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Abstract. We introduce an algorithm (Watta), which automatically calculates supraglacial lake 
bathymetry and potential ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon 
heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, depth 
corrected for refraction and (sub)surface ice cover in addition to producing surface heights at the native 
resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of 15 
lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements 
for calibration. Imagery sources include Landsat 8 OLI, Sentinel-2 and high-resolution Planet Labs 
PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths. The 
Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) 
glacier in Western Greenland, and we use multiple imagery sources (available for 45 of these lakes) to 20 
assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We use 
Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources 
(tasked over the season) and nearly-simultaneous Operation IceBridge CAMBOT (Continuous Airborne 
Mapping By Optical Translator) imagery (on a single airborne flight) for a focused study of the 
drainage of a single lake over the 2019 melt season. Our results suggest that the use of multiple imagery 25 
sources (both publicly-available and commercial), in combination with altimetry-based depths, can 
move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal 
scales. 

1 Introduction 

Ice loss from Greenland and Antarctica is the greatest current contributor to rising sea levels, and 30 
paleodata and modelling efforts indicate that enhanced mass loss of these ice sheets may become 
irreversible if certain major tipping points are passed (IPCC, 2019). Recent observations have shown 
that ice 
loss is accelerating faster than projected (Slater et al., 2018), with a sixfold increase since the 1970/80. 
In Antarctica, this was  largely driven by increased ocean melting of outlet glaciers (Rignot et al., 2019), 35 
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while on the Greenland Ice Sheet mass loss is further promoted by increased surface melt and runoff 
(Mouginot et al., 2019). 

Owing to the non-linear relationship between increasing summer air temperatures and surface 
melt (Trusel et al., 2018), meltwater production has increased rapidly on the Greenland Ice Sheet (van 
den Broeke et al., 2016). In the summer of 2019, advection of warm, wet mid-latitude air led to a 40 
summer mass loss unprecedented in the past 50 years, with widespread surface melt occurring up to the 
highest regions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen et al., 2020). Concurrent with the 
increase in melt extent and duration, supraglacial lakes - which form when meltwater runoff collects in 
local topographic lows - are now a common feature on large parts of the ice sheets and have become 
more extensive and have advanced inland toward higher elevations in the past decades (Gledhill and 45 
Williamson, 2018; Leeson, 2015; Howat et al., 2013) 

These meltwater lakes and streams are a key component of the hydrological system of both ice 
sheets. Hydrological systems over Antarctic ice shelves have been identified as a major factor for 
potential ice shelf collapse (Bell et al., 2018). While mass loss in Antarctica over the next 100 years is 
generally thought to be dominated by the basal melt under ice shelves (Schlegel et al., 2018), emerging 50 
research has focused on the potential importance of surface hydrology over Antarctica (Arthur et al., 
2020). Supraglacial lakes have been observed around the margin of the Antarctic Ice Sheet up to high 
elevations (Stokes et al,, 2019) and are likely to become more prevalent on firn-depleted ice shelves in 
future warming scenarios, which could potentially trigger their collapse and consequently lead to 
accelerated sea level rise (Lai et al., 2020). Meltwater pathways can include surface flow into lakes and 55 
then streams, leading, in Greenland, to direct loss to the bed from lake drainage or the sudden 
termination of a stream into a moulin, or near-surface flow where ice slabs can limit vertical motion 
(MacFerrin et al., 2019). The complex links between supraglacial hydrological systems and englacial or 
subglacial pathways can potentially be deduced by capitalizing on increasingly higher-resolution 
imagery and classification techniques of supraglacial feature types (Yang et al., 2017). Past remote-60 
sensing work has derived lake volumes from high-resolution (~1 m) Worldview imagery using a 
physical optical depth approach as well as an empirical method using in-situ estimates (Moussavi et al., 
2016; Pope et al., 2016). Recent work has developed an automated algorithm applying the physically-
based method to Landsat 8 and Sentinel 2 to track specific hydrological features and quantify the 
seasonal evolution of surface hydrology (Dell et al., 2020). The physical method assumes that wind-65 
driven surface waves are minimal, that the slope of lake bottoms are gradual and that lake- bottom 
albedos are homogoneous (Sneed and Hamilton, 2011). The empirically-based method was first applied 
by Box and Ski (2007) using MODIS imagery and advanced by Legleiter et al. (2014), which used 
high-resolution WorldView 2 imagery. Both the physically-based and empirically-based methods are 
limited to supraglacial lakes which contain minimal particulate matter (Arthur et al., 2020), and by the 70 
depth of the lake, assuming that the reflection depletion in imagery is limited at great depths, implying a 
physical limit to the ability to calculate depth (Box and Ski, 2007). Pope et al. (2016) estimates that the 
greatest depth that could be calculated by these methods was 5 m. Additional work has applied a similar 
physically-based approach using Sentinel-2 from Copernicus (Williamson et al., 2018), Landsat 7 and 8 
(Banwell et al., 2014), Aster imagery (Sneed and Hamilton, 2007) and a combination of Landsat and 75 
Sentinel-2 imagery (Moussavi et al., 2020). Although Sentinel-2 provides relatively high resolution (10 
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m) imagery with substantial coverage at a 4-day to weekly interval, usable imagery is often limited by 
cloud-cover, and the resolution of small streams and ice cover is imperfect. Commercial satellite 
imagery, which is poised to expand substantially in the future, can help fill the gap in coverage of small-
scale melt and melt-induced features at a higher spatial (<3 m) and temporal (multiple daily passes) 80 
resolution, complementing estimates resolved from Sentinel-2. 

The ICESat-2 laser altimeter, available since 2018, has now introduced the potential to replace 
the in situ measurements used in empirical (supraglacial lake depth) bathymetric methods with satellite 
laser bathymetric depths at a high vertical resolution, consequently extracting lake volumes from 
imagery (Parrish et al., 2019; Albright and Craig, 2020; Thomas et al., 2020). Here, we present a new 85 
algorithm, titled “Watta”, using the ICESat-2 laser altimeter to derive properties of supraglacial lakes. 
Watta was first presented in Fricker et al. (2020), demonstrating both the potential for ICESat-2-based 
bathymetry estimates and the greater accuracy of empirically-based lake depths in comparison to 
physically-based estimates; the latter tended to underestimate lake depth by over 2 m. However, we note 
that physically-based methods have the advantage of being dependent on imagery alone. In addition to 90 
bathymetry derived from the difference between the air-water and water-ice interface, this algorithm 
assigns a probability for surface type characteristics to photon returns along-track. These types include 
lakes, refrozen lakes, lakes with ice layers on top as well as under the surface. Watta also returns surface 
heights at the native resolution of the ATL03 photon cloud (0.7 m), allowing the algorithm to capture 
small-scale changes in surface relief when multiple passes are differenced. Additionally, we exploit a 95 
range of imagery data to validate the surface types and to derive spectrally-driven depth estimates 
calibrated to ICESat-2-based depths, thereby providing an estimate for meltwater volume over the full 
image. We compare empirically-based volume estimates derived from a single ICESat-2 based depth 
estimate but from multiple imagery sources with different spatial resolutions (and without an 
atmospheric correction) to better understand the importance of spatial resolution and radiometric 100 
calibration on the relative accuracy of depth volume estimates. 

The method is tested and refined using representative sections along the flowline of Sermeq 
Kujalleq (Jakobshavn Isbræ), one of the fastest-moving glaciers in Greenland, as well as the slower-
flowing Sarqardliup Sermia. The repeat-tasking of Planet SkySat imagery was designed to coincide 
with ICESat-2 tracks (Fig. 1), capturing lake depths at various stages of lake development during the 105 
unusually intense melt season of summer of 2019  (Tedesco and Fettweis, 2020). One of the major 
motivations for this tasking effort was its coincidence with several NASA Operation IceBridge (OIB) 
flights at the beginning and end of the summer. Data from multiple instruments aboard OIB could 
potentially provide additional insight in future work, and within this study, we use OIB CAMBOT 
(Continuous Airborne Mapping by Optical Translator) imagery as a part of a focused multi-instrument 110 
study of the evolution of a supraglacial lake. The availability of simultaneous laser altimetry and high-
resolution imagery over the season provided a rich test dataset with which to extract 
altimetry-based estimates of supraglacial lakes at various points in the season. Here, we present initial 
results exploiting this dataset as well as introducing the Watta ICESat-2 surface feature detection 
algorithm. 115 
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Figure 1: Study region over Sermeq Kujalleq and Sarqardliup Sermia. Top Left: Lake Ayşe on May 23rd using Planet SkySat visual 
imagery, Bottom left, study region over Western Greenland. Right: Main region with repeat-tasking locations for Planet SkySat 120 
shown in grey boxes over annual velocity estimates from MEaSUREs (NSIDC). Center tracks ICESat-2 reference ground tracks 
shown in white. Operation IceBridge flight on May 15th, 2019 shown in green. Five lakes indicated in red discussed throughout text 
include C: Lake Cecily, A: Lake Ayşe, J: Lake Julian, N: Lake Niels, Z: Lake Zadie 

2 Data Sources 

2.1 Satellite Altimetry 125 

Our Watta method relies on individual photon heights as measured by ICESat-2’s (Ice, Cloud, and Land 
Elevation Satellite) ATLAS (Advanced Topographic Laser Altimeter System) instrument, distributed in 
the ICESat-2 ATL03 product, L2A, Global Geolocated Photon Data (Neumann et al., 2019). The polar 
orbiting ICESat-2 satellite was launched in September, 2018 to continue the mission begun by ICESat 
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(2003-2009) and bridged with the airborne Operation IceBridge mission, namely to provide ice sheet 130 
mass balance estimates at an unprecedented level of accuracy. ATLAS is a photon-counting 532 nm 
laser altimeter aboard ICESat-2 split into 6 beams which are divided into 3 pairs (separated by 3.3 km), 
where beams within each pair are separated by 90 m. Within a single track, the beam pair is designated 
by a number, i.e. \3" in "gt3r". Each beam pair consists of a strong and weak beam, with the strong 
beam returning 0.6-3.9 signal photons per laser pulse vs 0.6-1.0 signal photons per laser pulse for the 135 
weak beam (Neumann et al., 2019). The beam is designated with "r" or "l", depending on the orientation 
of the satellite, as in "r" in "gt3r". 

While the strong beam produces a stronger signal, we have developed the Watta algorithm to 
work effectively with both strong and weak beams. ATL03 produces a photon cloud where each photon 
is geolocated to within a 6.5 m accuracy (Magruder et al., 2020) with an associated height as well as a 140 
confidence level [high, medium or low], and is produced at an along-track horizontal resolution of 0.7 
m. While the ATL06 product (Smith et al., 2019) provides highly-accurate surface height estimates at a 
coarser resolution, the higher spatial resolution of the ATL03 product can be used to deduce fine-scale 
surface characteristics, as with the Watta algorithm. Over water bodies, ICESat-2 can produce returns 
both over the surface over the lake as well as the bottom of the lake (Fair et al., 2020; Fricker et al., 145 
2020; Parrish et al., 2019); these dual returns are used by Watta to extract supraglacial lake depths, as 
well as lake surface characteristics.  
 

2.2 High-resolution imagery near Sermeq Kujalleq 

For imagery sources, in addition to freely-available Landsat OLI (30 m) and Sentinel-2 (10 m) imagery, 150 
we incorporate very high resolution imagery from Planet Labs, including Dove-R (3 m) and SkySat (~1 
m). The latter is used to validate surface types, while all imagery sources are used to derive spectrally-
driven depth estimates calibrated to ICESat-2-based depths. Additionally, the high spatial resolution of 
SkySat imagery allows for the identification of small-scale features on the surface and bottom of 
supraglacial lakes, which we use to interpret the temporal evolution of lake characteristics in a number 155 
of case studies. SkySat imagery did not include an atmospheric correction, and we therefore used TOA 
(Top of the Atmosphere) reflectance values from Landsat, Sentinel-2 and SkySat imagery to calculate 
supraglacial lake depth for the sake of consistency. PlanetScope Dove-R data provided surface 
reflectance values only and is known to have issues with radiometry (Saunier et al., 2020). However, 
because the method used here derives lake depth values empirically (rather than physically), this work 160 
presents the opportunity to develop accurate depth estimates using high-resolution data where 
calibration is imperfect, but where the data availability is high. This is particularly true for data from the 
PlanetScope constellation, which are frequently captured multiple times within a single day. Relative 
spectral response curves for the bands used in this study are red, blue and green and NIR as shown in 
Fig. S1b. Finally, all imagery was coregistered with ICESat-2 using the GIMP-2 digital elevation model 165 
(DEM), which has a vertical accuracy (as compared to ICESat), within ±1 m over most ice surfaces and 
±30 m over areas with high relief (Howat et al., 2014) and is used for the geolocation of Landsat 
imagery (detailed in Section 3.2). 
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As a part of this project, SkySat imagery was tasked for repeat cycles of ~4 days over the 2019 
Greenland melt season in selected locations, producing usable imagery at varying intervals based on 170 
cloud cover. Each of the 3 areas of interest presented here were approximately 600 km2. Repeat imagery 
was specifically chosen to cover flowlines of fast-flowing glaciers, including Sermeq Kujalleq, as in 
this study (Fig. 1). In addition, repeat tracks were designed to coincide with both (a) overpasses of the 
recently-launched NASA ICESat-2 laser altimeter and (b) several flights of the airborne NASA 
Operation IceBridge (OIB) mission in the beginning and end of the season. Here, we present the first 175 
work exploiting this stacked dataset for method development, restricted to available satellite 
imagery/altimetry. We note that for Lake Julian, discussed in section 5, OIB conducted a flight on 
2019/5/15, thus capturing observations from multiple instruments onboard OIB, including CAMBOT 
imagery and the Airborne Topographic Mapper (ATM). While ATM-based lake depth estimates could 
potentially be compared to the lake depths calculated from the near-simultaneous ICESat-2 overpass, 180 
this is outside the scope of this study. We discuss Lake Julian in detail in order to facilitate potential 
future research at this site. 

The final set of lakes used for the development of the Watta method included 50 lakes captured 
by ICESat-2 (46 over Sermeq Kujalleq and Sarqardliup Sermia, and 4 additional lakes in the southwest, 
not shown here), 14 of which coincided with very high-resolution imagery (SkySat) within a 3-day 185 
window. The date/times/imagery IDs/ICESat-2 details for all data sources are presented in 
Supplemental Table 1. 

3 Methods 

We derive supraglacial lake volume from a given imagery source in four steps. We first calculate lake 
depths along an ICESat-2 beam using the Watta algorithm applied to the ICESat-2 ATL03 photon 190 
cloud. Secondly, we coregister Watta- based surface and lake bottom heights with the imagery source 
(itself co-registered to a common Landsat base) and delineate lake boundaries in the process (methods 
detailed in Section 3.2). Finally, we develop an empirical relationship between ICESat-2 based depths 
and coincident imagery which can be applied to calculate lake depths over the full image. The empirical 
relationship is based on the exponential decay of reflectance at water depth, as detailed by Box and Ski 195 
(2007). In the original work, in situ depth estimates (D) and reflectance values from imagery (R) were 
used to estimate the ɑ-coefficients in eq. 1, which were then applied to calculate water depth over the 
full-scale of imagery where lakes are delineated: 
D = ɑ0 / (R + ɑ1) + ɑ2 (eq. 1) 
However, such in situ estimates are scarce in space and time, and here we exploit the direct depths from 200 
the Watta algorithm to derive time, location and sensor specific estimates of the ɑ-coefficients. 

3.1 Watta 

Watta is an algorithm which takes ICESat-2 ATL03 photon data as input and automatically detects 
supraglacial surface features with an associated likelihood. In its current state, the algorithm detects 
lakes and their associated surface, lake bottom and corrected depth estimate as well as subsurface ice 205 
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when present (Fig. 2). We also exploit the algorithm for the detection of frozen streams in this study. 
The codebase for Watta is divided into a module which calculates surface and bottom returns (“Surface 
Detection”) at the native 0.7 m resolution of ICESat-2, and a second “Interpretive” module that resolves 
the calculated bottom/surface to specific supraglacial features, in this case lakes. The Surface Detection 
module determines, for a collection of photons surrounding any individual photon (75 collected before 210 
and 75 collected after; selected in step a), heights with the three strongest peak probabilities within in a 
kernel density (step b). This provides estimates for (1) a height for the surface or top of a lake or 
refrozen pond (2) a lake bottom and (3) a third height value, which can potentially be subsurface ice 
(Fig. 2 step a). We note that photons are selected without regard to ATL03 confidence level. Although 
the bin width (and therefore vertical resolution) used to calculate heights is 0.1 m, we perform a second 215 
kernel density estimate calculation using a 0.3 m bin width to confirm robustness of the initial bottom 
estimate, i.e. that a coarser calculation produces a bottom height near that of the finer-resolution (0.1 m 
bin width) calculation. In post-processing step c, outliers are identified in comparison to surface/bottom 
heights within a larger horizontal window, whereby the number of standard deviations used to detect an 
outlier and the number of photons used to calculate a mean (window) increase over several steps.   220 
Where outliers are found, the kernel density estimate (steps a,b) are recalculated with a larger number of 
photons (in multiples of 75) to account for any erroneous calculations generated by insufficient photon 
density. Where values continue to be outliers, they are removed from the estimates to be interpolated 
instead. The final output of the Surface Detection module include a calculated surface and potential lake 
bottom return at the native resolution of the ATL03 photon cloud. 225 
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Figure 2. Diagram of the Watta methods described in main text. 
 

The Interpretive module uses output from the Surface Detection module to automatically determine 230 
locations of surface features (e.g. lakes or frozen streams) as well as characteristics of a lake, e.g. the 
presence of refrozen ice at the surface. First, remaining outliers are removed by calculating a local 
background and surface photon density for each ATL03 photon, as determined from a 5000 photon-
count window surrounding the estimate location (step d). We then remove those estimated heights for 
top (surface) and bottom (potential lake bottom) where the photon density more closely resembles the 235 
background photon density than a surface density estimate. In step e, we detect breaks in the slope of 
the top (surface) to divide the satellite pass into segments which are potential lakes. For example, a 
semiparabolic depression in topography, with a high absolute value of the slope, is broken by a lake 
surface, where the slope approaches zero (e.g. as for the lake shown in Fig. 2 step a). For each of these 
potential lakes, we then perform several steps to both refine lake surface/bottom and to assign the lake a 240 
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class based on its properties. To produce a lake bottom value with greater accuracy, we first perform a 
recalculation of the kernel density estimate (step f, equivalent to the Surface Detection step b), except 
here we limit the kernel density estimate to photons below the calculated surface and use 30 photons 
rather than 75 photons, to better capture the lake bathymetry, which in general is more irregular than the 
lake surface. Sub-surface ice layers near the edges of the lake are then reclassified as lake surfaces, thus 245 
sealing the bottom of the lake to the top at the lake edges (step g). In step h, we first perform a final 
smoothing, passing the resulting bottom photons through an iterative robust quadratic local regression 
(rloess) filter to remove outliers in the bottom estimates and then assign physical meaning to each 
photon (e.g. lake surface, bottom, surface ice, subsurface ice). The presence of surface ice is determined 
based on the variability in thickness of the lake surface (i.e. a bimodal distribution indicates surface ice 250 
at some locations). We identify subsurface ice by the presence of weak return above the lake bottom but 
below the surface (see Fig. 2 step b). The surface and bottom photons are then used to derive lake depth, 
where we apply a simple correction for refraction, described in Parrish et al. (2019), to produce a real 
corrected lake depth. Finally, in step i, we assign a final classification of a lake type using properties of 
the local surface slope and the strength of the bottom return (Table 1). For example, a segment with a 255 
surface slope smaller than 0.03% as well as a distinct bottom (a photon density far exceeding the 
density of a background return) is given a lake classification of ‘highly likely’, whereas segments 
passing the same slope threshold but not showing a strong bottom return are identified as ‘likely ice- 
covered’ lakes. On the other hand, segments with a slope exceeding 0.3% and no significant peak below 
the surface in the histogram are allocated to the ‘highly unlikely’ lake class. 260 
 

Class Slope Bottom 
reflection* 

Lake probability Lake characteristics 

1 < 0.03% strong highly likely very flat open lake, dense bottom photon returns 
2 0.3% < slope < 0.3% strong very likely flat, open lake with presence of refrozen ice; dense 

bottom photon returns 
3 > 0.3% strong likely non-flat surface, possibly flowing water channel 

on sloping surface; dense bottom photon returns 
4 < 0.03% weak very likely very flat open lake; weak bottom photon returns 
5 0.3% < slope < 0.3% weak about as likely as not flat open lake; weak bottom photon returns 
6 > 0.3% weak unlikely Non-flat surface; weak bottom photon returns 
7 < 0.03% none likely Very flat refrozen lake; no significant bottom 

photon returns 
*: strength of the bottom reflection is defined by the ratio of the first two peaks in the 2 m interval histogram of non-surface 
photon heights within the segment. Strong bottom reflection: peak ratio > 3.5; weak bottom reflection: 2.5 < peak ratio < 3.5; 
no bottom reflection: peak ratio < 0 

Table 1. Definitions for Watta lake classes 
 
Two potential sources of ambiguity with the subsurface ice classification are: (a) the possibility for 
specular returns and (b) apparent multiple surface returns which resulting from instrument echo. 265 
Specular returns over flat water (implying high energy return), return a strong surface as well as 
multiple layers below the surface spaced according to the ATLAS deadtime (0.45 m below the surface 
and a potential tertiary return below that). Echoes produced by electronic noise in the instrument, which 
also frequently occur very smooth water surfaces, can similarly produce a strong return at the surface 
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with double echoes at ~2.3 m and ~4.2 m below the surface (Martino et al., 2020; Lu et al., 2021). The 270 
categorization of subsurface ice (as in with Lake Ayşe in Fig. 3) are reliant on visual inspection. In this 
case, we assume subsurface ice because the layer shows trailing photons towards a weakly-resolved 
lake bottom rather than a distinctive sharp horizontal layer with no curved bottom return  

3.2 Imagery Processing 

A subsequent set of steps uses the lake depths extracted from the Watta algorithm to produce lake 275 
volumes from concurrent imagery, e.g. SkySat, PlanetScope, Sentinel-2 and Landsat OLI, requiring 
geolocation as well as the semi-automated identification of lake edges. Coregistration between ICESat-2 
photon locations and imagery (Fig. 3 Step j) is managed by registering ICESat-2 elevations with the 
GIMP-2 DEM as an intermediary step (GIMP-2 is also used for georeferencing of Landsat), by 
transforming the point cloud using the iterative closest point algorithm, which minimizes the square 280 
error between the two data sets (Besl and McKay, 1992). The point cloud from ICESat-2 is chosen to 
include a 0.2° latitude window surrounding the lake being resolved to include larger topography in the 
region (and thus avoid errors presented by ice motion). The large lakes used here are all located in 
strong topographic depressions (which are resolved in both the GIMP-2 DEM and ICESat-2) and can 
therefore be assumed to remain relatively fixed. 285 

To register imagery sources to one another, we standardize all imagery to the nearest Landsat 
image, using the arosics library in Python (Scheffler et al., 2017), which detects and corrects 
misregistrations of an input image (based on a reference image) at the sub-pixel scale. However, the 
coregistration of all other imagery sources to Landsat OLI first requires the delineation of lake 
boundaries in order to exclude regions with moving surface water, which evolves rapidly and can be 290 
mistaken for fixed topography (which is more useful for geolocation). Here we calculated a normalized 
difference water index (NDWI) for each image, using a standard NDWI (with the green and NIR) bands 
to deliberately include regions with ice layers (as these are also detected by Watta), rather than the 
modified NDWIice (which uses the red and blue band), per Yang and Smith (2013). Boundaries of lakes 
(step l in Fig. 3) are calculated by using adaptive thresholding (Bradley et al., 2007) to generate a binary 295 
mask which is then used to identify individual water bodies. The use of adaptive thresholding avoids the 
limitations of any fixed NDWI threshold, especially relevant to PlanetScope data, which occasionally 
produces negative NDWI values. However, we note that this step has the potential to include partial ice 
layers (although visual inspection suggests that this was avoided with the test cases used here). To 
coregister ICESat-2 to each imagery source, we also note that the ICESat-2 mission requirements list a 300 
geolocation accuracy of 6.5 m (Magruder et al., 2020), which may potentially include multiple pixels of 
high-resolution imagery. To calculate a band value from imagery associated with a geolocated photon 
from ICESat-2, we find pixels in imagery within a 6 m radius and calculate a mean. In Step k, we 
calculate an empirical relationship between the depth estimate calculated by Watta and a band value 
from coregistered imagery pixels. Finally, we use this empirical relationship to produce a depth estimate 305 
for the entire lake using eq. 1. 
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Figure 3. Diagram of imagery processing steps accepting Watta outputs as input (top left) and producing lake depth 
estimates (bottom left). Watta lake depth profile shown is for Lake Ayşe using RGT 841 on May 23rd and Planet 310 
SkySat imagery on May 22nd. 

4 Evaluating Methodology 

4.1 Physical constraints of the test dataset 

The test dataset provides a diversity of lake types, with the largest surface area calculated at 5.6 km2 and 
a maximum Watta- calculated corrected depth at 10.3 m. A number of lakes contain substantial ice 315 
cover. In the following sections, we discuss several lakes in greater detail which present a diverse set of 
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conditions with which to evaluate both the Watta algorithm and the imagery sources used to extrapolate 
lake volumes. Locations of the lakes can be found in Fig. 1. 

Lake Ayşe was selected for closer examination because despite the dense photon cloud, its relief 
in surface and bottom, combined with the presence of ice cover, pose a challenge for our detection 320 
algorithm. Additionally, multiple imagery sources were available within a 5-day window at this 
location. Lake Zadie is chosen because it represents an ideal case for the algorithm, while Lake Cecily 
is chosen because two beams passed over the same lake with SkySat imagery available one day 
afterwards. A basic assumption we make in this study is that the lake bottom remains relatively 
consistent over several days, although past research on two lakes in Western Greenland has estimated 325 
lake bottom ablation rates at 6.5 cm/day on the bottom of the pond (Tedesco et al., 2012). We assume 
that this is the primary physical source of uncertainty in the empirical calculation, as the relationship 
will degrade with temporal distance from the ICESat-2 pass. However, where changes in the 
bathymetry are not uniform, we can potentially make inferences about drainage mechanisms (e.g. the 
forming and deepening of crevasses). Cross-sections of all lakes used for development showing the lake 330 
top, bottom, and bottom value corrected for refraction as calculated by Watta, along with lake top and 
bottom as calculated empirically from imagery, are shown in Supplemental Fig. S4 and their 
coordinates and relevant statistics listed in Table S1. 

 

4.2 Physical constraints of the test dataset 335 

The most rigorous weighting system used for the algorithm, using only lake classes 1, 2, 4 and 7 (see 
Table 1), succeeded in automatically detecting 49 out of the 50 lakes identified in the available imagery, 
with two likely false positives (i.e. not confirmed by NDWI values exceeding 0.2 in the imagery). A 
less rigorous weighting system, including lake class 3, detected the 50th lake, but resulted in a large 
number of false positives in areas of steep, and rough topography, where abrupt changes in the photon 340 
elevations are misinterpreted as bottom reflections by the algorithm. 

In the absence of simultaneous in situ data, we evaluate the performance of the algorithm based 
on visual inspection (comparing ATL03 heights with Watta calculated depths as shown in Fig. S3). 
Additionally, where an empirical relationship with imagery is successful (a high correlation coefficient 
value between imagery-derived depths and Watta-derived depths,), we take this consistency for partial 345 
evidence that ICESat-2 and imagery sources have detected bathymetry correctly, although we note that 
this metric is only applicable to the specific lake, not all the lakes in the region. The most successful 
bottom retrieval occurred where ice cover was minimal, the density of photons was high and where the 
bottom slope was relatively uniform (e.g. Lake Zadie). The presence of ice near the surface (between 
the surface and 1 m below the surface) frequently obscured lake bottom detection (e.g. reference ground 350 
track (RGT) 1222, Lake 3 in Fig. S3), although in some cases only partially; however, the presence of 
subsurface ice did not always preclude the presence of a strong bottom return (e.g. Lake 7, RGT 1169, 
Fig. S3). The algorithm therefore indicates the presence of surface/near- surface ice, but does not 
automate the removal of the calculated bottom return due to ambiguity. We can confirm the presence of 
an ice layer both by visual inspection of the imagery and by comparing standardized NDWI values 355 
calculated from imagery coincident with the ICESat-2 track (Fig S1a). We note that for at least one 
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case, (RGT 1108 Lake 6, Fig. S3), the designation of “lake” was ambiguous, as this could be treated as 
either a shallow lake containing a large amount of subsurface ice, or as a slush layer (a number of which 
were identified elsewhere). 

4.3 Evaluating Data Sources for Imagery-based Depths 360 

Total uncertainty for the empirically-based depth estimates from imagery is comprised of uncertainty in 
ICESat-2 geolocation, uncertainty from the Watta algorithm itself (which operates at a vertical 
resolution of 0.1 m), from the resolution of the imagery, from the uncertainty in alpha coefficients 
calculated from the empirical method and finally from physical changes in the lake occurring between 
the time that imagery is captured and the ICESat-2 pass. The empirical calculation is less likely to be 365 
affected by physical changes in the lake when the lake surfaces calculated by imagery vs altimetry 
differ by less than a meter; here we estimate precision with a simple R2 value. 

Past work has considered either the red or green band for developing depth estimates (Moussavi 
et al., 2020; Williamson et al., 2018), though in situ validation was limited at the time (Pope et al., 
2016). Figure 4 compares R2 values from empirical estimates derived from the red vs green band for 370 
lakes classified according to the maximum lake depth calculated by Watta. In agreement with Moussavi 
et al. (2016), for Landsat 8 (Fig. 4d), Sentinel-2 (Fig. 4c) and SkySat (Fig. 4a), the empirical depth 
estimates for the red band showed higher fidelity with Watta-based depths for shallow lakes, while the 
green band showed greater fidelity for deeper lakes. Of six lakes where a maximum depth exceeds 7.2 
m and where the imagery source is Landsat 8, two lakes (RGT 1222, Lake 8, 12 in Supplemental 375 
Profiles) show both red and green-band based profiles being unable to resolve the deepest points in the 
lake. For two additional cases (RGT 1222, Fig. 4e, Lake Zadie, Lake 14, 17 in Supplemental Profiles), 
the green band was able to resolve very deep lake depths, while the red band was not. This implies that 
for SkySat, Sentinel-2 and Landsat 8, the green band is able to resolve bathymetry at greater depths and 
emphasize cracks at the bottom of the lakes. The major exception is PlanetScope data (Fig. 4b), where 380 
the red band consistently showed greater fidelity to Watta-based estimates while green band estimates 
produced unrealistic depth estimates, although there were a limited number of lakes where coincident 
PlanetScope imagery was available. We note that because this method is empirical, future users would 
be able to select bands or combinations, as with the average of the panchromatic and red band used by 
Pope et al. (2016). 385 
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Figure 4. Comparing R2 values from empirical estimates calculated with the red band vs the green band from 
multiple imagery sources, with lakes classified by maximum lake depths as calculated by Watta. (a) Planet SkySat 
TOA reflectance (b) Planet PlanetScope surface reflectance (c) Sentinel-2 TOA reflectance (d) Landsat 8 OLI TOA 
reflectance (e) Watta-calculated and imagery-derived depths: Lake Zadie based on Landsat OLI. 390 
 

To demonstrate the robustness of the Watta algorithm, the impact of band choice, and the 
sensitivity to absolute lake depth, we show depths calculated from two beams passing over Lake Cecily 
on June 13th, followed by retrieval of SkySat imagery on June 14th and Sentinel-2 on June 16th (Fig. 5 
a,b and RGT 1169 Lake 5(6) in Supplemental Profiles). Over this spot, covered by the 3l beam on this 395 
pass, the green band shows higher R2 values for both Sentinel-2 and SkySat, but lower R2 values for the 
red band. This is consistent with the greater depths calculated from the 3l beam, which approach the 6 
m depth at where the performance of the green band is expected to improve. The use of the green band 
in both the 3l and 3r cases allows for finer bathymetric relief to be captured in both SkySat and 
Sentinel-based depth estimates, with the finer resolution of SkySat capturing substantially greater detail 400 
(Fig. 5c, box). We note that even when high R2 values are calculated between the empirical estimate 
and Watta-calculated depths, unrealistic depths can result when lakes drain or fill rapidly, and low- 
resolution imagery can potentially resolve the height of a lake surface inaccurately (Fig. S2). 
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 405 
Figure 5. Watta-calculated and imagery-derived depths: Lake Cecily based on Sentinel-2 (k,l) and Planet SkySat 
(m,n); Lake Cecily false-color imagery from Sentinel-2 (a) and SkySat with ICESat-2 beam 3r and 3l (b); Imagery-
derived depths from Planet SkySat (c-f) and Sentinel-2 (g-j) with band/beam combination as shown. Estimates from 
the green band are indicated by “G” while those calculated from the red band are indicated by “R”. is Red box in (c) 
highlights region where underlying crevassing is captured 410 
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Within Figure 6, we show the depth evolution of Lake Ayşe over 5 days, both along the ICESat-
2 ATL03/Watta-calculated profile and the lake volume estimates then constructed from imagery using 
the empirical equation. Increasing lake volume is demonstrated both by the expansion of the surface 
area of the lake through time (right column) and the rise in the lake level (cyan line, left column). Planet 415 
SkySat estimates at a 1 m resolution (Fig. 6c) show the greatest level of detail of crevassing at the 
bottom of the lake although PlanetScope estimates, at a 3 m resolution (Fig. 6d,e) are comparable. We 
note that PlanetScope data showed variations in the fidelity to Watta-based estimates between the green 
band vs the red band depending on the instrument. The bottom relief is maintained at depth with the 
PlanetScope resolution (3 m), and future work could generate more reliable depth estimates by 420 
calibrating empirically-based depths to Sentinel estimates, which could provide very high-resolution 
depth estimates while also leveraging the high temporal frequency of PlanetScope data collection. 
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Figure 6. Lake Ayşe, filling over five days between May 20th and May 25th, with ICESat-2 pass on May 23rd. Left 
column: Profiles with Watta-calculated and imagery-derived depths from the green, indicated by “G” and red bands, 425 
indicated by “R” (with corresponding R2 values inset), legend same as Fig.4a. Right column: Depth values derived 
from empirical estimate, with imagery source , date collected, band used for depth estimate shown. Imagery source 
abbreviations are as follows: “LSat” for Landsat, “SSat” for Planet SkySat, “PS” for Planet PlanetScope and “Sent” 
for Sentinel-2.  Path of ICESat-2 spot over Lake Ayşe is shown in Fig. 1 
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 430 

5 Capturing Lake Drainage over the Melt Season 

Our improved ability to track lake depth and volumes using the combination of ICESat-2 and multi-
sensor imagery can potentially provide new insights into patterns of lake drainage. Lake Julian (Fig. 7a) 
was selected for closer examination because on May 15th, both the airborne Operation IceBridge 
mission and ICESat-2 passed over this region, providing a unique stack of both airborne and satellite 435 
data. While we show only very high-resolution Operation IceBridge CAMBOT imagery here, other 
instruments aboard OIB could potentially provide valuable insight into the state of both surface 
hydrology and firn characteristics in future work. Additionally, there are cloud-free ICESat-2 RGT 727 
passes over this lake both on May 15th, 2019 and on August 14th, 2019, providing a profile of the lake 
both when it was filled as well as after drainage. A second lake, Lake Niels (Fig. 7a) is examined briefly 440 
primarily to provide context. Although no altimetry estimates are available over Lake Niels, imagery 
sources reveal a very different evolution and drainage pattern despite its being located only 3500 meters 
from Lake Julian, and consequently subject to many of the same atmospheric drivers. Within the larger 
region shown in Fig. 7a (see also Supplemental Fig. S4), the percentage of the ice sheet surface covered 
in liquid water, as measured by the percentage of the region where NDWIice values exceed 0.2, remains 445 
constant at around 3% from May through June, with meltwater being spread more uniformly (less 
visibly collected in large hydrological features) over the ice sheet early in the season and shifting to 
larger lakes later in the season (Supplemental Fig. S4). We note that this measure of melt extent does 
not translate directly to consistent meltwater volume; meltwater underneath the snowcover on Lake 
Niels was not estimated earlier in the season, while the deeper lakes which are present later in the 450 
season will contain larger water volumes. 

Although elevation decreases overall toward the northwest, both lakes coincide with large-scale 
surface depressions calculated from the GIMP-2 DEM (Fig. 7) and this region experiences 
comparatively low ice velocities. Lake Niels is located in a deep surface depression whereas the 
corresponding surface depression for Lake Julian is relatively shallow. Because both imagery and 455 
ICESat-2 are coregistered to the GIMP-2 DEM, we presume that all inaccuracies will be consistent (i.e. 
even if geolocation is incorrect in absolute terms, imagery and ICESat-2 should overlap). 
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Figure 7. (a) Lake Niels and Lake Julian, shown on May 14th, 2019 using Sentinel-2 imagery as described in the Data 
section. (b) GIMP-2 DEMP shown at same location with contours shown at 10 m intervals. 460 

 

5.1 Drainage Mechanisms over Lake Julian from airborne and satellite-based imagery 

The volume of Lake Julian begins to increase substantially on May 9th and reaches a maximum volume 
between May 25th and May 29th (Fig. 8j-l). After June 1st, the lake begins to lose volume until only 
remnants are present on June 10th, which disappear almost entirely by June 19th (Fig. 8m-o). The 465 
surrounding region (i.e. a kilometer to the north and west) contain smaller bodies of water connected by 
streams. We note that while larger streams can be captured by Sentinel-2 imagery (Fig. 8j), many of the 
smaller streams present later in the season can only be reliably detected with imagery at a 1 meter 
resolution or below (e.g. Fig. 8r, Supplemental Fig. S5). The progression shown in Fig. 8 captures the 
development of an efficient drainage system over the season. 470 
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Figure 8. Imagery over Lake Julian shown from April 20th, 2019 through Sep 24, 2019. All images use Planet SkySat 
Visual data unless otherwise indicated by letter on bottom left, with S indicating Sentinel and L indicating Landsat 

 
Three potential drainage mechanisms can be observed over lake Julian. Firstly, we note a small stream 475 
ending in a spray of snow (alternatively, an ice bridge) which is potentially indicative of a moulin (Fig. 
9b). However, an overflight of Operation IceBridge on May 15th (Fig. 9a) does not definitively show a 
moulin at the end of the incision, allowing for the possibility that the actual drainage occurred under the 
overlapping ice bridge. We also identify the point labelled B in Fig. 9a,b (also in 
Fig. 10d,e) as another potential drainage point. Presuming that drainage occurs at either location, lake 480 
volume could still increase slowly (as it does between May 9th and May 25th) if the inflow rate exceeds 
the outflow rate of the lake. This dynamic is captured in a previous in situ study of lake drainage, which 
indicated that drainage through a moulin decelerated as the hydraulic head between the lake and the 
moulin declined (Tedesco et al., 2013). 
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However, following late May, SkySat imagery captures the development of a second stream 485 
directly south of the initial potential moulin (Fig. 9b). This small stream, which flows downstream (Fig. 
7b) deepens throughout the season (Fig. 9c) with a very deep incision shown distinctly in imagery 
shown on September 24th (Fig. 8t). The development suggests that the relatively slow initial drainage 
from the potential moulin or Point B accelerated due to increased drainage from a second small stream, 
draining Lake Julian almost entirely between June 1st and June 10th (Fig. 8m-n). While smaller pre-490 
existent streams to the right (Fig. 9b) may also have facilitated drainage, we assume that the newly 
incised stream to the left is the most likely cause for  the rapid drainage due to the timing of its 
appearance. We note that smaller bodies of water are still apparent on the surface after the drainage of 
Lake Julian, some connected by very small stream networks, which appear to be frozen-over by 
September 24th (Fig. 8t). 495 

 

 
Figure 9. Mechanisms of lake drainage over Lake Julian. (a) CAMBOT imagery from Operation IceBridge flight 
on May 15th, 2019 (30cm resolution). (b) SkySat imagery (~1 m resolution) on June 10th after large-scale drainage 

 500 

5.2 Drainage Mechanisms over Lake Julian Captured using Watta 

Lake Julian reached a volume of 268120 m3 on May 14th, which was calculated using the green band 
from Sentinel-2 imagery on May 14th in conjunction with a Watta-based depth calculation from an 
ICESat-2 pass on May 15th (Fig 10a,b). The time lag introduces uncertainty due to possible lake 
ablation. We assume that this uncertainty is not due to the discrepancy in dates (imagery having been 505 
captured on May 14th whereas a deeper lake depth was captured by ICESat-2 on May15th). This is 
because the methodology accounts for changing lake depths, presuming minimal lake ablation, 
matching Watta-calculated depth to the surface height where the edge of the lake is indicated by 
imagery (see Methods). The depth values calculated for May 14th indicate a relatively shallow lake (less 
than a maximum 4 meter depth). 510 
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A comparison between the two passes of ICESat-2 RGT 727 (the second on August 14th) 
indicate uneven lowering in this region and potential slight ice motion, e.g. a small southward shift in 
the lowest point of the depth profile (pt B) calculated on May 15th vs on August 14th (Fig. 10c). We 
estimate large-scale surface lowering around ~1 m, based on the lowering calculated at higher 
elevations (Fig. 10c,d, where the x axis, showing the distance from an arbitrary start point, is greater 515 
than 800 m). By contrast, elevation changes where surface hydrology features exist show enhanced 
incision of a pre-existent stream/drainage point as well as the development of a new stream (Fig. 10 c,d, 
x-axis value between 0 and 200 m). The deepening of the lowest point in the lake could be the product 
of ice motion, but we assume that the elevation change of 2-3 meters at this location is the effect of lake 
ablation. This is due to the locations of ice layers being well-matched between imagery and Watta-520 
calculated features (discussed shortly), suggesting that any ice motion was adjusted for in the 
geolocation step. 

In addition to locations where Watta calculates a lake surface (Fig. 10d and Fig. 10e, label “B”), 
Watta also identifies regions where ice cover is probable. These are shown in cyan in Fig. 10d at 
locations A, C, D and in imagery in Fig. 10e. Whereas lake surfaces are calculated at the horizontal 525 
resolution of the ICESat-2 ATL03 photon cloud, the ice surface class is assigned at a coarser resolution. 
This is because the Interpretive module assigns the “ice surface” class based on the presence of a flat 
surface under an overlying layer with more varied topography. While currently, the algorithm 
potentially overestimates the extent of these regions, a first automatic pass can be used to identify larger 
regions where ice surfaces exist, after which manual inspection can then identify specific ice layers. 530 
Shown in Fig. 10d are the lake (B) as well as three additional points where we identify ice layers using 
both Watta and manual inspection (A, C, D). Point B is also captured in Operation Ice Bridge 
CAMBOT imagery on May 15th (Fig. 9a). This is potentially a drainage point which retains meltwater 
as late as August 14th. This location is also covered by a floating ice layer on May 14th, suggesting that 
an ice layer had formed at the same place and settled at this point following drainage in the previous 535 
season. Point C corresponds to a deeply incised stream (which is not captured in the Watta profile 
calculated on May 15th) while Point D corresponds to a smaller stream; both of these points were 
covered by Lake Julian during the last half of May. We note that the designation of Point A is more 
ambiguous as it is collocated with to an incision which was previously a stream, but is weakly-resolved 
in both Watta-based estimates and in the SkySat imagery collected on August 20th. The Watta 540 
designation of “ice surface” here is likely, but not unambiguous, as this method will capture both real 
ice surface and false dual returns as detailed in Section 3.1. The main attributes typical of the false dual 
returns are a strong top surface over surface water in a flat region, followed by weaker returns at 
predictable intervals (~0.45 m and possible ~0.90 m for the specular return, ~2.3 and ~4.2 m for the 
instrument echo). In this case, a specular return would be the most likely cause for a false dual-return 545 
due the spacing. However, we first note that the surface in this region is not flat and we do not see the 
predicted strong surface return followed by a weaker echo (“surface” and “ice” layers are of equal 
thickness). Additionally (a) in the case of point B, the top layer contains no dual return (b) in the case of 
C, a distinct gap occurs in the surface. Both of these correspond to ice/water in imagery. For point A 
and point D, imagery suggests that these points occur at a convergence of streams. These could, 550 
however be either water or ice as no distinctive bottom return is detected. With the current available 
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information, the “ice surface” detection will still require manual inspection; future improvements to the 
code may account for the known issue with false dual returns as knowledge in this area develops. 

 
Figure 10. ICESat-2 RGT 727 over Lake Julian. (a) Sentinel-2 based imagery acquired on May 14th 2019 with ICESat-2 RGT 727 555 
gt1l (occurring on May 15th, 2019 and August 14th, 2019) overlapping in green. Operation IceBridge overpass on May 15th, 2019 
is directly coincident with the ICESat-2 line. (b) Lake depth derived from Watta (Panel c) and Sentinel-2 imagery (Panel a) based 
depth. (c) Watta calculated from ICESat-2 on May 15th and Aug 14th. (d) Watta-calculated surface features over photon cloud on 
Aug 14th . Points A-D discussed in text (e) Points A-D shown over Planet SkySat imagery collected on August 5th and August 20th  
 560 

5.3 Lake Niels, Partial Drainage and Refreeze 

In comparison to Lake Julian, Lake Niels begins and ends the melt season as a frozen lake. By May 
9th, the ice surface begins to melt and the lake surface area expands substantially. However, by May 
13th  (Fig 11d), imagery captures an insulating layer of snow, after which the lake expands into June 
26th. By July 20th, slow lake drainage is evident via a stream which is identified in Fig. 11a and is first 565 
observed to contain a substantial quantity of liquid water on June 19th (Fig. 11h). We observe that the 
stream is clearly incised both on April 20th (Fig. 11b) and on September 24th (Fig. 11m), when the lake 
is likely frozen over, based on imagery. In comparison to Lake Julian, which was located in a relatively 
shallow depression, Lake Niels is located in a deep depression (Fig. 7) and neither drains early in the 
season nor connects to an efficient drainage system. Although these lakes are subject to similar 570 
atmospheric drivers, the differences in drainage patterns highlight how local topography and the 
corresponding depth of lakes can influence how meltwater is either retained on the ice sheet vs drained 
downstream or into englacial or subglacial pathways. We note that surface topography, in turn, is 
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strongly influenced by basal topography, thus linking total runoff to surface expression of bed 
topography (Ignéczi et al., 2018). 575 

 
Figure 11. Lake Niels, shown between April 20th and September 4th, 2019. (a) shows stream detail from Aug. 20 (main panel) with 
stream detail on April 20th (inset, with region indicated in Panel b). All imagery is from Planet SkySat Visual imagery except on 
May 9th (where Sentinel-2 imagery is used, indicated with “Sent”).  

6 Conclusions 580 

This study represents initial work developing the Watta algorithm for lake depth estimates as well as 
subsurface ice detection, using a unique stacked dataset over Western Greenland during the intense 
2019 melt season. We demonstrate the potential of ICESat-2 for automated lake detection and depth 
estimation, as well as how empirically-derived depths derived from a combination of imagery sources 
can complement each source’s strengths and weaknesses. For example, while Landsat is only available 585 
at a low resolution, it provides a rich historical record as well as high geolocational accuracy (at 5 m), 
which is leveraged here to better geolocate imagery from Planet Labs. Similarly, while PlanetScope 
data contains several known issues with radiometry and geolocation, imagery is available at a high 
spatial and temporal resolution. As demonstrated in our test cases, a time series constructed from 
multiple sources can provide valuable information about the evolution of ice cover and drainage 590 
mechanisms in addition to volume estimates. Given the accelerating sophistication of altimetry-based 
observations, ongoing efforts to improve geolocation, radiometric quality or temporal frequency of 
high-resolution imagery are crucial. Additionally, the availability of simultaneous imagery and altimetry 
would enhance the capabilities of other satellite imagery sources to fill out the time series by providing 
a calibration standard. 595 

While this initial study focused on lakes in grounded ice in Greenland, Watta can potentially be 
applied to Antarctic melt lakes as well. Additionally, lake depths calculated empirically can potentially 
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be used to calibrate physically-based methods towards developing ice-sheet-wide timeseries for the 
evolution of surface hydrology. 

Our algorithm successfully detects a wide variety of lake types automatically, and can be applied 600 
to the growing set of ICESat-2 and imagery data over large sections of Antarctica and Greenland. 
Identification of narrow stream features on sloping surfaces, however, still needs visual verification due 
to a large number of false positives. This will be addressed in future work, together with adding features 
to the interpretive layer, including slush layers as well as cracks, using the Planet SkySat imagery 
dataset for testing purposes. In addition to these improvements, Watta, which is currently written in 605 
MATLAB, is available in github with documentation, but will eventually be moved to an open-source 
language. 
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