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Abstract. Air-coupled flexural waves appear as wave trains of constant frequency that arrive in advance of the direct air-wave 

from an impulsive source travelling over a floating ice sheet. The frequency of these waves varies with the flexural stiffness 

of the ice sheet, which is controlled by a combination of thickness and elastic properties. We develop a theoretical framework 10 

to understand these waves, utilizing modern numerical and Fourier methods to give a simpler and more accessible description 

than the pioneering, yet unwieldly analytical efforts of the 1950’s. Our favoured dynamical model can be understood in terms 

of linear filter theory and is closely related to models used to describe the flexural waves produced by moving vehicles on 

floating plates. We find that air-coupled flexural waves are a real and measurable component of the total wavefield of floating 

ice-sheets excited by impulsive sources and we present a simple closed-form estimator for the ice thickness based on 15 

observable properties of the air-coupled flexural waves. Our study is focussed on first-year sea ice of ~20-80 cm thickness in 

Van Mijenfjorden, Svalbard, that was investigated through active source seismic experiments over four field campaigns in 

2013, 2016, 2017 and 2018. The air-coupled flexural wave for the sea-ice system considered in this study occurs at a constant 

frequency thickness product of ~48 Hz.m. Our field data includes ice ranging from ~20-80 cm thickness with corresponding 

air-coupled flexural frequencies from 240 Hz for the thinnest ice to 60 Hz for the thickest ice. While air-coupled flexural waves 20 

for thick sea-ice have received little attention, the readily audible, higher frequencies associated with thin ice on fresh water 

lakes and rivers are well known to the ice-skating community and have been reported in popular media. The results of this 

study and further examples from lake ice, suggest the possibility of non-contact estimation of ice thickness using simple, 

inexpensive microphones located above the ice-sheet or along the shoreline. While we have demonstrated the use of air-

coupled flexural waves for ice thickness monitoring using an active source acquisition scheme, naturally forming cracks in the 25 

ice are also shown as a potential impulsive source that could allow passive recording of air-coupled flexural waves. 

1 Introduction 

The term “air-coupled flexural wave” was coined by Press et al. (1951) to describe wave trains of constant frequency, varying 

with the flexural stiffness of a floating ice sheet, that arrive in advance of the pressure waves produced by an explosive source. 

The coupling in the case of “air-coupled flexural waves” is set up between pressure waves in air and flexural waves in the solid 30 
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that have phase velocity equal to the speed of sound in air. Flexural waves propagating in a floating ice sheet are a class of 

guided elastic waves analogous to bending waves in rods or beams and the Lamb waves of a free plate. Greenhill (1886) 

published one of the earliest mathematical descriptions of flexural waves in a floating ice sheet and also discussed the concept 

of coupling between waves in air and water, which was further developed in Greenhill (1916). Several studies have used the 

dispersion of ice flexural waves to estimate ice elastic parameters, of these we highlight in particular the early work of Ewing 35 

and Crary (1934) and the study of Yang and Yates (1995) that advanced the use of transform methods in this field. Passive 

seismic studies of flexural wave dispersion are also emerging as an effective means to continuously monitor sea-ice properties 

using array based wavefield transform methods (Moreau et al., 2020a) and noise interferometry and Bayesian inversion of 

dispersion curves (Moreau et al., 2020b).  

 40 

 Despite their commendable efforts to develop a theoretical foundation for the air-coupled flexural wave (Press and Ewing, 

1951), the term has not been widely used since the initial investigation period in the 1950’s and the study of Hunkins (1960). 

This may be because the theory developed by Press and Ewing (1951) is cumbersome, being built-up using demanding 

analytical integration methods at a time when computing power to handle more convenient numerical methods did not exist. 

We think this is unfortunate since the term “air-coupled flexural wave” gives a concise description of the physical mechanism 45 

that produces these waves. Furthermore, their monochromatic frequency is attractive from an experimental standpoint, since 

it can be estimated from a single timeseries more readily than the precise time-frequency evolution of the highly dispersive ice 

flexural wave. Air-coupled flexural waves may therefore provide a simple and effective means to estimate the flexural rigidity 

of a floating ice sheet and to study variation in ice thickness, for the case where the elastic properties of the ice sheet are 

assumed or independently estimated. 50 

1.1 A convergence of fields 

Coupling between air and surface or guided waves is not limited to the case of a floating ice sheet and can be anticipated in all 

cases where the phase velocity of the medium below the air can attain the speed of sound in air (Haskell, 1951; Novoselov et 

al., 2020; Press and Oliver, 1955). For example, one of the strongest air waves ever recorded was produced by the volcanic 

eruption of Krakatoa in 1883, which travelled around the globe three times. It was not until the concept of air-coupled surface 55 

waves emerged that the extent of tidal waves associated with the eruption could be adequately explained, where previous 

explanations had to invoke multiple coincidental local earthquakes at different locations to explain the observed arrivals of 

gravity waves in the ocean (Ewing and Press, 1955). The correlation of the major tide-gauge disturbances with the arrival of 

the first or second airwave from the Krakatoa eruption has since been explained by waves propagating in a realistically coupled 

atmosphere-ocean system (Garrett, 1970; Harkrider and Press, 1967).  60 

 

The idea of coupling between air and surface waves also exists in other fields, under different terminological guises. In the 

field of structural acoustics, the frequency at which the free bending wave becomes equal to the speed of sound in air is called 
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the critical frequency and is closely related to the coincidence frequency, where the speeds of the free and forced bending 

waves are equal (Renji et al., 1997). An understanding of the coupling between air waves and bending waves in structures 65 

therefore permits the design of advanced components like the honeycomb sandwich composite panels that are used in aerospace 

applications, where one may wish to minimise the vibration response of the panels to acoustic excitation (Renji et al., 1997). 

Coupling between air and guided waves in engineered structures, like concrete slabs, is also relevant to non-contact 

applications of non-destructive testing (e.g. Harb and Yuan, 2018; Zhu, 2008). 

 70 

At the coincidence frequency, a plate excited to vibration by travelling acoustic waves is acoustically transparent and 

maximally transmitting (Bhattacharya et al., 1971). A fascinating manifestation of this property is well known in the world of 

wild ice-skating. Chasing perfectly smooth, newly frozen ice, typically in the ~4-5 cm thickness range, these skaters flex the 

ice with their bodyweight and crack it with their skates. The acoustic waves produced by this cracking propagate over the ice 

surface and are maximally transmitted due to constructive interference with ice flexural waves at the frequency where the 75 

phase velocity of the flexural waves in the ice is equal to the speed of sound in air. When the ice is thin, this occurs in the 

audible frequency range and produces distinctive tones, that have captured significant media attention (Griffin, 2018; Rankin, 

2018). This phenomenon is analogous to the air-coupled flexural waves of Press et al. (1951), occurring within a different part 

of the frequency/flexural stiffness spectrum. 

1.2 A general theory - moving loads on floating plates 80 

We now consider the closely related topic of moving vehicles travelling over floating ice sheets. The topic of moving loads on 

floating plates has received considerable attention due to the importance of roads on floating sea, river and lake ice that are 

traversed by vehicles from snow scooters to semi-trailers (Takizawa, 1988; Van der Sanden and Short, 2017; Wilson, 1955). 

Aircraft take-off and landing on floating ice (Matiushina et al., 2016; Yeung and Kim, 2000) or large man-made floating 

structures (Kashiwagi, 2004) has also received significant attention. A major focus of many of these studies is the so-called 85 

critical load speed, where vehicle speed coincides simultaneously with the flexural phase and group velocities and the ice 

deflection can grow very large over time (Wilson, 1955). In general, these studies are geared towards understanding the critical 

load speed so that vehicular transit at that speed may be avoided (e.g. Schulkes and Sneyd, 1988). Further studies have shown 

that the build-up of large enough deflections to break the ice may be limited by 2D spreading  (Nugroho et al., 1999), viscous 

effects (Wang et al., 2004), acceleration/deceleration through the critical speed (Miles and Sneyd, 2003) and/or nonlinearities 90 

(Dinvay et al., 2019). Interestingly, a complementary field of study also exists that focuses on leveraging the resonant flexural 

waves produced by moving hovercraft to enhance their effectiveness as icebreakers (Hinchey and Colbourne, 1995; Kozin et 

al., 2017). Submarines surfacing in ice covered waters may also seek to weaken or break the ice before surfacing by creating 

flexural gravity waves (Kozin and Pogorelova, 2008), which has been studied via an adaption of the theoretical framework to 

include moving loads in the water column under a floating plate. 95 
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We propose that the air-coupled flexural wave phenomenon can be understood as a special case of the more general paradigm 

of moving loads on floating plates, where the load speed is equal to the speed of sound in air. Furthermore, we hope to highlight 

the close physical relationship between phenomena spanning from Arctic seismic experiments to wild ice-skating, ice-roads, 

floating runways, structural acoustics and the eruption of Krakatoa. Our study was also motivated from the pragmatic 100 

standpoint that the monochromatic air-coupled flexural wave frequency is readily estimated from single sensor timeseries and 

can be related directly to ice thickness and rigidity. While other studies have focussed on measuring the dispersion of ice 

flexural-waves in order to estimate ice physical properties (e.g. DiMarco et al., 1993; Moreau et al., 2020a; Yang and Yates, 

1995), we present an additional alternative that is straightforward to implement and effective for both point and line explosive 

seismic sources. 105 

2 Study area and data acquisition 

In this study we investigate a series of active-source seismic experiments conducted in the innermost part of Van Mijenfjorden, 

on the island of Spitsbergen, in the high-Arctic Svalbard archipelago. The experiments were conducted during the spring 

season, when sea-ice is best developed, in 2013, 2016, 2017 and 2018, as illustrated in Figure 1. Detonating cord of the type 

“Nobelcord”, containing 40g Pentrit (PETN) per meter, was laid on the ice surface in various lengths or coiled into point like 110 

charges, to provide the seismic source. An example of the detonation of a point charge is shown in Figure 2. These explosive 

charges produce a strong air-wave that propagates radially over the ice surface, in addition to energy that travels horizontally 

through the ice, or downwards through the water column where it may be reflected back to the surface by layers of contrasting 

acoustic impedance. The sum of all of these modes of propagation gives the complex seismic wavefield that was recorded 

using line arrays of geophones installed on the ice surface. For the majority of the experiments, the geophones were arranged 115 

in-line with the source, but we also include oblique arrangements from the 2013 campaign that employed a cross type array 

(see Figure 1). 

 

The main purpose of these experiments was to test different acquisition designs for reflection seismic surveying of sub-seabed 

sediments, as reported by Johansen et al. (2019), an objective which is made difficult by the flexural wave energy propagating 120 

through the ice. Various source and receiver arrangements were tested including airguns, hydrophones and ocean bottom 

seismometers. However, in this study we focus on the subset of experiments employing explosive sources and vertical-

component gimballed geophones deployed on top of the ice. This acquisition setup is operationally the simplest under field 

conditions, but leads to the strongest recordings of ice flexural waves. While the flexural wave energy is regarded as 

bothersome coherent noise from the context of sub-seabed reflection surveying, it constitutes the primary signal in the present 125 

study and is used to estimate the ice thickness. 
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Figure 1 – 1:100 000 scale map of the innermost part of Van Mijenfjorden, Spitsbergen, showing the geophone arrays (red lines) 

deployed during field campaigns in 2013, 2016, 2017 & 2018. Inset map indicates the position relative to the Svalbard archipelago. 130 
Land contour interval is 50 m. Map data © Norwegian Polar Institute (http://npolar.no, last access: 25/06/2020). 

 

Figure 2 – Photo taken during the 2013 field campaign showing the explosive seismic source. The line of seismic receivers is marked 

with red poles (Photo: Robert Pfau).  
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3 Theory 135 

3.1 General wavefield solution 

In this study we approximate the air-ice-water system by a thin elastic plate resting on an incompressible inviscid fluid of finite 

depth, H, that corresponds to the widely used “simplest acceptable” mathematical model advocated by Squire et al. (1996). 

The plate extends infinitely along the horizontal x and y axes and the vertical axis, z, is positive downwards with its origin at 

the upper undisturbed water surface. We impose the constraint that the fluid must satisfy the Laplace equation, ∇2𝜙 = 0, where 140 

𝜙 is the velocity potential in the fluid. In addition, we impose a non-cavitation condition at the ice-water interface, 
𝜕𝜙

𝜕𝑧
|

𝑧=𝑏
=

𝜕𝜁

𝜕𝑡
, where b is the draught of the ice and a normal flow condition at the sea bottom, 

𝜕𝜙

𝜕𝑧
|

𝑧=𝐻
= 0, where 𝜁(𝑥, 𝑦, 𝑡) is the vertical 

deflection of the plate’s neutral surface. The linear spatiotemporal dynamics of the system is described by the partial differential 

equation (e.g., Squire et al., 1996) 

D∇4𝜁 + 𝜌𝑙ℎ
𝜕2𝜁

𝜕𝑡2 + 𝜌𝑤𝑔𝜁 = −𝜌𝑤
𝜕𝜙

𝜕𝑡
|

𝑧=𝑏
− 𝑓(𝑥, 𝑦, 𝑡).         (1) 145 

Here, D =
𝐸ℎ3

12(1−𝜎2)
  is the plate flexural stiffness, E is Young’s modulus, h is the plate thickness, σ is Poisson’s ratio, ρw is the 

water density, ρl is the plate density, g = 9.81 m.s-2 is the acceleration due to gravity and 𝑓(𝑥, 𝑦, 𝑡) is the applied external 

spatiotemporal force. The solution to Eq. (1) gives useful insight into the dynamics of the air coupled flexural wave and an 

illustrative example is given in section 5.1. 

 150 

In order to solve for the spatiotemporal deflection of the ice surface, we apply the 3D Fourier transform (FT) defined as 

𝑃(𝑘𝑥 , 𝑘𝑦, 𝜔) = ∭ 𝑝(𝑥, 𝑦, 𝑡)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)𝑑𝑥 𝑑𝑦 𝑑𝑡,        (2) 

for an arbitrary spatiotemporal function 𝑝(𝑥, 𝑦, 𝑡). The wave number vector 𝒌 = [
𝑘𝑥

𝑘𝑦
] is decomposed in the x and y directions,  

𝑘2 = |𝒌|2 = 𝑘𝑥
2 + 𝑘𝑦

2
, and i denotes the imaginary unit. By applying the FT defined in Eq. (2) to the spatiotemporal fields 

in Eq. (1), we find that the solution for the deflection in Fourier space is given by 155 

𝑍(𝑘𝑥, 𝑘𝑦 , 𝜔) = −
𝐹(𝑘𝑥,𝑘𝑦,𝜔)

𝐺(𝑘𝑥,𝑘𝑦,𝜔)
,           (3) 

where 𝐺(𝑘𝑥, 𝑘𝑦 , 𝜔) = 𝐷𝑘4 + 𝜌𝑤𝑔 − 𝜌𝑙ℎ𝜔2 − (
𝜌𝑤𝜔2

𝑘
) coth(𝑘𝐻). Recalling linear filter theory, the form of Eq. (3) highlights 

that the floating ice plate simply acts as a linear filter on an arbitrary spatiotemporal input signal. This formulation is also 

attractive because the physical significance of the different terms in the denominator are clearly preserved: 𝐷𝑘4 expresses the 

bending forces in the plate, 𝜌𝑤𝑔 is due to the plate buoyancy, 𝜌𝑙ℎ𝜔2 is the plate acceleration and (
𝜌𝑤𝜔2

𝑘
) coth(𝑘𝐻) arises due 160 

to the constraint of finite water depth. 
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The general solution for the resulting spatiotemporal deflection wavefield, 𝜁(𝑥, 𝑦, 𝑡), is then given by the full three-dimensional 

inverse FT of 𝑍(𝑘𝑥, 𝑘𝑦 , 𝜔) as 

𝜁(𝑥, 𝑦, 𝑡) = −
1

(2𝜋)3 ∭
𝐹(𝑘𝑥,𝑘𝑦,𝜔)

𝐺(𝑘𝑥,𝑘𝑦,𝜔)
𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)𝑑𝑘𝑥  𝑑𝑘𝑦 𝑑𝜔.       (4) 165 

3.2 Ring delta function source for radial symmetry 

To exploit spatial symmetry and reduce the dimensionality of the problem, we approximate the explosive source as a ring-

shaped Dirac delta pulse expanding outwards from the origin with radial symmetry. This allows us to reduce the spatial 

dimensionality of the problem by using the radial coordinate 𝑟 = √𝑥2 + 𝑦2 and representing the propagating air wave source 

using the ring delta function, 170 

𝑓(𝑟, 𝑡) = −
1

2𝜋𝑟
𝛿(𝑟 − 𝑐𝑎𝑖𝑟𝑡),           (5) 

where 𝑐𝑎𝑖𝑟 is the speed of sound in air. By performing a partial Fourier transform of Eq. (5) with respect to time t, we obtain 

the spatio-frequency representation of the source as 

𝐹(𝑟, 𝜔) = ∫ 𝑓(𝑟, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= −

1

2𝜋𝑟𝑐𝑎𝑖𝑟
𝑒−𝑖𝜔𝑟 𝑐𝑎𝑖𝑟⁄ ,         (6)  

so the spatio-frequency deflection wavefield can be written as 175 

𝑍(𝑟, 𝜔) = −
𝐹(𝑟,𝜔)

𝐺0(𝜔)
,           (7) 

where 

𝐺0(𝜔) = 𝐷(
𝜔

𝑐𝑎𝑖𝑟
)4 + 𝜌𝑤𝑔 − 𝜌𝑙ℎ𝜔2 − (𝑐𝑎𝑖𝑟𝜌𝑤𝜔) coth (

𝜔𝐻

𝑐𝑎𝑖𝑟
).       (8) 

The spatiotemporal deflection wavefield in radial coordinates then becomes 

𝜁(𝑟, 𝑡) = −
1

2𝜋
∫

𝐹(𝑟,𝜔)

𝐺0(𝜔)
𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
 .          (9) 180 

When evaluating Eq. (9) numerically, we substitute 𝐺0(𝜔) → 𝐺0(𝜔 + 𝑖𝛾), where 𝛾 > 0, which avoids dividing by zero and 

gives a tuneable heuristic damping parameter for wave attenuation and dissipation. 

3.3 Dispersion relation  

The dispersion relation for the propagating wavefield in the ice sheet is given by the wavenumber and frequency pairs that 

satisfy the equation 185 

𝐺(𝑘, 𝜔) = 0.            (10) 

The solution of Eq. (10) gives the general dispersion relation (e.g., Squire et al., 1996) 

𝜔2 =
(𝐷𝑘5 𝜌𝑤⁄ )+𝑔𝑘

𝑘ℎ
𝜌𝑙

𝜌𝑤
+coth(𝑘𝐻)

.            (11) 

This dispersion relation is complete in the sense that it retains all physical mechanisms included in the dynamical model Eq. 

(1), and it is well known from previous studies (e.g. Greenhill, 1886; Squire et al., 1996). At typical vehicle speeds and 190 
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wavelengths that have been the main focus of moving load on floating plate studies, the plate acceleration may be safely 

neglected (e.g. Schulkes and Sneyd, 1988; Wang et al., 2004)  giving the approximate dispersion relation  

𝜔2 ≈ (
𝐷𝑘4

𝜌𝑤𝑔
+ 1) 𝑔𝑘 tanh(𝑘𝐻).           (12) 

Another common assumption is to assume infinite water depth, H, which causes the hyperbolic tangent term to approach unity. 

However, when the load moves at the speed of sound in air, plate flexural waves with much shorter wavelengths are resonant 195 

and it becomes important to retain the plate acceleration term. The common approximations that are valid at typical vehicle 

speeds may lead to significant inaccuracies when estimating physical properties of the floating ice sheet from estimates of air-

coupled flexural wave frequency. 

 

 200 

Figure 3 – Comparison of simplified dispersion relation neglecting water depth and plate acceleration (blue, Eq. 12) with the full 

dispersion relation including these effects (black, Eq. 11) for h = 0.74 m and sea-ice physical properties from Table 1. 

 

 compares the full dispersion relation (Eq. (11)) with the approximation that neglects water depth and plate acceleration (Eq. 

(12)). Air-coupled waves are excited where the phase velocity is equal to the speed of sound in air, shown as the horizontal 205 

red line in Fig. 3. With finite water depth H (black line in Fig. 3), we see that only flexural waves are coupled to the air wave. 

Gravity waves have been observed in landfast sea ice (Sutherland and Rabault, 2016) and may theoretically couple to the air-

wave for the case of an infinite fluid (blue dashed line in Fig. 3), but the coupled wave is likely unobservable in practice. The 

air-coupled flexural waves arrive in advance of the air wave because the group velocity,  𝜕𝜔 𝜕𝑘⁄ , is larger than the phase 

velocity for a given frequency (magenta dashed line in Fig. 3). The air-coupled flexural frequency is insensitive to water depths 210 

>3.2 m, in this example, but is significantly affected by the plate acceleration term. Including the effect of plate acceleration 
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increases the air-coupled flexural frequency by ~23% using physical properties relevant to our field data (see Table 1). While 

studies of moving vehicles on floating plates may safely ignore the effect of plate acceleration, we show that is important to 

include it when the considered load is moving at the speed of sound in air.  

4 Methodology 215 

A key attraction of air-coupled flexural waves is the ability to use the timeseries recorded by a single sensor to estimate ice 

thickness. This is possible because, as illustrated by our dynamical model, the phase velocity of the air-coupled flexural wave 

is equal to the speed of sound in air. This is similar to studies of ice roads and runways, where the fact that the speed of the 

vehicle is known raises the potential for routine monitoring of ice flexural rigidity using a single sensor (Squire et al., 1988). 

The frequency of the air-coupled flexural wave is estimated from the high amplitude, monochromatic segment of the timeseries 220 

that directly precedes the air-wave arrival. The air-coupled flexural frequency can then be directly related to the physical 

properties of the floating ice sheet using the dispersion relation introduced in the previous section. 

4.1 Air wave arrival and velocity estimation 

Since the arrival time of the air wave increases linearly with horizontal offset between the seismic source and receiver, we can 

estimate its arrival time and velocity using the linear Radon transform, also referred to as the slant-stack or 𝜏−𝑝 transform 225 

(Yilmaz, 2001). When the independent variable is source to receiver offset, energy with a constant velocity follows a linear 

trajectory. Under the linear Radon transform, energy corresponding to a specific velocity and origin time is stacked along this 

trajectory to form a single point in the transform space. For a given explosive charge (see Figure 4a), we compute the linear 

Radon transform for offset sorted geophone signals and estimate the velocity (cair) and intercept (tint) that correspond to the air 

wave by picking the local maximum of the transform magnitude (see Figure 4b). The estimated arrival time of the air wave at 230 

a given geophone, 𝑡𝑎𝑖𝑟 , is then given by, 𝑡𝑎𝑖𝑟 =
𝑑

𝐶𝑎𝑖𝑟
+ 𝑡𝑖𝑛𝑡, where d is the source to receiver offset.  

4.2 Thomson multitaper estimation of air-coupled flexural frequency 

The frequency of the air-coupled flexural wave is estimated from segments of the recorded timeseries which precede the arrival 

of the air-wave (see Figure 4c). We take the derivative of the timeseries to suppress low frequencies and linearly increase the 

gain of high frequencies and apply a Hamming window taper. For each timeseries, the Thomson multitaper power spectral 235 

density (Thomson, 1982) is then estimated using a time-half bandwidth product of two and a zero-padded Fourier transform 

length of 4096. Thomson’s estimator utilizes a set of orthonormal data tapers called discrete prolate spheroidal sequences to 

control spectral leakage and stabilize the estimate through an inherent variance reduction (Hanssen, 1997). The air-coupled 

flexural frequency (see Figure 4d) is then estimated from the multitaper power spectral density maximum. We only estimate 
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the air-coupled flexural frequency for source to receiver offsets > 125 m because higher-velocity sub-seabed reflections arrive 240 

around the same time as the air wave and create too much interference at nearer offsets (see Figure 5). 

 

Figure 4 – Example of air-coupled flexural wave frequency estimation. (a) geophone records with dashed red line indicating the air 

wave arrival, (b) air wave arrival time and velocity is estimated by picking the local maximum of the linear radon transform, (c) 

waveform plot for every 10th geophone indicating the frequency estimation window (dashed red lines), (d) air-coupled flexural 245 
frequency estimated by the multitaper method.  

4.3 Closed-form estimator of ice thickness 

Once we have estimated the frequency of the air-coupled flexural wave (𝜔𝑓) we can estimate the ice thickness using the 

dispersion relation (Eq. (11)) rearranged as, 

𝐸ℎ3𝑘𝑓
5

12𝜌𝑤(1−𝜎2)
+ 𝑔𝑘𝑓 = 𝜔𝑓

2 [𝑘𝑓ℎ
𝜌𝑙

𝜌𝑤
+ coth(𝑘𝑓𝐻)] ,        (13) 250 
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where 𝑘𝑓 = 𝜔𝑓 𝑐𝑎𝑖𝑟⁄  is the wavenumber corresponding to the air-coupled flexural wave. The inclusion of the plate acceleration 

term means that we are left with a non-linear relation for the plate thickness, h, in terms of the plate elastic properties and the 

constant flexural frequency and wavenumber. We may either estimate the ice thickness by nonlinear numerical optimisation 

of Eq. (13), using e.g. the bisection method, or we may rearrange Eq. (13) to give the cubic polynomial form, 

(
𝐸𝑘𝑓

5

12𝜌𝑤(1−𝜎2)
) ℎ3 − (𝜔𝑓

2𝑘𝑓
𝜌𝑙

𝜌𝑤
) ℎ + 𝑔𝑘𝑓 − 𝜔𝑓

2 coth(𝑘𝑓𝐻) = 0 ,      (14) 255 

which has one real, positive root corresponding to the plate thickness h. Since Eq. (14) has a standard cubic form, a closed-

form analytical solution can be derived. We followed the modified Cardan’s solution method outlined by Nickalls (1993) to 

derive the following estimator, 

ℎ = 2√
𝑏

3𝑎
cos [

1

3
cos−1 (

−3√3

2
𝑎1 2⁄ 𝑏−3 2⁄ 𝑐)] ,         (15) 

where 𝑎 =
𝐸𝑘𝑓

5

12𝜌𝑤(1−𝜎2)
, 𝑏 = 𝜔𝑓

2𝑘𝑓
𝜌𝑙

𝜌𝑤
 and 𝑐 =  𝑔𝑘𝑓 − 𝜔𝑓

2 coth(𝑘𝑓𝐻) . We have confirmed that nonlinear numerical 260 

optimisation of Eq. (13), polynomial root finding of Eq. (14) and the closed form Eq. (15) all give identical results. 

5 Results 

Air-coupled flexural waves appear to be a robust part of the wavefield excited by explosive sources on floating sea-ice and 

were observed for all four field campaigns, in spite of thin, variable snow covers. Furthermore, Figure 5 illustrates that since 

the air-coupled flexural wave precedes the arrival of the air wave, it is recorded equally well for both point and line sources. 265 

This is significant because much of our field data employed line sources in order to attenuate the trailing low-frequency ice 

flexural waves that are an unwanted noise component from the perspective of reflection seismic surveying (Johansen et al., 

2019).  
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Figure 5 – Example geophone records for (a) a point charge and (d) a 50m long, detonating cord line source, (b) and (e) show 270 
illustrative time series enlarged around the air wave (AW) arrival, (c) and (f) show spectrograms for the time series (b) and (e). The 

air-coupled flexural wave (ACFW) arrives with constant frequency of ~65 Hz, in advance of the broadband air wave. The 

characteristically dispersive ice flexural waves (IFW) are significantly attenuated due to destructive interference for the line source. 

5.1 Solution of the full dynamical model 

It is only strictly necessary to consider the solution to the dispersion relation in order to estimate ice properties from flexural 275 

wave observations. However, it is also beneficial to consider the solution to the dynamical equation (Eq. (1)) in order to 

demonstrate that the key physics involved in the propagation of air-coupled flexural waves are represented by the model. To 

this end, we evaluated Eq. (9) numerically using an Inverse Fast Fourier Transform (IFFT) with N=219 discrete points, a 

temporal sampling interval, 𝑑𝑡 = 2.5 × 10−4 𝑠, and a numerical attenuation/damping parameter, 𝛾 = 25. Figure 6 shows a 

portion of the modelled radially symmetric, expanding wavefield produced by a propagating ring delta loading that we use as 280 
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an approximation of the air-wave expanding outwards from a point explosive charge and pushing downwards on the ice sheet. 

We see that the ice sheet is deflected downwards underneath and behind the air wave. The negative deflection decays smoothly 

and extends to a position around 300 m behind the load, although this is outside the figure view. Ahead of the air wave, the 

ice surface is elevated and we see a high amplitude, constant frequency wave-train that corresponds to the air-coupled flexural 

wave, which decays gradually with distance ahead of the load due to the inclusion of numerical damping in the model. 285 

 

Figure 6 – Modelled normalised displacement wavefield for h = 74 cm, cair = 321 m/s and elastic parameters as in Table 1. The black 

line marks the position of the load (representing the air wave). 

To compare the solutions of the full dynamical model result with field data, we calculate the velocity response of the plate at 

a given offset by numerical time differentiation of the output from Eq. (9), and compare that directly to the recorded geophone 290 

timeseries at the same offset. We find that local velocity estimates calculated from our solutions to the dynamical model are 

very similar to the real waveforms recorded by geophones, as illustrated by the example in Figure 7. This increases our 

confidence that we understand the underlying physics that describe the excitation of air-coupled flexural waves in floating ice 

sheets. 
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 295 

Figure 7 – Modelled normalised velocity response timeseries (black curve) at an offset of 759 m compared with the timeseries 

recorded by a geophone at the same offset from a point charged fired during the 2013 field season (red curve). The air wave arrival 

time is indicated by the dashed line. 

5.2 Ice thickness estimation from air-coupled flexural waves 

As summarised in Table 1, ice thicknesses calculated using Eq. (15) from the estimated air-coupled flexural frequencies and 300 

air-wave velocities show very good agreement with ice thicknesses measured in boreholes. Notably, this good agreement was 

achieved across all four field seasons with a single set of elastic properties, that are realistic for sea ice. This is partly because 

ice thickness is an extrinsic property that has a dominant effect on the air-coupled flexural frequency (stemming from the fact 

that 𝐷 ∝ ℎ3 ), i.e., the 20-80 cm thickness range from this study corresponds to 400% variation in air-coupled flexural 

frequency. By contrast, variation of intrinsic material properties, i.e., Young’s modulus (1.7-5.7 GPa) and Poisson’s ratio 305 

(0.33-0.39) as reported by Timco and Weeks (2010) for first year sea ice would give ~60% and ~2% variation in air-coupled 

flexural frequency, respectively. The combined effects of water and ice density variation over the ranges given in Table 1 

would only produce a variation of ~0.3% in air-coupled flexural frequency, while water depth has no effect for depths >3.2 m. 

Temperature variation over the range -20 to +2 °C would cause the speed of sound in air to vary from 318-332 m/s, resulting 

in ~8% variation in air-coupled flexural frequency. The apparent speed of sound in air at the measurement location is also 310 

affected by horizontal wind velocity and gusts may lead to variation of +/-5 m/s over timescales of minutes (e.g. Franke and 

Swenson Jr, 1989). However, as described in Section 4.1, we estimate the apparent velocity of the air wave for each shot, 

which should ensure that our air coupled flexural thickness estimates are independent of changes in wind and temperature over 

time. 

 315 

The Yong’s modulus of 2.5 ± 0.2 GPa given in Table 1 was constrained by observing that the median air-coupled flexural 

wave thickness estimate for the 2013 field season would fall outside the range of borehole measured thicknesses for Young’s 

modulus outside this range. The fact that this Young’s modulus gives thickness estimates that fit with borehole measurements 

across all four field seasons indicates that the bulk, effective elastic properties of first-year sea ice in Van Mijenfjorden are 

relatively consistent from year to year. A somewhat higher Young’s modulus of ~4 GPa was reported for Van Mijenfjorden 320 

by Moreau et al. (2020a), but the deviation from the present study is likely attributable to the protected physical setting of their 
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study site at the estuarine Vallunden Lake. It is also important to highlight that all elastic properties we assume represent bulk, 

apparent values corresponding to the thin isotropic plate assumption, while real floating ice sheets are a composite sandwich 

material consisting of multiple ice layers of varying strength (Timco and Weeks, 2010).  

 325 

Table 1 – Summary of ice thicknesses (h) estimated from air-coupled flexural waves (ACFW) compared to the range of ice 

thicknesses measured in boreholes drilled through the ice. MAD = median absolute deviation. 

Field 

season 

h (cm) 

median 

ACFW 

MAD 

(cm) 

h (cm) 

borehole 

measured  

Young’s 

modulus E 

(GPa) 

Poisson’s ratio 

𝜎 

ρice  

(kg.m-3) 

ρwater  

(kg.m-3) 

Water 

depth 

H (m) 

2013 76 3 74-79 2.5 +/- 0.2 

Timco and 

Weeks (2010) 

give range 

1.7-5.7 

0.33 

Timco and 

Weeks (2010) 

give range 

0.33-0.39 

925 

Timco and 

Frederking 

(1996) give 

range 920-930 

1023 

Skarðhamar and 

Svendsen (2010) 

give range 1020-

1026 

>3.2  

2016 34 3 30-40 

2017 57 4 30-75 

2018 30 2 20-40 

 

Here we give a summary of our air-coupled flexural wave ice thickness estimates for each field season and examine them in 

the context of borehole measurements of ice thickness and prevailing meteorological conditions, as represented by records at 330 

the nearby Sveagruva weather station (The Norwegian Meteorological institute, 2020), which was upgraded prior to the 2017 

season to include measurement of precipitation. We assume the air-coupled flexural frequency recorded at a given geophone 

is related to the ice thickness at the location of the geophone, as this gave the strongest correlation with borehole thickness 

measurements.  

2013 field season 335 

The ice thickness estimates for the 2013 field season are summarised in Figure 8 and show good agreement with borehole 

measurements. There is somewhat greater spread in the results on the Y line which is likely related to the fact that the majority 

of the source positions were inline with the X line and therefore oblique to the Y line (see Figure 1). The oblique geometry 

reduces the precision of using the linear Radon transform to estimate the arrival time and velocity of the air wave, which 

becomes smeared in the transform domain. Air temperatures remained consistently <0 °C and the thickness estimates are quite 340 

similar over the ~3 day field campaign, though there is some indication of ice growth with time. 
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 345 

Figure 8 – 2013 field campaign air-coupled flexural wave ice thickness estimates (circles), borehole drilled thicknesses (red stars) 

and air temperature at nearby Sveagruva weather station (red line). The timespan of the field campaign is indicated by black-blue-

cyan colour gradient. Point estimates are transparent so overlapping repeat tests are indicated by denser colours. Figure 1 shows 

location of the profiles: 2013 X (middle) and 2013 Y (bottom). 

2016 field season 350 

The results for the 2016 field season are illustrated in Figure 9. Some outliers are present in the flexural wave thickness 

estimates which are caused by interference of other spectral components for the extracted timeseries segments. This 

interference can be due to, e.g., other wavemodes such as sub-seabed reflections, snow scooter engine noises, or instrument 

noise due to wind. Despite these outliers, the median thickness estimates agree well with the range of drilled thicknesses (see 

Table 1), although the along profile locations of the boreholes was unfortunately not recorded for this field campaign.  355 



17 

 

 

Figure 9 – 2016 field campaign air-coupled flexural wave ice thickness estimates (circles) and temperature at nearby Sveagruva 

weather station (red line). Timespan of field campaign is indicated by blue-cyan colour gradient. Point estimates are transparent so 

overlapping repeat tests are indicated by denser colours. Figure 1 shows location of profile. 

2017 field season 360 

The thickness estimates for the 2017 field season are shown in Figure 10. The significant spatial thickness variation observed 

in boreholes is reasonably well represented by the median air-coupled flexural wave thickness estimates plotted according to 

geophone position, though the estimates vary more smoothly in space. This indicates that the air-coupled flexural wave varies 

according to the thickness and flexural rigidity of the ice in the vicinity of the geophone, likely averaged spatially in proportion 

with the wavelength of flexure. An alternative hypothesis that the air-coupled flexural wave is controlled by the path averaged 365 

ice properties between the source and geophone was tested by plotting the thickness estimates at the midpoint between source 

and receiver. While we do not include the figure for brevity, the result is a flat profile with estimates ranging from ~45-75 cm 

and a similar median of ~57 cm. This does not reflect the real thickness variation recorded by the borehole measurements, 

leading us to prefer the hypothesis that the frequency of the air-coupled flexural wave is controlled by the ice thickness and 

flexural rigidity in the vicinity of the geophone. Indeed, we found the borehole measured spatial variation in ice thickness 370 

could only be approximated by assuming the air-coupled flexural wave estimates lie at least 98% towards the geophone (along 

the straight line from source to geophone). 

 

We also observe that the air-coupled flexural wave thickness estimates significantly overestimate the ice thickness drilled in 

the two boreholes closest land. While further field data would be needed to investigate this phenomenon in detail, it may be 375 

attributable to the effect of the land on the lateral boundary condition of the ice sheet (see Appendix 1). The infinite ice sheet 

modelled in the present study does not include a lateral boundary, though it may be possible to heuristically approximate this 

effect by defining a spatially variable, effective elastic modulus that increases near land.  
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 380 

Figure 10 – Profile 2017 L3 from 2017 field campaign, seaward direction is S (see Figure 1) showing air-coupled flexural wave ice 

thickness estimates (circles), borehole drilled thicknesses (red stars), temperature (red line) and precipitation (green bars) at 

Sveagruva weather station. Timing is indicated by black-blue-cyan colour gradient and point estimates are transparent so 

overlapping repeat tests are indicated by denser colours.  

2018 field season 385 

The air-coupled flexural wave thickness estimates for the 2018 field season are summarised in Figure 11. The thickness 

estimates agree well with the range of ice thickness measured in boreholes (see Table 1), though the along profile locations of 

the boreholes were unfortunately not recorded for this field campaign. The most striking feature we observe for the 2018 

campaign, is an increase in ice-thickness of up to ~10-15 cm over the course of the campaign (a period of ~4 days). This rapid 

increase in thickness is attributable to the weather event that occurred 26-27th February, where >0 °C temperatures and rain 390 

led to a significant accumulation of fresh water on top of the sea ice. This event was significant enough that fieldwork was not 

possible on the 27th February. The rapid decrease in air temperature on the 28th then promptly caused the accumulated fresh 

surface water to freeze, a process that occurs much more quickly than basal ice accumulation due to heat loss through the 

overlying ice layer, salt rejection and eventual freezing of sea water.  

 395 
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Figure 11 – 2018 field campaign air-coupled flexural wave ice thickness estimates (circles), temperature (red line) and precipitation 

(green bars) at Sveagruva weather station. Timing of experiments is indicated by blue-cyan colour gradient and point estimates are 

transparent so overlapping repeat tests are indicated by denser colours. Figure 1 shows location of profile. Median is shown with a 

dashed line because there are two distinct, temporally separated, populations. 400 

6 Discussion 

It is possible to interpret the origin of the air-coupled flexural waves in several equivalent ways: (1) They are produced by the 

downward pressure of the air wave moving over the ice surface, i.e., the moving loads on floating plates interpretation as 

elaborated in section 3. (2) A plate excited by a broadband pulse propagates flexural wave energy at a range of frequencies, 

but sound transmission from the plate is highest at the coincidence frequency (Bhattacharya et al., 1971) producing a resonance 405 

effect. (3) Alternatively, the air-coupled flexural wave can be interpreted as a class of leaky Lamb waves where flexural wave 

energy radiates into the air, regulated by the phase matching condition and occurring most efficiently at the grazing angle, 

when the phase velocity is equal to the speed of sound in air (Brower et al., 1979; Kiefer et al., 2019; Mozhaev and Weihnacht, 

2002). The observation of air-coupled flexural waves and absence of dispersive ice flexural waves on the far side of open water 

leads by Hunkins (1960) is consistent with the interpretation that, for explosive sources on or above the ice, air coupled flexural 410 

waves are generated continuously by the downward pressure exerted by the air wave. The correspondence between 

experimental data and the solution of the full dynamical model (see Figure 6) gives further support to this interpretation.  

 

Our results indicate that air-coupled flexural waves are affected by spatial (see Figure 10) and temporal ice thickness variation 

(see Figure 11). A high degree of spatial variability in ice thickness has been reported for first year sea ice in Van Mijenfjorden 415 

(Sandven et al., 2010) and in the Artic in general (Wadhams et al., 2006). Spatial resolution is likely proportional to the air-

coupled flexural wavelength, though further field data including high-resolution ground truth measurements would be required 

to elaborate this proportionality in detail. It is also important to highlight that the air-coupled flexural frequency is affected by 
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the elastic properties of the ice, it’s flexural rigidity, not just it’s thickness. By assuming a constant set of elastic parameters 

our thickness estimates may be considered “effective thicknesses” corresponding to the assumed elastic parameters and subject 420 

to the thin isotropic plate assumption. However, we also expect that the “effective thickness” for assumed elastic properties is 

still highly relevant when assessing the load bearing capacity of floating ice, even if it were to deviate from the true thickness. 

 

A small percentage of outliers are present in the thickness estimates, that we attribute to spectral contamination caused by the 

simultaneous arrival of other wave modes with the air-coupled flexural waves. Such interference was minimised by discarding 425 

the nearest offsets where high-velocity sub-seabed reflections arrive at the same time as the air wave (see Figure 5). However, 

other noise sources, such as snow scooter traffic, are difficult to avoid in real-world data. In the rare cases that traffic noise is 

recorded at the same instant as the air-coupled flexural waves, the resulting spectral interference can prevent accurate 

estimation of the air-coupled flexural frequency. Snow cover also likely decreases the efficiency of coupling between ice and 

air, though this did not appear to play a major role for the four field seasons investigated, where gimballed z-component 430 

geophones were deployed directly on top of the thin snow covers that were present. 

6.1 Air-coupled flexural wave data acquisition  

In this study, we present data acquired with linear arrays of geophones and active seismic sources that were primarily acquired 

to test the feasibility of seismic reflection surveying on floating sea ice. It is important to emphasize that it should be possible 

to employ much simpler equipment to record air-coupled flexural waves. Indeed, from our results we would expect that a 435 

simple microphone, sensitive in the relevant frequency range and located in the vicinity of the desired measurement, either 

above the ice-sheet or along the shoreline may be sufficient. In addition to low equipment cost, the potential to monitor ice 

thickness using a microphone positioned on land could be beneficial from the perspective of environmental monitoring, 

particularly early in the freezing season when the ice is too thin to be safely traversed. 

 440 

The use of microphones to record air-coupled flexural waves can be illustrated by a phenomenon that is familiar to the ice-

skating community. On thin, floating ice, skates striking or cracking the ice can excite sonorous tones that vary in pitch 

according to the ice thickness (Lundmark, 2001). These tones correspond to air-coupled flexural waves, simply shifted to 

higher frequencies because of the thinner, stiffer fresh-water ice. We use the audio track from the well-known National 

Geographic short film “How Skating on Thin Ice Creates Laser-Like Sounds” (Rankin, 2018) to illustrate this. The frequency 445 

of the strong monochromatic component corresponding to the air-coupled flexural wave is ~725 Hz for the scene from 0:16 to 

0:33, as shown in Figure 12. Using Eq. (15) we calculate that the ice was ~4.3 cm thick, assuming Young’s modulus of 8.5 

GPa, Poisson’s ratio of 0.33, water density of 1000 kg/m3, ice density of 917 kg/m3, water depth of at least 0.3 m and sound 

speed of 329 m/s corresponding to air temperature of -3.9 °C. This is in line with the measured ice thickness presented in the 

film and illustrates the potential to use air-coupled flexural waves recorded by a simple microphone to estimate ice thickness.  450 
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Figure 12 – (a) Spectrogram of audio track from 0:16 to 0:33 of the National Geographic short film “How Skating on Thin Ice 

Creates Laser-Like Sounds” (Rankin, 2018), (b) example of waveform dominated by the monochromatic air-coupled flexural wave 

and broadband impulse at 23.61 seconds from skate blade cracking ice. Spectrogram is composed of 212 sample (~0.09 s), 90% 455 
overlapping Kaiser windows with shape parameter β=10.  

 

Detonating cord seismic sources were used for the experiments presented in this study, but other impulsive sources acting on 

a floating ice-sheet also have the potential to excite air-coupled flexural waves. Hammer blows are an alternative active source, 

while crack propagation is a potential passive source that produces a sudden energy release capable of exciting propagating 460 

elastic waves in the plate and acoustic pressure waves in air. Ice quakes produced by the sudden cracking of floating ice are a 

well-known phenomenon (Kavanaugh et al., 2019; Moreau et al., 2020b; Olinger et al., 2019; Ruzhich et al., 2009) and are 

typically related to the build-up of stress by thermal, tidal and wind forces. This phenomenon has also been studied from the 

structural non-destructive testing perspective, e.g., by Haider and Giurgiutiu (2018) who model the acoustic emission of axis 

symmetric circular crested Lamb waves excited by crack propagation in a steel plate.  465 

 

In order to illustrate that ice quakes are capable of producing air-coupled flexural waves, we went out and recorded a series of 

icequakes around midday, Jan-03 2021 at Storvatnet, Kvaløya (Norway) using the built-in mic of a Sony a6500 digital camera. 

This is a relatively low-quality microphone with no shielding from wind noise, but the monochromatic air-coupled flexural 

waves can still be clearly discerned (in addition to the broadband impulses of the ice crack ruptures). The ice was not drilled, 470 

but its thickness was estimated to be 10-20 cm by visual assessment of vertical cracks running through the clear, black ice. 
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The air-coupled flexural frequency of ~195 Hz indicates the thickness was 16 cm, using the same physical properties for lake 

ice as introduced earlier. The midday occurrence of these ice-quakes, when air temperature was relatively high, suggests they 

were caused by thermal expansion stresses (Ruzhich et al., 2009). The results of this study and the examples shown in Figure 

12 and Figure 13 suggest that the non-contact, passive recording of air-coupled flexural waves using a single microphone may 475 

provide an additional, alternative method of passive flexural wave ice-thickness estimation. This complements previously 

demonstrated passive seismic monitoring methods employing array based wavefield transform approaches (Moreau et al., 

2020a) or noise interferometry and Bayesian inversion (Moreau et al., 2020b). The use of inexpensive single, non-contact 

sensors is an attractive aspect of the air-coupled flexural wave method, particularly that a microphone could be placed on land 

when the ice is too thin to safely traverse. However, further study is needed to reveal the extent to which the temporal 480 

occurrence of ice-quakes producing air-coupled flexural waves and reduced air-ice coupling due to thick snow covers may 

limit the practical acquisition season. 

 

 

Figure 13 - (a) Spectrogram of natural ice quakes at Storvatnet, Kvaløya (Norway) recorded at midday 3/01/2021 with the built-in 485 
microphone of a Sony a6500 camera at a height of ~1.2 m above the ice. Spectrogram is composed of 213 sample (~0.17 s), 90% 

overlapping Kaiser windows with shape parameter β=10. The waveform of the strong ~190 Hz monochromatic component 

corresponding to the air-coupled flexural wave is shown in detail in (b).   

 

 490 
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7 Conclusion 

Air-coupled flexural waves were found to be a robust feature of first-year sea ice excited by explosive sources over a range of 

ice thicknesses up to ~80 cm. The physics of these waves can be understood from a theoretical perspective that has largely 

developed through the study of moving vehicles on floating plates. The dynamical model that we favour is straightforward to 

understand in terms of linear filter theory, and we derived a closed-form solution of the dispersion relation that relates ice 495 

thickness directly to the air-coupled flexural wave frequency and air-wave velocity. We tested the proposed closed-form ice 

thickness estimator extensively on field data from four field seasons, and found a remarkably good agreement with in-situ 

borehole measurements. The phenomenon of air-coupled flexural waves is relatively familiar to the wild ice-skating 

community, where thin ice produces air-coupled flexural waves that are readily audible. Here we build on the pioneering 

efforts of Press and Ewing (1951), developing a more accessible theory supported by modern numerical and Fourier transform 500 

methods, to show that the same phenomenon also occurs for much thicker sea-ice, simply shifted to a lower frequency regime. 

We have mainly presented data that was acquired for the primary purpose of reflection seismic profiling, but a key benefit of 

air-coupled flexural waves is that they can also be recorded with very simple equipment, such as a single microphone located 

either above the ice-sheet or along the shoreline. Ice quakes produced by natural cracking excite air-coupled flexural waves 

for freshwater lake ice, which raises the potential that passive recording of air-coupled flexural waves may also be possible for 505 

sea ice. 

Appendix 1 – Possible effect of land on ice sheet lateral boundary condition 

Two outlier points were observed for the 2017 field season, where ice with drilled thickness of 30-35 cm near land had air-

coupled flexural frequency similar to ice of 50 cm drilled thickness further seaward (see Figure 10). To illustrate that this may 

be attributable to a lateral boundary condition effect, we approximate an ice sheet of finite extent as a collection of arbitrarily 510 

small, uniformly loaded, circular plates. The ice along the shoreline is represented by assuming a clamped boundary condition, 

while the ice far from shore is considered simply supported by the neighbouring plate elements. We may then find the 

thicknesses of a simply supported and clamped plate that lead to equal maximum tangential stresses. From Hearn (1997), the 

maximum tangential stress, occurring at the center of the simply supported plate, 𝜎𝑠, and the clamped plate, 𝜎𝑐 , is given by 

𝜎𝑠 =
3𝑞𝑅2

8ℎ𝑠
2 (3 + 𝑣) and  𝜎𝑐 =

3𝑞𝑅2

8ℎ𝑐
2 (1 + 𝑣). 515 

Here, 𝑞 is the uniformly distributed load, 𝑅 is the plate radius, 𝑣 is Poisson’s ratio, ℎ𝑠 and ℎ𝑐 are the thicknesses of the simply 

supported and clamped plates, respectively. Equating the two expressions gives 

ℎ𝑐
2

ℎ𝑠
2 =

(1 + 𝑣)

(3 + 𝑣)
 

so that ℎ𝑐 ≈ 0.63ℎ𝑠 for 𝑣 = 0.33. Therefore, it is anticipated that ice 50 cm thick far from shore will experience the same 

maximum tangential stress under load as ice that is 0.63 × 50 = 32 cm thick at the shoreline (consistent with the outlier points 520 
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from the 2017 field season). We may similarly equate the maximum deflections of the plates, which also occur at the plate 

centers. Hearn (1997) gives the relevant expressions for the maximum deflection of the plates as 

𝑤𝑠 =
3𝑞𝑅4

16𝐸ℎ𝑠
3 (5 + 𝑣)(1 − 𝑣) and  𝑤𝑐 =

3𝑞𝑅4

16𝐸ℎ𝑐
3 (1 − 𝑣2), 

where E is the Young’s modulus. By equating the two deflections and simplifying we find  

ℎ𝑐
3

ℎ𝑠
3 =

(1−𝑣2)

(5+𝑣)(1−𝑣)
, 525 

which again gives ℎ𝑐 ≈ 0.63ℎ𝑠 for 𝑣 = 0.33. Since both tangential stress and strain are equal for a clamped plate with 63% 

of the thickness of a corresponding simply supported plate, the boundary condition effect can also be understood as a change 

in effective elastic modulus. This supports the heuristic approximation of the lateral boundary condition effect by a spatially 

variable, effective elastic modulus. While this theoretical description is simplistic since, e.g., the fluid-loading is ignored, it 

highlights that the boundary condition of a finite plate can play a significant role. It would be beneficial to explore this effect 530 

in greater detail in future studies, particularly with regard to the length scale involved in the transition from clamped to simply 

supported behavior. Accurately describing this behavior would require the collection of more detailed field data in the zone 

near the shoreline in order to constrain the development of a more complete model, such as a full finite element simulation.  
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