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Abstract. Air-coupled flexural waves appear as wave trains of constant frequency that arrive in advance of the direct air-wave 

from an impulsive source travelling over a floating ice sheet. The frequency of these waves varies with the flexural stiffness 10 

of the ice sheet, which is controlled by a combination of thickness and elastic properties. We develop a theoretical framework 

to understand these waves, utilizing modern numerical and Fourier methods to give a simpler and more accessible description 

than the pioneering, yet unwieldly analytical efforts of the 1950’s. Our favoured dynamical model can be understood in terms 

of linear filter theory and is closely related to models used to describe the flexural waves produced by moving vehicles on 

floating plates. We find that air-coupled flexural waves are a robust feature of floating ice-sheets excited by impulsive sources 15 

over a large range of thicknesses, and we present a simple closed-form estimator for the ice thickness. Our study is focussed 

on first-year sea ice of ~20-80 cm thickness in Van Mijenfjorden, Svalbard, that was investigated through active source seismic 

experiments over four field campaigns in 2013, 2016, 2017 and 2018. The air-coupled flexural frequencies for sea-ice in this 

thickness range are ~60-240 Hz. While air-coupled flexural waves for thick sea-ice have received little attention, the higher 

frequencies associated with thin ice on fresh water lakes and rivers are well known to the ice-skating community and have 20 

been reported in popular media. Estimation of ice physical properties, following the approach we present, may allow improved 

surface wave modelling and wavefield subtraction in reflection seismic studies where flexural wave noise is undesirable. On 

the other hand, air-coupled flexural waves may also permit non-destructive continuous monitoring of ice thickness and flexural 

stiffness using simple, relatively inexpensive microphones located in the vicinity of the desired measurement location, either 

above the ice-sheet or along the shoreline. In this case, naturally forming cracks in the ice may be an appropriate impulsive 25 

source capable of exciting flexural waves in floating ice sheets in a passive monitoring context. 

1 Introduction 

The term “air-coupled flexural wave” was coined by Press et al. (1951) to describe wave trains of constant frequency, varying 

with the flexural stiffness of a floating ice sheet, that arrive in advance of the pressure waves produced by an explosive source. 

The coupling in the case of “air-coupled flexural waves” is set up between pressure waves in air and flexural waves in the solid 30 

that have phase velocity equal to the speed of sound in air. Flexural waves propagating in a floating ice sheet are a class of 
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surface waves analogous to Rayleigh waves on the surface of elastic solids, or bending waves in rods and beams. Greenhill 

(1886) published one of the earliest mathematical descriptions of flexural waves in a floating ice sheet and also discussed the 

concept of coupling between waves in air and water, which was further developed in Greenhill (1916). Several studies have 

used the dispersion of ice flexural waves to estimate ice elastic parameters, of these we highlight in particular the early work 35 

of Ewing and Crary (1934) and the study of Yang and Yates (1995) that highlights the usefulness of transform methods in this 

field. The air-coupled flexural waves arrive in advance of the air wave because the group velocity of the flexural waves is 

larger than the phase velocity (Press et al., 1951).  

 

 Despite their commendable efforts to develop a theoretical foundation for the air-coupled flexural wave (Press and Ewing, 40 

1951b), the term has not been widely used since the initial investigation period in the 1950’s and the study of Hunkins (1960). 

This may be because the theory developed by Press and Ewing (1951b) is cumbersome, being built-up using demanding 

analytical integration methods at a time when computing power to handle more convenient numerical methods did not exist. 

We think this is unfortunate since the term “air-coupled flexural wave” gives a concise description of the physical mechanism 

that produces these waves. Furthermore, their constant frequency is attractive from an experimental standpoint, being easier 45 

to estimate from real data than the precise time-frequency evolution of the highly dispersive flexural wave train. Air-coupled 

flexural waves may therefore provide a simple and effective means to estimate the flexural rigidity of a floating ice sheet and 

to study variation in ice thickness, for the case where the elastic properties of the ice sheet are assumed or independently 

estimated. 

1.1 A convergence of fields 50 

Coupling between air and surface waves is not limited to the case of a floating ice sheet and can be anticipated in all cases 

where the surface wave phase velocity is equal to the speed of sound in air (Haskell, 1951; Press and Oliver, 1955). For 

example, one of the strongest air waves ever recorded was produced by the volcanic eruption of Krakatoa in 1883, which 

travelled around the globe three times. It was not until the concept of air-coupled surface waves emerged that the extent of 

tidal waves associated with the eruption could be adequately explained, where previous explanations had to invoke multiple 55 

coincidental local earthquakes at different locations to explain the observed arrivals of gravity waves in the ocean (Ewing and 

Press, 1955). The correlation of the major tide-gauge disturbances with the arrival of the first or second airwave from the 

Krakatoa eruption has since been explained by waves propagating in a realistically coupled atmosphere-ocean system (Garrett, 

1970; Harkrider and Press, 1967). Within the paradigm of air-wave coupling, it is straightforward to understand why tide-

gauge disturbances in the English Channel correlated with the arrival of the second air wave from Krakatoa, which arrived 60 

from the seaward side, rather than the first air wave that arrived from the landward side (Ewing and Press, 1955).  

 

The idea of coupling between air and surface waves also exists in other fields, under different terminological guises. In the 

field of structural acoustics, the frequency at which the free bending wave becomes equal to the speed of sound in air is called 
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the critical frequency and is closely related to the coincidence frequency, where the speeds of the free and forced bending 65 

waves are equal (Renji et al., 1997). An understanding of the coupling between air waves and bending waves in structures 

therefore permits the design of advanced components like the honeycomb sandwich composite panels that are used in aerospace 

applications, where one may wish to minimise the vibration response of the panels to acoustic excitation (Renji et al., 1997). 

Air coupled waves are also utilised in non-contact applications of non-destructive testing of engineered structures, like concrete 

slabs, allowing improved testing efficiency compared to applications using sensors bonded to the surface (e.g. Zhu, 2008). 70 

 

At the coincidence frequency, a plate excited to vibration by travelling acoustic waves is acoustically transparent and 

maximally transmitting (Bhattacharya et al., 1971). A fascinating manifestation of this property is well known in the world of 

wild ice-skating. Chasing perfectly smooth, newly frozen ice, typically in the ~4 cm thickness range, these skaters flex the ice 

with their bodyweight and crack it with their skates. The acoustic waves produced by this cracking propagate over the ice 75 

surface and are maximally transmitted due to constructive interference with ice flexural waves at the frequency where the 

phase velocity of the flexural waves in the ice is equal to the speed of sound in air. When the ice is thin, this occurs in the 

audible frequency range and produces striking sounds reminiscent of whale song or science fiction films, that have captured 

significant media attention (Griffin, 2018; Rankin, 2018). This phenomenon is clearly a direct analogue of the air-coupled 

flexural waves of Press et al. (1951), occurring simply within a different part of the frequency/flexural stiffness spectrum. 80 

1.2 A general theory - moving loads on floating plates 

We now consider the closely related topic of moving vehicles travelling over floating ice sheets. The topic of moving loads on 

floating plates has received considerable attention due to the importance of roads on floating sea, river and lake ice that are 

traversed by vehicles from snow scooters to semi-trailers (Takizawa, 1988; Van der Sanden and Short, 2017; Wilson, 1955). 

Aircraft take-off and landing on floating ice (Matiushina et al., 2016; Yeung and Kim, 2000) or large man-made floating 85 

structures (Kashiwagi, 2004) has also received significant attention. A major focus of many of these studies is the so-called 

critical load speed, where the load speed coincides simultaneously with the flexural phase and group velocities and the ice 

deflection can grow very large over time (Wilson, 1955). In general, these studies are geared towards understanding the critical 

load speed so that vehicular transit at that speed may be avoided (e.g. Schulkes and Sneyd, 1988). Further studies have shown 

that the build-up of large enough deflections to break the ice may be limited by 2D spreading  (Nugroho et al., 1999), viscous 90 

effects (Wang et al., 2004), acceleration/deceleration through the critical speed (Miles and Sneyd, 2003) and/or nonlinearities 

(Dinvay et al., 2019). Interestingly, a complementary field of study also exists that focuses on leveraging the resonant flexural 

waves produced by moving hovercraft to enhance their effectiveness as icebreakers (Hinchey and Colbourne, 1995; Kozin et 

al., 2017). Submarines surfacing in ice covered waters may also seek to weaken or break the ice before surfacing by creating 

flexural gravity waves (Kozin and Pogorelova, 2008), which has been studied via an adaption of the theoretical framework to 95 

include moving loads in the water column under a floating plate. 
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We propose that the air-coupled flexural wave phenomenon is simply a special case of the more general paradigm of moving 

loads on floating plates, where the load speed is equal to the speed of sound in air. Furthermore, we hope to highlight the close 

physical relationship between phenomena spanning from Arctic seismic experiments to wild ice-skating, ice-roads, floating 100 

runways, structural acoustics and the eruption of Krakatoa. Our study was also motivated from the pragmatic standpoint that 

the constant air-coupled flexural wave frequency is relatively straightforward to measure and can be related directly to ice 

thickness and rigidity. While other studies have focussed on measuring the dispersion of ice flexural-waves in order to estimate 

ice physical properties (DiMarco et al., 1993; Yang and Yates, 1995), we present an alternative that is straightforward to 

implement and effective for both point and line seismic sources. 105 

2 Study area and data acquisition 

In this study we investigate a series of active-source seismic experiments conducted in the innermost part of Van Mijenfjorden, 

on the island of Spitsbergen, in the high-Arctic Svalbard archipelago. The experiments were conducted during the spring 

season, when sea-ice is best developed, in 2013, 2016, 2017 and 2018, as illustrated in Figure 1. Detonating cord of the type 

“Nobelcord”, containing 40g Pentrit (PETN) per meter, was laid on the ice surface in various lengths or coiled into point like 110 

charges, to provide the seismic source. An example of the detonation of a point charge is shown in Figure 2. As indicated by 

the photo, these seismic sources produce a strong air-wave that propagates radially over the ice surface, in addition to energy 

that travels horizontally through the ice, or downwards through the water column where it may be reflected back to the surface 

by layers of contrasting acoustic impedance. The sum of all of these modes of propagation gives the complex seismic wavefield 

that was recorded using line arrays of geophones installed on the ice surface. For the majority of the experiments, the geophones 115 

were arranged in-line with the source, but we also include oblique arrangements from the 2013 campaign that employed a 

cross type array (see Figure 1). 

 

The main purpose of these experiments was to test different acquisition designs for reflection seismic surveying of sub-seabed 

sediments, as reported by Johansen et al. (2019), an objective which is made difficult by the flexural wave energy propagating 120 

through the ice. Various source and receiver arrangements were tested including airguns, hydrophones and ocean bottom 

seismometers. However, in this study we focus on the subset of experiments employing explosive sources and vertical-

component gimballed geophones deployed on top of the ice. This acquisition setup is operationally the simplest under field 

conditions, but leads to the strongest recordings of ice flexural waves. While the flexural wave energy is regarded as 

bothersome coherent noise from the context of sub-seabed reflection surveying, it constitutes the primary signal in the present 125 

study and allows us to estimate the flexural stiffness of the floating ice. 
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Figure 1 – 1:100 000 scale map of the study area in the innermost part of Van Mijenfjorden, Spitsbergen indicating the seismic 

profiles collected during field campaigns in 2013, 2016, 2017 & 2018. The inset map indicates the position relative to the Svalbard 130 
archipelago. The contour interval on land is 50 m. Map data © Norwegian Polar Institute (http://npolar.no, last access: 25/06/2020). 

 

Figure 2 – Photo taken during the 2013 field campaign showing the explosive seismic source. The line of seismic receivers is marked 

with red poles (Photo: Robert Pfau).  
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3 Theory 135 

3.1 General wavefield solution 

In this work we consider a thin elastic plate resting on an incompressible inviscid fluid of finite depth, that corresponds to the 

widely used “simplest acceptable” mathematical model advocated by Squire et al. (1996). The plate extends infinitely along 

the horizontal x and y axes and the vertical axis, z, is positive downwards with its origin at the upper undisturbed water surface. 

We impose the constraint that the fluid must satisfy the Laplace equation, ∇2𝜙 = 0, where 𝜙 is the velocity potential in the 140 

fluid. In addition, we impose a non-cavitation condition at the surface, 
𝜕𝜙

𝜕𝑧
|

𝑧=0
=

𝜕𝜁

𝜕𝑡
, and a normal flow condition at the sea 

bottom, 
𝜕𝜙

𝜕𝑧
|

𝑧=𝐻
= 0, where 𝜁(𝑥, 𝑦, 𝑡) is the vertical deflection of the plate’s neutral surface and H is the water depth. The linear 

spatiotemporal dynamics of the system is described by the partial differential equation (e.g., Squire et al., 1996) 

D∇4𝜁 + 𝜌𝑙ℎ
𝜕2𝜁

𝜕𝑡2 + 𝜌𝑤𝑔𝜁 = −𝜌𝑤
𝜕𝜙

𝜕𝑡
|

𝑧=0
− 𝑓(𝑥, 𝑦, 𝑡).         (1) 

Here, D =
𝐸ℎ3

12(1−𝜎2)
  is the plate flexural stiffness, E is Young’s modulus, h is the plate thickness, σ is Poisson’s ratio, ρw is the 145 

water density, ρl is the plate density, g = 9.81 m.s-2 is the acceleration due to gravity and 𝑓(𝑥, 𝑦, 𝑡) is the applied external 

spatiotemporal force.  

 

In order to solve for the spatiotemporal deflection of the ice surface, we apply the 3D Fourier transform (FT) defined as 

𝑃(𝑘𝑥 , 𝑘𝑦, 𝜔) = ∭ 𝑝(𝑥, 𝑦, 𝑡)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)𝑑𝑥 𝑑𝑦 𝑑𝑡,        (2) 150 

for an arbitrary spatiotemporal function 𝑝(𝑥, 𝑦, 𝑡). The wave number vector 𝒌 = [
𝑘𝑥

𝑘𝑦
] is decomposed in the x and y directions,  

𝑘2 = |𝒌|2 = 𝑘𝑥
2 + 𝑘𝑦

2
, and i denotes the imaginary unit. By applying the FT defined in Eq. (2) to the spatiotemporal fields 

in Eq. (1), we find that the solution for the deflection in Fourier space is given by 

𝑍(𝑘𝑥, 𝑘𝑦 , 𝜔) = −
𝐹(𝑘𝑥,𝑘𝑦,𝜔)

𝐺(𝑘𝑥,𝑘𝑦,𝜔)
,           (3) 

where 𝐺(𝑘𝑥, 𝑘𝑦 , 𝜔) = 𝐷𝑘4 + 𝜌𝑤𝑔 − 𝜌𝑙ℎ𝜔2 − (
𝜌𝑤𝜔2

𝑘
) coth(𝑘𝐻). Recalling linear filter theory, the form of Eq. (3) highlights 155 

that the floating ice plate simply acts as a linear filter on an arbitrary spatiotemporal input signal. This formulation is also 

attractive because the physical significance of the different terms in the denominator are clearly preserved: 𝐷𝑘4 expresses the 

bending forces in the plate, 𝜌𝑤𝑔 is due to the plate buoyancy, 𝜌𝑙ℎ𝜔2 is the plate acceleration and (
𝜌𝑤𝜔2

𝑘
) coth(𝑘𝐻) arises due 

to the constraint of finite water depth. 

 160 

The general solution for of the resulting spatiotemporal deflection wavefield, 𝜁(𝑥, 𝑦, 𝑡), is then given by the full three-

dimensional inverse FT of 𝑍(𝑘𝑥, 𝑘𝑦 , 𝜔) as 
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𝜁(𝑥, 𝑦, 𝑡) = −
1

(2𝜋)3 ∭
𝐹(𝑘𝑥,𝑘𝑦,𝜔)

𝐺(𝑘𝑥,𝑘𝑦,𝜔)
𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)𝑑𝑘𝑥  𝑑𝑘𝑦 𝑑𝜔.       (4) 

3.2 Ring delta function source for radial symmetry 

To exploit spatial symmetry and reduce the dimensionality of the problem, we approximate the explosive source as a ring-165 

shaped Dirac delta pulse expanding outwards from the origin with radial symmetry. This allows us to reduce the spatial 

dimensionality of the problem by using the radial coordinate 𝑟 = √𝑥2 + 𝑦2 and representing the propagating air wave source 

using the ring delta function, 

𝑓(𝑟, 𝑡) = −
1

2𝜋𝑟
𝛿(𝑟 − 𝑐𝑎𝑖𝑟𝑡),           (5) 

where 𝑐𝑎𝑖𝑟 is the speed of sound in air. By performing a partial Fourier transform of Eq. (5) with respect to time t, we obtain 170 

the spatio-frequency representation of the source as 

𝐹(𝑟, 𝜔) = ∫ 𝑓(𝑟, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= −

1

2𝜋𝑟𝑐𝑎𝑖𝑟
𝑒−𝑖𝜔𝑟 𝑐𝑎𝑖𝑟⁄ ,         (6)  

 

so the spatio-frequency deflection wavefield can be written as 

𝑍(𝑟, 𝜔) = −
𝐹(𝑟,𝜔)

𝐺0(𝜔)
,           (7) 175 

where 

𝐺0(𝜔) = 𝐷(
𝜔

𝑐𝑎𝑖𝑟
)4 + 𝜌𝑤𝑔 − 𝜌𝑙ℎ𝜔2 − (𝑐𝑎𝑖𝑟𝜌𝑤𝜔) coth (

𝜔𝐻

𝑐𝑎𝑖𝑟
).       (8) 

The spatiotemporal deflection wavefield in radial coordinates then becomes 

𝜁(𝑟, 𝑡) = −
1

2𝜋
∫

𝐹(𝑟,𝜔)

𝐺0(𝜔)
𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
 .          (9) 

When evaluating Eq. (9) numerically, we substitute 𝐺0(𝜔) → 𝐺0(𝜔 + 𝑖𝛾), where 𝛾 > 0, which avoids dividing by zero and 180 

gives a tuneable heuristic damping parameter for wave attenuation and dissipation. 

3.3 Dispersion relation  

The dispersion relation for the propagating wavefield in the ice sheet is given by the wavenumber and frequency pairs that 

satisfy the equation 

𝐺(𝑘, 𝜔) = 0.            (10) 185 

The solution of Eq. (10) gives the general dispersion relation (e.g., Squire et al., 1996) 

𝜔2 =
𝐷𝑘5 𝜌𝑤⁄ +𝑔𝑘

𝑘ℎ
𝜌𝑙

𝜌𝑤
+coth(𝑘𝐻)

.            (11) 

This solution of the dispersion relation is complete in the sense that it retains all physical mechanisms included in the dynamical 

model Eq. (1). However, at typical vehicle speeds that have been the main focus of moving load on floating plate studies, the 

flexural waves produced by the moving load have wavelengths much larger than the thickness of the floating plate. It has thus 190 
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been common for these studies to neglect the effect of the plate acceleration (e.g. Schulkes and Sneyd, 1988; Wang et al., 

2004). Under this assumption the dispersion relation, Eq. (11), can be approximated by 

𝜔2 ≈ (
𝐷𝑘4

𝜌𝑤𝑔
+ 1) 𝑔𝑘 tanh(𝑘𝐻).           (12) 

Another common assumption is to assume infinite water depth, H, which causes the hyperbolic tangent term to approach unity. 

However, when we consider loads moving at the speed of sound in air, plate flexural waves with much shorter wavelengths 195 

are resonant and it becomes important to retain the plate acceleration term in order to accurately estimate the frequency of air-

coupled flexural wave. The common approximations that are valid at typical vehicle speeds may lead to significant inaccuracies 

when estimating physical properties of the floating ice sheet from estimates of air-coupled flexural wave frequency. 

 

 200 

Figure 3 – Comparison of simplified dispersion relation neglecting water depth and plate acceleration (blue, Eq. 12) with the full 

dispersion relation including these effects (black, Eq. 11) for realistic sea-ice physical properties h = 0.74 m, E = 2.5 GPa,  σ = 0.33, 

ρw = 1027 kg/m3, ρl = 931 kg/m3 and H = 50 m. 

 

Figure 3 compares the full dispersion relation (Eq. (11)) with the approximation that neglects water depth and plate acceleration 205 

(Eq. (12)). Air-coupled waves are excited where the phase velocity is equal to the speed of sound in air, shown as the horizontal 

red line in Fig. 3. With finite water depth H (black line in Fig. 3), we see that only flexural waves are coupled to the air wave. 

While gravity waves may couple to the air-wave for the case of an infinite fluid (blue dashed line in Fig. 3), their extremely 

low frequency of ~0.005 Hz would likely be difficult to measure in practice. The air-coupled flexural waves arrive in advance 

of the air wave because the group velocity,  𝜕𝜔 𝜕𝑘⁄ , is larger than the phase velocity for a given frequency (magenta dashed 210 

line in Fig. 3). The air-coupled flexural frequency is insensitive to water depths >2 m, in this example, but is significantly 

affected by the plate acceleration term. Including the effect of plate acceleration increases the air-coupled flexural frequency 

by ~12 Hz (~23%) using physical properties relevant to our field data. While studies of moving vehicles on floating plates 
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may safely ignore the effect of plate acceleration, we show that is important to include it when the load is moving at the speed 

of sound in air.  215 

4 Methodology 

Using air-coupled flexural waves to study the properties of floating ice is relatively straightforward because one simply needs 

to extract the segment of the timeseries that directly precedes the air-wave arrival and estimate the constant frequency of the 

air-coupled flexural waves, that are typically the dominating wavemode in terms of amplitude for this segment. The air-coupled 

flexural frequency can then be directly related to the physical properties of the floating ice sheet using the dispersion relation 220 

introduced in the previous section. 

4.1 Air wave arrival and velocity estimation 

Since the arrival time of the air wave increases linearly with horizontal offset between the seismic source and receiver, we can 

estimate its arrival time and velocity using the linear Radon transform, that is also referred to as the slant-stack or 𝜏 − 𝑝  

transform (Yilmaz, 2001). For a given shot gather (see Figure 4a), we compute the linear Radon transform and estimate the 225 

velocity (cair) and intercept (tint) corresponding to the air wave by picking the local maximum of the transform magnitude (see 

Figure 4b). The estimated arrival time of the air wave, 𝑡𝑎𝑖𝑟 , is then given by, 𝑡𝑎𝑖𝑟 =
𝑑

𝐶𝑎𝑖𝑟
+ 𝑡𝑖𝑛𝑡, where d is the source to receiver 

offset.  

4.2 Thomson multitaper estimation of air-coupled flexural frequency 

The frequency of the air-coupled flexural wave is estimated from segments of the recorded timeseries which precede the arrival 230 

of the air-wave (see Figure 4c). We take the derivative of the trace to suppress low frequencies and linearly increase the gain 

of high frequencies and apply a Hamming window taper. For each trace the Thomson multitaper power spectral density 

(Thomson, 1982) is then estimated using a time-half bandwidth product of two and a zero-padded Fourier transform length of 

4096. The air-coupled flexural frequency (see Figure 4d) is then estimated from the multitaper power spectral density 

maximum. We only attempt to estimate the air-coupled flexural frequency for source to receiver offsets greater than 125 m 235 

because higher-velocity sub-seabed reflections arrive around the same time as the air wave and create too much interference 

at nearer offsets (see Figure 5). 
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Figure 4 – Example of air-coupled flexural wave frequency estimation. (a) shot gather with air wave arrival indicated, (b) air wave 240 
arrival time and velocity is estimated by picking the local maximum of the linear radon transform, (c) waveform plot for every 10th 

trace indicating the frequency estimation window, (d) air-coupled flexural frequency estimated by the multitaper method.  

4.3 Closed-form estimator of ice thickness 

Once we have estimated the frequency of the air-coupled flexural wave (𝜔𝑓) we can estimate the ice thickness using the 

dispersion relation (Eq. (11)) rearranged as, 245 

𝐸ℎ3𝑘𝑓
5

12𝜌𝑤(1−𝜎2)
+ 𝑔𝑘𝑓 = 𝜔𝑓

2 [𝑘𝑓ℎ
𝜌𝑙

𝜌𝑤
+ coth(𝑘𝑓𝐻)] ,        (13) 

where 𝑘𝑓 = 𝜔𝑓 𝑐𝑎𝑖𝑟⁄  is the wavenumber corresponding to the air-coupled flexural wave. The inclusion of the plate acceleration 

term means that we are left with a non-linear relation for the plate thickness h in terms of the plate elastic properties and the 
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constant flexural frequency and wavenumber. We may either estimate the ice thickness by nonlinear numerical optimisation 

of Eq. (13), using e.g. the bisection method, or we may rearrange Eq. (13) to give the cubic polynomial form, 250 

 

(
𝐸𝑘𝑓

5

12𝜌𝑤(1−𝜎2)
) ℎ3 − (𝜔𝑓

2𝑘𝑓
𝜌𝑙

𝜌𝑤
) ℎ + 𝑔𝑘𝑓 − 𝜔𝑓

2 coth(𝑘𝑓𝐻) = 0 ,      (14) 

 

which has one real, positive root corresponding to the plate thickness h. It is possible to derive a compact closed-form analytical 

solution for the cubic polynomial, following the approach of Nickalls (1993), leading to the following estimator, 255 

 

ℎ = 2√
𝑏

3𝑎
cos [

1

3
cos−1 (

−3√3

2
𝑎1 2⁄ 𝑏−3 2⁄ 𝑐)] ,         (15) 

where 𝑎 =
𝐸𝑘𝑓

5

12𝜌𝑤(1−𝜎2)
, 𝑏 = 𝜔𝑓

2𝑘𝑓
𝜌𝑙

𝜌𝑤
 and 𝑐 =  𝑔𝑘𝑓 − 𝜔𝑓

2 coth(𝑘𝑓𝐻). For the purpose of quality control, we have confirmed 

that nonlinear numerical optimisation of Eq. (13), polynomial root finding of Eq. (14) and the closed form Eq. (15) all give 

identical results. 260 

5 Results 

Air-coupled flexural waves appear to be a robust part of the wavefield excited by impulsive loads on floating sea-ice and were 

observed for all four field campaigns. Furthermore, Figure 5 illustrates that since the air-coupled flexural waves precede the 

arrival of the air wave they are recorded equally well for both point and line sources. This is significant because much of our 

field data employed line sources in order to attenuate the trailing low-frequency flexural waves that are an unwanted noise 265 

component from the perspective of reflection seismic surveying (Johansen et al., 2019).  

 

Table 1 – Summary of ice thicknesses (h) estimated from air-coupled flexural waves compared to the range of ice thicknesses 

measured in boreholes drilled through the ice. MAD = median absolute deviation. 

Field 

season 

h median air-coupled 

flexural wave estimate 

(cm) 

MAD 

(cm) 

h measured in 

boreholes (cm) 

Young’s 

modulus 

E (GPa) 

Poisson’s 

ratio 𝜎 

ρice 

(kg.m-3) 

ρwater 

(kg.m-3) 

Water 

depth H 

(m) 

2013 76.3 2.6 74-79 

2.5 0.33 931 1027 50 
2016 34.3 2.6 30-40 

2017 56.8 4.0 30-75 

2018 30.3 2.4 20-40 

 270 
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Figure 5 – Example shot gathers for (a) a point charge and (d) a 50m long, detonating cord line source, (b) and (e) show illustrative 

time series enlarged around the air wave arrival, (c) and (f) show spectrograms for the time series (b) and (e). The air-coupled 

flexural wave arrives in advance of the broadband air-wave with constant frequency of ~65 Hz. 

 275 

As summarised in Table 1, ice thicknesses calculated using Eq. (15) from the estimated air-coupled flexural frequencies and 

air-wave velocities show very good agreement with ice thicknesses measured in boreholes. Notably, this good agreement was 

achieved across all four field seasons with a single set of elastic properties, that are realistic for sea ice. This indicates that the 

first-year sea ice which forms in Van Mijenfjorden has relatively constant macro-scale elastic properties for the range of 

observed thicknesses from 20-80 cm, despite significant differences in surface weather and ice conditions during the 280 

experiments. The value of Young’s modulus that we assume, E=2.5 GPa, is within the range of 1.7-5.7 GPa reported by Timco 

and Weeks (2010) for dynamic Young’s modulus in first-year sea ice. The range of Young’s modulus reported by Timco and 

Weeks (2010) would produce a variation of ~60% in air-coupled flexural frequency and is the most important parameter after 

ice thickness. The value of dynamic Poisson’s ratio has been reported to fall in the range 0.33-0.39 (Timco and Weeks, 2010), 

which would produce a variation of ~2% in air-coupled flexural frequency and is therefore of secondary importance. If we had 285 

opted to use a Poisson’s ratio of 0.39 instead of 0.33, we could simply use a Young’s modulus of 2.38 GPa instead of 2.5 GPa, 

to produce equivalent thickness estimates. It is important to highlight that the elastic properties we assume represent bulk 
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apparent values corresponding to the thin isotropic plate assumption, where floating ice sheets in reality are a composite 

sandwich material consisting of multiple ice layers of varying strength (Timco and Weeks, 2010). 

 290 

Temperature variation over the range -20 to +2 °C would cause the speed of sound in air to vary from 318-332 m/s, resulting 

in ~8% variation in air-coupled flexural frequency. The effective speed of sound in air at the measurement location is also 

affected by wind and wind gusts may lead to variation of +/-5 m/s over timescales of minutes. However, as described in Section 

4.1, we estimate the apparent velocity of the air wave for each shot, which should ensure that our air coupled flexural thickness 

estimates are independent of changes in wind and temperature over time. 295 

5.1 Spatial and temporal trends in ice thickness estimates 

Here we give a summary of our air-coupled flexural wave ice thickness estimates for each field season and examine them in 

the context of borehole measurements of ice thickness and prevailing meteorological conditions, as represented by records at 

the nearby Sveagruva weather station (The Norwegian Meteorological institute, 2020), which was upgraded prior to the 2017 

season to include measurement of precipitation. We assume the air-coupled flexural frequency recorded at a given geophone 300 

is related to the ice thickness at the location of the geophone, as this gave the strongest correlation with borehole thickness 

measurements. We also tested the assumption that the air-coupled flexural frequency represents a path averaged ice thickness 

between the source and receiver. However, assuming the flexural wave estimate represents the thickness at the midpoint 

between source and receiver gave a much poorer correlation with borehole thickness measurements.  

 305 
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Figure 6 – 2013 field campaign air-coupled flexural wave ice thickness estimates (circles), borehole drilled thicknesses (red stars) 

and air temperature at nearby Sveagruva weather station (red line). The timespan of the field campaign is indicated by black-blue-

cyan colour gradient. Point estimates are transparent so overlapping repeat tests are indicated by denser colours.  

 310 

The ice thickness estimates for the 2013 field season are summarised in Figure 6 and we see good agreement between the 

flexural wave thickness estimates and borehole measurements. There is somewhat greater spread in the results on the Y line 

which is likely related to the fact that the majority of the source positions were inline with the X line and therefore oblique to 

the Y line (see Figure 1). The oblique geometry reduces the precision of using the linear Radon transform to estimate the 

velocity of the air wave, which becomes smeared in the transform domain. Air temperatures remained consistently <0 °C and 315 

the thickness estimates are quite similar over the ~3 day field campaign, though there is perhaps a slight indication of ice 

growth with time. 
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Figure 7 – 2016 field campaign air-coupled flexural wave ice thickness estimates (circles) and temperature at nearby Sveagruva 320 
weather station (red line). Timespan of field campaign is indicated by blue-cyan colour gradient. Point estimates are transparent so 

overlapping repeat tests are indicated by denser colours.  

The results for the 2016 field season are illustrated in Figure 7. We observe some outliers in the flexural wave thickness 

estimates which are caused by interference of other spectral components for the extracted segment of the timeseries preceding 

the air-wave arrival. This interference can be due to, e.g., other wavemodes such as sub-seabed reflections, snow scooter engine 325 

noises, or instrument noise due to wind. Despite these outliers, the median thickness estimates agree well with the range of 

drilled thicknesses (see Table 1), although the along profile locations of the boreholes was unfortunately not recorded for this 

field campaign. During the field campaign, the air temperature increased to >0 °C before decreasing again. It is difficult to 

observe a clear trend of ice thickness variation with time, but there is perhaps some evidence for decreasing thickness, that 

could be due to melting during the period of >0 °C air temperature observed during the field campaign. 330 
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Figure 8 – 2017 field campaign (2017 L3) air-coupled flexural wave ice thickness estimates (circles), borehole drilled thicknesses (red 

stars), temperature (red line) and precipitation (green bars) at Sveagruva weather station. Timing is indicated by black-blue-cyan 

colour gradient and point estimates are transparent so overlapping repeat tests are indicated by denser colours.  

The thickness estimates for the 2017 field season are shown in Figure 8. This field campaign was preceded by a short period 335 

of >0 °C temperatures and some precipitation, followed by a return to freezing conditions that persisted throughout the entire 

data collection period. We can observe that the estimated thicknesses tend to increase over the course of the field campaign, 

which is most evident for the shoreward portion of the line. The fact that the borehole thickness measurements, that were made 

while deploying the equipment prior to data recording, mostly track the lower range of ice thickness estimates gives an 

indication that some ice growth may have occurred during the field campaign. We also observe that the estimates nearest land 340 

significantly overestimate the ice thickness relative to borehole measurements. We attribute this to the fact that the ice was 

landfast in the vicinity of these geophones, which gives the ice additional support and increases its flexural stiffness, making 

it behave as if it were thicker. Here we have chosen to use constant elastic parameters for clarity and simplicity, but the flexural 

ice thickness estimates could of course be improved by defining an elastic modulus that increases close to land. It is also 

interesting to note the significant along profile variation in ice thickness recorded by the borehole measurements whose trend 345 

is also captured by the median air-coupled flexural wave thickness estimates. This is one of the main points of evidence that 

the frequency of air-coupled flexural waves is controlled primarily by ice thickness in the vicinity of the receiver. If we assume 

the air-coupled flexural waves give a thickness estimate representing the midpoint between source and receiver, we would see 

a flat profile with estimates ranging from ~45-75 cm with a median of ~57 cm (not included as figure) that clearly does not 
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reflect the real thickness variation recorded by the borehole measurements. By the same logic, we tested a range of assumed 350 

positions along the straight-line connecting source and receiver and found that for the spatial variation in ice thickness to be 

adequately represented by the air-coupled flexural wave estimates, the assumed position must be at least 98% towards the 

receiver.  

 

 355 

Figure 9 – 2018 field campaign air-coupled flexural wave ice thickness estimates (circles), temperature (red line) and precipitation 

(green bars) at Sveagruva weather station. Timing of experiments is indicated by blue-cyan colour gradient and point estimates are 

transparent so overlapping repeat tests are indicated by denser colours.  

The air-coupled flexural wave thickness estimates for the 2018 field season are summarised in Figure 9. The thickness 

estimates generally agree well with the range of ice thickness measured in boreholes (see Table 1), though the along profile 360 

locations of the boreholes was unfortunately not recorded for this field campaign. The most striking feature we observe for the 

2018 campaign, is a clear increase in ice-thickness of up to ~10-15 cm over the course of the campaign (a period of ~4 days). 

This rapid increase in thickness is attributable to the weather event that occurred over 26-27th February, where >0 °C 

temperatures and rain led to a significant accumulation of fresh water on top of the sea ice. This event was significant enough 

that fieldwork was not possible on the 27th February. The rapid decrease in air temperature on the 28th then promptly caused 365 

the accumulated fresh surface water to freeze, a process that occurs much more quickly than basal ice accumulation due to 

heat loss through the overlying ice layer, salt rejection and eventual freezing of sea water.  

5.2 Solution of the full dynamical model 

It is only strictly necessary to consider the solution to the dispersion relation in order to estimate ice properties from flexural 

wave observations. However, it is also of great interest to consider the solution to the dynamical equation (Eq. (1)) in order to 370 

demonstrate that we fully understand the physics involved in the propagation of air-coupled flexural waves. To this end, we 
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evaluated Eq. (9) numerically using an Inverse Fast Fourier Transform (IFFT) with N=219 discrete points, a temporal sampling 

interval of 𝑑𝑡 = 2.5 × 10−4 𝑠, and a numerical attenuation/damping parameter of 𝛾 = 25. Figure 10 shows a portion of the 

modelled radially symmetric, expanding wavefield produced by a propagating ring delta loading that we use as an 

approximation of the air-wave expanding outwards from a point explosive charge and pushing downwards on the ice sheet. 375 

We see that the ice sheet is deflected downwards underneath and behind the air wave, which is moving so fast that it takes 

some time for the ice sheet to rebound. The negative deflection decays smoothly and extends to a position around 300 m behind 

the load, although this is outside the figure view. Ahead of the air wave, the ice surface is elevated and we see a high, constant 

frequency wave-train that represents the air-coupled flexural waves. The air-coupled flexural waves decay gradually with 

distance ahead of the load due to the inclusion of numerical damping in the model. 380 

 

Figure 10 – Modelled normalised displacement wavefield for h = 74 cm, cair = 321 m/s and elastic parameters as in Table 1. The black 

line marks the position of the load (representing the air wave). 

To compare the solutions of the full dynamical model result with field data, we calculate the velocity response of the plate at 

a given offset by numerical time differentiation of the output from Eq. (9), and compare that directly to the recorded geophone 385 

timeseries at the same offset. We find that local velocity estimates calculated from our solutions to the dynamical model are 

very similar to the real waveforms recorded by geophones, as illustrated by the example in Figure 11. This increases our 

confidence that we understand the underlying physics that describes the excitation of air-coupled flexural waves in floating 

ice sheets. 

 390 
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Figure 11 – Modelled normalised velocity response timeseries (black curve) at an offset of 759 m compared with the timeseries 

recorded by a geophone at the same offset from a point charged fired during the 2013 field season (red curve). The air wave arrival 

time is indicated by the dashed line. 

6 Discussion 395 

Ice flexural wave energy is commonly viewed as an undesirable class of noise that limits the ability to image sub-seabed 

structures at depth for seismic reflection surveys conducted on floating ice sheets (Henley, 2006; Johansen et al., 2019; Molino 

et al., 2008) . The high-amplitude dispersive character of the ice flexural wavefield makes it difficult to remove in reflection 

seismic processing so that any reflected energy arriving at the same time is masked. Inline line sources have been used in an 

attempt to attenuate the trailing flexural wave train (Johansen et al., 2019). However, in a classic example of the principle that 400 

one person’s noise is another’s signal, the ice flexural waves are very useful from the perspective of estimating the thickness 

and flexural stiffness of the floating ice-sheet (e.g. Timco and Weeks, 2010). An advantage of using air-coupled flexural waves 

in particular, is that they are readily observed for both point and inline line sources (see Figure 5). The procedure that we 

present in this paper is therefore applicable to a range of acquisition setups. Improved estimation of ice physical parameters 

may subsequently enable more efficient removal of flexural noise in reflection seismic surveys by modelling and wavefield 405 

subtraction. A direct analogue also exists for land seismic surveys where surface Rayleigh waves, commonly referred to as 

ground roll, couple to atmospheric compressional waves (Jardetzky and Press, 1952; Press and Ewing, 1951a). 

 

Since we consider the air-ice-water system as fully coupled, it is possible to interpret the origin of the air-coupled flexural 

waves in several equivalent ways: (1) they are produced by the downward pressure of the air wave moving over the ice surface 410 

(moving loads on floating plates interpretation), (2) a plate excited by a broadband pulse propagates flexural wave energy at a 

range of frequencies, but sound transmission from the plate is highest at the coincidence frequency producing a resonance 

effect (critical/coincidence frequency interpretation), and (3) similarly, we can interpret the air-coupled flexural waves as a 

class of leaky Lamb waves where acoustic radiation leaks plate flexural wave energy into the air, occurring most efficiently 

when the phase velocity is equal to the speed of sound. The observation of air-coupled flexural waves in the absence of ice 415 

flexural waves on the far side of open water leads by Hunkins (1960) is consistent with the interpretation that, for explosive 
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sources on or above the ice, air coupled flexural waves are generated continuously by the downward pressure exerted by the 

air wave. 

 

In this study, we present data acquired with linear arrays of geophones and active seismic sources that were primarily acquired 420 

to test the feasibility of seismic reflection surveying on floating sea ice. It is important to emphasize that it should also be 

possible to estimate and monitor ice properties with much simpler equipment. Indeed, from our results we would expect that 

a simple microphone, sensitive in the relevant frequency range and located in the vicinity of the desired measurement, either 

above the ice-sheet or along the shoreline would be sufficient. The microphone response in air could be modelled by adapting 

the present model to include the acoustic emission from the plate based on plate transmission loss theory (Long, 2014), though 425 

the air coupled flexural frequency will remain unchanged. The potential to monitor ice thickness using a microphone positioned 

on land would be a great benefit from the perspective of continuous environmental monitoring, particularly early in the freezing 

season when the ice is too thin to be safely traversed. 

 

Our results indicate that air-coupled flexural waves can be used to resolve spatial and temporal ice thickness variation. Some 430 

degree of scatter is observed in our thickness estimates, but the median of repeated measurements appears to give a reliable 

estimation. A small percentage of outliers are present in the thickness estimates, that we attribute to spectral contamination 

caused by the simultaneous arrival of other wave modes with the air-coupled flexural waves. Such interference was minimised 

by discarding the nearest offsets where high-velocity sub-seabed reflections arrive at the same time as the air wave (see Figure 

5). However, other noise sources, such as snow scooter traffic, are difficult to avoid in real-world data. In the rare cases that 435 

traffic noise is recorded at the same instant as the air-coupled flexural waves, the resulting spectral interference can prevent 

accurate estimation of the air-coupled flexural frequency. It is also important to highlight that the air-coupled flexural 

frequency is affected by the elastic properties of the ice, it’s flexural rigidity, not just it’s thickness. By assuming a constant 

set of elastic parameters our thickness estimates may be considered “effective thicknesses” corresponding to the assumed 

elastic parameters and subject to the thin isotropic plate assumption. However, we also expect that the “effective thickness” 440 

for assumed elastic properties is still highly relevant when assessing the load bearing capacity of floating ice, even if it were 

to deviate from the true thickness. 

 

In the present study, the receiver array is utilized to measure the apparent sound velocity in air across the array. The sound 

velocities we estimated were generally consistent with the expected sound speeds based on air temperature measured at the 445 

nearby Sveagruva weather station. However, the apparent sound velocity is also affected by horizontal wind velocity (e.g. 

Franke and Swenson Jr, 1989), which likely explains why the array estimates can vary by ~3 m/s over timescales of a few 

minutes. For the case of a simpler recording system, such as a single microphone, it may still be possible to adequately constrain 

the sound velocity using measurements of temperature, wind speed and direction. 

 450 
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While detonating cord seismic sources were used for the experiments presented in this study, other impulsive sources acting 

on a floating ice-sheet also have the potential to excite air-coupled flexural waves. For example, crack propagation in a plate 

produces a sudden energy release that is capable of exciting propagating elastic waves in the plate and acoustic pressure waves 

in air. This phenomenon has been studied from the structural non-destructive testing perspective, e.g., by Haider and Giurgiutiu 

(2018) who model the acoustic emission of axis symmetric circular crested Lamb waves excited by crack propagation in a 455 

steel plate. Ice quakes produced by the sudden cracking of floating ice are a well-known phenomenon (Kavanaugh et al., 2019; 

Olinger et al., 2019; Ruzhich et al., 2009) and are typically related to the build-up of stress by thermal, tidal and wind forces. 

The excitation of air-coupled flexural waves by cracks in floating ice sheets is also familiar to ice skaters traversing frozen 

rivers and lakes, whose body weight is enough to flex the ice and cause cracks to form when it is very thin (e.g. Rankin, 2018). 

The excitation of air-coupled flexural waves by natural crack formation/propagation in floating ice sheets raises the possibility 460 

of passive monitoring of ice thickness and rigidity. 

 

To highlight that the otherworldly sounds familiar to ice skaters are air-coupled flexural waves, simply shifted to higher 

frequencies because of the thinner, stiffer fresh-water ice, we examined the spectrogram of the audio track from the National 

Geographic short film “How Skating on Thin Ice Creates Laser-Like Sounds” (Rankin, 2018). The frequency of the sounds 465 

varies within the 700-800 Hz, lying around 725 Hz for the example shown in Figure 12. Using Eq. 15 we calculate that the ice 

was ~4.3 cm thick, assuming Young’s modulus of 8.5 GPa, Poisson’s ratio of 0.33, water density of 1000 kg/m3, ice density 

of 917 kg/m3, water depth of at least 0.3 m and sound speed of 329 m/s corresponding to air temperature of -3.9 °C. This is in 

line with the measured ice thickness presented in the film and illustrates the potential to use air-coupled flexural waves recorded 

by a simple microphone to estimate ice properties.  470 
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Figure 12 – Spectrogram of audio track from a segment of the National Geographic short film “How Skating on Thin Ice Creates 

Laser-Like Sounds” (Rankin, 2018). 

The air-coupled flexural wave phenomenon in floating ice is one example of the more general concept of moving loads on 475 

floating plates. We emphasize the theoretical similarity between this study and the larger field of study around moving vehicles 

on floating plates. There is also significant overlap with the fields of structural acoustics and non-destructive testing, where an 

analogous phenomenon is described by the concept of coincidence frequency. These concepts can be generalised even further 

to the field of pulse propagation in coupled systems, recalling for example the air-sea waves produced by the eruption of 

Krakatoa that was discussed in the introduction.  480 

7 Conclusion 

Air-coupled flexural waves are a robust feature of floating ice-sheets excited by impulsive sources over a large range of 

thicknesses. The physics of these waves can be understood from a theoretical perspective that has largely developed through 

the study of moving vehicles on floating plates. The dynamical model that we favour is straightforward to understand in terms 
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of linear filter theory, and we derived a closed-form solution of the dispersion relation that relates ice thickness directly to the 485 

air-coupled flexural wave frequency and air-wave velocity. We tested the proposed closed-form ice thickness estimator 

extensively on field data from four field seasons, and found a remarkably good agreement with in-situ borehole measurements. 

The phenomenon of air-coupled flexural waves is relatively familiar to the wild ice-skating community, where thin ice 

produces air-coupled flexural waves that are readily audible (and fascinatingly otherworldly). Here we build on the pioneering 

efforts of Press and Ewing (1951b), developing a more accessible theory supported by modern numerical and Fourier transform 490 

methods, to show that the same phenomenon also occurs for much thicker sea-ice, simply shifted to a lower frequency regime. 

We have mainly presented data that was acquired for the primary purpose of reflection seismic profiling, but a key benefit of 

air-coupled flexural waves is that they should also be recordable with very simple equipment, such as a microphone located in 

the vicinity of where a thickness measurement is desired, either above the ice-sheet or along the shoreline. Cracks in the ice, 

either produced artificially by, e.g., ice skates on thin ice, or naturally occurring, represent possible alternative impulsive 495 

sources capable of exciting air-coupled flexural waves. 
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