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Abstract. We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymetry and potential ice 

layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and 

extracts supraglacial lake surface, bottom, depth corrected for refraction and (sub)surface ice cover in addition to producing 

surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical 

estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for 15 

calibration. Imagery sources include Landsat 8 OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, 

used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 

46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources (available 

for 45 of these lakes) to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We 

use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the 20 

season) and nearly-simultaneous Operation IceBridge CAMBOT (Continuous Airborne Mapping By Optical Translator) 

imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results 

suggest that the use of multiple imagery sources (both publicly-available and commercial), in combination with altimetry-

based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales. 

1 Introduction 25 

Ice loss from Greenland and Antarctica is the greatest current contributor to rising sea levels, and paleodata and modelling 

efforts indicate that enhanced mass loss of these ice sheets may become irreversible if certain major tipping points are passed 

(IPCC 2019, Special Report on the Ocean and Cryosphere in a Changing Climate). Recent observations have shown that ice 
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loss is accelerating faster than projected (Slater et al., 2018), with a sixfold increase since the 1970/80. In Antarctica, this was  

largely driven by increased ocean melting of outlet glaciers (Rignot et al., 2019), while on the Greenland Ice Sheet mass loss 30 

is further promoted by increased surface melt and runoff (Mouginot et al., 2019). 

Owing to the non-linear relationship between increasing summer air temperatures and surface melt (Trusel et al., 

2018), meltwater production has increased rapidly on the Greenland Ice Sheet (van den Broeke et al., 2016). In the summer of 

2019, advection of warm, wet mid-latitude air led to a summer mass loss unprecedented in the past 50 years, with widespread 

surface melt occurring up to the highest regions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen et al., 2020). Concurrent 35 

with the increase in melt extent and duration, supraglacial lakes - which form when meltwater runoff collects in local 

topographic lows - are now a common feature on large parts of the ice sheets and have become more extensive and have 

advanced inland toward higher elevations in the past decades (Gledhill and Williamson, 2018; Leeson, 2015; Howat et al., 

2013) 

 These meltwater lakes and streams are a key component of the hydrological system of both ice sheets. 40 

Hydrological systems over Antarctic ice shelves have been identified as a major factor for potential ice shelf collapse (Bell et 

al., 2018). While mass loss in Antarctica over the next 100 years is generally thought to be dominated by the basal melt under 

ice shelves (Schlegel et al., 2018), emerging research has focused on the potential importance of surface hydrology over 

Antarctica (Arthur et al., 2020). Supraglacial lakes have been observed around the margin of the Antarctic Ice Sheet up to high 

elevations (Stokes et al,, 2019) and are likely to become more prevalent on firn-depleted ice shelves in future warming 45 

scenarios, which could potentially trigger their collapse and consequently lead to accelerated sea level rise (Lai et al., 2020). 

Meltwater pathways can include surface flow into lakes and then streams, leading, in Greenland, to direct loss to the bed from 

lake drainage or the sudden termination of a stream into a moulin, or near-surface flow where ice slabs can limit vertical motion 

(MacFerrin et al., 2019). The complex links between supraglacial hydrological systems and englacial or subglacial pathways 

can potentially be deduced by capitalizing on increasingly higher-resolution imagery and classification techniques of 50 

supraglacial feature types (Yang et al., 2017). Past remote-sensing work has derived lake volumes from high-resolution (~1m) 

Worldview imagery using a physical optical depth approach as well as an empirical method using in-situ estimates (Moussavi 

et al., 2016; Pope et al., 2016). Recent work has developed an automated algorithm applying the physically-based method to 

Landsat 8 and Sentinel 2 to track specific hydrological features and quantify the seasonal evolution of surface hydrology (Dell 

et al., 2020). The physical method assumes that wind-driven surface waves are minimal, that the slope of lake bottoms are 55 

gradual and that lake- bottom albedos are homogoneous (Sneed and Hamilton, 2011). The empirically-based method was first 

applied by Box and Ski (2007) using MODIS imagery and advanced by Legleiter et al. (2014), which used high-resolution 

WorldView 2 imagery. Both the physically-based and empirically-based methods are limited to supraglacial lakes which 

contain minimal particulate matter (Arthur et al., 2020), and by the depth of the lake, assuming that the reflection depletion in 

imagery is limited at great depths, implying a physical limit to the ability to calculate depth (Box and Ski, 2007). Pope et al. 60 

(2016) estimates that the greatest depth that could be calculated by these methods was 5m. Additional work has applied a 
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similar physically-based approach using Sentinel-2 from Copernicus (Williamson et al., 2018), Landsat 7 and 8 (Banwell et 

al., 2014), Aster imagery (Sneed and Hamilton, 2007) and a combination of Landsat and Sentinel-2 imagery (Moussavi et al., 

2020). Although Sentinel-2 provides relatively high resolution (10 m) imagery with substantial coverage at a 4-day to weekly 

interval, usable imagery is often limited by cloud-cover, and the resolution of small streams and ice cover is imperfect. 65 

Commercial satellite imagery, which is poised to expand substantially in the future, can help fill the gap in coverage of small-

scale melt and melt-induced features at a higher spatial (<3m) and temporal (multiple daily passes) resolution, complementing 

estimates resolved from Sentinel-2. 

The ICESat-2 laser altimeter, available since 2018, has now introduced the potential to replace the in situ measurements used 

in empirical (supraglacial lake depth) bathymetric methods with satellite laser bathymetric depths at a high vertical resolution, 70 

consequently extracting lake volumes from imagery (Parrish et al., 2019; Albright and Craig, 2020; Thomas et al., 2020). Here, 

we present a new algorithm, titled “Watta”, using the ICESat-2 laser altimeter to derive properties of supraglacial lakes. Watta 

was first presented in Fricker et al. (2020), demonstrating both the potential for ICESat-2-based bathymetry estimates and the 

greater accuracy of empirically-based lake depths in comparison to physically-based estimates; the latter tended to 

underestimate lake depth by over 2m. However, we note that physically-based methods have the advantage of being dependent 75 

on imagery alone. In addition to bathymetry derived from the difference between the air-water and water-ice interface, this 

algorithm assigns a probability for surface type characteristics to photon returns along-track. These types include lakes, 

refrozen lakes, lakes with ice layers on top as well as under the surface. Watta also returns surface heights at the native 

resolution of the ATL03 photon cloud (0.7m), allowing the algorithm to capture small-scale changes in surface relief when 

multiple passes are differenced. Additionally, we exploit a range of imagery data to validate the surface types and to derive 80 

spectrally- driven depth estimates calibrated to ICESat-2-based depths, thereby providing an estimate for meltwater volume 

over the full image. We compare empirically-based volume estimates derived from a single ICESat-2 based depth estimate but 

from multiple imagery sources with different spatial resolutions (and without an atmospheric correction) to better understand 

the importance of spatial resolution and radiometric calibration on the relative accuracy of depth volume estimates. 

The method is tested and refined using representative sections along the flowline of Sermeq Kujalleq (Jakobshavn 85 

Isbræ), one of the fastest-moving glaciers in Greenland, as well as the slower-flowing Sarqardliup Sermia. The repeat-tasking 

of Planet SkySat imagery was designed to coincide with ICESat-2 tracks (Fig. 1), capturing lake depths at various stages of 

lake development during the summer of 2019, an unusually intense melt season (Tedesco and Fettweis, 2020). One of the 

major motivations for this tasking effort was its coincidence with several NASA Operation IceBridge (OIB) flights at the 

beginning and end of the summer. Data from multiple instruments aboard OIB could potentially provide additional insight in 90 

future work, and within this study, we use OIB CAMBOT (Continuous Airborne Mapping by Optical Translator) imagery as 

a part of a focused multi-instrument study of the evolution of a supraglacial lake. The availability of simultaneous laser 

altimetry and high-resolution imagery over the season provided a rich test dataset with which to extract 
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altimetry-based estimates of supraglacial lakes at various points in the season. Here, we present initial results exploiting this 

dataset as well as introducing the Watta ICESat-2 surface feature detection algorithm. 95 

 

 

 

Figure 1: Study region over Sermeq Kujalleq and Sarqardliup Sermia. Top Left: Lake Ayşe on May 23rd using Planet SkySat visual 
imagery, Bottom left, study region over Western Greenland. Right: Main region with repeat-tasking locations for Planet SkySat 100 
shown in grey boxes over annual velocity estimates from MEaSUREs (NSIDC). Center track, sICESat-2 reference ground tracks 
shown in white. Operation IceBridge flight on May 15th, 2019 shown in green. Five lakes indicated in red discussed throughout text 
include C: Lake Cecily, A: Lake Ayşe, J: Lake Julian, N: Lake Niels, Z: Lake Zadie 
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2 Data Sources 

2.1 Satellite Altimetry 105 

Our Watta method relies on individual photon heights as measured by ICESat-2’s (Ice, Cloud, and Land Elevation Satellite) 

ATLAS (Advanced Topographic Laser Altimeter System) instrument distributed in the ICESat-2 ATL03 product, L2A, Global 

Geolocated Photon Data (Neumann et al., 2019). The polar orbiting ICESat-2 satellite was launched in September, 2018 to 

continue the mission begun by ICESat (2003-2009) and bridged with the airborne Operation IceBridge mission, namely to 

provide ice sheet mass balance estimates at an unprecedented level of accuracy. The Advanced Topographic Laser Altimeter 110 

(ATLAS) system is a photon-counting 532 nm laser altimeter aboard ICESat-2 split into 6 beams which are divided into 3 

pairs (separated by 3.3 km), where beams within each pair are separated by 90m. Each beam pair consists of a strong and weak 

beam, with the strong beam using 0.6-3.9 signal photons per shot vs 0.6-1.0 signal photons per shot for the weak beam 

(Neumann et al., 2019). While the strong beam produces a stronger signal, we have developed the Watta algorithm to work 

effectively with both strong and weak beams. ATL03 produces a photon cloud where each photon is geolocated to within a 115 

6.5m accuracy   (Magruder et al., 2020) with an associated height as well as a confidence level [high, medium or low], and is 

produced at an along-track horizontal resolution of 0.7m. While the ATL06 product (Smith et al., 2019) provides highly-

accurate surface height estimates at a coarser resolution, the higher spatial resolution of the ATL03 product can be used to 

deduce fine-scale surface characteristics, as with the Watta algorithm. Over water bodies, ICESat-2 can produce returns both 

over the surface over the lake as well as the bottom of the lake (Fair et al., 2020; Fricker et al., 2020; Parrish et al., 2019) ; 120 

these dual returns are used by Watta to extract supraglacial lake depths, as well as lake surface characteristics.  

 

2.2 High-resolution imagery near Sermeq Kujalleq 

For imagery sources, in addition to freely-available Landsat OLI (30m) and Sentinel-2 (10m) imagery, we incorporate very 

high resolution imagery from Planet Labs, including Dove-R (3m) and SkySat (~1m). The latter is used to validate surface 125 

types, while all imagery sources are used to derive spectrally-driven depth estimates calibrated to ICESat-2-based depths. 

Additionally, the high spatial resolution of SkySat imagery allows for the identification of small-scale features on the surface 

and bottom of supraglacial lakes, which we use to interpret the temporal evolution of lake characteristics in a number of case 

studies. SkySat imagery did not include an atmospheric correction, and we therefore used TOA (Top of the Atmosphere) 

Reflectance values from Landsat, Sentinel-2 and SkySat imagery to calculate supraglacial lake depth for the sake of 130 

consistency. PlanetScope Dove-R data provided surface reflectance values only and is known to have issues with radiometry 

(Saunier et al., 2020). However, because the method used here derives lake depth values empirically (rather than physically), 

this work presents the opportunity to develop accurate depth estimates using high-resolution data where calibration is 

imperfect, but where the data availability is high. This is particularly true for data from the PlanetScope constellation, which 



6 
 
 

are frequently captured multiple times within a single day. Relative spectral response curves for the bands used in this study 135 

are red, blue and green and NIR as shown in Fig. S1b. Finally, all imagery was coregistered with ICESat-2 using the GIMP-2 

digital elevation model (DEM), which has a vertical accuracy (as compared to ICESat), within ±1m over most ice surfaces and 

±30m over areas with high relief (Howat et al., 2014) and is used for the geolocation of Landsat imagery (detailed in Section 

3.2). 

As a part of this project, SkySat imagery was tasked for repeat cycles of ~4 days over the 2019 Greenland melt season 140 

in selected locations, producing usable imagery at varying intervals based on cloud cover. Each of the 3 areas of interest 

presented here were approximately 600km2. Repeat imagery was specifically chosen to cover flowlines of fast-flowing 

glaciers, including Sermeq Kujalleq, as in this study (Fig. 1). In addition, repeat tracks were designed to coincide with both (a) 

overpasses of the recently-launched NASA ICESat-2 laser altimeter and, (b) several flights of the airborne NASA Operation 

IceBridge (OIB) mission in the beginning and end of the season. Here, we present the first work exploiting this stacked dataset 145 

for method development, restricted to available satellite imagery/altimetry. We note that for Lake Julian, discussed in section 

5, OIB conducted a flight on 2019/5/15, thus capturing observations from multiple instruments onboard OIB, including 

CAMBOT imagery and the Airborne Topographic Mapper (ATM). While ATM-based lake depth estimates could potentially 

be compared to the lake depths calculated from the near-simultaneous ICESat-2 overpass, this is outside the scope of this 

study, We discuss Lake Julian in detail in order to facilitate potential future research at this site. 150 

The final set of lakes used for the development of the Watta method included 50 lakes captured by ICESat-2 (46 over 

Sermeq Kujalleq and Sarqardliup Sermia, and 4 additional lakes in the southwest, not shown here), 14 of which coincided with 

very high-resolution imagery (SkySat) within a 3-day window. The date/times/imagery IDs/ICESat-2 details for all data 

sources are presented in Supplemental Table [1]. 

3 Methods 155 

We derive supraglacial lake volume from a given imagery source in four steps. We first calculate lake depths along an ICESat-

2 beam using the Watta algorithm applied to the ICESat-2 ATL03 photon cloud. Secondly, we coregister Watta- based surface 

and lake bottom heights with the imagery source (itself co-registered to a common Landsat base) and delineate lake boundaries 

in the process (methods detailed in Section 3.2). Finally, we develop an empirical relationship between ICESat-2 based depths 

and coincident imagery which can be applied to calculate lake depths over the full image. The empirical relationship is based 160 

on the exponential decay of reflectance at water depth, as detailed by Box and Ski (2007). In the original work, in situ depth 

estimates and reflectance values from imagery (R) were used to estimate the ɑ-coefficients in eq. 1, which were then applied 

to calculate water depth over the full-scale of imagery where lakes are delineated: 

D = ɑ0 / (R + ɑ1) + ɑ2 (eq. 1) 
 165 
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However, such in situ estimates are scarce in space and time, and here we exploit the direct depths from the Watta algorithm 

to derive time, location and sensor specific estimates of the ɑ-coefficients. 

3.1 Watta 

Watta is an algorithm which takes ICESat-2 ATL03 photon data as input and automatically detects supraglacial surface features 

with an associated probability of likelihood. In its current state, the algorithm detects lakes and their associated surface, lake 170 

bottom and corrected depth estimate as well as subsurface ice when present (Fig. 2). We also exploit the algorithm for the 

detection of frozen streams in this study. The codebase for Watta is divided into a module which calculates surface and bottom 

returns (“Surface Detection”) at the native 0.7 m resolution of ICESat-2, and a second “Interpretive” module that resolves the 

calculated bottom/surface to specific supraglacial features, in this case lakes. The Surface Detection module determines, for a 

collection of 75 photons surrounding any individual photon (selected in step a), heights with the three strongest peak 175 

probabilities within in a kernel density (step b). This provides estimates for (1) a height for the surface or top of a lake or 

refrozen pond (2) a lake bottom and (3) a third height value, which can potentially be subsurface ice (Fig. 

2 step a). We note that photons are selected without regard to ATL03 confidence level. Although the bin width (and therefore 

vertical resolution) used to calculate heights is 0.1m, we perform a second kernel density estimate calculation using a 0.3m 

bin width to confirm robustness of the initial bottom estimate, i.e. that a coarser calculation produces a bottom height near that 180 

of the finer-resolution (0.1m bin width) calculation. In post-processing step c, outliers are identified in comparison to 

surface/bottom heights within a larger horizontal window, whereby the number of standard deviations used to detect an outlier 

and the number of photons used to calculate a mean (window) increase with over several steps.   Where outliers are found, the 

kernel density estimate (steps a,b) are recalculated with a larger number of photons (in multiples of 75) to account for any 

erroneous calculations generated by insufficient photon density. Where values continue to be outliers, they are removed from 185 

the estimates to be interpolated instead. The final output of the Surface Detection module include a calculated surface and 

potential lake bottom return at the native resolution of the ATL03 photon cloud. 
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Figure 2. Diagram of the Watta methods described in main text. 190 
 

The Interpretive module uses output from the Surface Detection module to automatically determine locations of surface 

features (e.g. lakes or frozen streams) as well as characteristics of a lake, e.g. the presence of refrozen ice at the surface. First, 

remaining outliers are removed by calculating a local background and surface photon density for each ATL03 photon, as 

determined from a 5000 photon-count window surrounding the estimate location (step d). We then remove those estimated 195 

heights for top (surface) and bottom (potential lake bottom) where the photon density more closely resembles the background 

photon density than a surface density estimate. In step e, we detect breaks in the slope of the top (surface) to divide the satellite 

pass into segments which are potential lakes. For example, a semiparabolic depression in topography, with a high absolute 

value of the slope, is broken by a lake surface, where the slope approaches zero (e.g. as in Fig. 2 step a. For each of these 
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potential lakes, we then perform several steps to both refine lake surface/bottom and to assign the lake a class based on its 200 

properties. To produce a lake bottom value with greater accuracy, we first perform a recalculation of the kernel density estimate 

(step f, equivalent to the Surface Detection step b), except here we limit the kernel density estimate to photons below the 

calculated surface and use 30 photons rather than 75 photons, to better capture the lake bathymetry, which in general is more 

irregular than the lake surface. Sub-surface ice layers near the edges of the lake are then reclassified as lake surfaces, thus 

sealing the bottom of the lake to the top at the lake edges (step g). In step h, we first perform a final smoothing, passing the 205 

resulting bottom photons through an iterative robust quadratic local regression (rloess) filter to remove outliers in the bottom 

estimates and then assign physical meaning to each photon (e.g. lake surface, bottom, surface ice, subsurface ice). The presence 

of surface ice is determined based on the variability in thickness of the lake surface (i.e. a bimodal distribution indicates surface 

ice at some locations). We identify subsurface ice by the presence of weak return above the lake bottom but below the surface 

(see Fig. 2 step b). The surface and bottom photons are then used to derive lake depth, where we apply a simple correction for 210 

refraction, described in Parrish et al. (2019), to produce a real corrected lake depth. Finally, in step i, we assign a final 

classification of a lake type using properties of the local surface slope and the strength of the bottom return (Table 1). For 

example, a segment with a surface slope smaller than 0.03% as well as a distinct bottom (a photon density far exceeding the 

density of a background return) is given a lake classification of ‘highly likely’, whereas segments passing the same slope 

threshold but not showing a strong bottom return are identified as ‘likely ice- covered’ lakes. On the other hand, segments with 215 

a slope exceeding 0.3% and no significant peak below the surface in the histogram are allocated to the ‘highly unlikely’ lake 

class. 

 

Class Slope Bottom 
reflection* 

Lake probability Lake characteristics 

1 < 0.03% strong highly likely very flat open lake, dense bottom photon returns 
2 0.3% < slope < 0.3% strong very likely flat, open lake with presence of refrozen ice; dense 

bottom photon returns 
3 > 0.3% strong likely non-flat surface, possibly flowing water channel 

on sloping surface; dense bottom photon returns 
4 < 0.03% weak very likely very flat open lake; weak bottom photon returns 
5 0.3% < slope < 0.3% weak about as likely as not flat open lake; weak bottom photon returns 
6 > 0.3% weak unlikely Non-flat surface; weak bottom photon returns 
7 < 0.03% none likely Very flat refrozen lake; no significant bottom 

photon returns 
*: strength of the bottom reflection is defined by the ratio of the first two peaks in the 2m interval histogram of non-surface 
photon heights within the segment. Strong bottom reflection: peak ratio > 3.5; weak bottom reflection: 2.5 < peak ratio < 3.5; 
no bottom reflection: peak ratio < 0 

Table 1. Definitions for Watta lake classes 

 220 

Two potential sources of ambiguity with the subsurface ice classification are: (a) the possibility for specular returns and (g) 

apparent multiple surface returns which resulting from instrument echo. Specular returns over flat water (implying high energy 
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return), return a strong surface as well as multiple layers below the surface spaced according to the ATLAS deadtime (1m 

below the surface and a potential tertiary return below that). Echoes produced by electronic noise in the instrument, which also 

frequently occur very smooth water surfaces, can similarly produce a strong return at the surface with double echoes at ~2.3m 225 

and ~4.2m below the surface. (Martino et al., 2020). The categorization of subsurface ice (as in with Lake Ayşe in Fig. 3) are 

reliant on visual inspection. In this case, we assume subsurface ice because the layer is less than 1m from the surface and 

shows trailing photons towards a weakly-resolved lake bottom rather than a distinctive sharp horizontal layer with no curved 

bottom return. If this were a specular return, we would expect a high energy surface return to obfuscate the lake bottom entirely.  

3.2 Imagery Processing 230 

A subsequent set of steps uses the lake depths extracted from the Watta algorithm to produce lake volumes from concurrent 

imagery, e.g. SkySat, PlanetScope, Sentinel-2 and Landsat OLI, requiring geolocation as well as the semi-automated 

identification of lake edges. Coregistration between ICESat-2 photon locations and imagery (Fig. 3 Step j) is managed by 

registering ICESat-2 elevations with the GIMP-2 DEM as an intermediary step (GIMP-2 is also used for georeferencing of 

Landsat), by transforming the point cloud using the iterative closest point algorithm, which minimizes the square error between 235 

the two data sets. (Besl and McKay, 1992) The point cloud from ICESat-2 is chosen to include a 0.2° latitude window 

surrounding the lake being resolved to include larger topography in the region (and thus avoid errors presented by ice motion). 

The large lakes used here are all located in strong topographic depressions (which are resolved in both the GIMP-2 DEM and 

ICESat-2) and can therefore be assumed to remain relatively fixed. 

To register imagery sources to one another, we standardize all imagery to the nearest Landsat image, using the arosics 240 

library in Python (Scheffler et al., 2017), which detects and corrects misregistrations of an input image (based on a reference 

image) at the sub-pixel scale. However, the coregistration of all other imagery sources to Landsat OLI first requires the 

delineation of lake boundaries in order to exclude regions with moving surface water, which evolves rapidly and can be 

mistaken for fixed topography (which is more useful for geolocation). Here we calculated a normalized difference water index 

(NDWI) for each image, using a standard NDWI (with the green and NIR) bands to deliberately include regions with ice layers 245 

(as these are also detected by Watta), rather than the modified NDWIice (which uses the red and blue band), per Yang and 

Smith, (2013). Boundaries of lakes (step l in Fig. 3) are calculated by using adaptive thresholding (Bradley et al., 2007) to 

generate a binary mask which is then used to identify individual water bodies. The use of adaptive thresholding avoids the 

limitations of any fixed NDWI threshold, especially relevant to PlanetScope data, which occasionally produces negative NDWI 

values. However, we note that this step has the potential to include partial ice layers (although visual inspection suggests that 250 

this was avoided with the test cases used here). To coregister ICESat-2 to each imagery source, we also note that the ICESat-

2 mission requirements list a geolocation accuracy of 6.5m (Magruder et al., 2020), which may potentially include multiple 

pixels of high-resolution imagery. To calculate a band value from imagery associated with a geolocated photon from ICESat-

2, we find pixels in imagery within a 6m radius and calculate a mean. In Step k, we calculate an empirical relationship between 
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the depth estimate calculated by Watta and a band value from coregistered imagery pixels. Finally, we use this empirical 255 

relationship to produce a depth estimate for the entire lake using eq. 1. 

 

 
Figure 3. Diagram of imagery processing steps accepting Watta outputs as input (top left) and producing lake depth 
estimates (bottom left). Watta lake depth profile shown is for Lake Ayşe using RGT 841 on May 23rd and Planet 260 
SkySat imagery on May 22nd. 
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4 Evaluating Methodology 

4.1 Physical constraints of the test dataset 

The test dataset provides a diversity of lake types, with the largest surface area calculated at 5.6 km2 and a maximum Watta- 

calculated corrected depth at 10.3 m. A number of lakes contain substantial ice cover. In the following sections, we discuss 265 

several lakes in greater detail which present a diverse set of conditions with which to evaluate both the Watta algorithm and 

the imagery sources used to extrapolate lake volumes. Locations of the lakes can be found in Fig. 1. 

Lake Ayşe was selected for closer examination because despite the dense photon cloud, its relief in surface and 

bottom, combined with the presence of ice cover, pose a challenge for our detection algorithm. Additionally, multiple imagery 

sources were available within a 5-day window at this location. Lake Zadie is chosen because it represents an ideal case for the 270 

algorithm, while Lake Cecily is chosen because two beams passed over the same lake with SkySat imagery available one day 

afterwards. A basic assumption we make in this study is that the lake bottom remains relatively consistent over several days, 

although past research on two lakes in Western Greenland has estimated lake bottom ablation rates at 6.5 cm/day on the bottom 

of the pond (Tedesco et al., 2012). We assume that this is the primary physical source of uncertainty in the empirical 

calculation, as the relationship will degrade with temporal distance from the ICESat-2 pass. However, where changes in the 275 

bathymetry are not uniform, we can potentially make inferences about drainage mechanisms (e.g. the forming and deepening 

of crevasses). Cross-sections of all lakes used for development showing the lake top, bottom, and bottom value corrected for 

refraction as calculated by Watta, along with lake top and bottom as calculated empirically from imagery, are shown in 

Supplemental Fig. S4, Table S1. 

 280 

4.2 Physical constraints of the test dataset 

The most rigorous weighting system used for the algorithm, using only lake classes 1, 2, 4 and 7 (see Table 1), succeeded in 

automatically detecting 49 out of the 50 lakes identified in the available imagery, with two likely false positives (i.e. not 

confirmed by NDWI values exceeding 0.2 in the imagery). A less rigorous weighting system, including lake class 3, detected 

the 50th lake, but resulted in a large number of false positives in areas of steep, and rough topography, where abrupt changes 285 

in the photon elevations are misinterpreted as bottom reflections by the algorithm. 

In the absence of simultaneous in situ data, we evaluate the performance of the algorithm based on visual inspection 

(comparing ATL03 heights with Watta calculated depths as shown in Fig. S3). Additionally, where an empirical relationship 

with imagery is successful (a high correlation coefficient value between imagery-derived depths and Watta-derived depths,), 

we take this consistency for partial evidence that ICESat-2 and imagery sources have detected bathymetry correctly, although 290 

we note that this metric is only applicable to the specific lake, not the basin. The most successful bottom retrieval occurred 

where ice cover was minimal, the density of photons was high and where the bottom slope was relatively uniform (e.g. Lake 
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Zadie). The presence of ice near the surface (between the surface and 1m below the surface) frequently obscured lake bottom 

detection (e.g. reference ground track (RGT) 1222, Lake 3 in Fig. S3), although in some cases only partially; however, the 

presence of subsurface ice did not always preclude the presence of a strong bottom return (e.g. Lake 7, RGT 1169, Fig. S3). 295 

The algorithm therefore indicates the presence of surface/near- surface ice, but does not automate the removal of the calculated 

bottom return due to ambiguity. We can confirm the presence of an ice layer both by visual inspection of the imagery and by 

comparing standardized NDWI values calculated from imagery coincident with the ICESat-2 track (Fig S1a). We note that for 

at least one case, (RGT 1108 Lake 6, Fig. S3), the designation of “lake” was ambiguous, as this could be treated as either a 

shallow lake containing a large amount of subsurface ice, or as a slush layer (a number of which were identified elsewhere). 300 

4.3 Evaluating Data Sources for Imagery-based Depths 

Total uncertainty for the empirically-based depth estimates from imagery is comprised of uncertainty in ICESat-2 geolocation, 

uncertainty from the Watta algorithm itself (which operates at a vertical resolution of 0.1m), from the resolution of the imagery, 

from the uncertainty in alpha coefficients calculated from the empirical method and finally from physical changes in the lake 

occurring between the time that imagery is captured and the ICESat-2 pass. The empirical calculation is less likely to be 305 

affected by physical changes in the lake when the lake surfaces calculated by imagery vs altimetry differ by less than a meter; 

here we estimate precision with a simple R2 value. 

Past work has considered either the red or green band for developing depth estimates (Moussavi et al., 2020; 

Williamson et al., 2018), though in situ validation was limited at the time (Pope et al., 2016). Figure 4 compares R2 values 

from empirical estimates derived from the red vs green band for lakes classified according to the maximum lake depth 310 

calculated by Watta. In agreement with Moussavi et al. (2016), for Landsat 8 (Fig. 4d), Sentinel-2 (Fig. 4c) and SkySat (Fig. 

4a), the empirical depth estimates for the red band showed higher fidelity with Watta-based depths for shallow lakes, while 

the green band showed greater fidelity for deeper lakes. Of six lakes where a maximum depth exceeds 7.2m and where the 

imagery source is Landsat 8, two lakes (RGT 1222, Lake 8, 12 in Supplemental Profiles) show both red and green-band based 

profiles being unable to resolve the deepest points in the lake. For two additional cases (RGT 1222, Fig. 4e, Lake Zadie, Lake 315 

14, 17 in Supplemental Profiles), the green band was able to resolve very deep lake depths, while the red band was not. This 

implies that for SkySat, Sentinel-2 and Landsat 8, the green band is able to resolve bathymetry at greater depths and emphasize 

cracks at the bottom of the lakes. The major exception is PlanetScope data (Fig. 4b), where the red band consistently showed 

greater fidelity to Watta-based estimates while green band estimates produced unrealistic depth estimates, although there were 

a limited number of lakes where coincident PlanetScope imagery was available. We note that because this method is empirical, 320 

future users would be able to select bands or combinations, as with the average of the panchromatic and red band used by Pope 

et al. (2016),. 
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Figure 4. Comparing R2 values from empirical estimates calculated with the red band vs the green band from multiple 
imagery sources, with lakes classified by maximum lake depths as calculated by Watta. (a) Planet SkySat TOA 325 
reflectance (b) Planet PlanetScope surface reflectance (c) Sentinel-2 TOA reflectance (d) Landsat 8 OLI TOA reflectance 
(e) Watta-calculated and imagery-derived depths: Lake Zadie based on Landsat OLI. 
 

To demonstrate the robustness of the Watta algorithm, the impact of band choice, and the sensitivity to absolute lake 

depth, we show depths calculated from two beams passing over Lake Cecily on June 13th, followed by retrieval of SkySat 330 

imagery on June 14th and Sentinel-2 on June 16th (Fig. 5 a,b and RGT 1169 Lake 5(6) in Supplemental Profiles). Over this 

spot, covered by the 3l beam on this pass, the green band shows higher R2 values for both Sentinel-2 and SkySat, but lower R2 

values for the red band. This is consistent with the greater depths calculated from the 3l beam, which approach the 6m depth 

at where the performance of the green band is expected to improve. The use of the green band in both the 3l and 3r cases allows 

for finer bathymetric relief to be captured in both SkySat and Sentinel-based depth estimates, with the finer resolution of 335 

SkySat capturing substantially greater detail (Fig. 5c, box). We note that even when high R2 values are calculated between the 

empirical estimate and Watta-calculated depths, unrealistic depths can result when lakes drain or fill rapidly, and low- 

resolution imagery can potentially resolve the height of a lake surface inaccurately (Fig. S2). 



15 
 
 

 
 340 
Figure 5. Watta-calculated and imagery-derived depths: Lake Cecily based on Sentinel-2 (k,l) and Planet SkySat (m,n); 
Lake Cecily false-color imagery from Sentinel-2 (a) and SkySat with ICESat-2 beam 3r and 3l (b); Imagery-derived 
depths from Planet SkySat (c-f) and Sentinel-2 (g-j) with band/beam combination as shown. Estimates from the green 
band are indicated by “G” while those calculated from the red band are indicated by “R”. is Red box in (c) highlights 
region where underlying crevassing is captured 345 
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Within Figure 6, we show the depth evolution of Lake Ayşe over 5 days, both along the ICESat-2 ATL03/Watta- 

calculated profile and the lake volume estimates then constructed from imagery using the empirical equation. Increasing lake 

volume is demonstrated both by the expansion of the surface area of the lake through time (right column) and the rise in the 

lake level (cyan line, left column). Planet SkySat estimates at a 1m resolution (Fig. 6c) show the greatest level of detail of 350 

crevassing at the bottom of the lake although PlanetScope estimates, at a 3m resolution (Fig. 6d,e are comparable. We note  

that PlanetScope data showed variations in the fidelity to Watta-based estimates between the green band vs the red band 

depending on the instrument. The bottom relief is maintained at depth with the PlanetScope resolution (3m), and future work 

could generate more reliable depth estimates by calibrating empirically-based depths to Sentinel estimates, which could 

 provide very high-resolution depth estimates while also leveraging the high temporal frequency of PlanetScope data 355 

collection. 
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Figure 6. Lake Ayşe, filling over five days between May 20th and May 25th, with ICESat-2 pass on May 23rd. Left column: 
Profiles with Watta-calculated and imagery-derived depths from the green, indicated by “G” and red bands, indicated 
by “R” (with corresponding R2 values inset), legend same as Fig.4a. Right column: Depth values derived from empirical 360 
estimate, with imagery source , date collected, band used for depth estimate shown. Imagery source abbreviations are 
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as follows: “LSat” for Landsat, “SSat” for Planet SkySat, “PS” for Planet PlanetScope and “Sent” for Sentinel-2.  Path 
of ICESat-2 spot over Lake Ayşe is shown in Fig. 1 

 

5 Capturing Lake Drainage over the Melt Season 365 

Our improved ability to track lake depth and volumes using the combination of ICESat-2 and multi-sensor imagery can 

potentially provide new insights into patterns of lake drainage. Lake Julian (Fig. 7a) was selected for closer examination 

because on May 15th, both the airborne Operation IceBridge mission and ICESat-2 passed over this region, providing a unique 

stack of both airborne and satellite data. While we show only very high-resolution Operation IceBridge CAMBOT imagery 

here, other instruments aboard OIB could potentially provide valuable insight into the state of both surface hydrology and firn 370 

characteristics in future work. Additionally, there are cloud-free ICESat-2 RGT 727 passes over this lake both on May 15th, 

2019 and on August 14th, 2019, providing a profile of the lake both when it was filled as well as after drainage. A second lake, 

Lake Niels (Fig. 7a) is examined briefly primarily to provide context. Although no altimetry estimates are available over Lake 

Niels, imagery sources reveal a very different evolution and drainage pattern despite its being located only 3500 meters from 

Lake Julian, and consequently subject to many of the same atmospheric drivers. Within the larger region shown in Fig. 7a, 375 

(Supplemental Fig. S4), the percentage of the ice sheet surface covered in liquid water, as measured by the percentage of the 

region where NDWIice values exceed 0.2, remains constant at around 3% from May through June, with meltwater being spread 

more uniformly (less visibly collected in large hydrological features) over the ice sheet early in the season and shifting to larger 

lakes later in the season (Supplemental Fig. S4). We note that this measure of melt extent does not translate directly to 

consistent meltwater volume; meltwater underneath the snowcover on Lake Niels was not estimated earlier in the season, while 380 

the deeper lakes which are present later in the season will contain larger water volumes. 

Although elevation decreases overall toward the northwest, both lakes coincide with large-scale surface depressions 

calculated from the GIMP-2 DEM (Fig. 7) and this region experiences comparatively low ice velocities. Lake Niels is located 

in a deep surface depression whereas the corresponding surface depression for Lake Julian is relatively shallow. Because both 

imagery and ICESat-2 are coregistered to the GIMP-2 DEM, we presume that all inaccuracies will be consistent (i.e. even if 385 

geolocation is incorrect in absolute terms, imagery and ICESat-2 should overlap). 
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Figure 7. (a) Lake Niels and Lake Julian, shown on May 14th, 2019 using Sentinel-2 imagery as described in the Data 
section. (b) GIMP-2 DEMP shown at same location with contours shown at 10m intervals. 

 390 

5.1 Drainage Mechanisms over Lake Julian from airborne and satellite-based imagery 

The volume of Lake Julian begins to increase substantially on May 9th and reaches a maximum volume between May 25th and 

May 29th (Fig. 8j-l). After June 1st, the lake begins to lose volume until only remnants are present on June 10th, which disappear 

almost entirely by June 19th (Fig. 8m-o) The surrounding region (i.e. a kilometer to the north and west) contain smaller bodies 

of water connected by streams. We note that while larger streams can be captured by Sentinel-2 imagery (Fig. 8j), many of the 395 

smaller streams present later in the season can only be reliably detected with imagery below a 1-meter resolution (e.g. Fig. 8r, 

Supplemental Fig. S5).   The progression shown in Fig.8 captures the development of an efficient drainage system over the 

season. 
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Figure 8. Imagery over Lake Julian shown from April 20th, 2019 through Sep 24, 2019. All images use Planet SkySat 400 
Visual data unless otherwise indicated by letter on bottom left, with S indicating Sentinel and L indicating Landsat 

 

Three potential drainage mechanisms can be observed over lake Julian. Firstly, we note a small stream ending in a spray of 

snow (alternatively, an ice bridge) which is potentially indicative of a moulin (Fig. 9b). However, an overflight of Operation 

IceBridge on May 15th (Fig. 9a) does not definitively show a moulin at the end of the incision, allowing for the possibility that 405 

the actual drainage occurred under the overlapping ice bridge. We also identify the point labelled B in Fig. 9a,b (also in 

Fig. 10d,e) as another potential drainage point. Presuming that drainage occurs at either location, lake volume could still 

increase slowly (as it does between May 9th and May 25th) if the inflow rate exceeds the outflow rate of the lake. This dynamic 
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is captured in a previous in situ study of lake drainage, which indicated that drainage through a moulin decelerated as the 

hydraulic head between the lake and the moulin declined (Tedesco et al., 2013). 410 

However, following late May, SkySat imagery captures the development of a second stream directly south of the 

initial potential moulin (Fig. 9b). This small stream, which flows downstream (Fig. 7b) deepens throughout the season (Fig. 

9c) with a very deep incision shown distinctly in imagery shown on September 24th (Fig. 8t). The development suggests that 

the relatively slow initial drainage from the potential moulin or Point B accelerated due to increased drainage from a second 

small stream, draining Lake Julian almost entirely between June 1st and June 10th (Fig. 8m-n). While smaller pre-existent 415 

streams to the right (Fig. 9b) may also have facilitated drainage, we assume that the newly incised stream to the left is the most 

likely cause for  the rapid drainage due to the timing of its appearance. We note that smaller bodies of water are still apparent 

on the surface after the drainage of Lake Julian, some connected by very small stream networks, which appear to be frozen-

over by September 24th (Fig. 8t). 

 420 

 
Figure 9. Mechanisms of lake drainage over Lake Julian. (a) CAMBOT imagery from Operation IceBridge flight on 
May 15th, 2019 (30cm resolution). (b) SkySat imagery (~1m resolution) on June 10th after large-scale drainage 

 

5.2 Drainage Mechanisms over Lake Julian Captured using Watta 425 

Lake Julian reached a volume of 268120 m3 on May 14th, which was calculated using the green band from Sentinel-2 imagery 

on May 14th in conjunction with a Watta-based depth calculation from an ICESat-2 pass on May 15th (Fig 10a,b). The time lag 

introduces uncertainty due to possible lake ablation. We assume that this uncertainty is not due to the discrepancy in dates 
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(imagery having been captured on May 14th whereas a deeper lake depth was captured by ICESat-2 on May15th). This is 

because the methodology accounts for changing lake depths, presuming minimal lake ablation, matching 430 

Watta-calculated depth to the surface height where the edge of the lake is indicated by imagery (see Methods). The depth 

values calculated for May 14th indicate a relatively shallow lake (less than a maximum 4 meter depth). 

A comparison between the two passes of ICESat-2 RGT 727 (the second on August 14th) indicate uneven lowering 

in this region and potential slight ice motion, e.g. a slight southward shift in the lowest point of the depth profile (pt B) 

calculated on May 15th vs on August 14th (Fig. 10c). We estimate large-scale surface lowering around ~1m, based on the 435 

lowering calculated at higher elevations (Fig. 10c,d, where the x axis, showing the distance from an arbitrary start point, is 

greater than 800m). By contrast, elevation changes where surface hydrology features exist show enhanced incision of a pre- 

existent stream/drainage point as well as the development of a new stream (Fig. 10 c,d, x-axis value between 0 and 200m ). 

The deepening of the lowest point in the lake could be the product of ice motion, but we assume that the elevation change of 

2-3 meters at this location is the effect of lake ablation. This is due to the locations of ice layers being well-matched between 440 

imagery and Watta-calculated features (discussed shortly), suggesting that any ice motion was adjusted for in the geolocation 

step. 

In addition to locations where Watta calculates a lake surface (Fig. 10d and Fig. 10e, label “B”), Watta also identifies 

regions where ice cover is probable. These are shown in cyan in Fig. 9d at locations A, C, D and in imagery in Fig. 10e. 

Whereas lake surfaces are calculated at the horizontal resolution of the ICESat-2 ATL03 photon cloud, the ice surface class is 445 

assigned at a coarser resolution. This is because the Interpretive module assigns the “ice surface” class based on the presence 

of a flat surface under an overlying layer with more varied topography. While currently, the algorithm potentially overestimates 

the extent of these regions, a first automatic pass can be used to identify larger regions where ice surfaces exist, after which 

manual inspection can then identify specific ice layers. Shown in Fig. 10d are the lake (B) as well as three additional points 

where we identify ice layers using both Watta and manual inspection (A, C, D). Point B is also captured in Operation Ice 450 

Bridge CAMBOT imagery on May 15th (Fig. 9a). This is potentially a drainage point which retains meltwater as late as August 

14th. This location is also covered by a floating ice layer on May 14th, suggesting that an ice layer had formed at the same place 

and settled at this point following drainage in the previous season. Point C corresponds to a deeply incised stream (which is 

not captured in the Watta profile calculated on May 15th) while Point D corresponds to a smaller stream; both of these points 

were covered by Lake Julian during the last half of May. We note that the designation of Point A is more ambiguous as it is 455 

collocated with to an incision which was previously a stream, but is weakly-resolved in both Watta-based estimates and in the 

SkySat imagery collected on August 20th. The Watta designation of “ice surface” here is likely, but not unambiguous, as this 

method will capture both real ice surface and false dual returns as detailed in Section 3.1. The main attributes typical of the 

false dual returns are a strong top surface over surface water in a flat region, followed by weaker returns at predictable intervals 

(~1m and ~1m for the specular return, ~2.3 and ~4.2m for the instrument echo). In this case, a specular return would be the 460 

most likely cause for a false dual-return due the spacing. However, we first note that the surface in this region is not flat and 
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we do not see the predicted strong surface return followed by a weaker echo (“surface” and “ice” layers are of equal thickness). 

Additionally (a) in the case of Pt. B, the top layer contains no dual return (b) in the case of C, a distinct gap occurs in the 

surface. Both of these correspond to ice/water in imagery. For Pt A and Pt D, imagery suggests that these points occur at a 

convergence of streams. These could, however be either water or ice as no distinctive bottom return is detected. With the 465 

current available information, the “ice surface” detection will still require manual inspection; future improvements to the code 

may account for the known issue with false dual returns as knowledge in this area develops. 

 
Figure 10. ICESat-2 RGT 727 over Lake Julian. (a) Sentinel-2 based imagery acquired on May 14th 2019 with ICESat-2 RGT 727 
gt1l (occurring on May 15th, 2019 and August 14th, 2019) overlapping in green. Operation IceBridge overpass on May 15th, 2019 is 470 
directly coincident with the ICESat-2 line. (b) Lake depth derived from Watta (Panel c) and Sentinel-2 imagery (Panel a) based 
depth. (c) Watta calculated from ICESat-2 on May 15th and Aug 14th. (d) Watta-calculated surface features over photon cloud on 
Aug 14th . Points A-D discussed in text (e) Points A-D shown over Planet SkySat imagery collected on August 5th and August 20th  
 

5.3 Lake Niels, Partial Drainage and Refreeze 475 

In comparison to Lake Julian, Lake Niels begins and ends the melt season as a frozen lake. By May 9th, the ice surface 

begins to melt and the lake surface area expands substantially. However, by May 13th  (Fig 11d), imagery captures an insulating 

layer of snow, after which the lake expands into June 26th . By July 20th, slow lake drainage is evident via a stream which is 

identified in Fig. 11a and is first observed to contain a substantial quantity of liquid water on June 19th (Fig. 11h). We observe 

that the stream is clearly incised both on April 20th (Fig. 11b) and on September 24th (Fig. 11m), when the lake is likely frozen 480 
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over, based on imagery. In comparison to Lake Julian, which was located in a relatively shallow depression, Lake Niels is 

located in a deep depression (Fig. 7) and neither drains early in the season nor connects to an efficient drainage system. 

Although these lakes are subject to similar atmospheric drivers, the differences in drainage patterns highlight how local 

topography and the corresponding depth of lakes can influence how meltwater is either retained on the ice sheet vs drained 

downstream or into englacial or subglacial pathways. We note that surface topography, in turn, is strongly influenced by basal 485 

topography, thus linking total runoff to surface expression of bed topography (Ignéczi et al., 2018). 

 
Figure 11. Lake Niels, shown between April 20th and September 4th, 2019. (a) shows stream detail from Aug. 20 (main panel) with 
stream detail on April 20th (inset, with region indicated in Panel b). All imagery is from Planet SkySat Visual imagery except on May 
9th (where Sentinel-2 imagery is used, indicated with “Sent”).  490 

6 Conclusions 

This study represents initial work developing the Watta algorithm for lake depth estimates as well as subsurface ice detection, 

using a unique stacked dataset over Western Greenland during the intense 2019 melt season. We demonstrate the potential of 

ICESat-2 for automated lake detection and depth estimation, as well as how empirically-derived depths derived from a 

combination of imagery sources can complement each source’s strengths and weaknesses. For example, while Landsat is only 495 

available at a low resolution, it provides a rich historical record as well as high geolocational accuracy (at 5m), which is 

leveraged here to better geolocate imagery from Planet Labs. Similarly, while PlanetScope data contains several known issues 

with radiometry and geolocation, imagery is available at a high spatial and temporal resolution. As demonstrated in our test 

cases, a time series constructed from multiple sources can provide valuable information about the evolution of ice cover and 

drainage mechanisms in addition to volume estimates. Given the accelerating sophistication of altimetry-based observations, 500 

ongoing efforts to improve geolocation, radiometric quality or temporal frequency of high- resolution imagery are crucial. 
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Additionally, the availability of simultaneous imagery and altimetry would enhance the capabilities of other satellite imagery 

sources to fill out the time series by providing a calibration standard. 

While this initial study focused on lakes in grounded ice in Greenland, Watta can potentially be applied to Antarctic 

melt lakes as well. Additionally, lake depths calculated empirically can potentially be used to calibrate physically-based 505 

methods towards developing ice-sheet-wide timeseries for the evolution of surface hydrology. 

Our algorithm successfully detects a wide variety of lake types automatically, and can be applied to the growing set 

of ICESat-2 and imagery data over large sections of Antarctica and Greenland. Identification of narrow stream features on 

sloping surfaces, however, still needs visual verification due to a large number of false positives. This will be addressed in 

future work, together with adding features to the interpretive layer, including slush layers as well as cracks, using the Planet 510 

SkySat imagery dataset for testing purposes. In addition to these improvements, Watta, which is currently written in matlab, 

is available in github with documentation,, but will eventually be moved to an open-source language. 
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