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Abstract. The incorporation of vapor transport has become a key demand for snowpack modeling where accompanied phase

changes give rise to a new, non-linear coupling in the heat and mass equations. This coupling has an impact on choosing

efficient numerical schemes for one-dimensional snowpack models which are naturally not designed to cope with mathematical

particularities of arbitrary, non-linear partial differential equations (PDE). To explore this coupling we have implemented a

stand-alone finite element solution of the coupled heat and mass equations in snow using the computing platform FEniCS. We5

focus on the non-linear feedback of the ice phase exchanging mass with a diffusing vapor phase with concurrent heat transport

in the absence of settling. We demonstrate that existing continuum-mechanical models derived through homogenization or

mixture theory yield similar results for homogeneous snowpacks of constant density. When snow density varies significantly

with depth, we show that phase changes in the presence of temperature gradients give rise to non-linear advection of the ice

phase amplifying existing density variations. Eventually, this advection triggers a wave instability in the continuity equations.10

This is traced back to the density dependence of the effective transport coefficients as revealed by a linear stability analysis of

the non-linear PDE system. The instability is an inherent feature of existing continuum models and predicts, as a side product,

the formation of a low density (mechanical) weak layer on the sublimating side of an ice crust. The wave instability constitutes

a key challenge for a faithful treatment of solid-vapor mass conservation between layers, which is discussed in view of the

underlying homogenization schemes and their numerical solutions.15

1 Introduction

Neglecting vapor transport in the pore space of a snowpack for the overall mass balance is considered as a serious uncertainty

in snow modeling. Persistent temperature gradients throughout the season may contribute to the depletion of snow density at

the bottom of the snowpack due to upward vapor fluxes, as has been hypothesized for shallow tundra snowpacks by Barrere

et al. (2017); Domine et al. (2016). This problem is relevant for applications e.g. in permafrost where temperature gradients20

may induce the drying of soils with a feedback on snow metamorphism in the adjacent bottom layer (Domine et al., 2016), in

turn affecting the ground thermal regime. Other applications of vapor transport comprise post-depositional re-distribution of
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stable water isotopes in polar snow (Touzeau et al., 2018), density variations in polar firn (Li and Zwally, 2004), or the general

impact on stratigraphy and metamorphism (Sturm and Benson, 1997).

The governing equations of macroscopic vapor transport in snow have been used for a long time. The homogenized equations25

of heat and purely diffusive vapor transport including phase changes have been derived from mixture theory in early work

(Adams and Brown, 1990; Morland et al., 1990; Bader and Weilenmann, 1992). More recently, the equations were re-derived

from a rigorous two-scale expansion (Calonne et al., 2014) yielding the same form of the resulting equations. The asset of the

latter approach is the parameter control, which allows to assess the model’s scope and limits of applicability from the scale

analysis. This homogenization method was later generalized to include effects of thermal convection (Calonne et al., 2014).30

Hansen and Foslien (2015) revisited the problem of coupled heat and vapor transport using mixture theory leading to a more

restrictive set of transport equations. They rely on the assumption that the vapor concentration is always close, but not exactly in

equilibrium with temperature. While the existing vapor schemes largely differ in the form of the effective transport coefficients,

there is a general agreement on the basic type and form of the partial differential equations (PDE) governing coupled heat and

diffusive vapor transport in snow. These PDEs are coupled, non-linear reaction diffusion equations. The diffusion terms are35

characterized by the effective diffusion constant and effective thermal conductivity in snow while the reaction (or source) terms

describe the phase changes, i.e. the volume averaged, solid-vapor re-crystallization rates from metamorphism (Krol and Löwe,

2018). However, (Calonne et al., 2014) and (Hansen and Foslien, 2015) both neglect the feedback of phase changes through

an evolving ice phase in their numerical experiments. It is this coupling that needs to be understood for the incorporation of

published homogenized vapor schemes into snowpack models for assessing the impact on snow density.40

Recently Jafari et al. (2020) equipped the model SNOWPACK with a vapor transport scheme in form of a non-linear reaction-

diffusion equation. It is the first attempt to solve the vapor diffusion equation in a snowpack model. The numerical solution

requires time-steps of 1 min and mesh sizes of 1 mm to avoid "numerical oscillations" that were observed, even within an im-

plicit, unconditionally stable numerical scheme. "Sawtooth effects" attributed to "slight numerical errors" were already revealed

in early numerical work on the coupling of ice, vapor, and energy transport in snow (Adams and Brown, 1990) and likewise,45

the numerical solution in (Hansen and Foslien, 2015) shows oscillations if longer simulation runs are considered (personal

communication with A. Hansen). Numerical issues have also been reported for solid-liquid phase changes when incorporating

water flow into SNOWPACK via the Richards equation which were attributed to density inhomogeneities (Wever et al., 2014).

Phase change processes on seasonal time scales in polar snowpacks are important for climate modeling ideally adequately

simulated on coarse meshes with large time steps. Therefore, it is necessary to understand the mathematical complexity of50

phase changes coupled to the mass transport equation. This will enable to either design stable and accurate numerical schemes

or otherwise accept simplified treatments which, in the case of vapor transport, could be e.g. based on a strict equilibrium

assumption (Li and Zwally, 2004; Touzeau et al., 2018).

Due to the lack of analytical solutions for these non-linear problems, confidence in orders of magnitudes of computed num-

bers can only be achieved via careful numerical experiments to address solver accuracy or mesh effects. This is naturally55

cumbersome within a full snowpack model. In addition, an explicit solution of the ice-mass conservation equation is com-

monly avoided by using the Lagrangian frame of reference of the settling equation (Brun et al., 1989; Lehning et al., 2002).
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This complicates the assessment of phase change models in their originally published Eulerian form. Stand-alone numerical in-

vestigations of specific model components are therefore justified and necessary to understand non-linear effects and numerical

requirements for the design of efficient solvers in future snowpack models.60

It is the aim of the present paper to advance the understanding of coupled heat and mass transport in snow by a careful

numerical analysis of existing homogenization schemes. To overcome the limited flexibility in existing snowpack models we

have implemented a stand-alone solver for the PDEs using the Finite Element (FE) framework FEniCS (Alnæs et al., 2015).

The python-based computing platform was previously used for other problems in cryospheric sciences (Cummings, 2016).

We focus on the non-linear feedback of heat and vapor transport on an evolving ice phase. We consider the simplest setting65

and neglect convection in the gas phase and settling in the solid phase to provide a sound reference for future extensions.

The question how these effects can be coupled to settling will be addressed in a companion paper (Simson et al., 2021). Our

approach will reveal the rich mathematical complexity that is hidden in published models and will provide evidence that the

origin of this complexity is the density dependence of the effective transport coefficients in the presence of phase changes. We

will show that this coupling causes the formation of wave patterns in the ice volume fraction profile as a true mathematical70

feature of the non-linear PDE system. This is confirmed by an analytical, linear stability analysis attributing the unstable

behavior to the density dependence of the effective (heat and mass) diffusion coefficients. The results suggest that previously

obtained oscillations in the numerical schemes (Adams and Brown, 1990; Jafari et al., 2020) are physical and not numerical

artifacts. With this work we seek to contribute to an understanding if and how these features should be taken into account in

future work.75

The paper is organized as follows. In Sec. 2 we state the governing partial differential equations from the homogenization

schemes (Calonne et al., 2014) and (Hansen and Foslien, 2015). In Sec. 3 we outline the Finite Element solution of the weak

formulation of the problem and its implementation in FEniCS. In Sec. 4 we first provide an inter-comparison of the two

models in their original test scenarios and the scenario of a thin “Gaussian crust” as a smooth density heterogeneity. In Sec. 5

we characterize the observed migration of the ice phase under vapor re-crystallization by comparing the full model with an80

approximate advection equation for the ice phase which is derived under simplified assumptions. In Sec. 6 we detail the wave

patterns that emerge in the numerical solution of the Gaussian crust. The analysis of the mesh-resolution, integration time step

and the residuals indicates that the wave patterns are intrinsic features of the mathematical model and not numerical artefacts.

This is confirmed by the linear stability analysis in Sec. 6.2. After a few sensitivity tests we will discuss practical consequences

of our study for vapor transport modeling in snow models (Sec. 8) and provide summarizing conclusions.85

2 Homogenized heat and mass transport

As a theoretical starting point we focus on two recently published homogenized formulations for an evolving vapor phase,

namely (Calonne et al., 2014) and (Hansen and Foslien, 2015). Despite differences in their theoretical homogenization ap-

proach, asymptotic expansion (Calonne et al., 2014) and mixture theory (Hansen and Foslien, 2015), both models have a very

similar mathematical structure that resembles earlier work of (Bader and Weilenmann, 1992).90
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2.1 Vapor scheme from (Calonne et al., 2014)

The two-scale expansion for (vapor) mass and energy (Calonne et al., 2014) leads to the following set of equations for the

vapor density ρv and the temperature T

(1−φi)
∂

∂t
ρv−∇ ·Deff∇ρv = −ρi svn (1)

(ρC)eff
∂

∂t
T −∇ · keff∇T = L svn (2)95

Here φi is the ice volume fraction, Deff the effective diffusion coefficient, ρi is the constant density of ice, s the surface area

density per unit volume, vn the volume averaged normal velocity of the ice-air interface indicating deposition or sublimation,

(ρC)eff denotes the effective volumetric heat capacity (times snow density), keff the effective thermal conductivity and L the

latent heat of sublimation.

The surface area density s, reflecting the current state of the microstructure and principally evolving in time, is assumed to100

be constant here in accordance with Calonne et al. (2014).

The source term −ρi svn on the right hand side (r.h.s.) of the vapor equation (1) quantifies phase changes, i.e. the net

condensation rate. This implies the form of the energy source term L svn through latent heat. In the simplest setting (Calonne

et al., 2014), the volume averaged interface velocity is given by

vn =
1

βρeq
v (T )

(ρv− ρeq
v (T )), (3)105

where β is the inverse growth velocity and ρeq
v (T ) the saturation vapor density. Note that vn strongly depends on the tempera-

ture, indicating the temperature feedback on the vapor mass balance. In order to close the system (1)-(3) parametrizations for

the effective PDE coefficients must be provided (see below in section 2.3). The feedback of a spatio-temporally evolving ice

phase φi(z, t) has not been considered in Calonne et al. (2014).

2.2 Vapor scheme from (Hansen and Foslien, 2015)110

A similar coupling scheme of the vapor transport to the energy equation has been put forward in (Hansen and Foslien, 2015).

Using the same notation as above, these equations can be written in the form

(1−φi)
∂ρeq

v

∂T

∂T

∂t
−∇ ·

(
Deff

∂ρeq
v

∂T
∇T
)

= −c (4)

(ρC)eff
∂

∂t
T −∇ · keff ∇T = c

L

ρi
(5)

Here the r.h.s. of both equations is expressed in terms of the condensation rate c.115

The comparison of both models reveals that the vapor mass balance of (Hansen and Foslien, 2015) (4) can be obtained from

the corresponding vapor mass balance of (Calonne et al., 2014) (1) using the following reasoning: The deviation of the vapor

concentration δρv from its equilibrium value ρeq
v (T ) will be mostly small. This suggests to use a ansatz ρv = ρeq

v (T ) + δρv in

Eq. (1). Assuming further that δρv diffuses faster than it relaxes locally, the deviation from equilibrium is kept non-zero only
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in the reaction term, which then implies (4). (Hansen and Foslien, 2015) supports this derivation with a (non-rigorous) scaling120

argument to avoid two conflicting equations for the temperature T .

Though both presented models are strikingly similar in structure, it should be emphasized that the system (1)-(3) is closed

and can be solved for ρv and T using an arbitrary closure for the condensation rate. This is different for the system (4)-(5):

Due to the simplifying assumption outlined above, Hansen’s model lacks an evolution equation for the (perturbed) vapor mass

balance. Since both, vapor mass balance (4), and energy balance (5) are actually formulated in terms of the temperature T ,125

(Hansen and Foslien, 2015) proceeds by consolidating both equations into a single equation which eliminates the condensation

rate(
(1−φi)

∂ρeq
v

∂T
+
ρi

L
(ρC)eff

)
∂T

∂t
−∇ ·

((
Deff

∂ρeq
v

∂T
+
ρi

L
keff

)
∇T
)

= 0. (6)

The latter now poses a non-linear, yet closed PDE that can be solved for the evolving temperature. Back-substituting the

resulting temperature into either (4) or (5) allows to evaluate the condensation rate c, without remaining freedom to impose130

yet another closure relation. An additional, important implication of the near-equilibrium assumption in (Hansen and Foslien,

2015) is the impossibility to impose arbitrary boundary conditions for the vapor phase. By construction of the model, the

boundary conditions are Dirichlet values for the equilibrium vapor concentration consistent with the boundary temperatures.

Similar to (Calonne et al., 2014) the feedback of a spatio-temporally evolving ice phase φi(z, t) is not considered in (Hansen

and Foslien, 2015).135

2.3 Parametrization of the PDE coefficients

Despite similarities in the forms of the PDEs, both models have used different parametrizations for the transport coefficients

Deff , keff and (ρC)eff and ρeq
v . While the two-scale homogenization presented in (Calonne et al., 2014) contains derived

expressions for the effective properties in terms of the microstructure as a byproduct, mixture theory in (Hansen and Foslien,

2015) relies on independently postulated parametrizations. The implications of these differences are presently still under debate140

(Fourteau et al., 2020).

In general, there is a broad agreement that all effective parameters are primarily influenced by the density or ice volume

fraction φi. The goal of the present paper is not an exhaustive inter-comparison of different formulations of the parametrized

coefficients in the analysed snow pack models. We rather want to focus on the intrinsic features and physical implications of

the underlying process models. We therefore aim to keep differences due to specific flavours of the coefficients at the minimal145

level. To this end we use the same parametrization for the equilibrium vapor pressure and the effective heat capacity in both

models but use different parametrizations for the effective thermal conductivity/diffusion constant. In the following we refer

to these PDE parametrizations as Calonne parametrization and Hansen parametrization. All coefficients are stated explicitly in

Appendix A.
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2.4 Feedback from an evolving ice phase150

The consistent treatment of phase changes requires a dynamic ice phase that evolves through recrystallization alongside with

the vapor phase in a mass-conserving way. This was neither considered in (Calonne et al., 2014) nor in (Hansen and Foslien,

2015). To investigate the feedback of an evolving ice phase on the two models from above we supply (1)-(3) and (4)-(5) with a

dynamic ice mass conservation equation (Bader and Weilenmann, 1992; Krol and Löwe, 2018). In the absence of settling, but

presence of phase changes the continuity equation reduces to an ordinary differential equation for each location in space155

∂

∂t
φi =


svn (Calonne)
c

ρi
(Hansen).

(7)

to balance the source terms in the vapor equations above. In Calonne’s model vn can be evaluated from the closure relation (3),

whereas Hansen’s c has to be reconstructed from either (4) or (5) as outlined before.

We summarize all symbols and parameter values of the models in Table 1.

3 Finite Element solution in FEniCS160

To minimize the coding overhead and focus on the physical problem while keeping access to advanced numerical adjust-

ments, the coupled PDE model was implemented using the python-based Finite Element framework FEniCS (Alnæs et al.,

2015). It provides a high-level programming interface for the solution of PDEs in their weak formulation, with capabilities for

parallelization, and cross-platform portability via docker images. FEniCS’ flexibility arises from its interface to the Unified

Form Language (UFL) (Alnæs et al., 2015) which supports an intuitive declaration of discrete FE formulations of variational165

problems.

Below we outline the spatial and temporal discretization for the weak formulation of both systems (1)-(3) and (4)-(5), and

describe the solution strategy employed for the coupled PDEs.

3.1 Spatial discretization - Standard Galerkin

The non-linear PDE systems of interest can be rewritten in the form170

F (u) = 0,

where F (u) is a nonlinear differential operator and u is the (vector valued) solution that comprises the unknown fields.

Following a standard Galerkin approach, the PDE’s weak formulation is obtained by multiplyingF (u) = 0 with test functions v

and integrating over the domain. The Galerkin method approximates the solution as the sum over a discrete set of basis functions

{vj}, i.e. u≈
∑
jujvj . This procedure allows to apply the differential operator to the test functions. The test functions have175

a small support where the values are nonzero, which simplifies the integral evaluations significantly. By choosing the test

functions v from the basis {vj}, the PDE system is reduced to finding the roots of a (non-linear) algebraic system. This
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Table 1. Symbols, defining equations and constants used in this study

Symbol Name Equation/Value Unit

PDE state variables

T Temperature Eq. (2, 5) K

ρv Vapor density Eq. (1, 4) kg m−3

φi Ice volume fraction Eq. (7) −

PDE coefficients

(ρC)eff Effective heat capacity Eq. (A2) J m−3 K−1

Deff Effective vapor diffusion coefficient Eq. (A3, A5) m2 s−1

keff Effective thermal conductivity Eq. (A3, A5) W m−1 K−1

c Ice deposition rate Eq. (5) kg m−3 s−1

vn Averaged interface velocity Eq. (3) m s−1

ρeq
v Equilibrium vapor density Eq. (A1) kg m−3

Constant parameters

ρi Ice density 917 kg m−3

ki Ice thermal conductivity 2.3 W m−1 K−1

ka Air thermal conductivity 0.024 W m−1 K−1

Ci Ice heat capacity 2000 J kg−1 K−1

Ca Air heat capacity 1005 J kg−1 K−1

L Ice latent heat of sublimation 2835332.6 J kg−1

D0 Diffusion coefficient of vapor in air 2 · 10−5 m2 s−1

β Kinetic coefficient 5.5 · 105 s m−1

Parameters of the linear stability analysis

Tref Reference temperature Eq. (28)/263 K

φi,0 Reference ice volume fraction Eq. (29)/0.3 −

α Linearized kinetic coefficient Eq. (26)/3.62 m3s−1kg−1

standard Galerkin procedure is e.g detailed in (Donea and Huerta, 2003). The implementation in the open source finite element

software FEniCS is straightforward.

3.2 Temporal discretization - Theta method180

Time derivatives are approximated using the theta method, also known as Rothe’s method (Donea and Huerta, 2003). For a

PDE of the form

∂

∂t
u = F (u) (8)
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the discretization reads

un+1−un

∆t
= θF (un+1) + (1− θ)F (un) +O((1/2− θ)∆t,∆t2) (9)185

where un denotes the state vector’s solution at time tn. Note that for θ = 0 and θ = 1 this reduces to standard first order explicit

and implicit Euler methods, respectively, whereas for θ ∈ (0,1) is constitutes a weighted average of both.

3.3 Coupling scheme

Due to the different time scales of the involved equations, a monolithically coupled solution for the vector u = (T,ρv,φi)

would be most consistent, yet turns out to be inefficient. The vapor equation has by far the fastest dynamics, followed by190

the second fastest, the energy equation. The ice mass balance equations has a much slower dynamics. The water vapor and

energy equation are coupled diffusion-reaction equations and directly determine the r.h.s. of all equations. Therefore we solve

them together in a first step, and subsequently integrate the ice equation with its expected slower dynamics in a separate step.

This operator splitting allows an independent fine-tuning of the numerical methods. Practically, we included the r.h.s. of the

equations as an algebraic constraint in the state vector, i.e. u = (T,ρv,vn) for Calonne and u = (T,c) for Hansen, which are195

then solved in a fully coupled way. The φi-dependent coefficients of the vapor and energy equation use φi from the previous

time step. Subsequently φi is updated via vn (or c). Time step size is mostly determined through the vapor and energy dynamics.

Changes in φi, and hence in the PDE coefficients are therefore expected to be very small, which justifies the splitting-based

coupling procedure.

We apply different theta values for each differential operator. For the diffusion operators in the vapor and energy equations200

we use θ = 0.5 (Crank-Nicolson) which is known to be stable and convergent with second order accuracy for linear operators.

As the phase change (source) terms are expected to be stiff, a fully implicit, unconditionally stable Backwards Euler scheme

with θ = 1.0 is applied.

4 Model comparison

To evaluate the models, we tested them on three different scenarios comprising specific combinations of initial conditions (IC)205

and boundary conditions (BC). The first two scenarios discussed in sections 4.1 and 4.2 are taken from (Calonne et al., 2014)

and (Hansen and Foslien, 2015), respectively, while the last (section 4.3) is the simulation of a Gaussian shaped crust. The three

scenarios test different relevant aspects of snow modeling, namely the transient response to time dependent BCs, piecewise-

linear ice profiles covering the entire range of snow densities and lastly a high density layer in a small sample with smooth, high

density gradients. For each of the three physical scenarios, we evaluate three model formulations: First, Calonne’s equations210

(1), (2), (7) with Calonne coefficient closure from Appendix A (referred to Cal-Eq/Cal-Par). Second, Hansen’s equations (6),

(7) with the Hansen coefficient closure from Appendix A (Han-Eq/Han-Par). Third, the mixed case of Hansen’s equations

(A5), (7) with Calonne coefficient closure (Han-Eq/Cal-Par).
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4.1 Scenario 1: Homogeneous snow - transient heating at the boundary

The first scenario is proposed by Calonne et al. (2014) and investigates the response of a homogeneous snow layer on transient215

heating. The initial conditions are

T (z,0) = T0 (10)

ρv(z,0) = ρeq
v (T (z,0)) (11)

φi(z,0) = φi,0 (12)

with T0 = 273K and φi,0 = 0.3. We employ a a fixed Dirichlet BC at z = 0 and a transient temperature drop at z =H = 1m,220

viz

T (0, t) = T0

T (H,t) = T0− (TH −T0)

(
t

τ
Θ(t)− t− τ

τ
Θ(t− τ)

)
ρv(0, t) = ρeq

v (T (0, t))

ρv(H,t) = ρeq
v (T (H,t))

(13)

where the transient drop is characterized by the Heaviside step function Θ with parameters τ = 5h and TH = 263K.

The solutions of all three cases we obtain for this combination of IC and BC are shown in Figure 1 for t= 100min.

Notably, Calonne and Hansen’s models along with their own (different) parameterizations for the PDE coefficients deviate in225

all variables, since Hansen’s effective diffusion constant is higher. This difference does not depend on the underlying process

models, but is rather due to the used formulations of the PDE coefficients as shown by the mixed case (Han-Eq/Cal-Par) which

coincides with Han-Eq/Han-Par. Only a small difference can be observed close to the right boundary, where the changes in T

and ρv are the fastest and therefore the assumption ρv ≈ ρeq
v (T ) underlying (Hansen and Foslien, 2015) is violated.

4.2 Scenario 2: Heterogeneous snow - fixed temperature boundary conditions230

Next we investigate the test case envisaged by (Hansen and Foslien, 2015) that comprises a piece-wise linear density profile as

an approximation for a layered snowpack containing a crust with an additional ice layer at the bottom to constrain the vapor
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Figure 1. Comparison of Calonne’s and Hansen’s model for the response to a transient temperature decrease at the boundary without ice

phase evolution: Slight differences are observed if the models are used with their own formulation of coefficients (red and green line), while

both yield virtually indistinguishable results if the same coefficients are used (red and turquoise line).

from below. The IC is given by

T (z,0) = T0− (TH −T0)
z

H
, (14)

ρv(z,0) = ρeq
v (T (z,0)) (15)235

φi(z,0) =



1− 9.2425z z ∈ [0,0.08],

0.2606 z ∈ [0.08,0.64],

0.2606 + 4.915(z− 0.64) z ∈ [0.64,0.72],

0.6538 z ∈ [0.72,0.75],

0.6538− 4.915(z− 0.75335) z ∈ [0.75,0.86],

0.1295895 z ∈ [0.86,1.0],

(16)
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with T0 = 273K and TH = 253K. The BC are given by

T (0, t) = T0,

T (H,t) = TH

ρv(0, t) = ρeq
v (T (0, t)),

ρv(H,t) = ρeq
v (T (H,t)).

(17)

The corresponding simulation results are shown in Figure (2) at simulation time of 38 hours. Again, the fields ρv and T highly

agree in homogeneous regions as long as the same paramerizations for the PDE coefficients are used. In contrast, the phase240

change term (r.h.s. of the equations) shows an agreement only if the the same equations are used. This is revealed in the kink

regions of the profile where (Han-Eq/Han-Par) coincides with (Han-Eq/Cal-Par). This shows the different sensitivities of the

T,ρv and phase change terms on the form of the homogenized equation when density gradients are present.

4.3 Scenario 3: The Gaussian crust

To further detail the response to high-gradient regions in the ice phase, our third scenario investigates the response of the models245

to a smooth, small-scale density variation under a temperature gradient in a shallow snow sample of height H = 0.02m. This

scenario investigates the response of the models on density changes occurring on small length scales, e.g. layer interfaces

which can be monitored in tomography experiments (Hammonds et al., 2015). In contrast to the previous two scenarios, the

ice phase is now evolving according to (7).

In the following we solely focus on differences between (Cal-Eq/Cal-Par) and (Han-Eq/Han-Par) and investigate this differ-250

ence at different physical times. We refer to this scenario as a Gaussian crust. As IC we employ

T (z,0) = T0− (TH −T0)
z

H
, (18)

ρv(z,0) = ρeq
v (T (z,0)) (19)

φi(z,0) = φi,0 + ∆φi,0 exp

{
− (z− z0)2

2σ2

}
(20)

with T0 = 273K, TH = 253K, φi,0 = 0.3, ∆φi,0 = 0.2, z0 = 0.01m, σ2 = 5 ·10−7 m2. For the Gaussian crust we use the same255

boundary conditions as in (17).

Figure (3) shows the simulation results for several points in time. Similar as before the solutions for ρv and T agree very well

and notable differences are observed for the phase changes in density transition regions. From this comparison for a smooth

density variation, two additional observations can be made for both models. These are a consequence of the evolving ice phase.

First, the Gaussian crust shows a quasi-advection in the ice phase towards the warm boundary, despite the absence of an260

explicit advection term in the ice equation. During this quasi-advection, density gradients steepen on the cold side and flatten

on the warm side. Far away from the crust a linear density gradient emerges in the domain as a consequence of the boundary

conditions. The difference between the models lies in the apparent advection velocity. This is consistent with the observed

differences in the phase changes since recrystallization rate differ approximately by a factor of two.

11



Figure 2. Comparison of Calonne’s and Hansen’s model for the response to a piecewise-linear, layered profile under a temperature gradient

without ice phase evolution: The results for Hansen’s model are indistinguishable even if different PDE coefficients are used (green and

turquoise lines) but differ from the Calonne model (red line).

Second, in both models oscillations emerge at the lower boundary. They are modest in the Calonne model, and arise at265

considerable later time with smaller magnitude. For the Hansen model these are apparent immediately.

These two observations are further detailed below.

5 Quasi-advection of the ice phase

The quasi-advection of density heterogeneities in the ice phase despite the absence of an explicit advection term in (7) is a

consequence of phase changes (vapor sublimation and re-sublimation) as an intrinsic feature of the coupled system.270

To understand the origin of this quasi-advection, we approach the coupled system (1), (2) and (7) with several analytical

approximations. Justified by the separation of time-scales we first restrict ourselves to stationary heat transfer and neglect the
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Figure 3. Comparison of Calonne’s and Hansen’s model each with their own formulation of coefficients. Both models are coupled to the

evolving ice phase for an initial Gaussian profile under a temperature gradient.

phase changes in the energy equation following arguments given in (Calonne et al., 2014). This is a considerable simplification

since the two-way coupling between heat and vapor is eliminated. Consequently, the heat equation∇keff∇T = 0 can be solved

for the BC (17) independent of the vapor transport process even for an inhomogeneous ice profile, with its exact solution given275

by

T (z) = T0 + (TH −T0)

∫ z
0
dz′ [keff(φi(z

′))]
−1∫H

0
dz′ [keff(φi(z′))]

−1
(21)

The local temperature (and its gradient) is thus a functional of the heterogeneous, non-constant ice volume fraction φi via the

dependence of the effective conductivity keff on φi. We express this in the form

T = FT [φi] (22)280
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which defines the functional FT via Eq. (21). Motivated by the similarity between the solutions of (Calonne et al., 2014) and

(Hansen and Foslien, 2015) found in the previous section, we adopt the simplification from (Hansen and Foslien, 2015) and

account for deviations of the vapor concentration from equilibrium only in the phase change (source) term. Again, we use a

stationary diffusion equation ∇Deff∇ρeq
v = ρisvn due to the separation of time-scales between vapor and ice. This allows to

rewrite the ice mass conservation equation (7) in a conservative form as a single advection equation285

∂

∂t
φi +∇G[φi] = 0, (23)

with a functional

G[φi] =
1

ρi
Deff [φi]

∂ρeq
v (T )

∂T

∣∣∣
T=FT [φi]

(TH −T0)[keff(φi(z))]
−1∫H

0
dz′ [keff(φi(z′))]

−1
(24)

that expanded ρeq
v (T ) by means of the chain rule and substituted in the previously derived temperature expression (22). The

boundary conditions290

∂

∂t
φi(z, t) = 0 for z = 0,z =H (25)

follow from the BC ρ= ρeq
v of the vapor phase.

We stress the significance of this result. First, by using the approximations for the heat and vapor transfer, the three coupled

heat and mass conservation equations can be equivalently cast into a single continuity equation for the ice phase. Second,

the form of this continuity equation is a non-linear and non-local advection equation, which explains the nature of this quasi-295

advection as a variant of shock formation reminiscent of the non-linear Burgers equation (Du et al., 2012).

To test the derived approximation we have compared the numerical solution of (23) to the full solution of the Calonne model

as shown in figure (4) for the Gaussian crust. In general, the agreement between the two models is very close, yielding almost

identical results in homogeneous regions, i.e. towards the boundaries and close to the center of the crust. In the high gradient

regions both models predict a steepening of the gradient, which is faster in the advection equation (23). Since (23) involves300

the same quasi-equilibrium approximation as used for the Hansen model, these quantitative differences are consistent with the

results from the previous section.

Despite remaining differences, the approximation (23) together with (24) allows to unambiguously trace back the quasi-

advection and gradient steepening to the dependence of the effective diffusion constant and the effective thermal conductivity

on ice volume fraction: If Deff was linear in φi and keff was constant, (21) would take the form of a simple advection equation305

∂tφi + v∇φi = 0 with constant v. This would imply a shape invariant advection of any initial density profile. In contrast, the

true Deff decreases and keff increases when the ice volume fraction is increased. Both dependencies lead to a decrease of the

flux functional G in high density density regions which explain the emergent asymmetry in the crust shape.

Similar to (3), the numerical solution of the advection equation also displays oscillations at the boundary, already after a few

hours. This will be further detailed in the following.310
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Figure 4. Comparison between Calonne’s model coupled to an evolving ice phase and the derived advection equation (23) for an initial

Gaussian crust.

6 Pattern Formation

All numerical solutions so far are subject to oscillations "at some point in time" irrespective of the details. Therefore we will

investigate the nature of these oscillations, now only considering the full Calonne model applied to the Gaussian crust.

6.1 Oscillatory solutions

The following example shows simulations with varying mesh size (number of elements ne) and varying time steps dt for the315

numerical solution at a fixed physical time. The results are shown in Figure 5. Figure 5(a) shows the entire domain, revealing

oscillations at the left boundary and on the sublimating side of the crust. Figure 5(b) shows a close up of the left boundary

while 5(c) shows close-up of the sublimating side of the crust. For very low mesh resolution (ne = 100, corresponding to a

meshsize of 0.2mm) and large time step (1 min) the solution in the vicinity of the crust oscillates from node to node while

for sufficiently high resolution the numerical solution converges to a smooth wave pattern independent of temporal and spatial320

resolution. This suggests that these waves are an intrinsic feature of the Calonne model equations rather than an artifact of the
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numerical scheme. As an additional check we have analyzed the residuals of the numerical solution (cf. Appendix (B)) which

Figure 5. Sensitivity of the numerical solution to mesh resolution and time step size: (a) entire domain (b) zoom into the left boundary region

(c) zoom into the sublimating (right) side of the Gaussian crust. Apart from the coarsest resolution, the lines are almost indistinguishable,

indicating numerical convergence to the true solution.

confirms that patterns persist even when enforcing the residuals to approach zero.
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6.2 Linear stability analysis

We use perturbation theory to further comprehend the oscillatory nature of the solution. Pattern formation in non-linear PDE325

systems can be generally understood by investigating the dynamics of perturbations around a known stationary state via linear

stability analysis of the dynamical equations. To do so, we start from the full, non-linear, coupled, transient situation (Calonne

model) in the form

(ρC)eff∂tT −∇zkeff∇zT = Lα(ρv− ρeq
v )

(1−φi)∂tρv−∇zDeff∇zρv = −αρi(ρv− ρeq
v )330

∂tφi = α(ρv− ρeq
v ) (26)

only subject to the simplification that on the r.h.s. the division by ρeq(T ) in Eq. (3) is subsumed in the prefactor α which is

assumed to be constant.

The system (26) is, as before, equipped with Dirichlet BC for the two PDE’s

T (0) = T0335

T (H) = TH

ρv(0) = ρeq
v (T0)

ρv(H) = ρeq
v (TH) (27)

at the bottom z = 0 and top z =H of the domain. To proceed analytically, we need to make an additional assumption to obtain

an exact stationary solution of the system. We assume that the equilibrium vapor concentration is a linear function in T . This340

is reasonable within thin layers where temperature differences are small and a linearization of the equilibrium vapor curve is

always justified. This linearization is written in the form

ρeq
v (T ) = ρeq

0 + ρeq
1 (T −Tref) (28)

as an expansion around a reference temperature Tref (e.g. the mean temperature in the sample). With this assumption, a sta-

tionary solution of Eq.(26) can be obtained by inspection. It is easily verified that345

T (0)(z) := T0 + (TH −T0)
z

H

ρ(0)
v (z) := ρeq

v (T (0)(z))

φ
(0)
i (z) := φi,0 (29)

satisfies (26) with BC (27) for arbitrary, constant volume fraction φi,0.

To carry out the stability analysis we use a vector notation and combine the fields in the vector u := (T,ρv,φi). Then the350

PDE system (26) can be written in matrix form

C(u)∂tu−K(u)∇2
zu− (∇zK(u))(∇zu) = Ru+f (30)
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with state dependent (3× 3) matrices K(u),C(u) constant matrix R and constant vector f defined by

C =


(ρC)eff 0 0

0 (1−φi) 0

0 0 1

 (31)

K =


keff 0 0

0 Deff 0

0 0 0

 (32)355

R =


−Lαρeq

1 Lα 0

ρiαρ
eq
1 −ρiα 0

−αρeq
1 α 0

 (33)

f =


Lαρeq

1 Tref −Lαρeq
0

−ρiαρ
eq
1 Tref + ρiαρ

eq
0

αρeq
1 Tref −αρeq

0

 (34)

(35)

Then, the (stable) stationary state of (29) is denoted by the vector

u(0) := (T (0),ρ(0)
v ,φ

(0)
i ) (36)360

The non-linearities of (30) emerge from the dependence of the matrices K ≡K(u) and C ≡C(u) on u. Note that this

dependence is solely through the third component of u (i.e. φi) which highlights the special role of the density (evolution).

Next we investigate the linear stability of the fixed point (36). To this end we make an ansatz

u = u(0) +u(1) (37)

and investigate the dynamics of the deviation from the stationary state u(0) by deriving an equation for u(1) through a pertur-365

bation expansion of (30) in first order. This procedure (carried out in detail in Appendix (C)) yields an equation for the Fourier

modes ũ(1)(k) of the perturbation for wave number k which can be written in the form

∂tũ
(1)(k,t) = Mkũ

(1)(k,t) (38)

with a wave number dependent matrix

Mk :=−k2[C(0)]−1K(0) + ik[C(0)]−1V (0) + [C(0)]−1R (39)370

with constant matrix coefficients K(0),V (0),C(0). The eigenvalues of Mk control the behavior of the system in the vicinity

of the stationary state. The matrix Mk is non-Hermitian due to the "advection" matrix V (0) and the "phase change" matrix

R. Thus these two processes can principally cause eigenvalues with positive real parts (causing a growth of perturbations) and
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non-zero imaginary parts (causing oscillatory behavior). In the case of V (0) = R = 0, Eq. (39) predicts negative eigenvalues

for all k > 0 and no pattern formation as it should be for simple diffusion equations.375

The matrix Mk can be diagonalized in closed form using the symbolic algebra software MAPLE and eigenvalues sub-

sequently separated into real and imaginary parts. Evaluating the eigenvalues with the corresponding parameter values from

Table (1) shows that one of the eigenvalues has positive real part and non-zero imaginary part indicating a wave instability.

This is controlled by the matrix V (0) with the coefficients k1 and D1 (cf. Eq. (C14) in appendix (C)) which characterize the

sensitivity of the effective coefficients on density. Thus the instability originates from the fact that the effective diffusivity380

and/or the effective conductivity of snow depend on ice volume fraction (or snow density) and it is triggered by transitions in

snow density, i.e. layers.

We can compare the prediction of the stability analysis with the simulation of the full model for the Gaussian crust by

analyzing the growth of amplitude of Fourier modes for wave number k through the Power spectral density of the perturbation.

To this end we have computed the third component of the perturbation vector u(1)
3 = φi(z, t)−φi(z,0) as the deviation from385

the initial, oscillation-free state. The space-time plot of the perturbation in real space is shown in Fig. (6)(a) which shows the

emergence of the traveling wave. Discrete time steps are shown in Fig. (6)(b) which displays the self-amplifying behavior

of the density modulation in the layer-transition region i.e. at the boundary of the crust. The Power spectrum |ũ(1)
3 |2 of the

perturbation is computed via Fast Fourier transform and shown in (6)(c) as a function of wave number for different times

together with the theoretically predicted range of instability (eigenvalues with positive real part and non-zero imaginary part,390

grey region) derived from the diagonalization of the matrix Mk. The comparison confirms that growing modes are consistently

lying in the unstable range. This supports our theoretical explanation that wave-like patterns emerge in regions of high density

gradients as an inherent feature of the coupled heat and mass transport in snow with density dependent material properties.

7 Sensitivity studies

Finally we conducted a few sensitivity studies to facilitate a discussion about the relevance of our findings in future snow395

modeling.

To confirm that observed wave patterns in the Gaussian crust are robust against variations of absolute values in temperature

gradients and initial crust density we simulated a denser Gaussian crust with different values for the temperature gradient.

Figure (7)(a) shows that the non-linear PDE system essentially obeys time vs temperature gradient scaling. Virtually the same

wave solution is obtained at different physical times t which scale as t∼ (∇T )−1. This test also shows that for a higher crust400

density, the density depletion on the sublimating side is more pronounced.

Second we subjected a smoothly varying density profile to a temperature gradient of 50K/m and conducted a long simulation

over 170 days. The results are shown in Fig. (7)(b). This confirms that if the density profile is sufficiently smooth, even an entire

season simulation shows a stable, smooth advection of the ice phase.

Finally, we mimic the situation of a snowpack over a dry soil where no vapor can enter the system from below by imposing405

a zero-flux Neumann BC on the vapor equation. The results are shown in Fig Fig. (7)(c) indicating the order of magnitude of
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Figure 6. Space time plot of the perturbation field(a) profiles at different times steps (b) and corresponding power spectra (c).

Figure 7. Simulation of the fully coupled system: a) time-temperature scaling b) Evolution of a smooth initial ice profile and fixed mean

temperature gradient of 50K/m. c) Same as b) with homogeneous Neumann BC and impact on depletion of mass at the boundary.
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the expected depletion of the snow mass at the bottom for purely diffusive vapor transport under the influence of a temperature

gradient of 50K/m for an entire season.

8 Discussion

8.1 Comparison of published homogenization schemes410

We have revisited published models of coupled heat and (diffusive) vapor transport in snow. To investigate their numerical

requirements we have implemented a stand-alone solver in the open source software FEniCS for the sake of flexibility in

numerical experiments involving (spatial and temporal) resolution, solution strategies and accuracy.

From a mere physical point of view, our comparison of (Calonne et al., 2014) and (Hansen and Foslien, 2015) has shown that

both schemes yield similar results as long as the same parametrizations are used as closure for the PDE coefficients. The impact415

of purely diffusive vapor transport on macroscopic density changes is rather small (Fig. (7), in agreement with (Jafari et al.,

2020). Accurate estimates will certainly rely on the choice for the parametrization of the transport coefficients which naturally

cause differences in the results (Fig. (1)). In homogeneous parts of the snowpack these differences are small, larger differences

can be expected at layer transition regions (Fig. (2)) where phase changes sensitively react to the underlying homogenized

process model equations.420

For the present work, however, the precise numbers were of minor importance. The primary goal was an assessment of

the non-linearity that is contained in published vapor homogenization schemes and their numerical requirements in view of

previously reported numerical issues Jafari et al. (2020); Adams and Brown (1990); Hansen and Foslien (2015). While we

have certainly challenged the numerical scheme by predominantly exploring high temperature and high density gradients, the

observed time - gradient scaling (Fig. (7)) indicates that the underlying non-linear mechanisms are generally robust against425

these details.

8.2 Oscillatory behavior in the numerical solution

We have discovered that both models (Calonne et al., 2014) and (Hansen and Foslien, 2015) exhibit oscillations in the numerical

solution if they are dynamically coupled to an evolving ice phase (Eq. (7)). From our analysis of different combinations of initial

and boundary conditions (Sec. 4) we conclude that two type of oscillations can occur, node-to-node oscillations (indicating430

numerical problems) and smooth oscillations (features of the underlying equations)

In view of numerical problems, we have shown that the dynamic coupling of the ice phase to heat and mass transport is

equivalent to an advection of the ice phase (Sec 5). The non-linear nature of this advection causes a self-amplified increase

of density changes/layer transitions, imposing special requirements on mesh resolution, time stepping and potentially shock-

capturing schemes (Shu and Osher, 1988) to avoid oscillations. The fact that node-to-node oscillations occur on the "outflow"435

boundary of the ice phase supports this. In most of our simulations we have imposed a Dirichlet boundary condition of the

vapor phase which is strictly in equilibrium on the boundary. By virtue of Eq. (23) this implies that the snow density cannot

21



change directly at the boundary, while in the interior of the domain the ice is piling up towards the boundary under the

advection (Fig. 4) This is reminiscent for outflow boundaries in fluid dynamics for high local Péclet numbers (Donea and

Huerta, 2003): The disagreement between the information transported through the domain from the cold boundary and the440

information prescribed on the warm boundary is numerically resolved by steep node-to-node oscillations (Fig. 3. Similar issues

can arise whenever abrupt changes in the advection velocity cannot sufficiently be resolved on a given mesh, as in Figure 5

in the middle of the domain. This interpretation of node-to-node oscillations is supported by the fact that oscillations can be

completely suppressed on the lower boundary by choosing a boundary conditions∇ρv = ∂/∂Tρeqv ∇T for the vapor equation,

which implies a vanishing gradient for the ice profile at the boundary. Our tests indicated that node-to-node oscillations can be445

eliminated by choosing a high resolution in space and time. A more efficient approach might be the utilization of stabilization

methods where our approximation (Eq. (23)) may serve to provide a local advection velocity of the ice phase which needs to

be supplied e.g. to a SUPG stabilization scheme (Donea and Huerta, 2003).

After increasing mesh and time resolution to suppress numerical problems, the true solution converges to a smooth, travelling

wave pattern (Fig. 5, Fig. 6). As confirmed by the theoretical analysis, these oscillations are true features of the non-linear450

homogenization equations and triggered by gradients in the density (Sec.6.2). These patterns can only form when the ice

equation is dynamically coupled to the heat and vapor equation in a mass conserving way. At the boundary, these physical

oscillations are triggered as a consequence of the Dirichlet boundary condition as explained above: The competition of a fixed

value of φi directly on the boundary for z = 0 (implication of the imposed boundary conditions on the vapor phase for Eq. 7)

and the increase of φi in the interior of the domain gives rise to a transition layer at the boundary with a high density gradient455

in the ice phase that triggers the instability according to the mechanism revealed in Sec. 6.2. This is again supported by the

fact that the physical oscillations at the boundary can be suppressed by choosing the BC for the vapor equations such that the

gradient in ice volume fraction vanishes. This behavior is reminiscent of the wave instability triggered by a Dirichlet boundary

condition in a 1D non-linear reaction-advection-diffusion system (Vidal-Henriquez et al., 2017) which travels up-stream into

the domain.460

8.3 Weak-layer formation by wave instability?

We have shown that spatial heterogeneities in the density/ice volume fraction can amplify under the coupled thermodynamic

description in snow. This has been pointed out before Adams and Brown (1990). We have investigated this phenomenon within

the idealized scenario of a Gaussian crust where density gradients self-amplify under the non-linear advective dynamics with a

subsequent instability and the emergence of wave patterns. The eigenvalues of the linearized PDE system in our linear stability465

analysis has revealed the mechanism: A non-homogeneous density paired with the density dependence of the effective diffusion

coefficients triggers the instability. Pattern formation following an instability is ubiquituous in non-linear (diffusion-reaction)

PDEs (Cross and Hohenberg, 1993).

In the present case, the observed instability may have far reaching consequences which comes as a (surprising) side-product

of our numerical study: As the instability causes the depletion of density on the sublimating side of a crust (Fig. 7(a) it explains470

why a low density (mechanical weak) layer can form under these conditions. For high density crusts, the parameters and model
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components used here, predict a considerable reduction of the density in a sub-millimeter layer above the crust (Fig. 7(a). This

mechanism is solely a consequence of the continuum description of snow. We stress, that this is different from a previously

suggested reasoning (Colbeck and Jamieson, 2001) and it may occur as a superimposed effect on additional microstructural

controls through near crust metamorphism (Hammonds et al., 2015). In the future, it will be therefore important to assess475

how this instability is affected by adding mechanical settling, an evolving microstructure or enhanced mass transport from

convection.

8.4 Open questions

8.4.1 Limits of the homogenization scheme

The present work poses questions on the limits of validity of the used homogenization schemes that are relevant for a user of480

the equations.

First, as detailed in (Calonne et al., 2014), the homogenized equations (1), (2) are not valid for arbitrary growth rates. This is

a tricky situation since the PDE system exhibits self-propelled dynamics into a state of fast growth for high density gradients,

thereby leaving its own range of validity. However, since the homogenization scheme (Calonne et al., 2014) does not contain

the ice phase, it remains unclear if the used equations remain valid if a dynamical ice phase were included in the first place.485

Second, the two-scale homogenization (Calonne et al., 2014) states assumptions on length scales, on which the description

is meant to be valid. The expansion dictates what can be considered as homogenous, macroscopic scale which is sufficiently

large against the microstructural length scale. But what happens if the derived equations contain mathematical features on

smaller scales which violate the separation of scales? We have shown that the wave instability produces patterns on millimeter

to sub-millimeter scales requiring ridiculously small mesh sizes to resolve them, clearly interfering with characteristic length490

scales of the microstructure. What is a consistent way of dealing with this situation? Resolving them numerically and averaging

them out? Suppressing them numerically by artificial diffusion? Or does this behavior signal true multi-scale effects where the

assumed "seperation of scales" fundamentally breaks down? Answering these questions appears to be a key demand for future

work on homogenization to provide a robust recipe how to use derived equations correctly for applied modeling.

8.4.2 Discontinuous vs continuous description of a stratified snowpack495

Any snowpack contains variations in its properties that may be described either by continuous profiles containing large gra-

dients (as done here) or by a discontinuous stacking of layers. We want to point out here that if a continuous description of

density variations were to be replaced by discontinuous layers, the investigated wave problem will not simply disappear. In a

hypothetical discontinuous layer description, as commonly pursued in snowpack models, the mass continuity of the ice phase

at the layer interface would require to derive a dynamic (non-linear) equation for the migration of the layer interface on which500

the continuity of temperature and heat and mass fluxes were to be imposed. From the continuous description used here, no firm

conclusion can be drawn on the behavior of the interface evolution between discontinuous, homogeneous layers. We hypoth-

esize though, that the wave instability of the continuous PDE formulation may translate into an oscillatory instability for the
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position of the interface. In view of the mathematical overhead of tracking continuity conditions at moving interfaces, we tend

to recommend a continuous description in future snow modeling with numerical schemes that cope with arbitrary gradients in505

the properties.

8.5 Advantages and disadvantages of the numerical framework

We have used FEniCS for the stand-alone implementation to minimize the FEM implementation effort, yet retaining full control

on the numerical solution. Overall FEniCS provides a convenient, modular setup for exchanging PDE coefficients (keff ,Deff )

or boundary conditions, e.g. for more sophisticated exchange of vapor with the soil or the atmosphere. Alongside our study,510

we evaluated the FEniCS framework by comparing numerically different implementations. These experiences are shared for

future reference.

We found that integration by parts in the weak formulation is not only necessary to apply Neumann boundary conditions,

but also increases the precision, regardless of the order of interpolation polynomials. Operator splitting turned out to be of

limited value, the decrease in precision was not outweighed by a decrease in numerical complexity. As expected, a non-515

dimensionalization of the equations and the corresponding re-scaling to values of order unity did not impact the solution, as long

as solver convergence settings are adapted. Increasing the polynomial order of the test functions was equivalent to increasing

the mesh resolution with the corresponding number of nodes. However, we experienced large errors, if the polynomial order

of the variables of the coupled equations was not the same: solving φi in first order, ρv,T in second order caused large errors

on the entire domain and also violation of the Dirichlet boundary condition. Adding auxiliary algebraic variables (as done here520

for the source terms) can improve the solvability of the system, when convergence settings of the coulped system are adapted.

Using so called sub-functions in the formulation of the variational problem for coding modularity can introduce errors. We

encountered deviations between a sub-function value and its hard-coded counterpart.

While FEniCS has provided an excellent numerical framework for the present study, a clear drawback of FEniCS would

however emerge if mechanical settling was to be considered, as a necessary, future extension. In the presence of settling, the525

ice phase conservation equation is an advection dominated problem which is notoriously difficult to solve on a Eulerian FE

mesh without numerical smoothing. Re-meshing is currently not supported in FEniCS. To this end we have explored another,

fully different numerical route to enable a flexible coupling of transport and phase changes to mechanical settling which is

presented in part 2 of this companion paper (Simson et al., 2021).

9 Conclusions530

We have shown that the widely accepted form of homogenized vapor transport equations in snow predicts mathematical fea-

tures (density waves) with interesting physical implications (weak layers) which constitute a considerable numerical challenge

for future snowpack modeling.

Combining numerical experiments with theoretical considerations we have shown that the wave instability originates from

the dependence of the effective heat and vapor diffusion coefficients (keff ,Deff ) on snow density. Since this dependence is the535
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most fundamental non-linearity in coupled heat and vapor transport in snow, it is unlikely that this effect will luckily disappear

when considering more complex, non-linear extensions of the model. The instability is a true feature of published equations

and comes into play when the ice phase is dynamically coupled to the vapor phase by phase changes in a mass conserving way.

The instability is triggered by high density gradients which either (pre-)exist in snowpacks in the form of layers or which are

generated from the self-amplification of density gradients under the coupled dynamics. This amplification is a consequence of540

the effective advection of the ice phase due to phase changes. This is explained within the derivation of an approximate, non-

linear and non-local advection equation. Given the observed (approximate) equivalence between time and imposed temperature

gradient, the system always undergoes a self-propelled evolution into its own instability. The instability might be practically

irrelevant as long as smooth density profiles are considered. But the instability will certainly become relevant if a snowpack

model should be applicable to simulate a sublimating side of a crust as a potential origin of weak layer formation.545

We have outlined open questions and limitations of the present study related to the homogenization scheme, the numerical

scheme and the concept of discontinuous layers. While the present study required a stand-alone numerical implementation, it

seems to be of key importance that future snow models will be flexible enough for conducting advanced numerical studies.

Only then re-implementations of stand-alone numerical experiments will become obsolete and the rich, non-linear behavior of

snow could be predicted from a snow model alone.550

Code and data availability. Will be made available upon acceptance

Appendix A: Parametrizations of the PDE coefficients

For the equilibrium vapor pressure we used the parametrization from (Libbrecht, 1999) given by

ρeq
v = (a0 + a1(T −Tm) + a2(T −Tm)2)

exp(−Tr/T )

kBT/mH2O
(A1)

with Tm = 273.15 K and a0 = 3.6636·1012 Pa,a1 =−1.3086·108 Pa/K,a2 =−3.3793·106 Pa/K2 and Tr = 6150K, and the555

conversion from pressure to density through the ideal gas law and kBT/mH2O = 461.3J/kg/K.

For the effective heat capacity we used a volume averaged formulation given in (Calonne et al., 2014)

(ρC)eff = φiρiCi +φaρaCa (A2)

with Ci,Ca,ρi given in Table 1.

In the Calonne case we used for the effective diffusion parameters Eq. 12 from Calonne et al. (2011) and the self-consistent560

estimate used in Calonne et al. (2014) given by

keff(φi) = k0 + k1ρiφi + k2(ρiφi)
2 (A3)

Deff(φi) = D0(3φi− 1)/2 (A4)

with k0 = 0.024,k1 =−1.2310−4,k2 = 2.510−6 and D0 given in Table 1.
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Figure B1. Results upon lowering the residuals of all equations. While some pattern is still visible, the order of magnitude is small enough

to assume small errors on the solution as well.

In the Hansen case we used Eq. (87) and (88) from (Hansen and Foslien, 2015) given by565

keff(φi) = φi ((1−φi)ka +φiki) +φa

(
kika

φi(ka +LD0
∂ρeq(T )
∂T + (1−φi)ki

)
(A5)

Deff(φi) = φi(1−φi)D0 +φa

(
kiD0

φi(ka +LD0
∂ρeq(T )
∂T + (1−φi)ki

)
(A6)

(A7)

and ka,ki,L,D0 given in Table 1.

Appendix B: Analysis of residuals570

Due to the lack of an analytical solution for the non-linear problem, we used the nodal residuals as an indicator for the solution

error. FEniCS does not provide access to the nodal residuals to verify convergence in the NonlinearVariationalSolver

class. To this end we recovered the residuals manually by decoupling the equations and iterating over individually fine-tuned

solvers for each equation. The results are shown in Figure B1. While in this solution scheme the residuals are several orders of

magnitude smaller than in our regular setup, the onset of the wave instability remains the same (Figure B2).575

Appendix C: Perturbation expansion of the heat-vapor-ice system

Carrying out the perturbation expansion of the PDE system (30) around the stationary state (31) using the ansatz (37) requires

two auxiliary relations which are stated below.

First, for any matrix M = M(u) that depends only on the third component u (ice volume fraction φi) the following holds

∇zM(u) = (e3 · ∇zu)
∂M(u)

∂φi
(C1)580

26



Figure B2. Comparison between node-to-node oscillation patterns for the regular setup and the low-residual setup.

where (·) denotes the scalar product on the 3D (T,ρ,φ) solution space.

Second, the expansion around the fixed point of an arbitrary matrix M = M(u) that depends only on the third component

u (ice volume fraction φi) reads

M(u) = M(u(0)) + (e3 ·u(1))
∂M(u)

∂φi

∣∣∣
u=u(0)

(C2)

= M (0) + (e3 ·u(1))M (1) (C3)585

(C4)

where we use the following shorthand notation for the matrix coefficients

M (n) =
∂nM(u)

∂φni

∣∣∣
u=u(0)

(C5)
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Now we can state the expansion of the PDE system (30) to first order in u as follows:
590 [

C(0) + (e3 ·u(1))C(1)
][
∂tu

(0) + ∂tu
(1)
]

−
[
K(0) + (e3 ·u(1))K(1)

][
∇2
zu

(0) +∇2
zu

(1)
]

−
[
(e3 · ∇zu(0)) + (e3 · ∇zu(1))

][
K(1) + (e3 ·u(1))K(2)

][
∇zu(0) +∇zu(1)

]
= Ru(0) +Ru(1) +f (C6)

Equating zero and first order terms in u(0) provides an equation that is satisfied by the stationary state as it should be. By

collecting terms linear in u(1) the governing equation reads595

C(0)∂tu
(1)−K(0)∇2

zu
(1)−

[
(e3 · ∇zu(1))

][
K(1)

][
∇zu(0)

]
= Ru(1) (C7)

The advection term can be re-written in the form K(1)
[
∇zu(0)⊗ e3

]
∇zu(1) and after multiplying the corresponding matrices

we arrive at the final, linear PDE system with constant coefficients

C(0)∂tu
(1)−K(0)∇2

zu
(1)−V (0)∇zu(1) = Ru(1) (C8)

with coefficient matrices given by600

C(0) =


(ρC)eff(φi,0) 0 0

0 (1−φi,0) 0

0 0 1

 (C9)

K(0) =


keff(φi,0) 0 0

0 Deff(φi,0) 0

0 0 0

 (C10)

V (0) =


0 0 k1

TH−T0

H

0 0 D1ρ
eq
1
TH−T0

H

0 0 0

 (C11)

R =


−Lαρeq

1 Lα 0

ρiαρ
eq
1 −ρiα 0

−αρeq
1 α 0

 (C12)

f =


Lαρeq

1 Tref −Lαρeq
0

−ρiαρ
eq
1 Tref + ρiαρ

eq
0

αρeq
1 Tref −αρeq

0

 (C13)605

In the latter step we employed the expansions of the diffusion coefficients around the reference volume fraction φi,0 in the form

keff = k0 + k1(φi−φi,0)

Deff =D0 +D1(φi−φi,0)

(C14)
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Generally, it seems feasible (though tedious) to carry out an expansion of (C8) in a finite domain in terms of the eigenfunc-610

tions of the differential operator satisfying the BC. This would allow to incorporate the impact of the BC into the stability

analysis. Since u(0) already satisfies the original Dirichlet conditions, the perturbation u(1) must vanish on the boundaries.

However, we limit ourselves here to the simpler case of a stability analysis in an infinite domain and take continuous Fourier

transforms of (30) with respect to z. Denoting the Fourier variable by k we end up with the final result stated in Eq. (38)
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