islands were mainly subjected to relatively low wave energy index with an average value 

of 5.3 𝑚𝑚2 𝑠𝑠. Similarly, the regional wind and current speeds surrounding the ice islands from all observations were often 

relatively low, with a mean value of 2.9 𝑚𝑚 𝑠𝑠−1 and 0.08 𝑚𝑚 𝑠𝑠−1, respectively (Fig. 5-c,e). The summary statistics of the records 350 
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from the fracture events (Fig. 5-b,d,f) revealed that the regional mean wave energy index, wind speed, and current speed around 

the ice islands at the time of fracture events were statistically higher (by 38%, 17%, and 38%, respectively) when compared to 

the associated values for all ice islands observations. The analysis of wave energy index distributions around the Petermann 

ice islands presented in Fig. 5-a,b show that only 30% of Petermann ice islands encountered wave energy index values greater 

than 6 𝑚𝑚2 𝑠𝑠. The fracture events, however, occurred at greater wave energy index values, where 46% of ice island observations 355 

experienced wave energy index values greater than 6 𝑚𝑚2 𝑠𝑠. The analysis also shows that while relatively high values of wave 

energy index, coupled with other metocean variables, most likely contribute to the occurrence of ice island fracture events, 

this variable by itself does not lead to a high fracture probability of Petermann ice islands. This is consistent with the results 

of the iceberg deterioration study by Bouhier et al. (2018) where the authors found no significant link between the relative 

volume loss of two large Antarctic icebergs and the wave-related variables. Investigation of wind speeds over the ice islands 360 

(Fig. 5-c,d) showed that the ice islands from all observations were subjected most frequently to weak winds (~1-3 𝑚𝑚 𝑠𝑠−1). 

Similarly, at the time of fracture events, the ice islands were most frequently subjected to weak winds (~2-4 𝑚𝑚 𝑠𝑠−1). The fact 

that there is little difference in these distributions suggests that wind speed by itself was not a significant variable in the fracture 

of ice islands. The comparison of ocean current speed records around the studied ice islands (Fig. 5-e,f) revealed that the 

current speed values from the fracture subset were statistically greater than the full observational records. However, similar to 365 

all records, the fractured ice islands were mainly subjected to weak regional current speeds, which suggests minor contribution 

of current speed to the fracture event occurrence. 
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Figure 5. Relative frequency histogram plots of wave energy index (a; n=3985, b; n=131), wind speed (c; n=17735, d; n=328), 

and current speed (e; n=16791, f; n=296) surrounding Petermann ice islands for all observations (a,c,e), and for the fracture 370 

events (b,d,f) 

The enhancement of fracture events under the conditions where the ice islands experienced higher values of metocean 

variables was investigated through ratios of the relative frequency for fracture events and all observations over the range of 

variables presented in Figs. 3-5. These results are presented in Appendix A (Figs. A1-A3), where values close to one imply 

that fracture events are as likely to occur as the frequency of observations. Values large compared to one indicate that fracture 375 

events are more likely to occur than the frequency of observations. Values less than one imply that fracture events are less 

likely to occur relative to the frequency of observations. The results in Figs. A1-A3 reveal that the ratio of the relative frequency 

for fracture events and all observations generally increases with the values of metocean variables, which clearly indicate a 

tendency for fracture events to occur under more extreme conditions. 

The pairwise correlation between the metocean variables revealed that water temperature was positively correlated 380 

with the air temperature, a finding that was stated in a number of other studies (e.g., Morrill et al., 2001; Erickson and Stefan, 

2000). Table 3 also revealed a correlation between the wind speed and wave energy index, which was expected as the wave 

energy index is dependent on the significant wave height (Eq. (1)). The positive correlation between wind speed and wave 

height was also stated in Fu et al. (2016). Other inter-relationships between the variables include the correlations between the 

daily-average air/water temperatures and the lifetime mean air/water temperatures. These correlations are expected given that 385 

the lifetime mean variables were defined as the time-average of daily-average variables over the life of each ice island.  

Table 3. Pearson product-moment correlation coefficients of the metocean variables in the developed fracture model. The 

variables included water temperature (𝑻𝑻𝒘𝒘), wind speed (𝑽𝑽𝒘𝒘), air temperature (𝑻𝑻𝒂𝒂), current speed (𝑽𝑽𝒄𝒄), wave energy index 

(𝑬𝑬𝒘𝒘), lifetime mean air temperature (𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂), and lifetime mean water temperature (𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂) 

Variable 𝑽𝑽𝒘𝒘 𝑻𝑻𝒂𝒂 𝑽𝑽𝒄𝒄 𝑻𝑻𝒘𝒘 𝑬𝑬𝒘𝒘 𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂 𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂 

𝑽𝑽𝒘𝒘 1       

𝑻𝑻𝒂𝒂 0.132 1      

𝑽𝑽𝒄𝒄 0.097 0.079 1     

𝑻𝑻𝒘𝒘 0.236 0.547 0.076 1    

𝑬𝑬𝒘𝒘 0.403 0.046 0.066 0.232 1   

𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂 0.216 0.650 0.145 0.581 0.097 1  

𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂 0.265 0.366 0.153 0.847 0.297 0.647 1 

The associated p-values for all correlations show significance at the level of 0.00005 (p-value<0.00005). 390 

It should be noted here that correlation does not imply causation, but there is clearly an element of causation within 

the correlations noted above. Given the positive correlation between the temperature variables (𝑇𝑇𝑎𝑎 ,𝑇𝑇𝑤𝑤 ,𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎), it is 
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expected that ice islands exposed to warm water temperatures also experience warm air temperatures and lifetime mean air 

and water temperatures, conditions that contribute to ice melting. The resulted ablation could lead to ice island gravitational 

change and trigger fracture events. Similarly, the positive correlation between 𝑉𝑉𝑤𝑤  and 𝐸𝐸𝑤𝑤  implies a high chance for 395 

simultaneously high states of wind speed and wave energy index. These variables are linked to the external forces acting on 

ice islands. While, strong winds increase the associated wind drag forces, large values of wave energy index result in higher 

forces from waves. These forces together contribute to the accumulation of stress in the ice island, which could ultimately 

exceed the local threshold of fracture energy and result in fracture events. Wave actions also play a role via the “footloose 

mechanism” (Wagner et al., 2014), which could result in the instability of the ice geometry and potentially lead to ice island 400 

fracture events. 

3.3 Metocean conditional criteria sets and fracture event frequency 

To examine the probability of fracture event occurrence in very high states of metocean conditions, a full set of model criteria 

associated with the atmospheric and oceanic conditions at the time of fracture events was obtained and presented as criteria 

set i=6 (Table 4), using the methodology described earlier. The same approach was employed to investigate the influence of 405 

simplifying the fracture model using fewer number of variables, and the results were presented by criteria sets i=1-5 in Table 

4.  

Table 4. Fracture model conditional criteria sets and the associated conditional probability (𝑃𝑃𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓) for extreme conditions. The 

variables included water temperature (𝑇𝑇𝑤𝑤), wind speed (𝑉𝑉𝑤𝑤), air temperature (𝑇𝑇𝑎𝑎), current speed (𝑉𝑉𝑓𝑓), wave energy index (𝐸𝐸𝑤𝑤), 

lifetime mean air temperature (𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎), and lifetime mean water temperature (𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎) 410 

Criteria 

Set i 

𝑻𝑻𝒘𝒘 

(℃) 

𝑽𝑽𝒘𝒘 

(𝒎𝒎 𝒔𝒔−𝟏𝟏) 

𝑻𝑻𝒂𝒂 

(℃) 

𝑽𝑽𝒄𝒄 

(𝒎𝒎 𝒔𝒔−𝟏𝟏) 

𝑬𝑬𝒘𝒘 

(𝒎𝒎𝟐𝟐 𝒔𝒔) 

𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂 

(℃) 

𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂 

(℃) 

𝑷𝑷𝒇𝒇𝒇𝒇𝒂𝒂𝒄𝒄 

(%) 

1 >4       16 

2 >4 >6      28 

3 >4 >6 >7     45 

4 >4 >6 >7 >0.1    60 

5 >4 >6 >7 >0.1 >5   75 

6 >4 >6 >7 >0.1 >5 >0 >0 75 

 

Table 4 has a predictive capability for the occurrence of fracture events for the Petermann ice islands under different 

extreme atmospheric and oceanic conditional criteria sets. For example, if the conditions associated with the criteria set i=2 

hold (i.e., water temperatures greater than 4 ℃ and wind speeds greater than 6 𝑚𝑚 𝑠𝑠−1), there is a 28% chance that these 

conditions lead the ice islands to fracture. To elaborate, criteria set i=2 accounts for only water temperature and wind speed, 415 

where there are five events from the fracture subset (328 events) and 18 events from all observations (17755 events) that meet 
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the given criteria. Therefore, a conditional fracture probability of 0.28 was obtained for this criteria set, as follows: 

𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝑇𝑇𝑤𝑤 > 4 ℃,𝑉𝑉𝑤𝑤 > 6 𝑚𝑚 𝑠𝑠−1) =
𝑃𝑃𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 × 𝑃𝑃(𝑇𝑇𝑤𝑤 > 4 ℃,𝑉𝑉𝑤𝑤 > 6 𝑚𝑚 𝑠𝑠−1|𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

𝑃𝑃(𝑇𝑇𝑤𝑤 > 4 ℃,𝑉𝑉𝑤𝑤 > 6 𝑚𝑚 𝑠𝑠−1) =
328

17755 × 5
328

18
17755

≈ 0.28 , 
(5) 

Some features of the criteria sets presented in Table 4 and their associated fracture event probability are noteworthy. 

An important implication of the results in Table 4 is the predominant link between the daily-average variables (i.e., 𝑇𝑇𝑤𝑤, 𝑉𝑉𝑤𝑤, 𝑇𝑇𝑎𝑎, 

𝑉𝑉𝑓𝑓, and 𝐸𝐸𝑤𝑤) with the fracture event occurrence. When only the criteria for the air and water temperatures, wind and current 420 

speeds, and wave energy index are considered without accounting for the lifetime mean variables (criteria set i=5), 75% of all 

events meeting these criteria occurred for the ice islands from the fracture subset. However, when only the high states of one 

or two variables are considered, the fracture probability drops to less than 30%, which indicates the strong effect of concurrent 

atmospheric and oceanic conditions on the occurrence of ice island fracture events. Also, the criteria set i=6 in Table 4 reveals 

that, the addition of the lifetime mean variables did not increase the fracture probability above 75%. This is due to the fact that 425 

the criteria set i=5 narrowed down the atmospheric and oceanic conditions to a condition that already meets the criteria added 

in criteria set i=6, implying that the conditions presented in criteria set i=5 are enough to predict a fracture event probability 

up to 75%. It is worth noting that the criteria sets represented in Table 4 implicitly account for the inter-relationship between 

the variables. For example, the criteria set i=3, which considers high air and water temperatures, accounts for the correlation 

between air and water temperatures (Table 3), indicating that there is a high chance for the coincident occurrence of high air 430 

and water temperatures. It is also important to note that Table 4 only shows the criteria sets associated with the fracture events 

of ice islands originating from the calving events of the Petermann Glacier in 2008, 2010, 2011, and 2012. If more data become 

available from other fracture events of the Petermann ice islands, where the fracture events occur under different combinational 

criteria sets of atmospheric and oceanic conditions, then the variable ranges, the number of criteria sets, and the fracture 

probabilities presented in Table 4 would need to be updated. Under such conditions, the model variables themselves could also 435 

be modified if additional variables (e.g., sea ice concentration) were deemed to be important. 

The atmospheric and oceanic conditional criteria sets presented in Table 4 only show some specific criteria sets for 

extreme conditions and clearly do not represent all possible combinations of the conditions. These criteria sets were selected 

by the progressive addition of one or two conditions to the previous criteria set, so that the associated conditional fracture 

probability would increase. However, to account for all possible conditions of the variables, the ranges for the atmospheric 440 

and oceanic variables were divided into two states using the methodology described earlier in Table 1. The elimination of 

current speed variable (as explained in the Sect. 2.3) reduced the number of state combinations from 128 to 64, which allowed 

for a greater number of occurrences for each combination of the states, with bin edges previously described in Table 1. Through 

an iterative process, the conditional fracture probability for each combination of the states was then calculated using Bayes’ 

Theorem (Eq. (3)). Due to the large number of elements (64 values) in the conditional probability table, it is not possible to 445 

illustrate all combinations of the variable states (Table 1) and their associated probability. So, the model description is limited 

to its qualitative part. 
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The results obtained from the presented Bayesian approach provide a framework to probabilistically forecast the 

future fracture events of ice islands originally calved from the Petermann Glacier. This probabilistic model can provide 

supplementary information to the available deterministic ice dynamic prediction models by quantifying the probability of ice 450 

island fracture event occurrence under various sets of concurrent atmospheric and oceanic conditions. To use this model, one 

needs to first identify the spatial and temporal coordinates of a given ice island and then extract or forecast the six daily-

average and lifetime mean variables discussed earlier. Then, the obtained set of conditions is identified in the developed 

conditional probability table to quantify the associated probability of fracture event occurrence under the given set of 

atmospheric and oceanic conditions. 455 

3.4 Case study 

To better describe the utility of the developed fracture model, a case study was conducted on a descendant of ice islands 

resulting from the calving event of Petermann Glacier in 2010. This ice island was selected for a case study due to its drift 

characteristics. The ice island drifted for a long period (26 November 2010 – 5 July 2011; >7 months) and experienced a 

significant change in latitude (>15º). The spatial and temporal data for consecutive observations of this ice island were 460 

identified using the CI2D3 database. The atmospheric and oceanic variables were extracted from reanalysis databases and then 

interpolated to the positions and times of the given observations. The lifetime mean variables were also estimated using the 

methodology explained earlier, and the variables were all used as input to the presented fracture model to study the conditional 

fracture probabilities of the ice island over its drift path (Fig. 6-a). To investigate the effect of different atmospheric and oceanic 

conditions on the fracture events of the same ice island, metocean data from 2017-2018 were extracted and interpolated to the 465 

same positions as the case study ice island. Here it was assumed that the same drift trajectory applies, however, this would not 

likely be the case given that iceberg drift models are largely governed by the real-time metocean conditions (Lichey and 

Hellmer, 2001; Kubat et al., 2005; Eik, 2009; Keghouche et al., 2009; Rackow et al., 2017; Zeinali-Torbati et al., 2020). This 

would be, however, an area for future work, where a drift model needs to be integrated into the proposed fracture model to 

have a reliable estimation of ice island positional data. The interpolated metocean data for the 2017-2018 case were then used 470 

in the presented fracture model to investigate how the fracture probability map would change under the influence of different 

atmospheric and oceanic conditions (Fig. 6-b). The fracture probability map for the 2010-2011 case (Fig. 6-a) reveals that the 

ice island drifted some time (~14 days) in the medium-high fracture probability zone (shown by the orange and red colors 

around Labrador coast) before breaking up into two pieces. This, however, was not the case for the 2017-2018 ice island during 

the same time period (Fig. 6-b) as this ice island only spent some time (~14 days) in the small-medium fracture probability 475 

zone (shown by the green and orange colors) towards the end of its hypothetical drift off Labrador coast, which could thus 

likely have been longer than the 2010-2011 drift. The hypothetical 2017-2018 ice island, in fact, never experienced the 

metocean conditions that lead to a probability of fracture <4%. This is likely due to the fact that the 2017-2018 ice island was 

generally exposed to lower water temperature (~0.3 ℃  on average) over its drift. This result is expected given that water 

temperature was identified as the most important contributor to the fracture events of Petermann ice islands analyzed in this 480 
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study. 

 
Figure 6. The fracture probability map for a descendant of the Petermann ice island from the 2010 calving event (a), compared 

against the projected fracture probabilities for the same ice island in 2017-2018 (b). The filled dots show the positions of the 

ice island at the time it was born and the time it fractured 485 

While a Bayesian network has never been employed for forecasting ice island fracture events, the probabilistic model 

presented in this paper was developed based on the methodology used in Turnbull et al. (2019) and Fu et al. (2016), where the 

Bayesian approach was used to predict vessel besetting events in pack ice. The study by Fu et al. (2016) used a Bayesian 

network to investigate the inter-relationship between nine variables (i.e., ship speed, engine power, wind speed, air 

temperature, low visibility, sea temperature, ice concentration, ice thickness, and wave height), as well as their influence on 490 

the probability of a ship getting stuck in ice while navigating through the Northern Sea Route. Using a similar Bayesian 

approach, Turnbull et al. (2019) studied two pack ice besetting events of the Umiak I and developed a probabilistic forecast 

model for future besetting events experienced by Umiak I under the influence of nine ice and metocean variables (i.e., ice 

concentration, ice thickness, floe size, minimum coast distance, wind-coast direction, wind speed, current-coast direction, 

current speed, and wind divergence). While this approach has not been used in a past iceberg fracture model, there are some 495 

deterioration models such as the one by Kubat et al. (2007) that account for the influence of metocean variables (e.g., wind 

speed, current speed, water temperature, wave height, and wave period) on the calving events of the overhanging slabs resulting 

from the repeated action of waves. Kubat et al. (2007) revealed that wave height and water temperature dominate effects on 

iceberg deterioration through melt and small-scale wave-induced calving events. However, the probabilistic model presented 

here accounts for the large-scale fracture events in ice islands under the influence of various metocean conditions that govern 500 

the occurrence of these events. To date, there has been limited research (e.g., Bouhier et al., 2018) investigating the atmospheric 
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and oceanic conditions that lead to the highest probability of large-scale iceberg fracture event occurrence. While the bulk 

volume loss model by Bouhier et al. (2018) can provide a representation of iceberg relative volume loss variation with sea 

surface temperature and iceberg velocity, it is not able to estimate iceberg fracture probability under the influence of 

environmental variables presented here. Therefore, it is difficult to provide a validation scheme that can appropriately compare 505 

the results of the presented Bayesian fracture model with an existing physical ice island fracture model. Hence, the presented 

model was validated using a well-known scheme in probabilistic data analysis studies, which was described in Sect. 2.3.    

4 Probabilistic model validation 

The developed fracture model was validated using k-fold cross-validation approach described in Sect. 2.3, and the results were 

presented in Table 5. The model validation analysis for the selected criteria sets in Table 5 reveal that the mean fracture 510 

probabilities estimated from the test subsets are in agreement with the mean estimations from the training subsets as the ranges 

for the fracture probability values overlap. Investigation of the errors between the pairwise (test vs. training) fracture 

probability values show that the test sets selected using the 5-fold cross-validation approach are able to provide estimations 

that are, on average, within 13-39% of the values forecasted using the training sets. It was also revealed from the standard 

deviation values that the presented model is more reliable when a fewer number of variables or state combinations are 515 

considered (e.g., criteria set i=1). This is because, as the number of variables or state combinations increases, there are fewer 

fracture events and the ranges of atmospheric and oceanic conditions become more constrained, so the number of events 

meeting these given criteria decreases. With fewer observations, there will be more variability and consequently a higher error 

in the predicted fracture probability values. If more fracture data in each criteria set become available, the model will become 

more robust and the error in fracture probability estimations is expected to reduce. 520 

Table 5. Model validation for some of the criteria sets in the model (e.g., criteria set i=5 shows one of the 64 state combinations 

of the six variables; criteria set i=4 represents one of the 16 state combinations of the four variables). The variables included 

water temperature (𝑇𝑇𝑤𝑤), wind speed (𝑉𝑉𝑤𝑤), air temperature (𝑇𝑇𝑎𝑎), wave energy index (𝐸𝐸𝑤𝑤), lifetime mean air temperature (𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎), 

and lifetime mean water temperature (𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎). Model error is derived through statistical comparison of fracture probability 

estimations from training sets and test sets, obtained using 5-fold cross-validation method 525 

Criteria 

Set i 

𝑻𝑻𝒘𝒘 

(℃) 

𝑽𝑽𝒘𝒘 

(𝒎𝒎 𝒔𝒔−𝟏𝟏) 

𝑻𝑻𝒂𝒂 

(℃) 

𝑬𝑬𝒘𝒘 

(𝒎𝒎𝟐𝟐 𝒔𝒔) 

𝑻𝑻𝒂𝒂_𝒂𝒂𝒂𝒂𝒂𝒂 

(℃) 

𝑻𝑻𝒘𝒘_𝒂𝒂𝒂𝒂𝒂𝒂 

(℃) 

𝑷𝑷𝒇𝒇𝒇𝒇𝒂𝒂𝒇𝒇_𝒕𝒕𝒇𝒇𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂
1 (%) 𝑷𝑷𝒇𝒇𝒇𝒇𝒂𝒂𝒇𝒇_𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕

1 (%) 𝑷𝑷𝒂𝒂𝒕𝒕𝒇𝒇𝒘𝒘𝒕𝒕𝒔𝒔𝒕𝒕 % 𝑬𝑬𝒇𝒇𝒇𝒇𝑬𝑬𝒇𝒇2 𝑷𝑷𝒇𝒇𝒇𝒇𝒂𝒂𝒇𝒇_𝒂𝒂𝒂𝒂𝒂𝒂
1 

(%) Mean Std.3 Mean Std.3 Test vs. Training 

1 >-0.3      3.3 0.1 3.4 0.4 13 3.3 

2 >-0.3 >2.8     3.4 0.2 3.5 0.9 20 3.5 

3 >-0.3 >2.8 >-2.1    3.8 0.3 3.8 1.2 24 3.8 

4 >-0.3 >2.8 >-2.1 >5.1   6.1 0.6 6.0 2.4 33 6.2 

5 >-0.3 >2.8 >-2.1 >5.1 >-3.5 >-0.7 6.5 0.9 6.6 3.4 39 6.7 
1 𝑃𝑃𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓_𝑡𝑡𝑓𝑓𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎, 𝑃𝑃𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝑃𝑃𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓_𝑎𝑎𝑎𝑎𝑎𝑎 represent the fracture probability estimations from the training subsets, test subsets, 
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and all data points, respectively 
2 Relative error between the fracture probability estimations from the training and test subsets 
3 Standard deviation  

The 5-fold cross-validation analysis presented in Table 5 only shows some of the possible combinations of variable 530 

states that were defined based on the median values of the model variables from the fracture subset (presented in Table 1). 

This corresponds to 1/2 one-variable combinations (i=1), 1/4 two-variable combinations (i=2), 1/8 three-variable combinations 

(i=3), 1/16 four-variable combinations (i=4), and 1/64 six-variable combinations (i=6). However, the model skill was also 

analyzed for the remaining combinations, and it was revealed that the model does not perform well under implausible 

combinations of the atmospheric and oceanic conditions, which are not likely to be encountered and do not hinder the model 535 

most of the time. As an example, the condition where 𝑇𝑇𝑤𝑤 > −0.3 ℃, 𝑉𝑉𝑤𝑤 > 2.8 𝑚𝑚 𝑠𝑠−1 , 𝑇𝑇𝑎𝑎 ≤ −2.1 ℃ ), 𝐸𝐸𝑤𝑤 > 5.1 𝑚𝑚2 𝑠𝑠, 

𝑇𝑇𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎 > −3.5 ℃, and 𝑇𝑇𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −0.7 ℃ was a very unlikely combination that only occurred once among all ice island 

observations, and no fracture event occurred under such conditions. Based on the extracted/interpolated metocean data for the 

full model with all six variables, 36 combinations (out of 64) never occurred, so the fracture probabilities under such conditions 

are unknown. However, the remaining 28 combinations that were met revealed a larger error (~100-200%) between the 540 

probability estimations from the training and test subsets, when the associated combination was unlikely to occur (<1%). For 

instance, due to the very few data points existing for these improbable combinations, there were some cases that were not 

observed in the test subsets but were observed only a few times in the training subsets, which inflated an error of 100%. 

However, our model showed higher reliability under plausible combination of metocean conditions, such as the criteria sets 

i=1-5 in Table 5 (13-39% error), or when fewer number of variables were used in the model that generated much less error 545 

between the probability estimations from the test and training subsets (e.g., 11-97% for 1-4 variables). 

5 Conclusions and future work 

This study presented a probabilistic forecast model for the fracture events of ice islands through the analysis of the relative 

influences of atmospheric and oceanic forces. The recurrent deterioration of the ice islands originating from four recent calving 

events of Petermann Glacier were studied using the data in the CI2D3 database to probabilistically investigate the conditions 550 

that lead to fracture event occurrence of the ice islands. It was revealed in Fig. 3 through Fig. 5 that while fracture events 

generally occurred when the ice islands were subjected to more severe atmospheric and oceanic conditions (e.g., high wind 

and current speed, air and water temperature, wave energy index, and lifetime mean air and water temperature), warm water 

temperature played the most important role in the large-scale fracture events of Petermann ice islands. The results also showed 

that ice islands subjected to high values of daily-average metocean variables (as specified in Table 4), are expected to have a 555 

75% chance of fracturing. The model validation was performed using k-fold cross-validation approach based on the Pareto 

principle, and it was found that the error between the estimated fracture probabilities from training and test sets ranged from 

13% when only water temperature criterion is considered, to 39% for the full set of criteria. 

The results of this study provide an important step toward the development of a probabilistic forecast model for 
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fracture events of ice islands. The model presented here was built on the fracture event data associated with the ice islands that 560 

originated from Petermann Glacier, and therefore applies only to specific ice islands which share similar ice strength properties. 

Ice islands from other glaciers may have higher or lower ice strength characteristics and could experience fracture events under 

narrower or wider ranges of metocean conditions than presented in this study. The atmospheric and oceanic conditions, and 

their corresponding fracture event probabilities presented in Table 4 and Table 5 need to be updated if more deterioration data 

become available to improve the model accuracy. The atmospheric and oceanic conditions in the presented model were 565 

extracted from reanalysis datasets; however, for the presented model to have an operational forecast use, the metocean 

conditions and fracture event probabilities should be estimated using the inputs from deterministic models that have the ability 

to provide short-term forecasts. The results of this study can be used with a limited number of variables. For example, in case 

only daily-average wind and air/water temperature data for the ice islands are available, the model should be restricted to 

criteria sets i=1–3. Once more variable data become available (e.g., wave and lifetime mean variables), then the probabilistic 570 

fracture event estimations may take into account the expanded criteria sets (e.g., i=4-5). 

Future work should focus on improving this model through expanding the deterioration database of Petermann ice 

islands, as well as evaluating the fracture event data associated with other ice islands. The presented model was developed 

based on the data from 328 fracture events; however, more data are needed to train and test this model. The probabilistic model 

presented here only considered two states for each variable to avoid model saturation given the limited number of data points. 575 

If more data become available, one can improve the model resolution by using a greater number of variable states (e.g., three 

or four). While this study used seven input variables to develop a probabilistic fracture model, future research can also 

investigate the role of other variables such as sea ice concentration/thickness and ice island size on fracture events of ice 

islands. Also, the incorporation of in-situ measured metocean data can contribute significantly to further validation of the 

presented ice island fracture model. Finally, for this model to have a forecast capability for future ice island fracture events, 580 

the presented fracture model needs to be coupled with a drift model able to reliably forecast the positional data. The output of 

the presented fracture model can generate fracture probability distributions over the forecast drift trajectory from an ice island 

drift model, which could serve as a framework to predict the most likely locations/times for fracture event occurrence. This 

would need to be coupled with a size distribution model to estimate the resulting mass of the ice island fragment(s) following 

a fracture event. The mass estimation would then need to be incorporated into a drift forecasting model until a fracture event 585 

is predicted, when the scheme iterates again. A probabilistic drift model for the Petermann ice islands in the CI2D3 database 

is currently under development by the same authors, which will then be integrated into the presented fracture model to 

ultimately present a coupled ice island drift and deterioration forecast model. 

The research presented here fills some of the critical knowledge gaps in glacial ice deterioration forecasts. The results 

of this study provide an important step in characterizing the atmospheric and oceanic conditions that govern the large-scale 590 

fracture events of ice islands, which are important for improving the calibration of operational ice dynamics models. The 

increase in the air and water temperatures due to the climate change is expected to drive more frequent massive calving events 

of Petermann Glacier in the future (Münchow et al., 2016), which could lead to the generation of numerous drifting ice islands 
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off the east coast of Canada. The ability to predict fracture events of these ice islands could contribute to the development of 

more reliable strategies to mitigate the risks associated with the presence of glacial ice features, which is necessary for 595 

supporting safe offshore operations and marine activities in the ice-prone waters off the east coast of Canada. 

6 Appendix A 

 
Figure A1. The ratio of the relative frequency for fracture events and all observations over the range of water temperature (a) 

and lifetime mean water temperature (b) that surrounded Petermann ice islands. Values close to one implies that fracture events 600 

are as likely to occur as the frequency of observations. Values large compared to one indicates that fracture events are more 

likely to occur than the frequency of observations. Values less than one implies that fracture events are less likely to occur 

relative to the frequency of observations. 



27 
 

 
Figure A2. The ratio of the relative frequency for fracture events and all observations over the range of air temperature (a) and 605 

lifetime mean air temperature (b) that surrounded Petermann ice islands. Values close to one implies that fracture events are 

as likely to occur as the frequency of observations. Values large compared to one indicates that fracture events are more likely 

to occur than the frequency of observations. Values less than one implies that fracture events are less likely to occur relative 

to the frequency of observations. 
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 610 
Figure A3. The ratio of the relative frequency for fracture events and all observations over the range of wave energy index 

(a), wind speed (b), and current speed (c) that surrounded Petermann ice islands. Values close to one implies that fracture 

events are as likely to occur as the frequency of observations. Values large compared to one indicates that fracture events are 

more likely to occur than the frequency of observations. Values less than one implies that fracture events are less likely to 

occur relative to the frequency of observations. 615 

Data availability. The CI2D3 database and its documentation can be accessed at http://dx.doi.org/10.21963/12678. 

http://dx.doi.org/10.21963/12678
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