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Abstract. Climate change projections indicate that extreme snowfall are expected to increase in cold areas, i.e. at high latitude

and/or high elevation, and to decrease in warmer areas, i.e. at mid-latitude and low elevation. However, the magnitude of these

contrasted patterns of change and their precise relations to elevation at the scale of a given mountain range remain ill-known.

This study analyzes annual maxima of daily snowfall based on the SAFRAN reanalysis spanning the time period 1959-2019,

and provided within 23 massifs in the French Alps every 300 m of elevation. We estimate temporal trends in 100-year return5

levels with non-stationary extreme value models that depend both on elevation and time. Specifically, for each massif and four

elevation ranges (below 1000 m, 1000-2000 m, 2000-3000 m and above 3000 m), temporal trends are estimated with the best

extreme value models selected on the basis of the Akaike information criterion. Our results show that a majority of trends are

decreasing below 2000 m and increasing above 2000 m. Quantitatively, we find an increase of 100-year return levels between

1959 and 2019 equal to +23% (+32 kg m−2) on average at 3500 m, and a decrease of -10% (−7 kg m−2) on average at 50010

m. However, for the four elevation ranges, we find both decreasing and increasing trends depending on location. In particular,

we observe a spatially contrasted pattern, exemplified at 2500 m: 100-year return levels have decreased in the north of the

French Alps while they have increased in the south which may result from interactions between the overall warming trend and

circulation patterns. This study has implications for natural hazards management in mountain regions.

1 Introduction15

Extreme snowfall can generate casualties and economic damages. For instance, it can cause major natural hazards (avalanche,

winter storms) that might be intensified with high winds and freezing rain. Heavy snowfall can also disrupt transportation (road,

rail and air traffic), tourism, communication and electric systems with a significant impact on economic services (Changnon,

2007; Blanchet et al., 2009). Subsequently, snow overloading can lead to the collapse of buildings such as shed, greenhouse, or

as large as an exhibition hall (BBC News, 2006). It remains a counterintuitive phenomenon that extreme snowfall can increase20

in a warming climate, at least transiently, i.e. as long as local temperatures are cold enough (Frei et al., 2018). Therefore, to

adapt protective measures, it is crucial to determine temporal trends in extreme snowfall for various areas (regions, elevations)

and timescales, and to understand the underlying causes of these trends.
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Extreme snowfall stems from extreme precipitation occurring in a range of optimal temperatures slightly below 0oC. This

optimal range of temperatures both favours high precipitation intensities and percentages of precipitation falling as snow close25

to 100% (O’Gorman, 2014). Thus, changes of extreme snowfall depend on a trade-off between trends in extreme precipitation

and changes of the probability to experience temperature in this optimal range.

On a global scale, extreme precipitation is expected to globally increase with the augmentation of global mean tempera-

ture. Specifically, the most intense precipitation rates are theoretically expected to roughly increase at a rate of 7%/oC, i.e.

7% per degree of global mean warming, due to an increase in mean atmospheric water vapor content according to the Clau-30

sius–Clapeyron relationship (O’Gorman and Muller, 2010). In practice, the observed global median rate for annual maxima

of 1-day precipitation is 6.6%/oC (Sun et al., 2021). On the other hand, the probability to experience temperature in the

optimal range for extreme snowfall is expected to decrease in warm areas, i.e. mid-latitude and low-elevation regions, as tem-

peratures are expected to shift away from 0oC. However, this probability may increase in cold areas, i.e high-latitude and/or

high-elevation regions, where temperatures are expected to shift toward 0oC while remaining below 0oC (Frei et al., 2018).35

In the European Alps, past observations show both that the warming rate is larger than the global warming rate and that

trends in extreme precipitation depend on the season and on the region. Indeed, past trends in mean annual surface temperature

point to an increase in high mountain regions of Central Europe, with a warming rate ranging from 0.15 to 0.35oC per decade

since 1960 (Fig. 2.2 of IPCC 2019) against a range from 0.08 to 0.14oC per decade since 1951 for the global warming rate

(IPCC, 2013). Furthermore, past trends in daily maxima of precipitation largely depend on the season (Fig. 7 of Ménégoz et al.40

2020). In winter, daily maxima precipitation (which may generate extreme snowfall) have trends that vary between -40% to

+40% per century depending on the location. On the other hand, projected trends in winter precipitation in the European Alps

indicate mostly positive trends in 100-year return levels (Fig. 12 of Rajczak and Schär 2017). For instance, an increase between

5% and 30% is expected under a high greenhouse gas emission scenario (comparing 2070–2099 to 1981–2010 for RCP8.5).

In and around the French Alps, studies analyzing extreme snowfall are rare (Beniston et al., 2018). Already assessed past45

trends and projected future trends in extreme snowfall depend on elevation (Tab. 1). On one hand, past observations for Swiss

stations below 1800 m present either a majority of decreasing trends or insignificant changes of the mean annual maximum of

snowfall (Marty and Blanchet, 2012; Scherrer et al., 2013). On the other hand, climate projections for the Pyrenees and the Alps

under high greenhouse gas emission scenario (SRES A2 and RCP8.5, respectively) show that the mean seasonal maximum of

snowfall is expected to decrease below a transition elevation and increase above it. López-Moreno et al. (2011) estimated a50

transition elevation around 2000 m for the Pyrenees (comparing 2070-2100 to 1960-1990), while Frei et al. (2018) estimated

a transition around 3000 m for the Alps (comparing 2070–2099 to 1981-2010). In the French Alps, despite the existence of

sufficient snowfall records and of previous studies having exploited them in an explicit extreme value framework, temporal

trends in extreme snowfall remain poorly described. Indeed, previous studies rather focused on the spatial non-stationarity

(w.r.t. latitude and longitude) of 3-day maxima of snowfall with max-stable processes. For instance, Gaume et al. (2013)55

estimated conditional 100-year return level maps at a fixed elevation of 2000 m, while Nicolet et al. (2016) found that the

spatial dependence range of extreme snowfall has been decreasing.
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Location Indicator Temporal trend Time period Dataset Reference

Pa
st

tr
en

ds

Switzerland Annual S3d Decrease for the

majority of stations

1930-2010 25 stations, all except

one below 1800 m

Marty and Blanchet (2012)

Swiss Alps Annual S1d Insignificant changes 1864-2009 9 stations, all except

one below 1000 m

Scherrer et al. (2013)

Pr
oj

ec
te

d
tr

en
ds

Pyrenees 25-year return level

of annual S1d

Decrease below 1500 m

Increase above 2500 m

1960-1990 vs.

2070-2100

1 HIRHAM RCM

& SRES A2

López-Moreno et al. (2011)

Western and

central Europe

Dec-Feb S1d Increase almost only in

high mountain ranges

1961-2100 8 KNMI-RACMO2

RCM & RCP8.5

de Vries et al. (2014)

Alps Sep-May S1d Decrease below 3000 m

Increase above 3000 m

1981-2010 vs.

2070–2099

14 EURO-CORDEX

GCM-RCM & RCP8.5

Frei et al. (2018)

Table 1. Temporal trends in extreme snowfall w.r.t. elevation in and around the French Alps. Elevations are in meters (m) above sea level.

SNd denotes the mean of maximum of snowfall in N consecutive days.

This study addresses the gap identified above, by assessing temporal trends in the 23 massifs of the French Alps, with special

emphasis on the 100-year return levels of daily snowfall. We rely on the SAFRAN reanalysis (Durand et al., 2009) available for

the period 1959-2019, which provides time series of daily values (from which annual maxima can be computed) for each massif60

and every 300 m of elevation between 600 m and 3600 m (Vernay et al., 2019). In order to properly account for the specific

statistical nature of maximal daily snowfall, our methodology relies on non-stationary extreme value models that depend both

on elevation and time. Specifically, for each massif and four ranges of elevations (below 1000 m, 1000-2000 m, 2000-3000 m

and above 3000 m), temporal trends in 100-year return levels are estimated with a model selected on the basis of the Akaike

information criterion.65

2 Snowfall data

We study annual maxima of daily snowfall in the French Alps, which are located between Lake Geneva to the north and the

Mediterranean Sea to the south (Fig. 1). This region is typically divided into 23 mountain massifs of about 1000 km2.

The SAFRAN reanalysis (Durand et al., 2009; Vernay et al., 2019) combines large scale reanalyses and forecasts with in situ

meteorological observations to provide snowfall data available for each massif from August 1958 to July 2019. We consider70

annual maxima of daily snowfall centred on the winter season, e.g. the annual maxima for the year 1959 correspond to the

maxima from the 1st of August 1958 to the 31st of July 1959. Thus, we study annual maxima from 1959 to 2019.

The SAFRAN reanalysis focuses on the elevation dependency of meteorological conditions. Indeed, this reanalysis is not

produced on a regular grid, but provides data for each massif every 300 m of elevation. As illustrated in Figure 1, we consider

four ranges of elevation: below 1000 m, between 1000 m and 2000 m, between 2000 m and 3000 m, and above 3000 m. For75
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instance, the maxima for the range "below 1000 m" correspond to the maxima at 600 m and the maxima at 900 m. We note

that for each massif, we do not have any maxima above the top elevation of the massif.

(a)

(c) (d)

(b)
(e)

Figure 1. (a, b, c, d) Time series of annual maxima of daily snowfall from 1959 to 2019 for the Vanoise massif (purple region) clustered by

the four ranges of elevations considered. (e) Topography and delineation of the 23 massifs of the French Alps (Durand et al., 2009).

The SAFRAN reanalysis has been both evaluated directly with in situ temperature and precipitation observations and in-

directly with various snow depth observations compared to snow cover simulations of the model Crocus driven by SAFRAN

atmospheric data (Durand et al., 2009; Vionnet et al., 2016; Quéno et al., 2016; Revuelto et al., 2018; Vionnet et al., 2019).80

3 Method

3.1 Statistical distribution for annual maxima

Following extreme value theory (Coles, 2001), we model annual maxima of daily snowfall with the generalized extreme

value (GEV) distribution. Indeed theoretically, as the central limit theorem motivates asymptotically sample means modelling

with the normal distribution, the Fisher–Tippett–Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) encourages85
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asymptotically sample maxima modelling with the GEV distribution. In practice, if Y represents an annual maxima, we can

assume that Y ∼ GEV(µ,σ,ξ), which implies the following:

P (Y ≤ y) =





exp[−(1 + ξ y−µσ )
− 1
ξ

+ ] if ξ 6= 0 and where u+ denotes max(u,0),

exp[−exp(−y−µσ )] if ξ = 0, in other words Y ∼ Gumbel(µ,σ).
, (1)

where the three parameters are: the location µ, the scale σ > 0, and the shape ξ. The GEV distribution encompasses three

sub-families of distribution called reversed Weibull, Gumbel and Fréchet, which correspond to ξ < 0, ξ = 0, ξ > 0, respectively.90

3.2 Elevational-temporal models

We consider non-stationary models that depend both on elevation and time. Such models combine a stationary random com-

ponent (a fixed extreme value distribution, e.g. GEV distribution) with non-stationary deterministic functions that map each

covariate to the changing parameters of the distribution (Montanari and Koutsoyiannis, 2014). Specifically, for each massif and

each range of elevation (below 1000 m, 1000-2000 m, 2000-3000 m and above 3000 m), if Yz,t represents an annual maxima95

at the elevation z (within one of the four ranges of elevation) for the year t (between 1959 and 2019), we assume that:

Yz,t ∼ GEV(µ(z, t),σ(z, t), ξ(z)). (2)

As illustrated in Table 2, we consider eight models that verify Equation (2). For a modelM, we denote as θM the set of

parameters of µ(z, t),σ(z, t) and ξ(z). Following a preliminary analysis with pointwise distributions (Sect. 4.1), we consider

models with a location and a scale parameters that vary linearly w.r.t. elevation. Then, the shape parameter is either constant or100

linear w.r.t. elevation. Finally, the location and/or the scale can vary linearly with time. As shown in Table 2, we assume that

the temporal and elevational effect are separable inside each range of elevation. Thus, we do not consider models with cross

terms, i.e. terms involving both the elevation and the years such as z× t. We discuss this assumption in Sect. 5.1.

First, models are fitted with the maximum likelihood method. Let y = (yz1,t1 , ...,yz1,tM , ...,yzN ,t1 , ...,yzN ,tM ) represents

annual maxima from year t1 to tM and for the range of elevations containing z1, ...,zN for a given massif (Sect. 2). We105

classically assume that maxima are conditionally independent given θM. For each model M, we compute the maximum

likelihood estimator θ̂M which corresponds to the parameter θM that maximizes the likelihood p(y|θM), where p(y|θM) =
∏
z

∏
t
∂P (Yz,t≤yz,t)

∂yz,t
.

Then, we select the model with the minimal Akaike information criterion (AIC) for each massif and range of elevations.

Indeed, AIC is the best criterion in a non-stationary context with small sample sizes (Kim et al., 2017). AIC equals 2×[#θM−110

p(y|θ̂M)] where #θM is the number of parameters for the model M. Thus, minimizing the AIC corresponds to selecting

models that both have few parameters, i.e. low #θM, and that fit well the data, i.e. high p(y|θ̂M). Goodness-of-fit is assessed

with Q-Q plots and show a good fit for the selected models (App. A).
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Temporal stationarity Model name µ(z, t) σ(z, t) ξ(z) # θM

Stationary
M0

µ0 +µz × z σ0 +σz × z
ξ0 5

Mξz ξ0 + ξz × z 6

Non-stationary
Mµt

µ0 +µz × z+µt× t σ0 +σz × z
ξ0 6

Mµt,ξz ξ0 + ξz × z 7

Non-stationary
Mσt

µ0 +µz × z σ0 +σz × z+σt× t
ξ0 6

Mσt,ξz ξ0 + ξz × z 7

Non-stationary
Mµt,σt

µ0 +µz × z+µt× t σ0 +σz × z+σt× t
ξ0 7

Mµt,σt,ξz ξ0 + ξz × z 8
Table 2. Elevational-temporal models considered rely on the GEV distribution. For the elevational non-stationarity, the location and the scale

parameters vary linearly with the elevation z, while the shape is either constant or linear with z. For temporal non-stationary models, the

location and/or the scale vary linearly with time t.

3.3 Return levels

The T -year return level, which corresponds to a quantile exceeded each year with probability p= 1
T is the classical metric115

to quantify hazards of extreme events (Coles, 2001; Cooley, 2012). We set p= 1
100 = 0.01 as it corresponds to the 100-year

return period which is widely used for hazard mapping and the design of defense structure in France, notably for snow-related

hazards (Eckert et al., 2010). LetM denote a model from Table 2. Then, the associated return levels yp conditionally on the

parameter θ̂M, depend on the elevation z and the year t.

P (Yz,t ≤ yp(z, t)|θ̂M) = 1− p↔ yp(z, t) = µ(z, t)− σ(z, t)
ξ(z)

[1− (− log(1− p))−ξ(z)]. (3)120

We study trends in return levels. For any considered model, the time derivative of the return level ∂yp(z,t)∂t is constant and

quantifies the yearly change of return level. Thus, for each range of elevations, a massif is said to have an increasing trend

if the associated return level has increased, i.e. if ∂y0.01(z,t)
∂t > 0. A massif has a decreasing trend if ∂y0.01(z,t)

∂t < 0. In the

result section, we display changes of 100-year return levels between 1959 and 2019, i.e. over the last 60 years, which equals

60× ∂y0.01(z,t)
∂t . If ∂y0.01(z,t)

∂t 6= 0, i.e. if the selected model is temporally non-stationary, we compute the significance of the125

trend with a semi-parametric bootstrap resampling approach (App. B). We generate B = 1000 bootstrap samples using the

parameter θ̂M. For each bootstrap sample i, we compute the time derivative of the return level ∂yp(z,t)∂t

(i)
. Finally, a massif

with an increasing trend is said to have a significant trend if p̂(∂y0.01(z,t)∂t > 0|θ̂M) = 1
B

∑B
i=1 1 ∂y0.01(z,t)

∂t

(i)
>0
> 1−α, where

α= 5% is the significance level. In other words, it is significantly increasing when the percentage of bootstrap samples for

which the return levels are increasing is above the threshold 1−α. Likewise, a massif has a significant decreasing trend if130

p̂(∂y0.01(z,t)∂t < 0|θ̂M)> 1−α.
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3.4 Workflow

In Section 4.1, we analyse changes of pointwise distribution of annual snowfall maxima with elevation in the 23 massifs of

the French Alps, which helped us defining the eight elevational-temporal models considered (Sect. 3.2). Specifically, we fit a

pointwise GEV distribution with the maximum likelihood method for each massif every 300 m of elevation from 600 m to135

3600 m. We exclude physical implausible distributions, i.e. ξ /∈ [−0.5,0.5] (Martins and Stedinger, 2000). Then, we compute

elevation gradients for the three GEV parameters and the 100-year return level with a linear regression.

In Section 4.2, we compare pointwise distributions with our approach based on piecewise elevational-temporal models. We

present the elevational-temporal models selected in each massif for each range of elevations (below 1000 m, 1000-2000 m,

2000-3000 m and above 3000 m) obtained with the methodology described in Section 3.2. First, we fit the eight models from140

Table 2 with the maximum likelihood method. Then, we select one model with the AIC. Finally, if the selected model is

temporally non-stationary, we assess the significance of the trend using a semi-parametric bootstrap resampling approach with

a significance level α= 5% (Sect. 3.3) .

In Section 4.3, we present for each massif and range of elevations the temporal trends in 100-year return levels obtained

from selected models. We compute 100-year return levels in 2019 and its changes between 1959 and 2019 with the selected145

elevational-temporal models (Sect. 3.3). For each range of elevations, a massif has an increasing (resp. decreasing) trend if the

associated return level has increased (resp. decreased).

4 Result

4.1 Pointwise distribution for each elevation.

According to pointwise fits, the location and scale parameters increase linearly with elevation (Fig. 2 a, b). R2 coefficients150

are always larger than 0.8, except for the Bauges massif for the scale parameter (Fig. 3). The average elevation gradient for

the location and the scale parameters are equal to 2.1 kg m−2/100 m and 0.39 kg m−2/100 m, respectively (Fig. 3 a, b). In

particular, this linear augmentation is also valid for any range of elevations considered to fit elevational-temporal models.

Thus, as explained in Section 3.2, we assume for elevational-temporal models a location and a scale parameters that vary

linearly w.r.t. elevation. On the other hand, changes of the shape parameter rarely follow a linear relationship with elevation155

between 600 m and 3600 m. Indeed, only six massifs have R2 coefficients larger than 0.5 (Fig. 3). However, as illustrated in

Figure 2 (c), it does not preclude the shape parameter to vary linearly with the elevation locally, i.e. within an elevation range.

Therefore, as explained in Section 3.2, we assume for elevational-temporal models that the shape parameter is either constant

or linear w.r.t. elevation.

In Figure 2 we show the change of 100-year return levels with elevation, while in Figure 3 we display their elevation gradi-160

ents. Return levels augment linearly with elevation, which is confirmed by R2 coefficients always larger than 0.8. The largest

return levels and elevation gradients correspond to the Mercantour (Southern Alps) and Haute-Maurienne massif (eastern part

of the French Alps).
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(a) (b)

(d)(c)

Figure 2. Changes of GEV parameters (a, b, c) and of 100-year return levels (d) with the elevation for the 23 massifs of the French Alps.

GEV distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation.

4.2 Elevational-temporal models for each range of elevations

Figure 4 illustrates selected models for each massif and each range of elevations. The most selected model is a temporally165

non-stationary modelMµt,σt , which is selected for 54% of the massifs, and is significant for 32% of the massifs, respectively.

Then, the temporally stationary model M0 and Mζz have been selected for 28% and 1% of the massifs. The remaining

temporally non-stationary models have been selected for 17% of massifs. We notice that the four most represented temporally
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(a) (b)

(d)(c)

Figure 3. Elevation gradients for the GEV parameters (a, b, c) and 100-year return levels (d) for the 23 massifs of the French Alps. GEV

distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation. Elevation gradients are estimated

with a linear regression. The R2 coefficient is written in black for each massif.

non-stationary models have a linearity w.r.t. the years t for the scale parameter (which impacts both the mean and variance of

the GEV distribution), potentially indicating that often both the intensity and the variance of maxima are changing over time.170

Furthermore, we observe that the shape parameter values remain between −0.4 and 0.4, which is a physically acceptable

range (Martins and Stedinger, 2000). Except a majority of Weibull distributions (massifs displayed in green in Figure 4) at low

elevations in the northwest of the French Alps, and a clear majority of Fréchet distributions (yellow massifs) between 2000 m

and 3000 m, we do not find any clear spatial/elevation patterns for the shape parameter.
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Figure 4. Selected models and shape parameter values for each range of elevations in the 23 massifs of the French Alps. We write the suffix

of the name of each selected model on the map, e.g. we write µt,σt for the modelMµt,σt . We underline the suffix when the model has a

significant trend (Sect. 3.3). Hatched grey areas denote missing data, e.g. when the elevation is above the top elevation of the massif. Shape

parameter values are computed at the middle elevation for each range, e.g. at 1500 m for the range 1000-2000 m.

Figure 5 exemplifies the differences between pointwise distribution and our approach based on piecewise elevational-175

temporal models. We consider annual maxima from 600 m to 3600 m of elevation for the Vanoise massif (Sect. 2). First,
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our approach makes it possible to interpolate GEV parameter values (and thus to deduce 100-year return levels) for each range

of elevations (blue line) rather than having point estimate (green dot). Furthermore, it reduces confidence interval for return

levels (shaded areas) which were computed with an approach based on semi-parametric bootstrap resampling (App. B). Fi-

nally, our approach accounts for temporal trends. For example, for the Vanoise massif above 3000 m, the selected model is a180

temporally non-stationary model (Fig. 4) with an increasing trend in return levels (Fig. 8). This explains why return levels in

2019 estimated from the elevational-temporal model exceed return levels estimated from the pointwise distribution.

(a) (b)

(c) (d)

Figure 5. Comparison of pointwise distributions with our approach based on piecewise elevational-temporal models for the Vanoise massif.

GEV parameters (a, b, c) and 100-year return levels with their 80% confidence interval (d) are shown from 600 m to 3600 m of elevation.
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4.3 Temporal trends in return levels

Figure 6 shows that both increasing and decreasing trends in 100-year return levels are found for all elevation ranges. We also

observe that a majority of trends are decreasing below 2000 m and increasing above 2000 m. If we analyse only significant185

trends the elevation pattern remains the same. On one hand, more than 30% of massifs are significantly decreasing below 2000

m: 40% below 1000 m, and 30% for the range 1000-2000 m. On the other hand, roughly 30% of massifs are significantly

increasing above 2000 m: slightly less than 30% for the range 2000-3000 m, and slightly less than 40% above 3000 m.

Figure 6. Percentages of massifs with significant/non-significant trends in 100-year return levels of daily snowfall for each range of elevation.

A massif has an increasing/decreasing trend if the 100-year return level of the selected elevational-temporal model has increased/decreased.

In Figure 7, we show distributions of changes and relative changes of 100-year return levels between 1959 and 2019. We find

a temporal increase of 100-year return levels between 1959 and 2019 equal to +23% (+32 kg m−2) on average at 3500 m, and a190

decrease of -10% (−7 kg m−2) on average at 500 m. For intermediate elevations, i.e. between 1000 m and 3000 m, we observe

that the distribution of changes and of relative changes, remain roughly negative (decrease) at 1500 m, and positive (increase)

at 2500 m. This result holds for all massifs, for the subset of massifs with a selected model temporally non-stationary, and for

the subset with a selected model temporally non-stationary and significant.

In Figure 8, we display the change of 100-year return levels between 1959 and 2019 for each range of elevations. We195

observe a spatially contrasted pattern, which is exemplified at 2500 m: most decreasing trends are located in the north, while

most increasing trends are located in the south. We discuss this pattern in Sect. 5.4.

In Figure 9, we display the return level in 2019 for each range of elevations. Combining Figures 8 and 9 enables to pinpoint

massifs with both high return levels in 2019 and with an increasing trend. For instance, at 2500 m, the Haute-Maurienne massif
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(b)(a)

Figure 7. (a) Distributions of changes of 100-year return levels between 1959 and 2019 for one elevation in each range of elevation. The

mean and the median are displayed with a green triangle and an orange line, respectively. (b) Same as (a) but for the relative changes.

Distributions of changes are computed at the middle elevation for each range, e.g. at 1500 m for the range 1000-2000 m.

has one of the highest 100-year return levels in 2019 (185 kg m−2), but it is decreasing with time. On the other hand, at 2500200

m and 3500 m, most massifs in the south have high 100-year return levels values in 2019 and increasing trends.

5 Discussion.

5.1 Methodological considerations

We discuss the statistical models considered to estimate temporal trends in 100-year return levels of daily snowfall.

For short time series of annual maxima, return levels uncertainty largely depend on the uncertainty of the shape parameter205

(Koutsoyiannis, 2004). In order to reduce the uncertainty of the GEV parameters, models are often fitted using the information

from several time series e.g. using regionalization methods (Hosking et al., 2009) or using scaling relationships between

different aggregation durations (Blanchet et al., 2016). In this work, we fit models to time series from several elevations. In the

literature, elevation is often not treated as a covariate, but rather accounted for by a spatial distance (Blanchet and Davison,

2011; Gaume et al., 2013; Nicolet et al., 2016). In practice, as illustrated in Fig. 5, we compute return levels uncertainty210

for all the massifs and find that elevational-temporal models effectively decrease confidence intervals compared to pointwise

distributions fitted to one time series.

Then, we fit the models to at least two time series, i.e. at least from two elevations. As illustrated in Figure 1, for each

range of elevations, we always have more than two time series, i.e. more than 100 maxima to estimate 100-year return levels.

However, in practice annual maxima from consecutive elevations are often dependent. At low elevations, four times series215

contain zeros, i.e. years without any snowfall, which may lead to misestimation for the models. A potential solution would be
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Figure 8. Changes of 100-year return levels of daily snowfall between 1959 and 2019 for each range of elevations. The corresponding

relative changes is written on the map. Hatched grey areas denote missing data, e.g. when the elevation is above the top elevation of the

massif. Changes of return levels are computed at the middle elevation for each range, e.g. at 1500 m for the range 1000-2000 m

to rely on a mixed discrete–continuous distribution: a discrete distribution for the probability of year without any snowfall, and

a continuous GEV distribution for the annual maxima of snowfall. However, this would require at least one additional parameter
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Figure 9. 100-year return levels in 2019 of daily snowfall for each range of elevations. 100-year return levels are both illustrated with colours

and written on the map. Hatched grey areas denote missing data, e.g. when the elevation is above the top elevation of the massif. Return

levels are computed at the middle elevation for each range, e.g. at 1500 m for the range 1000-2000 m

for the discrete distribution, and even more if we wish to model some non-stationarity. In practice, to avoid overparametrized

models, we removed one time series which had more than 10% of zeros.220
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Afterwards, for different ranges of elevation containing at most three consecutive elevations, we fit the models using all

corresponding time series. For each model, this ensures that the temporal non-stationarity can be assumed to not depend on

the elevation. Indeed, initially we intended for each massif to fit a single model to time series from all elevations. However, to

account for decreasing trends at low elevations and increasing trends at high elevations, this lead to complex overparametrized

models that often did not fit well. We decided to consider a piecewise approach, i.e. simpler models fitted to ranges of consec-225

utive elevations at most separated by 900 m (Fig. 1, Fig. 5). This ensures that we can assume that the temporal non-stationarity

(no trend or decreasing/increasing trend) is shared between all elevations from a same range. Otherwise, we observe that annual

maxima from consecutive altitudes are dependent (Fig. 1). We did not account for this dependence in our statistical model.

Instead, we assumed that maxima are conditionally independent given the vector of parameters θM (Sect. 3.2).

Finally, for each range of elevations, we consider models with a temporal non-stationarity only for the location and scale230

parameter. Indeed, in the literature, a linear non-stationarity is considered sometimes only for the location parameter (Fowler

et al., 2010; Tramblay and Somot, 2018) but more often both for the location and the scale (or log-transformed scale for

numerical reasons) parameters (Katz et al., 2002; Kharin and Zwiers, 2004; Marty and Blanchet, 2012; Wilcox et al., 2018).

Otherwise, the shape parameter is typically considered constant in the literature, and we followed this approach.

5.2 Elevation gradients for pointwise fits235

In Figure 3, we observe that elevation gradients computed from pointwise fits are comparable with the literature, i.e. with

Gaume et al. (2013) that compute gradients from 40 weather stations in the French Alps mostly below 2000 m, and Blanchet

et al. (2009) that rely on 247 stations in the Swiss Alps including automatic stations between 1600 and 3000 m. For the scale

parameter we estimate an average gradient of 0.39 kg m−2/100 m while these studies respectively estimate 0.6 kg m−2/100 m

and 0.3 kg m−2/100 m. For the shape parameter, Blanchet et al. (2009) also observe that it is almost not influenced by the240

elevation. For the location parameter we estimate an average gradient equal to 2.1 kg m−2/100 m, which is slightly larger than

the estimation of these studies : 2 kg m−2/100 m and 1.5 kg m−2/100 m respectively.

5.3 Implication of the temporal trends in 100-year return levels

In the French Alps, settlements in massifs with a strong increase of 100-year return levels between 1959 and 2019, e.g. red

massifs correspond to increase ≥+50 kg m−2 in Figure 8, should ensure that protective measures can cope with this increase.245

Hopefully, this might concern few settlements as such strong increases are always located above 2000 m. However, this might

impact ski resorts which should ensure that the design of avalanche protections take this change into account. Furthermore,

to update structure standards for ground snow load (Biétry, 2005), we should account both for this increasing trend in annual

maxima of daily snowfall, and trends in annual maxima of ground snow loads (Le Roux et al., 2020). Indeed, most known snow

load destructions result from such intense and short snow events, sometimes combined with liquid precipitation. In general, in250

mountainous regions around the French Alps, if the past trends continue into the future, for extreme snowfall we can expect

decreasing trends below 1000 m, and increasing trends above 3000 m, as this agrees both with our results and the literature

(Tab. 1).
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Lowland regions around the Mediterranean sea that expect an increase in extreme precipitation should have efficient pro-

tection measures against both rain and snow related hazards. Indeed, such regions are often ill-equipped for the snow due to255

the scarcity of snow related events. For instance, extreme snowfall over Roussillon, a Mediterranean coastal lowland, caused

major damages in 1986 (Vigneau, 1987), while in 2021 heavy snowfall over Spain caused billions of damages (The New York

Times, 2021).

In general, our results confirm that the expected impact of a warming climate is two-fold. First, in cold areas, i.e. at high

latitude and/or high elevation, we observe an increase of extreme snowfall. Then, in comparatively warmer areas, i.e. at mid-260

latitude and low elevation, we report a decrease of moderate extreme snowfall, e.g. mean annual maxima. However, intense

extreme snowfall, e.g. 100-year return level, might still potentially increase if temperatures are sometimes below 0oC.

5.4 Hypothesis for the contrasted pattern for changes of 100-year return levels

In Figure 8, at 2500 m, we find a spatially contrasted pattern for changes of 100-year return levels of snowfall: most decreasing

trends are located in the north, while most increasing trends are in the south.265

This change contradicts expectations based on the climatological differences between the north and south of the French Alps.

Indeed, since the north is climatologically colder than the south both in winter and summer (Fig. 5 of Durand et al. 2009), we

would have expected the inverse pattern for an intermediate elevation, i.e. increasing trends in the north, and decreasing trends

in the south. Indeed, extreme snowfall stems from extreme precipitation occurring in a range of optimal temperatures slightly

below 0oC (O’Gorman, 2014; Frei et al., 2018). Thus, under global warming, we would have expected for an intermediate270

elevation that the probability to be in the range of optimal temperatures would be increasing in the north (because mean

temperatures would shift toward the optimal range) while decreasing in the south (because temperatures would be shifting

away from the optimal range). Therefore, we would have observed an increase in extreme snowfall in the north, and a decrease

in the south.

We believe that dynamical changes, i.e. heterogeneous changes of extreme precipitation in the French Alps, may have gen-275

erated this contrasted pattern. The literature confirms that changes of extreme precipitation are not homogeneous. For instance,

we observe that trends in daily maxima of winter precipitation, which may generate heavy snowfall, are stronger in the south

(+20-40% per century) compared to the north (from -10% to +20% per century) of the French Alps (Fig. 7 of Ménégoz et al.

2020). This observation might be due to a stronger increasing trend in extreme precipitation for the Mediterranean circula-

tion than for the Atlantic circulation. Indeed, precipitation maxima in the north of the French Alps are frequently triggered280

by the Atlantic circulation, while maxima in the south are often due to the Mediterranean circulation (Blanchet et al., 2020).

Furthermore, increasing trends in extreme snowfall have already been observed at the proximity of the Mediterranean sea. For

example, Faranda (2019) identified a certain number of Mediterranean countries showing positive changes of snowfall maxima.

D’Errico et al. (2020) proposes a physical explanation of this phenomenon: the Mediterranean sea is warming faster than any

other ocean, which enhances convective precipitation and favour heavy snowfalls during cold spell events.285

In practice, this increasing trend in extreme snowfall in the south should be temporary. Indeed, with climate change, tem-

peratures are expected to shift further away from the optimal range of temperatures for extreme snowfall. Thus, in the long
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run, extreme snowfall is expected to decrease as the increase of extreme precipitation shall not compensate for the decreasing

probability to be close to the optimal range of temperatures.

6 Conclusions and outlooks290

We estimate temporal trends in 100-year return levels of daily snowfall for several ranges of elevation based on the SAFRAN

reanalysis available from 1959 to 2019 (Durand et al., 2009). Our statistical methodology relies on non-stationary extreme

value models that depend both on elevation and time. Our results show that a majority of trends are decreasing below 2000 m

and increasing above 2000 m. Quantitatively, we find an increase of 100-year return levels between 1959 and 2019 equal to

+23% (+32 kg m−2) on average at 3500 m, and a decrease of -10% (−7 kg m−2) on average at 500 m. For the four elevation295

ranges, we find both decreasing and increasing trends depending on location. In particular, we observe a spatially contrasted

pattern, exemplified at 2500 m: 100-year return levels have decreased in the north of the French Alps while increased in the

south. In the discussion, we highlight that this pattern might be related to known increasing trends in extreme snowfall at the

proximity of the Mediterranean Sea.

Many potential extensions of this work could be considered. First, reanalyses are increasingly available at the European300

scale (e.g. Soci et al. 2016), which could be used for extending this work to a wider geographical scale. In this case, instead of

considering close massifs as spatially independent, we believe that our methodology may benefit from an explicit modelling

of the spatial dependence (Padoan et al., 2010). Then, climatic projections could enable to explore temporal trends up to the

end of the twenty-first century. In these circumstances, it might be more relevant to use global mean surface temperature as a

temporal covariate to combine ensembles of climate models. In practice, projected temporal trends of extreme snowfall shall305

help to design adequate building standards against snowfall related hazards such as avalanches or roof collapse due to snow

loads. Finally, temperatures below the rain-snow transition temperature, i.e. roughly below 0oC, may tend to be rare in some

mid-latitude and low-elevation areas. Therefore, in these cases, in addition to directly studying trends in snowfall extreme, we

should focus on trends in the compound risk of cold-wet events (De Luca et al., 2020).

Appendix A: Quantile-quantile plots310

A quantile-quantile (Q-Q) plot is a standard diagnosis tools based on the comparison of empirical quantiles (computed from the

empirical distribution) and theoretical quantiles (computed from the expected distribution). For non-stationary extreme value

models, the approach is two-fold (Coles, 2001; Katz, 2012). First, we transform observations into residuals with a probability

integral transformation fGEV→Standard Gumbel. Then, we construct a Q-Q plot to assess if the residuals follow a standard Gumbel

distribution. If the Q-Q plot reveals a good fit it means that the non-stationary extreme value model has a good fit as well.315
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We start by transforming the observations yz1,t1 , ...,yz1,tM , ...,yzN ,t1 ...,yzN ,tM into residuals. Let Yz,t ∼ GEV(µ(z, t),σ(z, t), ξ(z))

with parameter θM. By definition of the probability integral transformation fGEV→Standard Gumbel, we obtain that:

fGEV→Standard Gumbel(Yz,t;θM) =
1
ξ(z)

log(1 + ξ(z)
Yz,t−µ(z, t)

σ(z, t)
)∼ Gumbel(0,1). (A1)

The transformed observations, a.k.a. residuals, are denoted as εz,t = fGEV→Standard Gumbel(yz,t;θM). Afterwards, we con-

struct a Q-Q plot to assess if the residuals follow a standard Gumbel distribution. On one hand, the N ×M empirical quan-320

tiles correspond to the ordered values of the residuals εz1,t1 , ..., εz1,tM , ..., εzN ,t1 ..., εzN ,tM . On the other hand, we compute

the corresponding N ×M theoretical quantiles, which are the quantile i
N×M+1 of the standard Gumbel distribution, where

i ∈ {1, ...,N ×M}.
In Figure A1, we display Q-Q plots for the selected model for the time series displayed in Figure 1. We observe that they

show a good fit, as the points stay close to the line. In general, most retained models show a good fit.325

(a)

(c) (d)

(b)

Figure A1. Q-Q plots of the selected elevational-temporal models for the Vanoise massif for the four ranges of elevations considered (see

Fig. 1 for the time series). (a) Below 1000 m. (b) Between 1000 m and 2000 m. (c) Between 2000 m and 3000 m. (d) Above 3000 m.
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Appendix B: Semi-parametric bootstrap method

In the context of maximum likelihood estimation, uncertainty related to return levels can be evaluated with the delta method,

which quickly provides confidence intervals both in the stationary and non-stationary cases (Coles, 2001; Gilleland and Katz,

2016). However, due to the dependence between maxima from consecutive elevations (Fig. 1), we decided to compute confi-

dence interval with a bootstrap resampling method (Efron and Tibshirani, 1993). This resampling method allows to estimate330

the uncertainties resulting from in-sample variability. In this article, we rely on a semi-parametric bootstrap resampling method

adapted to non-stationary extreme models (Kharin and Zwiers, 2004; Sillmann et al., 2011).

We generate B = 1000 bootstrap samples using the parameter θ̂M. For each bootstrap sample i, the semi-parametric

bootstrap method is four-fold. First, as explained in App. A, we compute the residuals εz1,t1 , ..., εz1,tM , ..., εzN ,t1 ..., εzN ,tM .

Then, from these residuals we draw with replacement a sample of size M ×N . We denote these bootstrapped residuals as335

ε̃z1,t1 , ..., ε̃z1,tM , ..., ε̃zN ,t1 ..., ε̃zN ,tM . Afterwards, we transform these bootstrapped residuals into bootstrapped annual maxima

as follows: ỹz,t = f−1
GEV→Standard Gumbel(ε̃z,t;θM). Finally, we estimate the parameter θ̂(i)

M of modelMwith the bootstrapped an-

nual maxima ỹz1,t1 , ..., ỹz1,tM , ..., ỹzN ,t1 ..., ỹzN ,tM . To sum up, this bootstrap procedure provides a set {θ̂(1)
M , ..., θ̂

(i)
M, ..., θ̂

(B)
M }

of B parameters for the modelM.

In practice, we rely on this set of parameters to obtain 80% confidence interval for 100-year return levels (Fig. 5), or for340

time derivative of 100-year return levels (Sect. 3.3). For instance, in the latter case we have that p̂(∂y0.01(z,t)∂t > 0|θ̂M) =
1
B

∑B
i=1 1 ∂y0.01(z,t)

∂t

(i)
>0

, where ∂y0.01(z,t)
∂t

(i)
is the time derivative of 100-year return levels for the parameter θ̂(i)

M.
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