Manuscript # tc-2021-83 by Reza Zeinali-Torbati, Ian D. Turnbull, Rocky S. Taylor, Derek Mueller: "A probabilistic model for fracture events of Petermann ice islands under the influence of atmospheric and oceanic conditions"

Dear Reviewer,

We would like to thank you for your time reviewing our manuscript. Given your feedback, we have developed the following plan to refine our paper, which will significantly improve the quality of our manuscript. In anticipation of being invited to resubmit the manuscript, the changes were already made to our own internal version.

We provide a table of responses that include our point-by-point response to each of your corrections/recommendations.

Thanks again for your insightful review.

Comments/suggestions	Authors' Responses
 1) This study presents a probabilistic model of iceberg fracture based on a series of ice islands generated from calving events from the Petermann ice tongue with the goal of stepping towards providing a real world practical operational forecast model. The authors analyzed the role of wind speed, air temperature, ocean current speed, water temperature and something called the wave energy index along with mean air temperature and sea ice concentration. As someone who works largely on the mechanical side I don't have experience with the operational side or the statistical framework. Someone who works more closely on that side of the field will have a better idea of the appropriateness of the methodology and relationship to prior work. Overall, however, I don't see any obvious objections to the statistical tests or procedures used. A minor comment is that it would be helpful to relate the probabilistic model more closely to process 	Thank you very much for your review, feedback, and suggestions. It is a pleasure to see your positive feedback on our paper. As you noted, it would certainly be an interesting topic for a future work to investigate how the presented probabilistic model relates to process level models for iceberg deterioration. Please find below a complete response regarding your comments and suggestions.

level models of iceberg decay, although that may follow in subsequent work.	
2) Overall, I only have a few minor comments.	We have looked into the documentations for
	the reanalysis data that we used to explore if
	there are any reported error/uncertainty on
	the extracted data that we used in our study.
	However, these products have not reported
	on the errors in the datasets created. We
	have, however, found a few studies that
	reported on the accuracy of some ocean
	products in other regions. Surface currents
	are expected to be the most uncertain
	variable in drift forecasting models. The
	mean error in the speed of surface currents
1. How reliable are the inputs fed into the	from CMEMS Global Ocean Physics
model? We are presented with a probabilistic	Reanalysis model was reported to be
model driven by inputs. Reanalysis and wave forecasts all have strengths, but also	0.08 m s^{-1} (Lellouche et al., 2018). CMEMS
uncertainties. Hence the question from a non-	water temperature data were reported to be
expert as to whether the uncertainty in the model inputs small enough to be neglected?	within 1.2 °C of measured data, with RMS
model impais sinui ensagn to se neglected.	error at sea surface being around 0.4 °C
	(Sukresno et al., 2019). The Root Mean
	Square Error (RMSE) in significant wave
	height estimates from ECMWF was reported
	to be less than 0.37 m (Wang et al., 2019).
	The mean Recursive Prediction Error (RPE)
	for wave height and wave period was
	reported as 12.5% and 7.7%, respectively.
	Also, a bias of 1.5 °C and 0.16 m s ^{-1} ,
	respectively, was noted for air temperature
	and wind speed from NARR (Boccara et al.,

2008).

We acknowledge the error in the input data. However, we should note here that given our model setup, in which the level of data is reduced to binomial level (Table 1), we expect the presented model to be less vulnerable to the errors in the input data, unless the values are too close to the median values.

References:

- Boccara, G., Hertzog, A., Basdevant, C., and Vial, F. (2008). Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. Journal of Geophysical Research: Atmospheres, 113(D20).
- Lellouche, J. M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., ... and Le Traon, P. Y. (2018). Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Science, 14(5), 1093-1126.
- Sukresno, B., Murdimanto, A., Hanintyo, R., Jatisworo, D., and Kusuma, D. W. (2019, March). The

	 use of CMEMS and Argo Float data for Bigeye Tuna fishing ground prediction. In IOP Conference Series: Earth and Environmental Science (Vol. 246, No. 1, p. 012002). IOP Publishing. Wang, J., Li, B., Gao, Z., and Wang, J. (2019). Comparison of ECMWF significant wave height forecasts in the China sea with buoy data. Weather and Forecasting, 34(6), 1693-1704. We appreciate the point and explanation that
3) The analysis considers wave energy, but is it also possible to consider wavelength in addition to amplitude? The wavelength of ocean swell relative to the flexural wavelength of the ice island could be important in determining if bending stresses are large enough to fracture the island. In fact, modest swell events are sufficient to breakup the sea ice pack when the ocean swell as an appropriate period, but long wavelength swell penetrates the sea ice pack with minimal effect.	we appreciate the point and explanation that you provided. It is certainly interesting to investigate the addition of a new variable such as wavelength to our model, but the ECMWF ERA Interim dataset does not report on wavelength values. However, our "wave energy index" variable is dependent on wave period (Eq. 1), a component that is tightly correlated with wavelength. Also, given the limited number of fracture events in the CI2D3 database, we have restrictions on the number of input variables (and their state combinations) that can be used in the presented model. So, we have insufficient data to allow for the addition of a new variable, otherwise our model would be saturated. We also looked into the wave height values to investigate if the ice islands

	as the frequency of fracture events (<i>i.e.</i> ,
	database, the value of $P(X)$ was estimated
	"Given the large size of the CI2D3
sentences describing the motivation and sensitivity may be useful.	sentence reads:
is not to say that this is the case here, but a few	probability was calculated. This added
and, unless there is a large amount of data, the prior can play a role guiding predictions. That	has been added to explain how the prior
selecting on appropriate prior can be tricky	conditions) is taken into account. A sentence
selecting the prior probability distribution? My own experience with Bayesian analysis is that	(17755), before some evidence (metocean
providing the motivation and sensitivity for	(328) and the number of all observations
4) Can the authors provide a sentence or two	knowledge on the number of fracture events
	event occurrence was calculated based on our
	database, the prior probability of fracture
	Given the fairly large amount of data in our
	events driven by bending stress.
	have significant impact on sea ice breakup
	however, acknowledge here that waves could
	exposed the studied ice islands. We,
	minimal impact on the bending stress
	Therefore, we expect the waves to have
	large ice features such as the ice islands.
	which is much smaller than the sail height of
	studied ice islands were mostly less than 2m,
	wave heights over the drift path of the
	with maximum wave height being ~5m. The
	~5% of the wave heights were above 2m,
	analysis of the extracted data shows that only
	significant bending stress. However, our
	heights over their lifetime to cause
	were exposed to exceptionally large weight

	the number of fracture events divided by
	the total number of observations) before
	any criteria set based on metocean
	conditions was considered." (lines 255-
	257).
	We thank the reviewer for bringing this point
	into our attention, which can certainly
	provide more intuitive representation of the
	conditions where fracture events are more
5) I had a hard time initially interpreting Figure	likely to occur. Therefore, we have added
3 and others. I think what we are supposed to	three panel figures in the Appendix section
do is compare the figure on the left with the figure on the right to see the enhancement of	(Figs. A1-A3) to show the ratios of the
fracture events at warm ocean/atmosphere	relative frequency for fracture events and all
temperatures compared to the frequency of observations of warm ocean/atmosphere	observations over the range of our variables
temperatures. This is quite convincing after	(section 6). We have also added a paragraph
contemplating the figures. I wonder if stepping readers not used to this type of plot	in section 3.2 to describe the added figures,
through what we are supposed to see would be	which reads:
helpful. Alternatively, would it be more useful/intuitive to plot the ratio of the left and	
right panels to show the enhancement of	"The enhancement of fracture events
fracture events in warmer conditions relative to the occurrence of these conditions? In a plot of	under the conditions where the ice islands
this type, values close to one would imply that	experienced higher values of metocean
fracture events are as likely to occur as the frequency of observations. Values large	variables was investigated through ratios
compared to one would indicate that fracture	of the relative frequency for fracture
events are more likely to occur than the frequency of observations and values less than	events and all observations over the range
one would imply that fracture events are less	of variables presented in Figs. 3-5. These
likely to occur relative to the frequency of observations.	results are presented in Appendix A (Figs.
	A1-A3), where values close to one imply
	that fracture events are as likely to occur
	as the frequency of observations. Values

large compared to one indicate that

	fracture events are more likely to occur
	than the frequency of observations. Values
	less than one imply that fracture events
	are less likely to occur relative to the
	frequency of observations. The results in
	Figs. A1-A3 reveal that the ratio of the
	relative frequency for fracture events and
	all observations generally increases with
	the values of metocean variables, which
	clearly indicate a tendency for fracture
	events to occur under more extreme
	conditions. " (<i>lines 361-368</i>).
6) Line 71 extra space in "w ave"—>wave	This error was corrected (<i>line 71</i>).