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Abstract. We present a simple model to calculate the evolution of an ice stupa (artificial ice reservoir). The model is formulated 

for a cone geometry and driven by energy balance measurements over a glacier surface for a 5-year period. An ‘exposure 

factor’ is introduced to deal with the fact that an ice stupa has a very rough surface and is more exposed to wind than a flat 

glacier surface. The exposure factor enhances the turbulent fluxes. 

For characteristic alpine conditions at 2100 m, an ice stupa may reach a a volume of  200	to	400	m3 in early April. We show 15 

sensitivities of ice stupa size to temperature changes and exposure factor. The model may also serve as an educational tool, 

with which the effects of snow cover, switching off water during daytime, different starting dates, switching off water during 

high wind speeds, etc., can easily be evaluated. 
 

1 Introduction 20 

Ice stupas (Fig. 1), also referred to as Artificial Ice Reservoirs (AIR), are used more and more as a means to store water in the 

form of ice (Nüsser, 2018). In Ladakh, India, engineer Sonam Wangchuk has initiated and developed the use of ice stupas to 

provide water for irrigation purposes in spring and early summer. The ice stupas grow in winter by sprinkling water on the 

growing ice structure, and melt in spring and summer to deliver water; a typical turnover volume is up to 1 million liters. Ice 

stupas also form interesting touristic attractions with a distinct and special artistic flavour. They come in the same class as ice 25 

sculptures, which are popular in all regions of the world that have a cold winter.  

The possibility to grow ice stupas of appreciable size depends on the meteorological conditions and the availability of water. 

When a surface has a negative energy balance and water is sprayed on it, ice will form (a well-known technique to make 

skating rinks). The more effective the latent heat of fusion can be removed by contact with cold air and effective emittance of 

longwave radiation, the faster the ice layer may grow. In spring and summer incoming solar radiation will dominate and the 30 

ice stupa will lose mass. In this note we present a model of ice stupa growth and decay, based on a simple consideration of the 

total energy budget, and driven by energy flux observations over a glacier surface (half hourly observations over a 5-year 

period). We believe that the energy balance of a glacier surface and of an ice stupa have much in common, and therefore 

consider this data set as ideal for a first study. The focus is on alpine conditions at a typical height of  2100 m a.s.l. The purpose 

of this study is to obtain first-order estimates of how fast an ice stupa may grow and melt, and what processes are most 35 

important. We emphasize that in this note the focus is on the energetics of the ice stupa system, not on the technical aspects 

that have to be dealt with in constructing an ice stupa. 
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Figure 1. Left: ice stupa in Ladakh, India (c. Sonam Wangchuk). Middle: early growing stage of ice stupa with inner structure in Val 
Roseg, Switzerland (c. Conradin Clavuot). Right: simple geometrical representation. The ice stupa can have an inner structure (brown). The 40 
dashed lines illustrate the growth of an ice stupa from a base with a constant radius. 

2 Geometry 

Ice stupas have different and often complex shapes. The cone is probably the most appropriate simple geometric shape to 

represent an ice stupa (Fig. 1), but alternatively a dome (half sphere) could also be considered. 

The geometric characteristics of a cone with radius r and height h are: 45 

 Area of base:  𝜋𝑟+ , (1a) 

 Lateral area:  𝜋𝑟√𝑟+ + ℎ+ , (1b) 

 Volume:  𝜋𝑟+ℎ/3 . (1c) 

It is useful to introduce a shape parameter 𝑠 = ℎ/𝑟. The volume can then also be written as:  

𝑉 = 𝜋ℎ3 3𝑠+⁄  . (2) 50 

So for a given volume the height of the ice stupa can be calculated from: 

ℎ = 53
6
𝑉𝑠+7

8/3
 . (3) 

In this note we will consider two cases: (i) the shape factor is constant during growth and decay, and (ii) the ice stupa grows 

upward from a base with a fixed radius, implying that the shape factor gradually increases. The first case may be more 

appropriate when an inner structure is used, or when water supply is by varying sprinkler properties or even manually. Case 55 

(ii) describes better the situation when a fixed spray radius is maintained during the growth phase. 

3 Energy exchange 

Ice stupas exchange energy with the surroundings by absorbing and reflecting solar radiation, absorbing and emitting longwave 

(terrestrial) radiation, and by turbulent fluxes of sensible and latent heat. Because of the complex shape of an ice stupa, as 

compared to a horizontal ice/snow surface, it is hard to describe these processes in detail. However, some simplifying 60 

assumptions may help to arrive at reasonable approximations. 

We use five years of energy balance measurements with an automatic weather station (AWS) on the Vadret da Morteratsch 

(e.g. Oerlemans et al., 2009), which was located at an elevation of about 2280 m a.s.l. The surface energy flux is written as  

𝑒𝑛𝑒𝑟𝑔𝑦	𝑓𝑙𝑢𝑥 = 𝑆BC − 𝑆EFG + 𝐿BC − 𝐿EFG + 𝐻 + 𝐺 . (4) 
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𝑆BC  stands for solar radiation, 𝑆EFG  for reflected solar radiation, 𝐿BC  for incoming longwave radiation, 𝐿EFG  for emitted 65 

longwave radiation,  H for the total turbulent heat flux and G  for the ground heat flux (conduction from or into the surface 

layer - generally small compared to the other components). These quantities are normally expressed in W	m-2. So the energy 

flux is positive when directed towards the surface. A positive energy flux will be used for melting of ice or snow; when the 

energy flux is negative freezing of water can take place (when available).  

We now discuss how these measurements over (almost) flat terrain can be applied to an ice stupa. We first deal with solar 70 

radiation and consider the direct part (fraction q) and diffuse part (fraction 1-q) separately. Although the ratio of direct to 

diffuse solar radiation depends strongly on cloud conditions, outside subtropical climate zones where low cloudiness prevails 

the components are typically of the same order of magnitude e.g. (Li et al., 2015; Berrizbeitia et al., 2020).  

With respect to direct solar radiation, the solar beam can be considered to have a vertical component, impinging on the 

horizontal surface (base of the ice stupa), and a horizontal component impinging on the vertical cross section (a triangle). 75 

Measurements over a flat surface, like those from the glacier AWS, thus underestimate the solar radiation intercepted by an 

ice stupa. A correction factor f is therefore needed with which the direct radiation as measured by the AWS has to be multiplied. 

This factor may be large for a low sun, but in alpine conditions where there is always significant shading by the surroundings 

this situation is rarely found. A simple analysis shows that, for a shape factor of 𝑠 = 2,  f varies from 2.5 for a solar elevation 

of 20° to about 1.2 for a solar elevation of 60°. To account for the fact that the correction factor should be one for a flat surface 80 

and increase with the shape factor, we use (note that f and s are dimensionless): 

𝑓 = 1 + 𝑠/4 . (5) 

For the diffuse part of the solar radiation illumination is on all sides and the relevant area therefore is the lateral area as given 

in eq. (1b). Therefore the total amount of absorbed solar radiation per unit of time can be estimated as (in J	s-1): 

𝐹QER = 𝑓𝑞(𝑆BC − 𝑆EFG)	𝜋𝑟+ + (1 − 𝑞)(𝑆BC − 𝑆EFG)	𝜋𝑟√𝑟+ + ℎ+ (6a) 85 

Alternatively, one may wish to prescribe the albedo a  separately, i.e. 

𝐹QER = 𝑓𝑞𝑆BC(1 − 𝛼)	𝜋𝑟+ + (1 − 𝑞)𝑆BC(1 − 𝛼)	𝜋𝑟√𝑟+ + ℎ+ (6b) 

For the longwave radiation and turbulent exchange the exposed surface is also the lateral area. The longwave radiation balance 

then becomes: 

𝐹RW =(𝐿BC − 𝐿EFG)	𝜋𝑟√𝑟+ + ℎ+ (7) 90 

The turbulent heat fluxes depend on the roughness and exposure of the surface. Since we do not calculate the surface (skin) 

temperature, we simply assume that it is close to the melting point. The sensible and latent heat input are calculated using the 

well-known bulk transfer equations (e.g. Garratt, 1992): 

𝐹X = 𝜇𝜌𝑐\𝐶𝑈(𝑇 − 𝑇Q)	𝜋𝑟√𝑟+ + ℎ+ (8a) 

𝐹 = 0.623𝜇𝜌𝐿c	𝐶𝑈𝑝e8(𝑒Q − 𝑒)	𝜋𝑟√𝑟+ + ℎ+ (8b) 95 

Here C is the bulk turbulent exchange coefficient over a flat surface, T is the air temperature, 𝑇Q is the surface temperature (set 
to the melting point), r is air density, 𝐿c is the latent heat of sublimation (2	830	000	J	kg-1), 𝑐\ is the specific heat capacity of 

air (1004	J	kg-1	K-1), e is the vapour pressure, 𝑒Q is the saturation vapour pressure, p is atmospheric pressure, and U is the wind 

speed. The total turbulent heat flux H is just the sum of the fluxes of sensible and latent heat. 

The dimensionless parameter µ  is an ‘exposure / roughness parameter’ that deals with the fact that an ice stupa has a rough 100 

appearance and forms an obstacle to the wind regime. So µ is expected to be larger than one, and could perhaps have a value 

to 2 or more. For a larger shape parameter the exposure will be larger, we therefore use 
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𝜇 = 1 + 𝑠/2 . (9) 

Eq. (9) is not more than an educated guess. It is hard to base estimates of this parameter on information in the literature. Many 

studies have been carried out on the effect of obstacles on atmospheric  boundary layer flow (e.g. trees, but also buildings), 105 

but always in an ensemble setting, looking at the bulk effect of an ensemble of obstacles. We deal with a case of a single 

obstacle in open terrain, and we are confident that the roughness of the surface and the exposure will lead to larger turbulent 

fluxes. Given the uncertainty in the exposure parameter, later on we will present results for different values. 

When water availability is unlimited, the mass gain or loss is given by 

d𝑀 d𝑡⁄ = (𝐹QER + 𝐹RW + 𝐹 + 𝐹X)/𝐿m + 𝐹 /𝐿c (10) 110 

M is the mass of the ice stupa and 𝐿m is the latent heat of melting/fusion (334	000	J	kg-1). For typical alpine conditions the 

last term in Eq. (10) is normally quite small. Since the volume of the ice stupa is simply related to the mass (𝑉 = 𝑀/𝜌Bno), the 

height of the stupa can directly be calculated for a given shape factor (case i) or given radius (case ii). 

4 Application to the Oberengadin region, Switzerland 

Over the past few years, several ice stupas have been constructed in the Oberengadin, southeast Switzerland. In the winter of 115 

2017/18 an ice stupa was constructed in the Val Roseg at 2000 m a.s.l. (Fig.1, maximum height about 12 m). In the winter of 

2018/19 several smaller ice stupas  (height about 5 m) were built at a site in the Val Morteratsch at about 1900 m a.s.l. Since 

February 2021 a test site for ice stupa construction is in operation at the Diavolezza Talstation at an altitude of 2080 m a.s.l.  

To obtain first-order estimates of growth and decay rates for typical climatic conditions in the Oberengadin, we used the energy 

balance measurements from the automatic weather station on the Vadret da Morteratsch as a proxy for this high alpine region. 120 

During the period 1 July 2007 - 30 September 2012, the AWS on the Vadret da Morteratsch was located at an altitude of about 

2280 a.s.l. and has produced a unique data set without any gaps. The annual melt at the AWS location was between 5 and 7 m 

of ice. With a focus on the Diavolezza site, which is at an altitude of 2080 m a.s.l., a temperature correction of +1.3 K was 

applied to the input data (based on a standard atmospheric temperature lapse rate of  0.0065	K	m-1). We note that all the 

locations mentioned above are within a distance of 10 km from each other (interactive map to find locations: 125 

https://map.wanderland.ch). 

 

 

 
Figure 2. Energy balance components as measured by the AWS on the Vadret da Morteratsch for January 2008. Net solar radiation in red, 130 
net longwave radiation flux in black, turbulent sensible heat flux in blue, turbulent latent heat flux in green. 
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Fig. 2 shows an example of data from the AWS. The data have been stored as 30-minute averages. The turbulent heat fluxes 

have been calculated from the wind speed, air temperature and humidity, where the turbulent exchange coefficient C was used 

as a tuning parameter (to obtain the correct amount of observed ice melt over a 5-year period). The example shown is just for 135 

one relatively sunny winter month (January 2008). Note the large degree of compensation between net solar radiation and net 

longwave radiation - the well-known effect in clear sky conditions on the radiation balance. As a consequence, the turbulent 

heat fluxes are more important than it appears at first sight. 

 Fig. 3 summarizes model results in terms of ice stupa height and volume for five years. In all calculations we used 𝑞 = 0.5 

and 𝛼 = 0.6. It has been assumed that water availability is unlimited. In the first example (Fig. 3a) we show the evolution of 140 

an ice stupa on a 5 m high inner structure. In the model this is simply achieved by setting ℎ = 5	m at the start of the integration 

and correct the total volume afterwards for the volume of the inner structure. The use of an inner structure has the advantage 

that the freezing area is larger from the beginning and that the typical ice stupa shape is achieved relatively fast. The shape 

factor has been taken constant and equal to 2. We see some differences among the years: the maximum ice stupa height varies 

between 10 and 12 m, and is normally reached in early April.  For the last two years the simulated ice stupa volume is smaller 145 

mainly because of slightly higher temperatures and larger insolation. The decay of the ice stupa is hardly faster than the growth. 

A faster decay would occur if the albedo were not constant but would be prescribed to decrease during the melt phase (which 

is more realistic in most cases). 

Fig. 3b shows a comparison between the fixed shape simulation just described and a fixed radius simulation with 𝑟 = 7	m. 

This value of the radius was chosen to obtain more or less the same ice stupa volume. It can be seen that in the first stage of 150 

growth the volume for the fixed radius case increases somewhat faster than for the fixed shape case. Nevertheless,  the 

differences in the curves are not large and point to the fact that in the end the energy constraints determine how much ice can 

form (in the case of unlimited water availability). 

Because the value of the exposure parameter µ is highly uncertain, we show the sensitivity of the fixed-radius ice stupa volume 

to different formulations (Fig. 3c). For 𝜇 = 1, implying that the situation is equivalent to that of a flat surface, the stupa volume 155 

is significantly smaller than in the reference case (𝜇 = 1 + 𝑠/2). A stronger dependence of µ on the shape factor  (𝜇 = 1 + 𝑠), 

increases the stupa volume by about 25 %. For a larger shape factor, the mostly negative turbulent fluxes in winter increase, 

and this is not compensated by a larger interception of solar radiation. 

In the simulations discussed so far the ice stupas disappear in summer. One may ask the question under what conditions an ice 

stupa may survive the summer and grow to a larger size in the next winter. A possible way to study this question is to decrease 160 

the air temperature uniformly (temperature change DT). This will imply a stronger negative sensible heat flux in winter and a 

weaker positive heat flux in summer, thus accelerating stupa growth and slowing down its decay. We found a break-even point 

for ∆𝑇 ≈ −2	K (Fig. 3d). For larger negative values of  DT the ice stupa does not disappear in summer and keeps growing 

from year to year. For ∆𝑇 ≈ −3	K, the maximum volume in the fifth year  (~2400	m3) is about four times that in the first year 

(~600	m3). We note that in this calculation the effect of lower temperatures on the net longwave radiation balance has not 165 

been taken into account, because the radiation fluxes were prescribed according to the AWS observations. It is likely that we 

therefore underestimate the effect of lower air temperature. 
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Figure 3. Calculated evolution of ice stupa for the case of unlimited water supply for five winters. (a) Height and volume for the case with 
an inner structure (height 5 m) and fixed shape. (b) Volume for the case with an inner structure and the case with a fixed radius (7 m). (c) 175 
The effect of the exposure parameter µ on the volume (fixed radius). (d) The effect of a negative temperature perturbation. For ∆𝑇 = −3	K 
the stupa does not disappear anymore but is growing from year to year (fixed shape). 
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5 Discussion 

The data set used to simulate ice stupa growth and decay for typical conditions in the Oberengadin is probably quite 

appropriate. The setting of the location of the AWS (on the lower tongue of the Vadret da Morteratsch when it still existed) 180 

and the Diavolezza Talstation are rather similar: the altitude is about the same, and the valley is relatively wide. However, 

differences in the wind statistics are likely to exist, but difficult to assess. The Morteratsch AWS reveals a steady katabatic 

(glacier) wind most of the time, whereas the Diavolezza Talstation is more exposed to the larger scale wind regime. It seems 

likely that the average wind speed at the Diavolezza Talstation is somewhat higher than at the AWS site, where the 5-year 

average wind speed is 2.8 m/s. In contrast, the sites in the Val Roseg and Val Morteratsch are more sheltered and wind speeds 185 

are probably lower. 

The examples presented here are best-case scenarios with respect to ice stupa growth. In practice it is not always possible to 

have unlimited water availability, and it may be difficult to sprinkle the water more or less evenly over the stupa, especially at 

higher wind speeds. The choice of the shape of the ice stupa depends on the sprinkling strategy. It may be more realistic to 

describe an ice stupa with different shapes for the growth phase (e.g. fixed radius) and decay phase (e.g. constant shape factor). 190 

Such an approach can easily be accommodated in the model. 

We note that the ice stupa volume calculated here for alpine conditions at ~2100 m a.s.l. (typically	250	m3) is significantly 

smaller than the volumes obtained in the big ice stupas in Ladakh. Winter conditions in Ladakh are considerably colder and 

therefore growth rates can be much larger. 

In this exploratory study a solid comparison between observed and simulated stupa sizes was not attempted. However, we note 195 

that the maximum height of the stupa in the Val Roseg was 12 m, which is in good agreement with the stupa height shown in 

Fig. 3a.  

The model presented here is simple, basically because we consider the ice stupa to be a single unit with a surface temperature 

close to the melting point. As soon as this constraint is relaxed and the surface temperature of the stupa is considered to be a 

dependent variable, the whole procedure becomes more complicated, and some processes can be studied more explicitly. 200 

Nevertheless, we believe that the simple approach presented in this note, which requires not more than one page of coding, is 

a useful tool to obtain first-order estimates of growth and decay rates under various conditions. Effects of snow cover, 

switching off water during daytime, switching of water supply for high wind speeds, different starting dates, differences 

between warm and cold winters, etc. can be evaluated. We finally note that the model can easily be reformulated for another 

geometry, e.g. a dome. 205 

The 5-year dataset from the weather station on the Vadret da Morteratsch is available on request. 
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