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Abstract. The Northeast Greenland Ice Stream (NEGIS) is the largest active ice stream on the Greenland Ice Sheet (GrIS) and a

crucial contributor to the ice-sheet mass balance. To investigate the ice-stream dynamics and to gain information about the past

climate, a deep ice core is drilled in the upstream part of the NEGIS, termed the East Greenland Ice-Core Project (EastGRIP).

Upstream flow can introduce climatic bias in ice cores through the advection of ice deposited under different conditions further

upstream. This is particularly true for EastGRIP due to its location inside an ice stream on the eastern flank of the GrIS. Under-5

standing and ultimately correcting for such effects requires information on the atmospheric conditions at the time and location

of snow deposition. We use a two-dimensional Dansgaard–Johnsen model to simulate ice flow along three approximated flow

lines between the summit of the ice sheet (GRIP) and EastGRIP. Isochrones are traced in radio-echo-sounding images along

these flow lines and dated with the GRIP and EastGRIP ice-core chronologies. The observed depth-age relationship constrains

the Monte-Carlo method which is used to determine unknown model parameters. We calculate backward-in-time particle tra-10

jectories to determine the source location of ice found in the EastGRIP ice core and present estimates of surface elevation and

past accumulation rates at the deposition site. Our results indicate that increased snow accumulation with increasing upstream

distance is predominantly responsible for the constant annual layer thicknesses observed in the upper part of the ice column at

EastGRIP and the inverted model parameters suggest that basal melting and sliding are important factors determining ice flow

in the NEGIS. The results of this study form a basis for applying upstream corrections to a variety of ice-core measurements,15

and the inverted model parameters are useful constraints for more sophisticated modelling approaches in the future.

Copyright statement.

1 Introduction

The East Greenland Ice-Core Project (EastGRIP) is the first attempt to retrieve a deep ice core inside an active ice stream. The

drill site is located in the upstream part of the Northeast Greenland Ice Stream (NEGIS, Fahnestock et al., 1993), which is a20
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substantial contributor to the Greenland Ice Sheet (GrIS) mass balance (Khan et al., 2014) and accounts for around 12 % of its

total ice discharge (Rignot and Mouginot, 2012). Large-scale ice-sheet models are essential tools to anticipate the future devel-

opment of the NEGIS and its potential impact on the stability of the GrIS (Joughin et al., 2001; Khan et al., 2014; Vallelonga

et al., 2014). However, results obtained from such models often show a significant deviation from observed surface velocitites

in the NEGIS and its catchment area (Aschwanden et al., 2016; Mottram et al., 2019). In particular, the high ice-flow velocities25

in the upstream area of the NEGIS and the clearly defined shear margins are difficult to reproduce with ice-flow models (Beyer

et al., 2018). A recent study by Smith-Johnsen et al. (2020a) showed, that the high surface velocities in the onset region of

the ice stream could be reproduced with their model, using an exceptionally high and geologically unfeasible geothermal heat

flux (Bons et al., 2021). This indicates that additional, yet unknown processes must facilitate ice flow in the NEGIS and that

the driving mechanisms governing ice flow are still not understood well enough. The EastGRIP ice core sheds some light on30

the key processes by revealing unique information about ice dynamics, stress regimes, temperatures and basal properties, all of

which are crucial components in ice-flow models.

Chemical and physical properties measured in ice cores reflect the atmospheric conditions at the time and location of snow

deposition (e.g. Alley et al., 1993; Petit et al., 1999; Andersen et al., 2004; Marcott et al., 2014). Most of the deep drilling

projects in Greenland and Antarctica are located in slow-moving areas at ice domes or near ice divides (e.g. GRIP (Dansgaard35

et al., 1982), Dome Fuji (Ageta et al., 1998), Dome C (Parrenin et al., 2007)), so the ice core can be expected to represent cli-

mate records from this fixed location. For ice cores drilled on the flank of an ice sheet (e.g. GISP2 (Meese et al., 1997), Vostok

(Lorius et al., 1985; Petit et al., 1999)) or in areas with higher flow velocities (e.g. Camp Century (Dansgaard and Johnsen,

1969), Byrd (Gow et al., 1968), NorthGRIP (Andersen et al., 2004), EDML (Barbante et al., 2006), WAIS Divide (Fudge et al.,

2013), NEEM (NEEM Community members et al., 2013)), the ice found at depth was originally deposited further upstream40

and advected with the horizontal flow.

The spatial variation in accumulation rate, surface temperature and atmospheric pressure can introduce climatic imprints in

the ice-core record which stem from the advection of ice deposited under different conditions further upstream. The ice core

signal is thus a combination of temporal and spatial variations in climatic components (Fudge et al., 2020). The magnitude

of these so-called upstream effects depends on the ice-flow velocity, spatial variability of the precipitation and the sensitivity45

to atmospheric variations of the quantity under consideration. While well-mixed atmospheric gases, such as carbon dioxide

or methane, and dry-deposited impurities are barely affected (Fudge et al., 2020), properties extracted from the ice phase can

show significant bias. Affected measurements include aerosols and cosmogenic isotopes, such as 10Be (Yiou et al., 1997; Finkel

and Nishiizumi, 1997; Raisbeck et al., 2007; Delaygue and Bard, 2011), the isotopic composition of water (Dansgaard, 1964;

Jouzel et al., 1997; Aizen et al., 2006), the total air content (Raynaud et al., 1997; Eicher et al., 2016) and ice temperatures50

(Salamatin et al., 1998). Processes such as vertical thinning of the ice column and firn densification are also influenced by

upstream effects and have consequences on the annual layer thicknesses (Dahl-Jensen et al., 1993; Rasmussen et al., 2006;

Svensson et al., 2008) and the age difference between ice and the enclosed air (Herron and Langway, 1980; Alley et al., 1982).

Upstream effects in the EastGRIP ice core are expected to be particularly strong due to the fast ice flow in the upstream area

(57 ma-1 at EastGRIP, Hvidberg et al., 2020), the strong gradient in the accumulation rate across Greenland’s main ice ridge55
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(Burgess et al., 2010), and the increasing elevation towards the central ice divide (Simonsen and Sørensen, 2017). The correc-

tion of these effects in the EastGRIP ice core is necessary to interpret the ice-core measurements within the climatic context

and requires information on the conditions at the time and location of snow deposition.

Post-depositional deformation of isochrones observed in radio-echo-sounding (RES) images along flow lines provides in-

formation on ice-flow dynamics and can be used to reconstruct past and present flow characteristics. In this study, we use a60

vertically two-dimensional Dansgaard–Johnsen model to simulate the propagation and deformation of isochrones along three

approximated flow lines between the ice-sheet summit (GRIP) and EastGRIP. A Monte-Carlo method is used to determine the

unknown model parameters by minimizing the misfit between modelled and observed data. The latter includes the depth of

isochrones observed in RES images along the flow lines and a parameter αsur representing the sum of the horizontal strain rates

deduced from satellite based surface velocities. From the modelled velocity field, we calculate particle trajectories backwards65

in time to infer the source location of ice found in the EastGRIP ice core and estimate the accumulation rate at the time of

snow deposition. The source characteristics presented here form a basis to correct for upstream effects in various chemical and

physical quantities of the EastGRIP ice core. These corrections are important to remove any climatic bias in ice-core measure-

ments which are currently analyzed and will become available in the future. The inverted model parameters give insight into

basal properties and ice-flow dynamics along the flow lines and can be used to constrain more sophisticated numerical models70

of the NEGIS.

2 Data and methods

Snow layers deposited at the surface of ice sheets are buried with time and are deformed as a consequence of ice flow. While

these isochrones can be observed in RES images today, the ice-flow characteristics which shaped them are generally unknown.

This is a typical geophysical inverse problem and can be formulated as d = g(m), where the function g(m) represents the ice-75

flow model linking the model parameters (m) with the observed data (d). A variety of inverse methods exist to find the model

parameters which reproduce the observed data within their uncertainties. Here, we use a Markov Chain Monte-Carlo method

to determine the unknown parameters of a two-dimensional ice-flow model by minimizing the misfit between modelled and

observed isochrones and strain rates. This allows us to reconstruct the ice-flow characteristics in the past and to determine the

flow trajectories of the EastGRIP ice.80

In the coming sections we describe the data and methods underlying our results according to the work flow illustrated in Fig.

2. In Sect. 2.1 to 2.3 we explain how the isochrone depth-age relationship constraining the Monte-Carlo method was obtained.

This involves the selection of RES images approximating the EastGRIP flow line (Sect. 2.1), extending the existing chronology

of the EastGRIP ice core to the current drill depth (Sect. 2.2), and the tracing and dating of isochrones in the RES data (Sect.

2.3). In Sect. 2.4 the ice-flow model is described in detail and in Sect. 2.5 we elaborate on the Monte-Carlo method used for85

parameter sampling. The section numbers are displayed in the corresponding steps in Fig. 2.
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Figure 1. (a) Overview of past and ongoing deep ice-core drilling projects on the GrIS (surface elevation and Greenland contour lines by

Simonsen and Sørensen, 2017; Greene et al., 2017) and the outline of the study area. The NEGIS appears as a distinct feature in the surface

velocities (Joughin et al., 2018). It extends from the central ice divide to the northeastern coast, where it splits up into the three marine-

terminating glaciers 79N Glacier, Zachariae Isbræ and Storstrømmen Glacier. (b) The present-day EastGRIP flow line is derived from the

DTU_SPACE surface velocity product (Andersen et al., 2020). Due to the limited availability of radar data along the flow line, we construct

three approximate flow lines through a combination of various radar products (profile A–C) between GRIP and EastGRIP. Flow line B and C

lack data in the centre of the profiles, marked as a dashed line. The downstream parts of line A and B comprise the same radar profile, which

crosses the southern shear margin around 82 km upstream of EastGRIP.
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2.1 EastGRIP flow lines

Determining the exact flow line through the EastGRIP ice-core site is important to understand the flow history of the survey

area and enables us to reconstruct the location where the ice from the ice core was deposited at the ice-sheet surface. For

this, we use high-resolution satellite-based surface velocity products (e.g. Joughin et al., 2018; Gardner et al., 2020; Andersen90

et al., 2020, see supplementary material Fig. S1) to calculate the upstream flow path. Minor uncertainties and bias in these

data products affect along-flow tracing and lead to deviations between flow lines derived from different velocity maps. These

deviations become more pronounced with increasing distance from the starting point, as the uncertainties propagate along the

line and in general become larger in slow-moving areas of the ice sheet (Hvidberg et al., 2020). Due to the small bias, we

consider the DTU_SPACE (Andersen et al., 2020) line the most likely current flow line (Fig. 1b). Yet, there is no evidence95

that the present-day velocity field was the same in the past. A slight shift in the NEGIS shear margins or the central ice divide,

for instance, would have a large effect on the velocity field and, hence, the determination of the flow line of the EastGRIP ice

remains ambiguous.

RES data reveal the internal structure of glaciers and ice sheets and provide valuable information on the ice-flow character-

istics, particularly when recorded parallel to the ice flow. The electromagnetic waves used in RES are sensitive to contrasts in100

dielectric properties of the medium they propagate. In ice sheets, these contrasts arise through density variations in the upper-

most part of the ice column (Robin et al., 1969), changes in the crystal orientation fabric (Harrison, 1973), and impurity layers

such as volcanic deposits (Paren and Robin, 1975). The latter is the most common reflector type below the firn (Millar, 1982;

Eisen et al., 2006), and because it is related to layers deposited over a relatively short period of time, most internal reflection

horizons (IRHs) detected by RES can be considered isochrones.105

The availability of RES data in the study area is limited, and unfortunately, the flight lines generally do not follow the surface

velocity field. We have thus composed three approximated flow lines connecting the EastGRIP (75.63◦ N, 35.99◦ W, 2720 m)

and the GRIP (72.58◦ N, 37.63◦ W, 3230 m) drill sites from the available RES data sets (Fig. 1b). The radar data used in

this study (Table 1) were measured by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI,

Jansen et al., 2020; Franke et al., 2021b) and the Centre for Remote Sensing of Ice Sheets (CReSIS, 2020). The AWI data were110

recorded by an 8-antenna-element ultra-wideband radar system (MCoRDS5) mounted on the Polar 6 Basler BT-67 aircraft,

operating at a frequency range of 180–210 MHz (Franke et al., 2020, 2021b). The CReSIS radar data were measured by a

ICORDS 2 (1999) and a MCoRDS 2 (2012) radar system, mounted on a P3 aircraft, at a frequency range of 141.5–158.5 MHz

and 180–210 MHz, respectively. Details of the three radar systems are provided in Table 2.

The downstream parts of profile A and B consist of the same flight line, which passes through the EastGRIP drill site and in-115

tersects the southern shear margin around 82 km upstream of EastGRIP. Outside the NEGIS, the two lines split up and connect

to two different RES profiles. Line B remains relatively close to the flow direction of the DTU_SPACE line but has a wide data

gap in the centre of the profile. In line A, this problem is circumvented by using a radar profile connecting directly to GRIP,

which deviates from the observed surface flow field by more than 15 degrees at some locations. Profile C follows the NEGIS

trunk all the way to the central ice divide and connects to GRIP over the ice ridge without crossing the shear margin. Similar120
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Figure 2. Workflow of the applied steps leading to the results described in Sect 3. The main steps are described in Sect. 2.1 to 2.5 and marked

with the corresponding numbers in the figure: The observed data (dobs) constraining the Monte-Carlo method consists of the αsur calculated

from the ice surface velocities and the isochrone depths along the flow lines. The latter is obtained by approximating the EastGRIP flow

line with selected RES images (Sect. 2.1), extending the EastGRIP chronology to the current drill depth (Sect. 2.2) and subsequent tracing

and dating of isochrones (Sect. 2.3). The iterative Monte-Carlo sampling process is illustrated in the grey box (Sect. 2.5) and includes data

simulation by a Dansgaard-Johnsen ice-flow model described in Sect. 2.4.
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to flow line B, flow line C contains a substantial data gap between the onset region of the NEGIS and the central ice divide.

To avoid uncertainties related to the proximity of the model boundaries, the flow lines were extended more than 50 km

beyond EastGRIP and have a total length of 422 (line A), 421 (line B) and 480 km (line C). To account for any differences in

surface elevation or topography between RES data from different years, the ice surface reflections of the radar profiles were

aligned to the surface elevation from the Arctic DEM (digital elevation model, Porter et al., 2018). The bed topography in the125

data gaps of the profiles was derived from the BedMachine v3 data set (Morlighem et al., 2017).

Table 1. RES profiles used to approximate the EastGRIP flow lines A–C. The data sets were measured between 1999 and 2018 by CReSIS

(CReSIS, 2020) and AWI (Jansen et al., 2020; Franke et al., 2021b).

Flow line Data files Institution Year Radar system

A Data_20180512_01_001 – 004 AWI 2018 MCoRDS 5

A Data_19990512_01_009 – 010 CReSIS 1999 ICoRDS 2

B Data_20180512_01_001 – 004 AWI 2018 MCoRDS 5

B Data_19990523_01_016 – 017 CReSIS 1999 ICoRDS 2

C Data_20180517_01_002 – 004 AWI 2018 MCoRDS 5

C Data_20120330_03_008 – 011 CReSIS 2012 MCoRDS 2

Table 2. Operating parameters of the radar systems used for data acquisition. Further details can be found in Gogineni et al. (2001), Byers

et al. (2012) and Franke et al. (2021b).

Parameter ICORDS 2 MCoRDS 2 MCoRDS 5

Bandwidth 141.5–158.5 MHz 180–210 MHz 180–210 MHz

Tx power 200 W 1050 W 6000 W

Waveform Analogue chirp (SAW) 8 channel chirp (2–3 waveforms) 8 channel chirp (3 waveforms)

Sampling frequency 18.75 MHz 111 MHz 1600 MHz

Transmit channels 1 8 8

Receiving channels 1 15 8

Range resolution 7.6 m 4.3 m 4.3 m

2.2 Extending the chronology of EastGRIP from GS-2 to GI-14

The validation of our modelling results and the correct dating of isochrones requires a reliable depth-age scale. The Greenland

Ice Core Chronology 2005 (GICC05, Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2006)

is based on annual layer counting in various Greenland ice cores. It has been transferred to GRIP and other deep drilling sites130

in Greenland by synchronizing the ice cores with each other using horizons of e.g. volcanic origin (Rasmussen et al., 2008;
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Seierstad et al., 2014). The upper 1,383.84 m of the EastGRIP ice core were drilled between 2015 and 2018, and synchronized

with the NorthGRIP ice core in previous work (Mojtabavi et al., 2020).

By 2019, the ice-core drilling progressed down to 2,122.45 m, allowing us to extend the existing time scale from 15 ka to

49.9 ka b2k (thousands of years before 2000 CE). As part of the present study, we identified common isochrones between135

EastGRIP, NorthGRIP and NEEM to transfer the GICC05 chronology to the part of the EastGRIP record which is not yet

synchronized. This involved the same methods applied to NEEM by Rasmussen et al. (2013) and to the upper 1,383.84 m

of EastGRIP by Mojtabavi et al. (2020). The isochrones chosen for synchronization purposes are mainly volcanic eruptions,

which are registered as brief spikes in the electrical conductivity measurements (ECM, Hammer, 1980). The search of common

ECM spikes was performed manually with a strong focus on finding patterns of similarly spaced eruptions rather than single140

and isolated events. The Matlab program ’Matchmaker’ was used to visualize long data stretches and to evaluate the quality

of the match (Rasmussen et al., 2008). An iterative multi-observer protocol was applied to reduce problems with confirmation

bias and to ensure the reproducibility of the match.

A total of 138 match points were identified between 1,383.84 m and 2,117.77 m, adding to the previously known 381 match

points. The match points between EastGRIP and the other two cores are shown in Fig. 3, representing all the volcanic tie points.145

The GICC05 chronology was transferred to EastGRIP by linear interpolation of depths between the match points. The age of

the 1,383.84 m match point was already established to be 14,966 years b2k, which is near the termination of Greenland Stadial

2 (GS-2), with a reported maximum counting error (MCE) of 196 years (Mojtabavi et al., 2020). The age of the deepest match

point was established to be 49,909 years b2k, just at the end of Greenland Interstadial 14 (GI-14), with an MCE of 2,066 years.

As in earlier similar work (e.g Rasmussen et al., 2013; Seierstad et al., 2014), very few match points were observed in the150

stadials, most clearly seen in Fig. 3 in the long stadial stages of GS-2 and GS-3. The sparse volcanic signals within stadial

periods should not be attributed to a diminished global volcanic activity but rather to increased deposition of alkaline dust that

neutralizes volcanic acid, caused by the prevailing colder and drier climatic conditions (Rasmussen et al., 2013). The largest

distance between match points was observed across GS-2 and GS-3 and spans about 162 m of EastGRIP ice.

2.3 Tracing and dating of isochrones155

The depth-age relationship from ice-core chronologies can be extended in the lateral plane by tracing and dating of isochrones

in RES images. The depth of these isochrones along the EastGRIP flow lines is part of the observed data used to tune the ice-

flow model parameters in the Monte-Carlo inversion. We traced 15 continuous IRHs and one non-continuous reflector along

each of the three approximated flow lines with a semi-automatic Matlab program called ’picking tool’. The algorithm is based

on calculating the local slope in each pixel of the RES image, and layers are traced automatically between two user-defined160

points. Starting from each of these points the algorithm walks along the steepest slope towards the other point. Subsequently,

the two lines are weighted by distance to their starting point and combined to one layer. The number of picks required for

thorough tracing depends on the data quality and reflector strength.
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Figure 3. Synchronization between the EastGRIP, NorthGRIP and NEEM ice cores and comparison of match points obtained in this study

with earlier results from Mojtabavi et al. (2020). The annual layer thickness of EastGRIP was computed after transferring GICC05 ages

by linear interpolation to the EastGRIP ice core. The blue curve shows the annual layer thickness obtained by the match points only. The

grey line indicates a high-resolution estimate of annual layer thicknesses at EastGRIP, obtained from the linear interpolation between the

EastGRIP–NorthGRIP match points and assigning the interpolated EastGRIP depths to the NorthGRIP ages.

The total depth uncertainty (z̃t) was calculated as

z̃t =
√
z̃2p + z̃2rr, (1)165

where the depth uncertainty introduced during the picking process (z̃p) is estimated to be 10 m. The uncertainty related to the

radar range resolution (z̃rr) of the corresponding RES image is defined as

z̃rr =
kc

2B
√
3.15

, (2)

where k is the window widening factor of 1.53, c is the speed of light, B is the radar bandwidth and 3.15 is the dielectric

permittivity of ice.170

The traced IRHs were dated at both drill sites by assigning the reflector depth at GRIP and EastGRIP to the corresponding

time scale. In doing so, local irregularities were smoothed out by averaging the depth over ± 250 m around the trace closest to

the ice-core location. Because the EastGRIP ice core has not reached the bed yet, we extrapolated the time scale at EastGRIP

with two IRHs observed below the current borehole depth to obtain a tentative depth–age relationship between 2,117.77 m and
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the expected bed depth of 2,668 m.175

The total age uncertainty (ãt) was estimated by following the approach described in MacGregor et al. (2015), where

ãt =
√
ã2c + ã2rr + ã2p (3)

takes into account the age uncertainties associated with the time scale (ãc, equivalent to 0.5 MCE), the radar range resolution

(ãrr), and the layer picking process (ãp). The uncertainties related to the range resolution are estimated with

ãrr =
1

2

∑
|ac (z± z̃rr)− ac(z)| , (4)180

where ac is the ice-core age from the GICC05 time scale. Similar to Eq. (4), ãp is estimated with

ãp =
1

2

∑
|ac(z± z̃p)− ac(z)|. (5)

The chosen isochrones show distinct patterns which could be identified in all RES images and allowed us to trace isochrones

across disruptions and data gaps. Comparison of the isochrone depths at the ice-core locations obtained from different RES

images permits assessment of the quality of the tracing procedure. The high resolution of the radar images recorded in 2018185

facilitates isochrone tracing, and the EastGRIP depths obtained from the two different AWI radar profiles agree to within 1.5

m. At GRIP, the discrepancy between isochrone depths obtained from three different radar profiles can be up to 30 m, which

is slightly above the combined depth uncertainty related to the picking process and the resolution of the RES images. Lower

range resolution and signal-to-noise ratio in older RES data introduce bias in isochrone identification, and although distinct

isochrones were chosen, a miscorrelation between IRHs recorded by different radar systems can not be entirely excluded.190

Moreover, the CReSIS profiles do not precisely intersect at GRIP and deviate from each other. The radar traces closest to GRIP

are thus found at slightly different locations for the three RES images, which explains the higher discrepancy of radar layer

depths.

The isochrone dating was conducted for each profile individually, and the obtained depths, ages and uncertainties were

averaged over the three lines (Table 3). The deepest non-continuous layer which could be identified at EastGRIP is found at a195

depth of 2,360± 11 m and is estimated to be 72,400± 1,306 years old. The layer depths of the continuously traced IRHs range

from 421± 11 m to 2,152± 11 m at the EastGRIP location, corresponding to ages of 3,498± 94 to 51,920± 1,240 years b2k.

Reflectors 1–9 were deposited during the Holocene. The remaining reflectors are found in ice from the Last Glacial Period from

which reflector 10 and 11 can be attributed to the onset of the Younger Dryas and the Bølling–Allerød. The relation between

the GRIP and EastGRIP depths of the traced IRHs fits well with the GICC05 time scale (Mojtabavi et al., 2020; Rasmussen200

et al., 2014), and the ages obtained from the two drill sites agree within the uncertainties. We note that the layer dating at

EastGRIP consistently leads to younger ages than the dating at GRIP, which is a likely consequence of inaccuracies related to

the transformation between ice-core and radar depths.

Due to computational reasons, we did not use all 16 layers for the Monte-Carlo inversion but picked ten isochrones with

approximately equal vertical spacing, and used the EastGRIP ages for our simulation of layer propagation. The layers used for205

the Monte-Carlo simulation are indicated in bold in Table 3 and plotted with a consistent color-code in Fig. 4, Fig. 5 and Fig.

7, representing the corresponding ages.
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Table 3. Characteristics of the traced isochrones connecting the GRIP and EastGRIP ice-core sites. Displayed depths and ages are the average

over the three flow lines. Depth uncertainties include the uncertainty related to the picking process and to the radar range resolution. Age

uncertainties are related to the GICC05 time-scale uncertainties and isochrone depths. Figure 7d illustrates the depth and climatic context of

these layers in the EastGRIP ice core, identified with the corresponding layer numbers. The bold layers and the EastGRIP ages were used for

the Monte-Carlo inversion and are illustrated with a consistent color-code in Fig. 4, Fig. 5 and Fig. 7.

Layer GRIP depth [m] EastGRIP depth [m] GRIP age [yrs b2k] EastGRIP age [yrs b2k]

1 733 ± 13 421 ± 11 3,618 ± 73 3,498 ± 94

2 795 ± 13 471 ± 11 4,004 ± 74 3,945 ± 95

3 925 ± 13 573 ± 11 4,885 ± 85 4,805 ± 93

4 1,217 ± 13 838 ± 11 7,178 ± 106 7,139 ± 95

5 1,262 ± 13 882 ± 11 7,575 ± 107 7,531 ± 95

6 1,347 ± 13 968 ± 11 8,364 ± 122 8,321 ± 110

7 1,374 ± 13 996 ± 11 8,637 ± 124 8,600 ± 113

8 1,533 ± 13 1,153 ± 11 10,407 ± 162 10,365 ± 149

9 1,592 ± 13 1,208 ± 11 11,209 ± 181 11,140 ± 168

10 1,663 ± 13 1,282 ± 11 12,891 ± 327 12,822 ± 290

11 1,749 ± 13 1,355 ± 11 14,612 ± 281 14,350 ± 206

12 2,039 ± 13 1,704 ± 11 28,633 ± 840 28,522 ± 647

13 2,193 ± 13 1,903 ± 11 38,015 ± 994 37,914 ± 793

14 2,298 ± 13 2,035 ± 11 45,463 ± 1,189 45,174 ± 1,086

15 2,395 ± 13 2,152 ± 11 52,602 ± 1,360 51,920 ± 1,240

16 - 2,360 ± 11 - 72,400 ± 1,306

2.4 Ice-flow model

A full simulation of ice flow in the catchment area of the NEGIS is a highly under-determined problem (Keisling et al., 2014),

lacking geophysical, climatic and ice-core data, some of which will become available in the future. Simpler models do not solve210

the problem in detail and are thus computationally much cheaper. Hence, limited but still useful information can be obtained

from a simplified treatment of ice flow (e.g. Dansgaard and Johnsen, 1969; Dahl-Jensen et al., 2003; Waddington et al., 2007;

Christianson et al., 2013; Keisling et al., 2014).

Here, we use a two-dimensional Dansgaard–Johnsen model (Dansgaard and Johnsen, 1969) to simulate the propagation

and deformation of internal layers along approximated flow lines between the ice-sheet summit (GRIP) and EastGRIP. The215

simplicity of the model makes it well suited for the Monte-Carlo method due to its few model parameters, the allowance

for large time steps, and because it has an analytical solution (Grinsted and Dahl-Jensen, 2002). The model assumes ice

incompressibility and a constant vertical strain rate down to the so-called kink height (h) below which the strain rate decreases

linearly. Basal sliding and melting are included in the model, and the ice-sheet thickness (H) is assumed to be constant in time.
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We consider a coordinate system where the x-axis points along the approximated flow line, the y-axis is horizontal and220

perpendicular to the flow line, and the z-axis indicates the height above the bed. The horizontal velocities parallel (u‖) and

perpendicular (u⊥) to the profiles are described by Grinsted and Dahl-Jensen (2002) as:

u‖(z) =

u‖,sur(x,y)
[
(1− fbed) zh + fbed

]
, z ∈ [0,h]

u‖,sur(x,y), z ∈ [h,H],
(6)

u⊥(z) =

u⊥,sur(x,y)
[
(1− fbed) zh + fbed

]
, z ∈ [0,h]

u⊥,sur(x,y), z ∈ [h,H]
(7)225

where u‖,sur and u⊥,sur are the surface velocities parallel and perpendicular to the profile, and the basal sliding factor fbed, is

the ratio between the ice velocity at the bed and at the surface.

Ice flow in the vicinity of an ice stream is affected by lateral compression and longitudinal extension, in particular across

the shear margins of the NEGIS. We thus introduce α=
∂u‖
∂x + ∂u⊥

∂y as the sum of the horizontal strain rates. Due to ice

incompressibility we can write α+ ∂ω
∂z = 0, where ω symbolizes the vertical velocity. The x and y dependency in Eq. (6 - 7)230

only relates to the surface velocity, such that αsur represents the horizontal dependency in the equations and can be calculated

from the ice surface velocities.

The vertical velocities (ω) are obtained through integration of the incompressibility relation ω(z) =−
∫
αdz (Dansgaard

and Johnsen, 1969):

ω(z) =

ωbed−αsur(fbedz+
z2

2h (1− fbed)) z ∈ [0,h]

ωsur +αsur(H − z) z ∈ [h,H].
(8)235

The boundary conditions for the vertical velocity at the bed (ωbed) and surface (ωsur) are

ωbed =−ḃ+ fbedusur
∂Ebed
∂x

(9)

ωsur =−ȧ+usur
∂Esur
∂x

, (10)

where ḃ is the positive basal melt rate, ȧ is the positive accumulation rate, and Ebed and Esur are the bed and surface elevations

respectively. From Eq. (8) we derive the following expression for the modelled αsur:240

αsur =
ωbed−ωsur

H − h
2 (1− fbed)

. (11)

Following Grinsted and Dahl-Jensen (2002) and Buchardt and Dahl-Jensen (2007), we adjust the accumulation rates and

surface velocities to the climate conditions of the corresponding time with a scaling factor ξ(t):

ξ(t) = eκ2(δ
18O−δ18Ow)− 1

2κ1(δ
18O2−δ18O2

w), (12)

with κ1 =
cw − cc

δ18Ow − δ18Oc
, and κ2 = cw − δ18Owκ1.245
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We use the oxygen isotope δ18O record from NorthGRIP (Andersen et al., 2004) due to its high temporal resolution, and

δ18Ow =−35.2 ‰ and δ18Oc =−42 ‰ are typical isotope values for warm interstadial and cold stadial periods, respectively.

The parameters cw and cc determine the sensitivity of the accumulation rate with varying δ18O in warm (cw) and cold (cc)

periods and are defined as (Grinsted and Dahl-Jensen, 2002; Buchardt and Dahl-Jensen, 2007):

cw =
1

ȧ

∂ȧ

∂δ18O

∣∣∣∣
δ18O=δ18Ow

, cc =
1

ȧ

∂ȧ

∂δ18O

∣∣∣∣
δ18O=δ18Oc

. (13)250

To simulate the propagation of ice particles deposited at the surface of the GrIS, Eq. (6) and Eq. (8) are solved at a time interval

of 10 years.

2.5 Monte-Carlo sampling

The ice-flow parameters ȧ, h, fbed, and ḃ are defined for intervals of ∼10 km along the flow lines, and form together with the

two climate scaling factors, cc and cw, the model vector m. This results in a total of 170 (flow line A and B) and 194 (flow255

line C) model parameters. Each combination of them represents a possible solution to the inverse problem d= g(m), where

g(m) represents the ice-flow model described in the previous section. The data vector d contains the isochrone depths and

αsur determined from the MEaSUREs Multi-year v1 surface velocities (Joughin et al., 2018) at a resolution of one kilometer.

Like in most geophysical inverse problems, many different combinations of model parameters can explain the observed data

equally well within the range of their uncertainties and therefore, a non-unique solution does not exist. Probabilistic inverse260

methods consider many different models and describe them in terms of their plausibility, rather than finding one possible

solution. This makes these methods particularly well suited for nonlinear problems, where the probability density in the model

space typically shows multiple maxima (Mosegaard and Tarantola, 1995).

Monte-Carlo methods are based on a random number generator which allows the sampling according to the target probability

distribution in an efficient way. The grey box in Fig. 2 illustrates the iterative sampling process of the Metropolis algorithm265

(Metropolis et al., 1953) used here: Starting from an initial model (m0), a random walker explores the model space and

proposes new models (mnew) which are accepted with a certain probability (Paccept). This way of importance sampling avoids

unnecessary evaluation of model parameters in low-probability areas (Mosegaard, 1998).

To estimate the initial accumulation rate ȧ0, we integrate Eq. (8) (see Appendix A) and obtain the following depth–age

relationship270

(H − z) = ȧ

αsur
(1− e−αsurt), (14)

where t and z represent the isochrone age and height above the bed, respectively. The accumulation rate ȧ is determined with

a curve-fitting function, using at least 5 isochrones younger than 10 ka at each point along the flow line. The initial kink height

13



(h0), basal sliding (fbed,0) and basal melt rate (ḃ0) are scaled with the normalized surface velocity (ûsur) as follows:

h0 =H

(
1

2
− e1ûsur

)
(15)275

fbed,0 = e2ûsur (16)

ḃ0 = e3ûsur, (17)

where e1 = 0.4, e2 = 0.8 and e3 = 0.03, and the initial value for cw and cc is assumed to be 0.15 and 0.10 respectively.

In each iteration a new model mnew is proposed as

mnew =m0 +qA, (18)280

where m0 is the initial model and A contains the perturbation amplitude of the corresponding model parameter. The vector q

defines the random walk in the multidimensional model space and solely depends on the preceding step. In each iteration, i,

one model parameter, j, is randomly selected and perturbed as

qi+1(j) = qi(j)+

(
r− 1

2

)
p(j), (19)

where r indicates a random number between 0 and 1, and p regulates the maximum step length per iteration of the selected285

parameter type. To achieve a good performance of the Monte-Carlo algorithm, the values of A and p (shown in Table 4) are

chosen such that the acceptance ratio for the individual model parameters lies between 25 % and 75 %.

The quality of the proposed model is evaluated by the function S(m) which describes the misfit between the modelled and

observed data (see Appendix B). The new model (mnew) is accepted with the acceptance probability (Metropolis et al., 1953)

Paccept =min

(
L(mnew)

L(mold)
,1

)
, (20)290

where mold is the last accepted model and the likelihood function is defined as L(m) = e−S(m).

To ensure that parameter sampling is occurring in a physically reasonable range, the a priori probability distribution is

assumed to be uniform within the following intervals:

ȧ ∈
[
ȧ0− 0.02ma−1, ȧ0 +0.02ma−1

]
(21)

h ∈ [0,H] (22)295

fbed ∈ [max(0,fbed,0− 0.3),min(1,fbed,0 +0.3)] (23)

ḃ ∈
[
0ma−1,0.2ma−1

]
. (24)

The sampling intervals are based on expected values of the corresponding parameter: The initial accumulation rate obtained

from the radar stratigraphy is considered to be quite trustworthy but because the local layer approximation is not justified in

the survey area (Waddington et al., 2007) we allow the accumulation rate to deviate by 0.02 ma−1. The kink height is limited300

to the ice-sheet thickness, the basal sliding fraction is allowed to deviate by 30 % from the initial model, and the upper limit of
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the basal melt rate is based on values suggested at EastGRIP by a recent study (Zeising and Humbert, 2021).

In their initial phase, Markov Chain Monte-Carlo methods move from the starting model towards a high-probability area

where the target distribution is sampled. To avoid sampling during this so-called burn-in phase, the first 1×106 accepted models

are discarded. Since only one parameter is perturbed at a time, successive models are highly correlated. To obtain a distribution305

of independent models, only every 1000th accepted model is saved. The sampling is continued for 6×106 iterations in total.

Table 4. Perturbation amplitude (A) and step length (p) of the individual model parameters used for the Monte-Carlo sampling. The sampling

parameters were chosen such that the acceptance ratio of the individual model parameters lies between 25 % and 75 %.

Model parameter Amplitude (A) Step length (p)

ȧ 0.01 ma−1 0.5

ḃ 0.01 ma−1 1

h 100 m 3

fbed 0.05 2

cc 0.05 0.5

cw 0.05 0.5

3 Results

3.1 Model parameters

Due to the mixed-determined nature of the inverse problem addressed in this study, a unique solution of model parameters does

not exist. The Monte-Carlo sampling results in a number of possible models distributed according to the posterior probability.310

Here, we present the mean model parameters with the standard deviations of the posterior probability distribution and empha-

size that the corresponding histograms (Fig. 6) are essential to understand the uncertainties of the parameter considered.

The flow-line characteristics and model parameters for each flow line are summarized in Fig. 4. The radar profiles with the

observed and modelled isochrones are displayed as a function of the distance from the EastGRIP ice-core location. Particle

trajectories were calculated from the simulated velocity field with the mean model parameters and indicate the source location315

of ice found at the modelled isochrone depth in the EastGRIP ice core. The isochrones and particle trajectories are illustrated

with the same color-code as in Fig. 5 and Fig. 7f, indicating the corresponding age. The horizontal strain rates (ε̇xx, ε̇yy and

ε̇xy) were obtained from the MEaSUREs Multi-year v1 surface velocity components (Joughin et al., 2018) parallel (u‖) and

perpendicular (u⊥) to the approximated flow line. The strain rates show mostly low, positive values along the flow lines with

the exception of the shear-margin crossing in profile A and B, which is characterized by longitudinal extension and lateral320

compression.

The central observed features are the following:
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Figure 4. (Previous page.) Flow-line characteristics and model parameters for the approximated flow lines A (a–d), B (e–h), and C (i–l).

IRHs were traced (thin solid lines) in RES images and simulated (dashed lines) with a two-dimensional Dansgaard–Johnsen model (a, e, i).

From the modelled velocity field, we calculated particle trajectories (thick solid lines) backwards in time to obtain estimates of the source

location for specific depths in the EastGRIP ice core. The colors of the lines indicate the age of the isochrones and the respective time of

snow deposition and are identical to the color code in Fig. 5 and Fig. 7. The horizontal strain rates at the surface were calculated from

the MEaSUREs Multi-year v1 (Joughin et al., 2018) surface velocities (b, f, j). The mean and standard deviations of the sampled model

parameters accumulation rate, kink height, basal melt rate and basal sliding (c, d, g, h, k, l) were obtained from a Monte-Carlo inversion by

reducing the misfit between observed and simulated data. All panels are aligned at EastGRIP and the x-axis indicates the distance from the

borehole location.

1. The accumulation rate decreases with increasing distance from the central ice divide. In flow line A and B, it remains

almost constant between -220 and -80 km, followed by a drop of about 20 % across the shear margins. In the first ∼150

km of flow line C, which corresponds to the ice divide, the accumulation rate remains nearly constant, followed by a325

gradual decrease with increasing distance along the profile.

2. The kink height fluctuates around the middle of the ice column in the vicinity of the ice ridge and is drawn closer to the

bed in the centre of the profiles. Locally very high kink heights are observed in flow line A around -230 km and -150

km, in flow line B at -240 km and -140 km, and at -100 km in flow line C. In all profiles, h increases substantially at

about -60 km.330

3. The basal velocity ranges between 0 and 50 % of the surface velocity outside the NEGIS and increases to 60–100 % in

the vicinity of EastGRIP.

4. The basal melt rate in the beginning of the profiles varies between 0 and 0.03 ma−1. As for the kink height, flow line

A shows strong melt rate fluctuations in the centre of the profile, some of which are also observed in flow line B. At

EastGRIP, basal melt rates between 0.05 and 0.1 ma−1 are obtained but higher values of up to 0.2 ma−1 are reached335

further downstream.

3.2 Monte-Carlo performance

The comparison of modelled and observed isochrones (Fig. 5a,c,e) and αsur (supplementary material, Fig. S2) shows a good

fit in most parts of the flow lines. However, our model is not able to accurately reproduce strong internal layer undulations

which are not related to the bed topography or the surface conditions, resulting in a larger misfit where such undulations are340

present (Fig. 5b,d,f). In general, the isochrone misfit tends to be larger for deeper layers. Particularly distinct is the positive

misfit at EastGRIP for the deepest layer in all profiles, indicating that the depths of old layers are overestimated. The average

isochrone misfit for flow line A, B and C is 2.94 %, 2.34 % and 1.49 % of the respective layer depth.

Histograms in Fig. 6 show the sampled probability distribution of model parameters at GRIP and EastGRIP with the corre-

sponding mean and standard deviation displayed on top. Distributions with distinctive single peaks and low standard deviation345
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Figure 5. (a, c, e) Modelled and observed isochrones for profile A–C. The model fits the isochrones well in general but fails to reproduce

strong layer undulations over short distances, leading to a larger misfit (panel b, d, f) where such undulations are present. A positive misfit

indicates that the modelled isochrone depth is overestimated which happens in particular for the deepest isochrone towards the end of flow

line A and B. As in Fig. 4 and Fig. 7, the color code represents the age of the corresponding isochrone.

point towards a good parameter resolution, while multiple maxima or large standard deviations indicate that several models are

found to be equally likely. The parameter resolution is in general better in the beginning of the profiles, most clearly represented

by the narrow distributions in the accumulation rate, basal melt rate and kink height at GRIP. Exponential distributions imply

that a parameter reaches regularization boundaries. This is the case for the basal melt rates at GRIP, the kink height and basal

sliding factor at EastGRIP, and the accumulation rate in flow lines B and C at EastGRIP. The climate parameter cw is found to350

be 0.10± 0.005 for all flow lines. The obtained value for parameter cc is 0.14± 0.003 for flow line A and B, and 0.16± 0.004

for flow line C respectively. The histograms of cw and cc can be found in the supplementary material, Fig. S3.

3.3 Ice origin and ice-flow history

From the modelled velocity field, we calculate particle trajectories backwards in time (Fig. 4) which give insight into the source

location and flow history of ice found at a certain depth in the EastGRIP ice core, and allow us to determine the accumulation355

rate during its deposition (Fig. 7e). Due to the higher velocities in the ice stream, the ice source location in the upper 1,600 m
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Figure 6. Histograms of the model parameters accumulation rate, basal melt rate, kink height and basal sliding at GRIP and EastGRIP for

each flow line. The corresponding means and standard deviations are displayed on top of the histograms.

of the ice core lies further upstream for flow line C compared to flow line A and B. For deeper ice, this trend is reversed, as the

velocity along flow line C drops below the velocity of line A and B (Fig. 7a). A similar effect manifests itself in the upstream

elevation, where higher velocities along flow line C result in higher elevations in the upper part of the ice column, which is

compensated by a flatter topographic profile for ice deeper than 1,400 m (Fig. 7b).360

From the model-inferred in situ accumulation rates, ȧm, and annual layer thicknesses, λm, we calculate the ice-core thinning

function γ:

γ =
ȧm−λm
ȧm

. (25)

The thinning function increases nearly linearly with depth in the Holocene and shows a considerable decrease in the Younger

Dryas and enhanced thinning in the Bølling–Allerød. In the glacial part of the ice core, the thinning function fluctuates be-365

tween interstadials and stadials. The shift between the three lines results from the slightly different depth–age relationship and

isochrone misfit obtained from the three profiles. We combine the thinning function with the annual layer thicknesses observed

in the EastGRIP ice core, λobs, to estimate past accumulation rates ȧpast:

ȧpast =
λobs
1− γ

. (26)
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Table 5. Essential quantities for upstream corrections for selected depths of the EastGRIP ice core. The upstream distance, elevation and past

accumulation rates, ȧpast, describe the characteristics of the source location and the conditions during ice deposition. ȧpresent represents the

corresponding present-day accumulation rates at the source location. All quantities are averages over the three flow lines and the uncertainties

represent the maximum deviation from the mean.

Depth Age Upstream distance Elevation Thinning function ȧpast ȧpresent

[m] [yr b2k] [km] [m.a.s.l.] [ma−1] [ma−1]

100 665 47 ± 3 2,752 ± 10 0.10 ± 0.03 0.12 ± 0.004 0.12 ± 0.015

200 1,553 74 ± 2 2,788 ± 11 0.19 ± 0.08 0.14 ± 0.006 0.14 ± 0.005

300 2,418 92 ± 1 2,837 ± 14 0.16 ± 0.05 0.13 ± 0.005 0.15 ± 0.010

400 3,322 105 ± 7 2,854 ± 6 0.21 ± 0.02 0.14 ± 0.002 0.14 ± 0.031

600 5,037 126 ± 12 2,892 ± 14 0.28 ± 0.00 0.16 ± 0.001 0.16 ± 0.005

800 6,805 146 ± 14 2,920 ± 9 0.35 ± 0.03 0.15 ± 0.005 0.16 ± 0.003

1,000 8,640 165 ± 13 2,944 ± 15 0.42 ± 0.03 0.16 ± 0.004 0.17 ± 0.002

1,200 11,015 183 ± 12 2,965 ± 19 0.41 ± 0.06 0.12 ± 0.010 0.17 ± 0.005

1,400 15,571 200 ± 7 2,993 ± 7 0.46 ± 0.01 0.05 ± 0.001 0.17 ± 0.015

1,600 23,382 217 ± 3 3,027 ± 26 0.52 ± 0.08 0.05 ± 0.007 0.18 ± 0.023

1,800 33,524 234 ± 8 3,054 ± 40 0.72 ± 0.06 0.11 ± 0.028 0.19 ± 0.021

2,000 43,107 252 ± 14 3,079 ± 54 0.73 ± 0.07 0.10 ± 0.019 0.19 ± 0.022

2,200 54,864 271 ± 19 3,108 ± 73 0.83 ± 0.02 0.07 ± 0.006 0.19 ± 0.030

2,400 75,980 293 ± 18 3,136 ± 80 0.83 ± 0.11 0.08 ± 0.034 0.19 ± 0.023

2,600 94,696 322 ± 12 3,171 ± 67 0.94 ± 0.03 0.18 ± 0.044 0.20 ± 0.005

We find that the accumulation rate at the deposition site increases from ∼0.12 ma−1 to a maximum of 0.249 ma−1 for ice370

at a depth of 912 m, which was deposited approximately 7,800 years b2k. We note that the constant annual layer thicknesses

observed in the upper 900 m of the EastGRIP ice core (Mojtabavi et al., 2020) coincides with the spatial pattern of increasing

accumulation along the flow line with increasing upstream distance (Fig. 4c,g,k and Fig. 7d,e). Ice between 900 m and 1,400

m is characterized by the transition from the Holocene into the Last Glacial Period with decreased accumulation rates in the

Younger Dryas and a peak during the Bølling–Allerød (Fig. 7e). The accumulation rate at the deposition site for older ice varies375

between 0.02 ma−1 during stadials and 0.196 ma−1 during interstadials. The atmosphere in the glacial period was in general

colder and dryer, and hence, accumulation rates were typically lower than today (Cuffey and Clow, 1997). However, due to

the upstream flow effects, the ice from the interstadials could have been deposited under higher accumulation rates than are

observed at the EastGRIP site today.

The variations in the past accumulation-rate between the three flow lines result from both, the varying along-flow accumu-380

lation pattern and different upstream distance of the source location. The spread between the three models provides important

uncertainty estimates. The average deviation from the mean accumulation rates is 3.9 % in the Holocene and 20 % in the Last
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Figure 7. Modelled upstream distance (a) and surface elevation (b) of the source location for ice in the EastGRIP ice core. The thinning

function (c) was calculated from the modelled accumulation rates and annual layer thicknesses (d) and was combined with the interpolated

annual layer thicknesses observed in the ice core (d) to calculate past accumulation rates in high resolution (e). The δ18O curve from

NorthGRIP (f) was scaled to the EastGRIP depths to put the results into a climatic context. The depths of the traced isochrones from Table 3

are displayed with the same color index as in Fig. 4 and Fig. 5 and labeled with the corresponding layer number.

Glacial Period. The largest spread between the three flow lines is 68 % observed at a depth of 2,411 m. We remark that, due to

missing direct information on the annual layer thicknesses, accumulation rates below the current borehole depth of 2,122.45 m

are based on tentative estimates and must be treated accordingly.385

4 Discussion

4.1 Isochrone deformation and ice-flow parameters

Deformation of IRHs occurs as a consequence of bed topography (Robin and Millar, 1982; Jacobel et al., 1993), spatial vari-

ations in basal conditions (Weertman, 1976; Whillans, 1976; Whillans and Johnsen, 1983; Catania et al., 2010; Christianson

et al., 2013; Leysinger Vieli et al., 2018; Wolovick et al., 2014), spatially varying accumulation rates and corresponding changes390

in ice-flow geometry (Dansgaard and Johnsen, 1969; Weertman, 1976; Whillans, 1976; Whillans and Johnsen, 1983), and as
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a consequence of convergent ice flow and ice-stream activity (Bons et al., 2016). Areas of enhanced basal melt rates similarly

drag down all the layers above, while variations in accumulation rate, kink height and basal sliding lead to depth-dependent

deformation of the isochrones (Keisling et al., 2014).

The accumulation rates of ∼0.21–0.23 ma−1 at GRIP and ∼0.1–0.13 ma−1 at EastGRIP obtained in this study agree with395

field observations (Dahl-Jensen et al., 1993; Vallelonga et al., 2014), and the low standard deviations point towards a robust

solution. In profiles A and B we observe ∼20 % lower accumulation rates inside the ice stream than outside. This agrees to

some extent with Riverman et al. (2019), who found 20 % higher accumulation rates in the shear margins compared to the

surrounding, although our observations are not confined to the shear margins only. Regularization on the accumulation rate

was necessary in our model to avoid unrealistic strong fluctuations along the flow lines.400

The bed topography and bed lubrication have a considerable effect on ice-flow parameters. Flow over bed undulations affect

the elevation of internal layers due to variations in the longitudinal stresses within the ice (Hvidberg et al., 1997) and is often

reflected in the surface topography (Cuffey and Paterson, 2010). If the bed is ’sticky’, i.e. the basal sliding is small, the ice is

compressed along the flow direction while vertically extended (Weertman, 1976), and IRHs are pushed upwards. At a slippery

bed, the opposite is the case, resulting in along-flow extension of IRHs which leads to thinning and thus decreasing distance be-405

tween the IRHs. Keisling et al. (2014) argued that major fold trains existing independently of bed undulations can be explained

by variations in the basal sliding conditions. This is, for instance, observed across shear margins, where local, steady state

folds are formed as a response to the basal conditions (Keisling et al., 2014; Holschuh et al., 2014). In flow line A, we observe

similar ’fold-trains’ on a larger scale downstream of a substantial bed undulation (100–200 km upstream of EastGRIP), and the

resulting high basal melt rates and sliding fraction and the low kink heights drag the layers down in the attempt of matching the410

observed synclines. These strongly deformed isochrones predominantly appear in parts of the flow lines which deviate from the

observed surface velocity direction by more than 15 degrees. We thus argue that they are out-of-the-plane effects and that the

isochrones along the ice-flow direction are less strongly deformed. Accordingly, it is questionable that the ice in the EastGRIP

ice core has experienced such deformation and that the high local basal melt rates are trustworthy. The fact that these folds

are not reproduced very well by the model does therefore not put any constraints on the usefulness of our results for upstream415

corrections.

The NEGIS differs from other ice streams in Greenland and Antarctica through the lack of clear lateral topographic con-

straints and high ice-flow velocities reaching exceptionally far inland. The positioning of the shear margins of the NEGIS are

most likely strongly interconnected to the subglacial water system and the substrate and morphology of the bed (Christianson

et al., 2014; Franke et al., 2021a). The vast amount of ice mass is added to the NEGIS by entering the ice stream through the420

shear margins (Franke et al., 2021a), resulting in a compressional stress regime perpendicular to the ice stream. The sudden

increase in the kink height at around 60 km upstream of EastGRIP pushes the isochrones upwards, similar to the effect of

lateral compression. The distribution of available melt water and a soft, deformable bed facilitate sliding and thus, ice-flow

acceleration at the NEGIS onset (Christianson et al., 2014). Evidence of a locally enhanced geothermal heat flux and basal

ice at the melting point has been presented by e.g. Fahnestock et al. (2001) and MacGregor et al. (2016), and bed lubrication425

through melt-water production seems to be one of the driving mechanisms for rapid ice flow in the onset region of the NEGIS
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(Smith-Johnsen et al., 2020b). Our results support these previous findings in the following way: (1) Kink heights close to the

bed in large segments along the flow profiles imply that most shear deformation is happening in the lower part of the ice column

or at the ice–bed interface. The increased kink height towards the ends of the profiles can be attributed to the compressional

stress regime associated with the addition of ice through the shear margins. (2) Basal melt rates of 0.01 ma−1 or higher inside430

the NEGIS suggest that the basal ice temperatures along the flow lines are at the pressure melting point and enough energy is

available to produce melt water leading to substantial bed lubrication. (3) Basal sliding is present in most segments of the flow

lines, suggesting the presence of melt water or deformation of a soft bed. It increases considerably along the flow lines and

significantly contributes to the surface velocity at EastGRIP.

While it is commonly accepted that the NEGIS is initiated by a locally enhanced geothermal heat flux (e.g. Fahnestock et al.,435

2001; Alley et al., 2019), the magnitude thereof and the resulting hydrological conditions of the bed are still highly debated.

Previous studies using simple strain-rate models in combination with Holocene radar stratigraphy indicate basal melt rates

of 0.1 ma−1 or higher in the vicinity of EastGRIP (Fahnestock et al., 2001; Keisling et al., 2014; MacGregor et al., 2016).

However, the accuracy of these findings is limited since the local layer approximation (Waddington et al., 2007) is not valid

in the surrounding of the NEGIS (Keisling et al., 2014; MacGregor et al., 2016). Remarkably high basal melt rates of 0.16–440

0.22 ma−1 are also suggested by a recent study (Zeising and Humbert, 2021) using an autonomous phase-sensitive radio-echo

sounder (ApRES) at EastGRIP. Melt rates in these order of magnitudes would either require an unusual high geothermal heat

flux exceeding the continental background (Fahnestock et al., 2001; Bons et al., 2021) or an additional heat source (Zeising

and Humbert, 2021). Alley et al. (2019) discussed the interactions between the GrIS and the geothermal anomaly, presumably

caused by the passage of Greenland over the Iceland hot spot (Lawver and Müller, 1994), and hypothesized that an exception-445

ally unsteady and inhomogeneous geothermal heat flux underneath northeast Greenland could arise through perturbations of

the mantle stress regime caused by ice-sheet fluctuations.

Our results indicate basal melt rates at EastGRIP between 0.05 and 0.1 ma−1 but higher values of up to 0.2 ma−1 are

obtained further downstream. However, the depth of the oldest modelled isochrone tends to be overestimated in this part of

the flow lines (Fig. 5), indicating that the basal melt rate is overestimated. Ice-flow parameters at a certain location affect450

the isochrones directly above and further downstream and since EastGRIP is near the end of the radar lines, the information

constraining the isochrone depths is limited, leading to overall lower parameter resolution than further upstream.

4.2 EastGRIP source location and upstream effects

The source region of ice in the EastGRIP ice core extends over more than 300 km upstream. Holocene ice characterizes the

upper 1,244 m of the ice core and has been advected up to 197 km. The climatic conditions during the last 8 kyr remained nearly455

constant with similar accumulation rates as today. However, due to increasing precipitation towards the central ice divide, ice

from the past 8 kyr was deposited under increasingly higher accumulation rates with increasing age (Table 5). Our results

indicate that this upstream effect happens to compensate for the vertical layer thinning and results in the constant annual layer

thicknesses observed in the upper 900 m of the EastGRIP ice core (Mojtabavi et al., 2020). One possible conclusion of this

peculiar observation is that snow depositions must have been advected from far enough upstream to allow the compensation460
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of vertical thinning by increased accumulation rates in the source location. This gives reason to the hypothesis that ice-flow

velocities in the past 8 kyr must have been similarly fast as today, and that, therefore, the NEGIS has likely been active during

this time. However, we believe that RES images and estimates of present-day accumulation rates along the EastGRIP flow line

are necessary to evaluate this hypothesis further.

Between 8 ka b2k and the beginning of the Holocene, accumulation rates decreased at the deposition site due to progressively465

colder and dryer climatic conditions (Cuffey and Clow, 1997) as we go further back in time and transition into the GS-

1. The most recent Glacial Period extends from 119,140 to 11,703 years b2k (Walker et al., 2009) and is characterized by

Dansgaard–Oeschger events, abrupt transitions between cold stadial and relatively mild interstadial periods (Dansgaard et al.,

1982; Johnsen et al., 1992) causing the oscillations in the accumulation rates. Ice from the Last Glacial Period was deposited

between 197 and 332 km upstream from EastGRIP. The basal ice at EastGRIP could be more than 100 ka old which, according470

to our models, has been deposited within about 50 km from the ice divide under conditions similar to those at NorthGRIP and

GRIP.

Ice that is entering the NEGIS must somehow penetrate the shear margin, which is an important characteristic of ice flow in

ice streams and might have left an imprint on the crystal fabric and texture of ice extracted at EastGRIP. Our modelling results

along flow line A and B indicate that ice below 239 m in the EastGRIP ice core has passed the shear margin 82 km from475

EastGRIP around 1.8 ka b2k. Slightly enhanced annual layer thicknesses observed in the ice core at a depth of 230 m (Fig. 3)

seem unrelated to short-term warmer and wetter climate and might thus be an effect of enhanced accumulation across the shear

margin, supporting our results.

Our results show surface elevations at the deposition site which are up to 500 m higher than EastGRIP at the corresponding

time. Assuming a normal thermal and pressure gradient, this implies that ice was deposited under up to ∼3.25◦C colder480

temperatures and up to 45 hPa lower pressure than conditions found at the borehole location at the time of deposition.

4.3 Limitations

The most relevant limitation of this study arises from lacking radar data parallel to the flow field in the upstream area of

EastGRIP. The approximated flow lines deviate from the present-day surface flow field in some parts by more than 15 degrees,

which presumably introduces out-of-the-plane effects. Data gaps encumbered isochrone tracing and restricted the Monte-Carlo485

method due to missing information in those areas. The correlated parameters in the Dansgaard-Johnsen model lead to a vast

amount of possible solutions, and the fact that the observed data can be reproduced by our model does not prove the validity

of the assumed parameters and the physical interpretation thereof. This becomes for instance evident at the GRIP ice-core site,

where our results indicate basal sliding of up to 30 %, while the drilling project showed that the bed is frozen at the ice-sheet

summit (Dahl-Jensen et al., 1998). The apparant basal sliding might thus represent deformation within a soft bed material490

rather than actual sliding of the ice over the bed. The spatial and formal resolution of the obtained model parameters is limited,

in particular towards the end of the profiles due to limited constraining information further downstream.

By introducing the parameter α, our model accounts for lateral compression and extension on a first degree order, but does

not capture the full complexity of the flow field across the shear margins. While these play an essential role in the ice-flow
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dynamics of the NEGIS (Holschuh et al., 2019) and are likely to have left an imprint on the ice found in the EastGRIP ice core,495

the full simulation of the flow field is not attempted for the purpose of upstream corrections. This would require more complex,

3D numerical ice-flow models which are computationally more expensive and thus not suitable for the Monte-Carlo method

applied here. Moreover, due to the lack of constraining radar data the information gain in terms of the source characteristics

and upstream effects of such a 3D model would be modest.

The elevation of the source location was determined solely from the present-day ice-sheet surface elevation and did not take500

into account past fluctuations in the ice-sheet thickness. In general, surface elevation changes are relatively minor in the interior

areas of central Greenland (Marshall and Cuffey, 2000; Letréguilly et al., 1991). Yet, Vinther et al. (2009) found that the GRIP

elevation might have been up to 200 m higher during the early Holocene than today. We did not take into account changes in the

ice thickness due to the large uncertainties which would be introduced, particularly in the Last Glacial Period. Our estimates

on the surface elevation of the source location must thus not be interpreted as absolute values but rather as relative changes505

with respect to the surface elevation of the EastGRIP site at the corresponding time.

Lacking data and a general understanding of ice-sheet flow far back in time put up additional constraints, and due to the

relatively recent discovery of the NEGIS (Fahnestock et al., 1993), little is known about its evolution in the past. Observations

of surface elevation and ice-flow velocities imply that the downstream end of the NEGIS has entered a state of dynamic thinning

after at least 25 years of stability (Khan et al., 2014). However, it is not clear for how long the NEGIS has been active and how510

its catchment geometry changed over time. The assumption of a constant flow field throughout the past 100 kyr is thus the best

currently available, but potentially inaccurate, estimate of the past flow regime.

Our results do not give clear evidence on which of the flow lines gives the best results for upstream corrections. Since the

present-day EastGRIP flow line is likely located somewhere between flow line A and C, our results can be interpreted as the

outer boundaries and we consider the average over the three flow lines the best estimate for the upstream flow characteristics515

with the corresponding model spread as uncertainties.

5 Conclusions

We traced isochrones in RES images along three approximated EastGRIP flow lines connecting the EastGRIP and GRIP drill

sites. A two-dimensional Dansgaard–Johnsen model was used to simulate the propagation of isochrones along these flow lines.

The simplicity of the model allowed us to invert for the ice-flow parameters accumulation rate, basal melt rate, kink height and520

basal sliding fraction, which give limited but helpful insight into basal properties and ice-flow dynamics and can be used to

constrain large-scale ice-sheet models.

On the basis of our modelled two-dimensional velocity field, we calculated particle trajectories backwards in time to deter-

mine the deposition site of ice found in the EastGRIP ice core. We present estimates of the upstream distance, surface elevation

and accumulation rate at the time and location of ice deposition. This is valuable and necessary information for interpreting525

ice-core measurements, and to separate past climate variability from non-local imprints introduced by upstream effects. Our

studies show that spatially increasing accumulation rates with increasing upstream distance along the flow line are mainly
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responsible for the constant annual layer thicknesses observed for the last 8 kyr in the EastGRIP ice core.

The lack of radar data along the EastGRIP flow line is the biggest limitation of this study. None of the three simulated flow

lines accurately represents the present-day flow field but can be regarded as upper and lower limits framing the upstream ef-530

fects. The acquisition of further radar data along NEGIS flow lines in the future would thus provide more accurate and valuable

insights into the flow history of the EastGRIP ice and the NEGIS.

Data availability. The CReSIS radio-echo-sounding images used for isochrone tracing are publicly available on https://data.cresis.ku.edu/.

The RES data recorded by AWI will be available by Jansen et al. (2020) and described by (Franke et al., 2021b). The extended EastGRIP

time scale, our derived and approximated flow lines and an extended version of Table 5 will be available on https://www.iceandclimate.nbi.535

ku.dk/data/ and in the supplementary material to this paper.
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Notation

z height above bed

x, y direction parallel, perpendicular to the flow profile

z̃t, z̃p, z̃rr total, picking related, radar related isochrone depth uncertainty

k radar window widening factor

c speed of light

B radar band width

ãt, ãp, ãrr, ãc total, picking related, radar related, ice-core related age uncertainty

ac ice-core age

u‖(z), u‖,sur flow-line-parallel velocity at depth, at the surface

u⊥(z), u⊥,sur flow-line-perpendicular velocity at depth, at the surface

ûsur normalized surface velocity along the flow line

ω(z), ωsur, ωbed vertical velocity at depth, at the surface, at the bed

fbed, fbed,0 basal sliding fraction, initial basal sliding fraction

h, h0 kink height, initial kink height

H ice thickness

α sum of horizontal strain rates ε̇xx + ε̇yy

Ebed bed elevation above sea level

Esur surface elevation above sea level

ȧ, ȧm, ȧc, ȧpast, ȧpresent positive accumulation rate, Monte-Carlo inferred, ice-core inferred, past, present

ḃ positive basal melt rate

e1,2,3 scaling factors for initial model parameters

ξ(t) climatic scaling factor

t time b2k

cc, cw sensitivity of accumulation rates in cold stadial, warm interstadial periods

∂18Oc,∂
18Ow typical isotope values for cold stadial, warm interstadial periods

d, dobs, dmodel data space, observed, modelled data

m, mold, mnew model space, old, new model

σz , σα data uncertainty on isochrone depth, αsur

Paccept acceptance probability

L likelihood function

S misfit function

λ, λm,λobs annual layer thickness, modelled, observed

γ ice-core thinning function

ε̇xx, ε̇yy, ε̇xy horizontal strain rates
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Appendix A: Derivation of Eq. (14)

The vertical velocity in the upper part of the ice column is given by540

w(z) = wsur +αsur(H − z) =
dz

dt
, z ∈ [h,H]. (A1)

Assuming that the surface slope is close to zero, ∂Esur∂x ' 0, integration of Eq. (A1) with separation of variables results in:

H∫
z

1

−ȧ+αsur(H − z)
dz =

0∫
t

1dt (A2)

[
− 1

αsur
ln(αsur(H − z)− ȧ)

]H
z

= [t]
0
t (A3)

− 1

αsur
(ln(−ȧ)− ln(αsur(H − z)− ȧ)) =−t (A4)545

(H − z) = ȧ

αsur
(1− e−αsurt) (A5)

Appendix B: Definition of the misfit function S(m)

The function S(m) is defined as:

S(m) =
1

2

(
1

10

10∑
l=1

(
1

nz

nz∑
n=1

M2
z

)
+

1

nα

nα∑
n=1

M2
α

)
∗ 1000, (B1)

where l runs through the 10 layers, nz and nα are the number of observed isochrone depths and αsur along the flow lines, and550

Mz =
dmod,z −dobs,z

σz
and Mα =

dmod,α−dobs,α
σα

. (B2)

The matrix Mz describes the misfit between modelled (dmod,z) and observed (dobs,z) isochrones, and the vector Mα is the

misfit between modelled (dmod,α) and observed (dobs,α) αsur. The data uncertainty σz is the maximum depth uncertainty of

13 m, and the uncertainty on αsur (σα) is assumed to be 10 % of the maximum observed αsur. The factor 1000 is a tuning

parameter to ensure the acceptance ratio remains between 25 % and 75 %.555
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