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Supraglacial lake bathymetry automatically derived from ICESat-2
constraining lake depth estimates from multi-source satellite imagery
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Abstract. We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymetry and potential ice
layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATLO03 product and
extracts supraglacial lake surface, bottom, depth corrected for refraction and (sub)surface ice cover in addition to producing
surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical
estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for
calibration. Imagery sources include Landsat 8 OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data,
used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of
46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources (available
for 45 of these lakes) to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We
use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the
season) and nearly-simultaneous Operation IceBridge CAMBOT (Continuous Airborne Mapping By Optical Translator)
imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results
suggest that the use of multiple imagery sources (both publicly-available and commercial), in combination with altimetry-

based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.

1 Introduction

Ice loss from Greenland and Antarctica is the greatest current contributor to rising sea levels, and paleodata and modelling
efforts indicate that enhanced mass loss of these ice sheets may become irreversible if certain major tipping points are passed

(IPCC 2019, Special Report on the Ocean and Cryosphere in a Changing Climate). Recent observations have shown that ice
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loss is accelerating faster than projected (Slater et al., 2018), with a sixfold increase since the 1970/80. In Antarctica, this was
largely driven by increased ocean melting of outlet glaciers (Rignot et al., 2019), while on the Greenland Ice Sheet mass loss
is further promoted by increased surface melt and runoff (Mouginot et al., 2019).
Owing to the non-linear relationship between increasing summer air temperatures and surface melt (Trusel et al.,
2018), meltwater production has increased rapidly on the Greenland Ice Sheet (van den Broeke et al., 2016). In the summer of
2019, advection of warm, wet mid-latitude air led to a summer mass loss unprecedented in the past 50 years, with widespread
surface melt occurring up to the highest regions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen et al., 2020). Concurrent
with the increase in melt extent and duration, supraglacial lakes - which form when meltwater runoff collects in local
topographic lows - are now a common feature on large parts of the ice sheets and have become more extensive and have
advanced inland toward higher elevations in the past decades (Gledhill and Williamson, 2018; Leeson, 2015; Howat et al.,
2013)
These meltwater lakes and streams are a key component of the hydrological system of both ice sheets.
Hydrological systems over Antarctic ice shelves have been identified as a major factor for potential ice shelf collapse (Bell et
al., 2018). While mass loss in Antarctica over the next 100 years is generally thought to be dominated by the basal melt under
ice shelves (Schlegel et al., 2018), emerging research has focused on the potential importance of surface hydrology over
Antarctica (Arthur et al., 2020). Supraglacial lakes have been observed around the margin of the Antarctic Ice Sheet up to high
elevations (Stokes et al,, 2019) and are likely to become more prevalent on firn-depleted ice shelves in future warming
scenarios, which could potentially trigger their collapse and consequently lead to accelerated sea level rise (Lai et al., 2020).
Meltwater pathways can include surface flow into lakes and then streams, leading, in Greenland, to direct loss to the bed from
lake drainage or the sudden termination of a stream into a moulin, or near-surface flow where ice slabs can limit vertical motion
(MacFerrin et al., 2019). The complex links between supraglacial hydrological systems and englacial or subglacial pathways
can potentially be deduced by capitalizing on increasingly higher-resolution imagery and classification techniques of
supraglacial feature types (Yang et al., 2017). Past remote-sensing work has derived lake volumes from high-resolution (~1m)
Worldview imagery using a physical optical depth approach as well as an empirical method using in-situ estimates (Moussavi
et al., 2016; Pope et al., 2016). Recent work has developed an automated algorithm applying the physically-based method to
Landsat 8 and Sentinel 2 to track specific hydrological features and quantify the seasonal evolution of surface hydrology (Dell
et al., 2020). The physical method assumes that wind-driven surface waves are minimal, that the slope of lake bottoms are
gradual and that lake- bottom albedos are homogoneous (Sneed and Hamilton, 2011). The empirically-based method was first
applied by Box and Ski (2007) using MODIS imagery and advanced by Legleiter et al. (2014), which used high-resolution
WorldView 2 imagery. Both the physically-based and empirically-based methods are limited to supraglacial lakes which
contain minimal particulate matter (Arthur et al., 2020), and by the depth of the lake, assuming that the reflection depletion in
imagery is limited at great depths, implying a physical limit to the ability to calculate depth (Box and Ski, 2007). Pope et al.
(2016) estimates that the greatest depth that could be calculated by these methods was 5m. Additional work has applied a
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similar physically-based approach using Sentinel-2 from Copernicus (Williamson et al., 2018), Landsat 7 and 8 (Banwell et
al., 2014), Aster imagery (Sneed and Hamilton, 2007) and a combination of Landsat and Sentinel-2 imagery (Moussavi et al.,
2020). Although Sentinel-2 provides relatively high resolution (10 m) imagery with substantial coverage at a 4-day to weekly
interval, usable imagery is often limited by cloud-cover, and the resolution of small streams and ice cover is imperfect.
Commerecial satellite imagery, which is poised to expand substantially in the future, can help fill the gap in coverage of small-
scale melt and melt-induced features at a higher spatial (<3m) and temporal (multiple daily passes) resolution, complementing
estimates resolved from Sentinel-2.
The ICESat-2 laser altimeter, available since 2018, has now introduced the potential to replace the in situ measurements used
in empirical (supraglacial lake depth) bathymetric methods with satellite laser bathymetric depths at a high vertical resolution,
consequently extracting lake volumes from imagery (Parrish et al., 2019; Albright and Craig, 2020; Thomas et al., 2020). Here,
we present a new algorithm, titled “Watta”, using the ICESat-2 laser altimeter to derive properties of supraglacial lakes. Watta
was first presented in Fricker et al. (2020), demonstrating both the potential for ICESat-2-based bathymetry estimates and the
greater accuracy of empirically-based lake depths in comparison to physically-based estimates; the latter tended to
underestimate lake depth by over 2m. However, we note that physically-based methods have the advantage of being dependent
on imagery alone. In addition to bathymetry derived from the difference between the air-water and water-ice interface, this
algorithm assigns a probability for surface type characteristics to photon returns along-track. These types include lakes,
refrozen lakes, lakes with ice layers on top as well as under the surface. Watta also returns surface heights at the native
resolution of the ATLO03 photon cloud (0.7m), allowing the algorithm to capture small-scale changes in surface relief when
multiple passes are differenced. Additionally, we exploit a range of imagery data to validate the surface types and to derive
spectrally- driven depth estimates calibrated to ICESat-2-based depths, thereby providing an estimate for meltwater volume
over the full image. We compare empirically-based volume estimates derived from a single ICESat-2 based depth estimate but
from multiple imagery sources with different spatial resolutions (and without an atmospheric correction) to better understand
the importance of spatial resolution and radiometric calibration on the relative accuracy of depth volume estimates.

The method is tested and refined using representative sections along the flowline of Sermeq Kujalleq (Jakobshavn
Isbrae), one of the fastest-moving glaciers in Greenland, as well as the slower-flowing Sarqardliup Sermia. The repeat-tasking
of Planet SkySat imagery was designed to coincide with ICESat-2 tracks (Fig. 1), capturing lake depths at various stages of
lake development during the summer of 2019, an unusually intense melt season (Tedesco and Fettweis, 2020). One of the
major motivations for this tasking effort was its coincidence with several NASA Operation IceBridge (OIB) flights at the
beginning and end of the summer. Data from multiple instruments aboard OIB could potentially provide additional insight in
future work, and within this study, we use OIB CAMBOT (Continuous Airborne Mapping by Optical Translator) imagery as
a part of a focused multi-instrument study of the evolution of a supraglacial lake. The availability of simultaneous laser

altimetry and high-resolution imagery over the season provided a rich test dataset with which to extract
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altimetry-based estimates of supraglacial lakes at various points in the season. Here, we present initial results exploiting this

dataset as well as introducing the Watta ICESat-2 surface feature detection algorithm.

RGT 0841 RGT 1222
May 23,2019

Velocity (m/yr)

Sarqardliup
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May 15th, 2019
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RGT 727 RGT 1108 RGT 1169
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Figure 1: Study region over Sermeq Kujalleq and Sarqardliup Sermia. Top Left: Lake Ayse on May 23" using Planet SkySat visual
imagery, Bottom left, study region over Western Greenland. Right: Main region with repeat-tasking locations for Planet SkySat
shown in grey boxes over annual velocity estimates from MEaSUREs (NSIDC). Center track, SICESat-2 reference ground tracks
shown in white. Operation IceBridge flight on May 15, 2019 shown in green. Five lakes indicated in red discussed throughout text
include C: Lake Cecily, A: Lake Ayse, J: Lake Julian, N: Lake Niels, Z: Lake Zadie
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2 Data Sources
2.1 Satellite Altimetry

Our Watta method relies on individual photon heights as measured by ICESat-2’s (Ice, Cloud, and Land Elevation Satellite)
ATLAS (Advanced Topographic Laser Altimeter System) instrument distributed in the ICESat-2 ATL03 product, L2A, Global
Geolocated Photon Data (Neumann et al., 2019). The polar orbiting ICESat-2 satellite was launched in September, 2018 to
continue the mission begun by ICESat (2003-2009) and bridged with the airborne Operation IceBridge mission, namely to
provide ice sheet mass balance estimates at an unprecedented level of accuracy. The Advanced Topographic Laser Altimeter
(ATLAS) system is a photon-counting 532 nm laser altimeter aboard ICESat-2 split into 6 beams which are divided into 3
pairs (separated by 3.3 km), where beams within each pair are separated by 90m. Each beam pair consists of a strong and weak
beam, with the strong beam using 0.6-3.9 signal photons per shot vs 0.6-1.0 signal photons per shot for the weak beam
(Neumann et al., 2019). While the strong beam produces a stronger signal, we have developed the Watta algorithm to work
effectively with both strong and weak beams. ATLO3 produces a photon cloud where each photon is geolocated to within a
6.5m accuracy (Magruder et al., 2020) with an associated height as well as a confidence level [high, medium or low], and is
produced at an along-track horizontal resolution of 0.7m. While the ATL06 product (Smith et al., 2019) provides highly-
accurate surface height estimates at a coarser resolution, the higher spatial resolution of the ATLO3 product can be used to
deduce fine-scale surface characteristics, as with the Watta algorithm. Over water bodies, ICESat-2 can produce returns both
over the surface over the lake as well as the bottom of the lake (Fair et al., 2020; Fricker et al., 2020; Parrish et al., 2019) ;

these dual returns are used by Watta to extract supraglacial lake depths, as well as lake surface characteristics.

2.2 High-resolution imagery near Sermeq Kujalleq

For imagery sources, in addition to freely-available Landsat OLI (30m) and Sentinel-2 (10m) imagery, we incorporate very
high resolution imagery from Planet Labs, including Dove-R (3m) and SkySat (~1m). The latter is used to validate surface
types, while all imagery sources are used to derive spectrally-driven depth estimates calibrated to ICESat-2-based depths.
Additionally, the high spatial resolution of SkySat imagery allows for the identification of small-scale features on the surface
and bottom of supraglacial lakes, which we use to interpret the temporal evolution of lake characteristics in a number of case
studies. SkySat imagery did not include an atmospheric correction, and we therefore used TOA (Top of the Atmosphere)
Reflectance values from Landsat, Sentinel-2 and SkySat imagery to calculate supraglacial lake depth for the sake of
consistency. PlanetScope Dove-R data provided surface reflectance values only and is known to have issues with radiometry
(Saunier et al., 2020). However, because the method used here derives lake depth values empirically (rather than physically),
this work presents the opportunity to develop accurate depth estimates using high-resolution data where calibration is

imperfect, but where the data availability is high. This is particularly true for data from the PlanetScope constellation, which
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are frequently captured multiple times within a single day. Relative spectral response curves for the bands used in this study
are red, blue and green and NIR as shown in Fig. S1b. Finally, all imagery was coregistered with ICESat-2 using the GIMP-2
digital elevation model (DEM), which has a vertical accuracy (as compared to ICESat), within +1m over most ice surfaces and
+30m over areas with high relief (Howat et al., 2014) and is used for the geolocation of Landsat imagery (detailed in Section
3.2).

As a part of this project, SkySat imagery was tasked for repeat cycles of ~4 days over the 2019 Greenland melt season
in selected locations, producing usable imagery at varying intervals based on cloud cover. Each of the 3 areas of interest
presented here were approximately 600km?. Repeat imagery was specifically chosen to cover flowlines of fast-flowing
glaciers, including Sermeq Kujalleq, as in this study (Fig. 1). In addition, repeat tracks were designed to coincide with both (a)
overpasses of the recently-launched NASA ICESat-2 laser altimeter and, (b) several flights of the airborne NASA Operation
IceBridge (OIB) mission in the beginning and end of the season. Here, we present the first work exploiting this stacked dataset
for method development, restricted to available satellite imagery/altimetry. We note that for Lake Julian, discussed in section
5, OIB conducted a flight on 2019/5/15, thus capturing observations from multiple instruments onboard OIB, including
CAMBOT imagery and the Airborne Topographic Mapper (ATM). While ATM-based lake depth estimates could potentially
be compared to the lake depths calculated from the near-simultaneous ICESat-2 overpass, this is outside the scope of this
study, We discuss Lake Julian in detail in order to facilitate potential future research at this site.

The final set of lakes used for the development of the Watta method included 50 lakes captured by ICESat-2 (46 over
Sermeq Kujalleq and Sarqgardliup Sermia, and 4 additional lakes in the southwest, not shown here), 14 of which coincided with
very high-resolution imagery (SkySat) within a 3-day window. The date/times/imagery IDs/ICESat-2 details for all data

sources are presented in Supplemental Table [1].

3 Methods

We derive supraglacial lake volume from a given imagery source in four steps. We first calculate lake depths along an ICESat-
2 beam using the Watta algorithm applied to the ICESat-2 ATL03 photon cloud. Secondly, we coregister Watta- based surface
and lake bottom heights with the imagery source (itself co-registered to a common Landsat base) and delineate lake boundaries
in the process (methods detailed in Section 3.2). Finally, we develop an empirical relationship between ICESat-2 based depths
and coincident imagery which can be applied to calculate lake depths over the full image. The empirical relationship is based
on the exponential decay of reflectance at water depth, as detailed by Box and Ski (2007). In the original work, in situ depth
estimates and reflectance values from imagery (R) were used to estimate the a-coefficients in eq. 1, which were then applied
to calculate water depth over the full-scale of imagery where lakes are delineated:

D=ac/(R+a1)+a (eq. 1)
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However, such in situ estimates are scarce in space and time, and here we exploit the direct depths from the Watta algorithm

to derive time, location and sensor specific estimates of the a-coefficients.

3.1 Watta

Watta is an algorithm which takes ICESat-2 ATLO3 photon data as input and automatically detects supraglacial surface features
with an associated probability of likelihood. In its current state, the algorithm detects lakes and their associated surface, lake
bottom and corrected depth estimate as well as subsurface ice when present (Fig. 2). We also exploit the algorithm for the
detection of frozen streams in this study. The codebase for Watta is divided into a module which calculates surface and bottom
returns (“Surface Detection”) at the native 0.7 m resolution of ICESat-2, and a second “Interpretive” module that resolves the
calculated bottom/surface to specific supraglacial features, in this case lakes. The Surface Detection module determines, for a
collection of 75 photons surrounding any individual photon (selected in step a), heights with the three strongest peak
probabilities within in a kernel density (step b). This provides estimates for (1) a height for the surface or top of a lake or
refrozen pond (2) a lake bottom and (3) a third height value, which can potentially be subsurface ice (Fig.

2 step a). We note that photons are selected without regard to ATL03 confidence level. Although the bin width (and therefore
vertical resolution) used to calculate heights is 0.1m, we perform a second kernel density estimate calculation using a 0.3m
bin width to confirm robustness of the initial bottom estimate, i.e. that a coarser calculation produces a bottom height near that
of the finer-resolution (0.1m bin width) calculation. In post-processing step c, outliers are identified in comparison to
surface/bottom heights within a larger horizontal window, whereby the number of standard deviations used to detect an outlier
and the number of photons used to calculate a mean (window) increase with over several steps. Where outliers are found, the
kernel density estimate (steps a,b) are recalculated with a larger number of photons (in multiples of 75) to account for any
erroneous calculations generated by insufficient photon density. Where values continue to be outliers, they are removed from
the estimates to be interpolated instead. The final output of the Surface Detection module include a calculated surface and

potential lake bottom return at the native resolution of the ATLO3 photon cloud.
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The Interpretive module uses output from the Surface Detection module to automatically determine locations of surface
features (e.g. lakes or frozen streams) as well as characteristics of a lake, e.g. the presence of refrozen ice at the surface. First,
remaining outliers are removed by calculating a local background and surface photon density for each ATLO3 photon, as
195 determined from a 5000 photon-count window surrounding the estimate location (step d). We then remove those estimated
heights for top (surface) and bottom (potential lake bottom) where the photon density more closely resembles the background
photon density than a surface density estimate. In step e, we detect breaks in the slope of the top (surface) to divide the satellite
pass into segments which are potential lakes. For example, a semiparabolic depression in topography, with a high absolute

value of the slope, is broken by a lake surface, where the slope approaches zero (e.g. as in Fig. 2 step a. For each of these
8



200

205

210

215

220

potential lakes, we then perform several steps to both refine lake surface/bottom and to assign the lake a class based on its
properties. To produce a lake bottom value with greater accuracy, we first perform a recalculation of the kernel density estimate
(step f, equivalent to the Surface Detection step b), except here we limit the kernel density estimate to photons below the
calculated surface and use 30 photons rather than 75 photons, to better capture the lake bathymetry, which in general is more
irregular than the lake surface. Sub-surface ice layers near the edges of the lake are then reclassified as lake surfaces, thus
sealing the bottom of the lake to the top at the lake edges (step g). In step h, we first perform a final smoothing, passing the
resulting bottom photons through an iterative robust quadratic local regression (rloess) filter to remove outliers in the bottom
estimates and then assign physical meaning to each photon (e.g. lake surface, bottom, surface ice, subsurface ice). The presence
of surface ice is determined based on the variability in thickness of the lake surface (i.e. a bimodal distribution indicates surface
ice at some locations). We identify subsurface ice by the presence of weak return above the lake bottom but below the surface
(see Fig. 2 step b). The surface and bottom photons are then used to derive lake depth, where we apply a simple correction for
refraction, described in Parrish et al. (2019), to produce a real corrected lake depth. Finally, in step i, we assign a final
classification of a lake type using properties of the local surface slope and the strength of the bottom return (Table 1). For
example, a segment with a surface slope smaller than 0.03% as well as a distinct bottom (a photon density far exceeding the
density of a background return) is given a lake classification of ‘highly likely’, whereas segments passing the same slope
threshold but not showing a strong bottom return are identified as ‘likely ice- covered’ lakes. On the other hand, segments with

a slope exceeding 0.3% and no significant peak below the surface in the histogram are allocated to the ‘highly unlikely’ lake

class.
Class Slope Bottom Lake probability Lake characteristics
reflection*

1 <0.03% strong highly likely very flat open lake, dense bottom photon returns

2 0.3% <slope <0.3% | strong very likely flat, open lake with presence of refrozen ice; dense
bottom photon returns

3 >0.3% strong likely non-flat surface, possibly flowing water channel
on sloping surface; dense bottom photon returns

4 <0.03% weak very likely very flat open lake; weak bottom photon returns

5 0.3% <slope <0.3% | weak about as likely as not | flat open lake; weak bottom photon returns

6 >0.3% weak unlikely Non-flat surface; weak bottom photon returns

7 <0.03% none likely Very flat refrozen lake; no significant bottom
photon returns

*: strength of the bottom reflection is defined by the ratio of the first two peaks in the 2m interval histogram of non-surface
photon heights within the segment. Strong bottom reflection: peak ratio > 3.5; weak bottom reflection: 2.5 < peak ratio < 3.5;

no bottom reflection: peak ratio <0

Table 1. Definitions for Watta lake classes

Two potential sources of ambiguity with the subsurface ice classification are: (a) the possibility for specular returns and (g)

apparent multiple surface returns which resulting from instrument echo. Specular returns over flat water (implying high energy
9
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return), return a strong surface as well as multiple layers below the surface spaced according to the ATLAS deadtime (Im
below the surface and a potential tertiary return below that). Echoes produced by electronic noise in the instrument, which also
frequently occur very smooth water surfaces, can similarly produce a strong return at the surface with double echoes at ~2.3m
and ~4.2m below the surface. (Martino et al., 2020). The categorization of subsurface ice (as in with Lake Ayse in Fig. 3) are
reliant on visual inspection. In this case, we assume subsurface ice because the layer is less than 1m from the surface and
shows trailing photons towards a weakly-resolved lake bottom rather than a distinctive sharp horizontal layer with no curved

bottom return. If this were a specular return, we would expect a high energy surface return to obfuscate the lake bottom entirely.

3.2 Imagery Processing

A subsequent set of steps uses the lake depths extracted from the Watta algorithm to produce lake volumes from concurrent
imagery, e.g. SkySat, PlanetScope, Sentinel-2 and Landsat OLI, requiring geolocation as well as the semi-automated
identification of lake edges. Coregistration between ICESat-2 photon locations and imagery (Fig. 3 Step j) is managed by
registering ICESat-2 elevations with the GIMP-2 DEM as an intermediary step (GIMP-2 is also used for georeferencing of
Landsat), by transforming the point cloud using the iterative closest point algorithm, which minimizes the square error between
the two data sets. (Besl and McKay, 1992) The point cloud from ICESat-2 is chosen to include a 0.2° latitude window
surrounding the lake being resolved to include larger topography in the region (and thus avoid errors presented by ice motion).
The large lakes used here are all located in strong topographic depressions (which are resolved in both the GIMP-2 DEM and
ICESat-2) and can therefore be assumed to remain relatively fixed.

To register imagery sources to one another, we standardize all imagery to the nearest Landsat image, using the arosics
library in Python (Scheffler et al., 2017), which detects and corrects misregistrations of an input image (based on a reference
image) at the sub-pixel scale. However, the coregistration of all other imagery sources to Landsat OLI first requires the
delineation of lake boundaries in order to exclude regions with moving surface water, which evolves rapidly and can be
mistaken for fixed topography (which is more useful for geolocation). Here we calculated a normalized difference water index
(NDWI) for each image, using a standard NDWI (with the green and NIR) bands to deliberately include regions with ice layers
(as these are also detected by Watta), rather than the modified NDWlice (which uses the red and blue band), per Yang and
Smith, (2013). Boundaries of lakes (step 1 in Fig. 3) are calculated by using adaptive thresholding (Bradley et al., 2007) to
generate a binary mask which is then used to identify individual water bodies. The use of adaptive thresholding avoids the
limitations of any fixed NDWI threshold, especially relevant to PlanetScope data, which occasionally produces negative NDWI
values. However, we note that this step has the potential to include partial ice layers (although visual inspection suggests that
this was avoided with the test cases used here). To coregister ICESat-2 to each imagery source, we also note that the ICESat-
2 mission requirements list a geolocation accuracy of 6.5m (Magruder et al., 2020), which may potentially include multiple
pixels of high-resolution imagery. To calculate a band value from imagery associated with a geolocated photon from ICESat-

2, we find pixels in imagery within a 6m radius and calculate a mean. In Step k, we calculate an empirical relationship between

10



255 the depth estimate calculated by Watta and a band value from coregistered imagery pixels. Finally, we use this empirical

relationship to produce a depth estimate for the entire lake using eq. 1.
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Figure 3. Diagram of imagery processing steps accepting Watta outputs as input (top left) and producing lake depth
260

estimates (bottom left). Watta lake depth profile shown is for Lake Ayse using RGT 841 on May 23" and Planet
SkySat imagery on May 22",
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4 Evaluating Methodology
4.1 Physical constraints of the test dataset

The test dataset provides a diversity of lake types, with the largest surface area calculated at 5.6 km? and a maximum Watta-
calculated corrected depth at 10.3 m. A number of lakes contain substantial ice cover. In the following sections, we discuss
several lakes in greater detail which present a diverse set of conditions with which to evaluate both the Watta algorithm and
the imagery sources used to extrapolate lake volumes. Locations of the lakes can be found in Fig. 1.

Lake Ayse was selected for closer examination because despite the dense photon cloud, its relief in surface and
bottom, combined with the presence of ice cover, pose a challenge for our detection algorithm. Additionally, multiple imagery
sources were available within a 5-day window at this location. Lake Zadie is chosen because it represents an ideal case for the
algorithm, while Lake Cecily is chosen because two beams passed over the same lake with SkySat imagery available one day
afterwards. A basic assumption we make in this study is that the lake bottom remains relatively consistent over several days,
although past research on two lakes in Western Greenland has estimated lake bottom ablation rates at 6.5 cm/day on the bottom
of the pond (Tedesco et al., 2012). We assume that this is the primary physical source of uncertainty in the empirical
calculation, as the relationship will degrade with temporal distance from the ICESat-2 pass. However, where changes in the
bathymetry are not uniform, we can potentially make inferences about drainage mechanisms (e.g. the forming and deepening
of crevasses). Cross-sections of all lakes used for development showing the lake top, bottom, and bottom value corrected for
refraction as calculated by Watta, along with lake top and bottom as calculated empirically from imagery, are shown in

Supplemental Fig. S4, Table S1.

4.2 Physical constraints of the test dataset

The most rigorous weighting system used for the algorithm, using only lake classes 1, 2, 4 and 7 (see Table 1), succeeded in
automatically detecting 49 out of the 50 lakes identified in the available imagery, with two likely false positives (i.e. not
confirmed by NDWI values exceeding 0.2 in the imagery). A less rigorous weighting system, including lake class 3, detected
the 50th lake, but resulted in a large number of false positives in areas of steep, and rough topography, where abrupt changes
in the photon elevations are misinterpreted as bottom reflections by the algorithm.

In the absence of simultaneous in sifu data, we evaluate the performance of the algorithm based on visual inspection
(comparing ATLO3 heights with Watta calculated depths as shown in Fig. S3). Additionally, where an empirical relationship
with imagery is successful (a high correlation coefficient value between imagery-derived depths and Watta-derived depths,),
we take this consistency for partial evidence that ICESat-2 and imagery sources have detected bathymetry correctly, although
we note that this metric is only applicable to the specific lake, not the basin. The most successful bottom retrieval occurred

where ice cover was minimal, the density of photons was high and where the bottom slope was relatively uniform (e.g. Lake
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Zadie). The presence of ice near the surface (between the surface and Im below the surface) frequently obscured lake bottom
detection (e.g. reference ground track (RGT) 1222, Lake 3 in Fig. S3), although in some cases only partially; however, the
presence of subsurface ice did not always preclude the presence of a strong bottom return (e.g. Lake 7, RGT 1169, Fig. S3).
The algorithm therefore indicates the presence of surface/near- surface ice, but does not automate the removal of the calculated
bottom return due to ambiguity. We can confirm the presence of an ice layer both by visual inspection of the imagery and by
comparing standardized NDWI values calculated from imagery coincident with the ICESat-2 track (Fig S1a). We note that for
at least one case, (RGT 1108 Lake 6, Fig. S3), the designation of “lake” was ambiguous, as this could be treated as either a

shallow lake containing a large amount of subsurface ice, or as a slush layer (a number of which were identified elsewhere).

4.3 Evaluating Data Sources for Imagery-based Depths

Total uncertainty for the empirically-based depth estimates from imagery is comprised of uncertainty in ICESat-2 geolocation,
uncertainty from the Watta algorithm itself (which operates at a vertical resolution of 0.1m), from the resolution of the imagery,
from the uncertainty in alpha coefficients calculated from the empirical method and finally from physical changes in the lake
occurring between the time that imagery is captured and the ICESat-2 pass. The empirical calculation is less likely to be
affected by physical changes in the lake when the lake surfaces calculated by imagery vs altimetry differ by less than a meter;
here we estimate precision with a simple R? value.

Past work has considered either the red or green band for developing depth estimates (Moussavi et al., 2020;
Williamson et al., 2018), though in situ validation was limited at the time (Pope et al., 2016). Figure 4 compares R? values
from empirical estimates derived from the red vs green band for lakes classified according to the maximum lake depth
calculated by Watta. In agreement with Moussavi et al. (2016), for Landsat 8 (Fig. 4d), Sentinel-2 (Fig. 4c) and SkySat (Fig.
4a), the empirical depth estimates for the red band showed higher fidelity with Watta-based depths for shallow lakes, while
the green band showed greater fidelity for deeper lakes. Of six lakes where a maximum depth exceeds 7.2m and where the
imagery source is Landsat 8, two lakes (RGT 1222, Lake 8, 12 in Supplemental Profiles) show both red and green-band based
profiles being unable to resolve the deepest points in the lake. For two additional cases (RGT 1222, Fig. 4e, Lake Zadie, Lake
14, 17 in Supplemental Profiles), the green band was able to resolve very deep lake depths, while the red band was not. This
implies that for SkySat, Sentinel-2 and Landsat 8, the green band is able to resolve bathymetry at greater depths and emphasize
cracks at the bottom of the lakes. The major exception is PlanetScope data (Fig. 4b), where the red band consistently showed
greater fidelity to Watta-based estimates while green band estimates produced unrealistic depth estimates, although there were
a limited number of lakes where coincident PlanetScope imagery was available. We note that because this method is empirical,
future users would be able to select bands or combinations, as with the average of the panchromatic and red band used by Pope
et al. (2016),.
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Figure 4. Comparing R2 values from empirical estimates calculated with the red band vs the green band from multiple
imagery sources, with lakes classified by maximum lake depths as calculated by Watta. (a) Planet SkySat TOA
reflectance (b) Planet PlanetScope surface reflectance (c) Sentinel-2 TOA reflectance (d) Landsat 8 OLI TOA reflectance
(e) Watta-calculated and imagery-derived depths: Lake Zadie based on Landsat OLI.

To demonstrate the robustness of the Watta algorithm, the impact of band choice, and the sensitivity to absolute lake

depth, we show depths calculated from two beams passing over Lake Cecily on June 13", followed by retrieval of SkySat
imagery on June 14" and Sentinel-2 on June 16" (Fig. 5 a,b and RGT 1169 Lake 5(6) in Supplemental Profiles). Over this
spot, covered by the 31 beam on this pass, the green band shows higher R? values for both Sentinel-2 and SkySat, but lower R?

values for the red band. This is consistent with the greater depths calculated from the 31 beam, which approach the 6m depth

at where the performance of the green band is expected to improve. The use of the green band in both the 31 and 3r cases allows

for finer bathymetric relief to be captured in both SkySat and Sentinel-based depth estimates, with the finer resolution of

SkySat capturing substantially greater detail (Fig. 5¢, box). We note that even when high R? values are calculated between the

empirical estimate and Watta-calculated depths, unrealistic depths can result when lakes drain or fill rapidly, and low-

resolution imagery can potentially resolve the height of a lake surface inaccurately (Fig. S2).
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Figure 5. Watta-calculated and imagery-derived depths: Lake Cecily based on Sentinel-2 (k,I) and Planet SkySat (m,n);
Lake Cecily false-color imagery from Sentinel-2 (a) and SkySat with ICESat-2 beam 3r and 31 (b); Imagery-derived
depths from Planet SkySat (c-f) and Sentinel-2 (g-j) with band/beam combination as shown. Estimates from the green
band are indicated by “G” while those calculated from the red band are indicated by “R”. is Red box in (c¢) highlights
region where underlying crevassing is captured
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Within Figure 6, we show the depth evolution of Lake Ayse over 5 days, both along the ICESat-2 ATLO03/Watta-
calculated profile and the lake volume estimates then constructed from imagery using the empirical equation. Increasing lake
volume is demonstrated both by the expansion of the surface area of the lake through time (right column) and the rise in the
lake level (cyan line, left column). Planet SkySat estimates at a 1m resolution (Fig. 6¢) show the greatest level of detail of
crevassing at the bottom of the lake although PlanetScope estimates, at a 3m resolution (Fig. 6d,e are comparable. We note
that PlanetScope data showed variations in the fidelity to Watta-based estimates between the green band vs the red band
depending on the instrument. The bottom relief is maintained at depth with the PlanetScope resolution (3m), and future work
could generate more reliable depth estimates by calibrating empirically-based depths to Sentinel estimates, which could
provide very high-resolution depth estimates while also leveraging the high temporal frequency of PlanetScope data

collection.
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Figure 6. Lake Ayse, filling over five days between May 20'" and May 25", with ICESat-2 pass on May 23", Left column:
Profiles with Watta-calculated and imagery-derived depths from the green, indicated by “G” and red bands, indicated
by “R” (with corresponding R? values inset), legend same as Fig.4a. Right column: Depth values derived from empirical
estimate, with imagery source , date collected, band used for depth estimate shown. Imagery source abbreviations are
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as follows: “LSat” for Landsat, “SSat” for Planet SkySat, “PS” for Planet PlanetScope and “Sent” for Sentinel-2. Path
of ICESat-2 spot over Lake Ayse is shown in Fig. 1

5 Capturing Lake Drainage over the Melt Season

Our improved ability to track lake depth and volumes using the combination of ICESat-2 and multi-sensor imagery can
potentially provide new insights into patterns of lake drainage. Lake Julian (Fig. 7a) was selected for closer examination
because on May 15%, both the airborne Operation IceBridge mission and ICESat-2 passed over this region, providing a unique
stack of both airborne and satellite data. While we show only very high-resolution Operation IceBridge CAMBOT imagery
here, other instruments aboard OIB could potentially provide valuable insight into the state of both surface hydrology and firn
characteristics in future work. Additionally, there are cloud-free ICESat-2 RGT 727 passes over this lake both on May 15%,
2019 and on August 14™, 2019, providing a profile of the lake both when it was filled as well as after drainage. A second lake,
Lake Niels (Fig. 7a) is examined briefly primarily to provide context. Although no altimetry estimates are available over Lake
Niels, imagery sources reveal a very different evolution and drainage pattern despite its being located only 3500 meters from
Lake Julian, and consequently subject to many of the same atmospheric drivers. Within the larger region shown in Fig. 7a,
(Supplemental Fig. S4), the percentage of the ice sheet surface covered in liquid water, as measured by the percentage of the
region where NDWIice values exceed 0.2, remains constant at around 3% from May through June, with meltwater being spread
more uniformly (less visibly collected in large hydrological features) over the ice sheet early in the season and shifting to larger
lakes later in the season (Supplemental Fig. S4). We note that this measure of melt extent does not translate directly to
consistent meltwater volume; meltwater underneath the snowcover on Lake Niels was not estimated earlier in the season, while
the deeper lakes which are present later in the season will contain larger water volumes.

Although elevation decreases overall toward the northwest, both lakes coincide with large-scale surface depressions
calculated from the GIMP-2 DEM (Fig. 7) and this region experiences comparatively low ice velocities. Lake Niels is located
in a deep surface depression whereas the corresponding surface depression for Lake Julian is relatively shallow. Because both
imagery and ICESat-2 are coregistered to the GIMP-2 DEM, we presume that all inaccuracies will be consistent (i.e. even if

geolocation is incorrect in absolute terms, imagery and ICESat-2 should overlap).
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Figure 7. (a) Lake Niels and Lake Julian, shown on May 14th, 2019 using Sentinel-2 imagery as described in the Data
section. (b) GIMP-2 DEMP shown at same location with contours shown at 10m intervals.

5.1 Drainage Mechanisms over Lake Julian from airborne and satellite-based imagery

The volume of Lake Julian begins to increase substantially on May 9" and reaches a maximum volume between May 25" and
May 29" (Fig. 8j-1). After June 1%, the lake begins to lose volume until only remnants are present on June 10", which disappear
almost entirely by June 19" (Fig. 8m-0) The surrounding region (i.e. a kilometer to the north and west) contain smaller bodies
of water connected by streams. We note that while larger streams can be captured by Sentinel-2 imagery (Fig. 8j), many of the
smaller streams present later in the season can only be reliably detected with imagery below a 1-meter resolution (e.g. Fig. 8r,

Supplemental Fig. S5). The progression shown in Fig.8 captures the development of an efficient drainage system over the

s€ason.
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Figure 8. Imagery over Lake Julian shown from April 20th, 2019 through Sep 24, 2019. All images use Planet SkySat
Visual data unless otherwise indicated by letter on bottom left, with S indicating Sentinel and L indicating Landsat

Three potential drainage mechanisms can be observed over lake Julian. Firstly, we note a small stream ending in a spray of
snow (alternatively, an ice bridge) which is potentially indicative of a moulin (Fig. 9b). However, an overflight of Operation
IceBridge on May 15" (Fig. 9a) does not definitively show a moulin at the end of the incision, allowing for the possibility that
the actual drainage occurred under the overlapping ice bridge. We also identify the point labelled B in Fig. 9a,b (also in

Fig. 10d,e) as another potential drainage point. Presuming that drainage occurs at either location, lake volume could still

increase slowly (as it does between May 9" and May 25%) if the inflow rate exceeds the outflow rate of the lake. This dynamic
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is captured in a previous in situ study of lake drainage, which indicated that drainage through a moulin decelerated as the
hydraulic head between the lake and the moulin declined (Tedesco et al., 2013).

However, following late May, SkySat imagery captures the development of a second stream directly south of the
initial potential moulin (Fig. 9b). This small stream, which flows downstream (Fig. 7b) deepens throughout the season (Fig.
9¢) with a very deep incision shown distinctly in imagery shown on September 24" (Fig. 8t). The development suggests that
the relatively slow initial drainage from the potential moulin or Point B accelerated due to increased drainage from a second
small stream, draining Lake Julian almost entirely between June Ist and June 10" (Fig. 8m-n). While smaller pre-existent
streams to the right (Fig. 9b) may also have facilitated drainage, we assume that the newly incised stream to the left is the most
likely cause for the rapid drainage due to the timing of its appearance. We note that smaller bodies of water are still apparent
on the surface after the drainage of Lake Julian, some connected by very small stream networks, which appear to be frozen-

over by September 24" (Fig. 8t).

Figure 9. Mechanisms of lake drainage over Lake Julian. (a) CAMBOT imagery from Operation IceBridge flight on
May 15™, 2019 (30cm resolution). (b) SkySat imagery (~1m resolution) on June 10" after large-scale drainage

5.2 Drainage Mechanisms over Lake Julian Captured using Watta

Lake Julian reached a volume of 268120 m* on May 14, which was calculated using the green band from Sentinel-2 imagery
on May 14" in conjunction with a Watta-based depth calculation from an ICESat-2 pass on May 15" (Fig 10a,b). The time lag

introduces uncertainty due to possible lake ablation. We assume that this uncertainty is not due to the discrepancy in dates
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(imagery having been captured on May 14" whereas a deeper lake depth was captured by ICESat-2 on May15™). This is
because the methodology accounts for changing lake depths, presuming minimal lake ablation, matching

Watta-calculated depth to the surface height where the edge of the lake is indicated by imagery (see Methods). The depth
values calculated for May 14" indicate a relatively shallow lake (less than a maximum 4 meter depth).

A comparison between the two passes of ICESat-2 RGT 727 (the second on August 14™) indicate uneven lowering
in this region and potential slight ice motion, e.g. a slight southward shift in the lowest point of the depth profile (pt B)
calculated on May 15" vs on August 14" (Fig. 10c). We estimate large-scale surface lowering around ~Im, based on the
lowering calculated at higher elevations (Fig. 10c,d, where the x axis, showing the distance from an arbitrary start point, is
greater than 800m). By contrast, elevation changes where surface hydrology features exist show enhanced incision of a pre-
existent stream/drainage point as well as the development of a new stream (Fig. 10 c,d, x-axis value between 0 and 200m ).
The deepening of the lowest point in the lake could be the product of ice motion, but we assume that the elevation change of
2-3 meters at this location is the effect of lake ablation. This is due to the locations of ice layers being well-matched between
imagery and Watta-calculated features (discussed shortly), suggesting that any ice motion was adjusted for in the geolocation
step.

In addition to locations where Watta calculates a lake surface (Fig. 10d and Fig. 10e, label “B”), Watta also identifies
regions where ice cover is probable. These are shown in cyan in Fig. 9d at locations A, C, D and in imagery in Fig. 10e.
Whereas lake surfaces are calculated at the horizontal resolution of the ICESat-2 ATLO03 photon cloud, the ice surface class is
assigned at a coarser resolution. This is because the Interpretive module assigns the “ice surface” class based on the presence
of a flat surface under an overlying layer with more varied topography. While currently, the algorithm potentially overestimates
the extent of these regions, a first automatic pass can be used to identify larger regions where ice surfaces exist, after which
manual inspection can then identify specific ice layers. Shown in Fig. 10d are the lake (B) as well as three additional points
where we identify ice layers using both Watta and manual inspection (A, C, D). Point B is also captured in Operation Ice
Bridge CAMBOT imagery on May 15 (Fig. 9a). This is potentially a drainage point which retains meltwater as late as August
14, This location is also covered by a floating ice layer on May 14™, suggesting that an ice layer had formed at the same place
and settled at this point following drainage in the previous season. Point C corresponds to a deeply incised stream (which is
not captured in the Watta profile calculated on May 15™) while Point D corresponds to a smaller stream; both of these points
were covered by Lake Julian during the last half of May. We note that the designation of Point A is more ambiguous as it is
collocated with to an incision which was previously a stream, but is weakly-resolved in both Watta-based estimates and in the
SkySat imagery collected on August 20", The Watta designation of “ice surface” here is likely, but not unambiguous, as this
method will capture both real ice surface and false dual returns as detailed in Section 3.1. The main attributes typical of the
false dual returns are a strong top surface over surface water in a flat region, followed by weaker returns at predictable intervals
(~1m and ~1m for the specular return, ~2.3 and ~4.2m for the instrument echo). In this case, a specular return would be the

most likely cause for a false dual-return due the spacing. However, we first note that the surface in this region is not flat and
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we do not see the predicted strong surface return followed by a weaker echo (“surface” and “ice” layers are of equal thickness).
Additionally (a) in the case of Pt. B, the top layer contains no dual return (b) in the case of C, a distinct gap occurs in the
surface. Both of these correspond to ice/water in imagery. For Pt A and Pt D, imagery suggests that these points occur at a
convergence of streams. These could, however be either water or ice as no distinctive bottom return is detected. With the
current available information, the “ice surface” detection will still require manual inspection; future improvements to the code

may account for the known issue with false dual returns as knowledge in this area develops.
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Figure 10. ICESat-2 RGT 727 over Lake Julian. (a) Sentinel-2 based imagery acquired on May 14" 2019 with ICESat-2 RGT 727
gtll (occurring on May 15th, 2019 and August 14th, 2019) overlapping in green. Operation IceBridge overpass on May 15th, 2019 is
directly coincident with the ICESat-2 line. (b) Lake depth derived from Warta (Panel c) and Sentinel-2 imagery (Panel a) based
depth. (c) Watta calculated from ICESat-2 on May 15th and Aug 14th. (d) Watta-calculated surface features over photon cloud on
Aug 14th . Points A-D discussed in text (e) Points A-D shown over Planet SkySat imagery collected on August 5" and August 20th

5.3 Lake Niels, Partial Drainage and Refreeze

In comparison to Lake Julian, Lake Niels begins and ends the melt season as a frozen lake. By May 9", the ice surface
begins to melt and the lake surface area expands substantially. However, by May 13% (Fig 11d), imagery captures an insulating
layer of snow, after which the lake expands into June 26" . By July 20", slow lake drainage is evident via a stream which is
identified in Fig. 11a and is first observed to contain a substantial quantity of liquid water on June 19" (Fig. 11h). We observe

that the stream is clearly incised both on April 20" (Fig. 11b) and on September 24™ (Fig. 11m), when the lake is likely frozen
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over, based on imagery. In comparison to Lake Julian, which was located in a relatively shallow depression, Lake Niels is
located in a deep depression (Fig. 7) and neither drains early in the season nor connects to an efficient drainage system.
Although these lakesare subject to similar atmospheric drivers, the differences in drainage patterns highlight how local
topography and the corresponding depth of lakes can influence how meltwater is either retained on the ice sheet vs drained
downstream or into englacial or subglacial pathways. We note that surface topography, in turn, is strongly influenced by basal

topography, thus linking total runoff to surface expression of bed topography (Ignéczi et al., 2018).
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Figure 11. Lake Niels, shown between April 20th and September 4th, 2019. (a) shows stream detail from Aug. 20 (main panel) with
stream detail on April 20" (inset, with region indicated in Panel b). All imagery is from Planet SkySat Visual imagery except on May
9th (where Sentinel-2 imagery is used, indicated with “Sent”).
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6 Conclusions

This study represents initial work developing the Watta algorithm for lake depth estimates as well as subsurface ice detection,
using a unique stacked dataset over Western Greenland during the intense 2019 melt season. We demonstrate the potential of
ICESat-2 for automated lake detection and depth estimation, as well as how empirically-derived depths derived from a
combination of imagery sources can complement each source’s strengths and weaknesses. For example, while Landsat is only
available at a low resolution, it provides a rich historical record as well as high geolocational accuracy (at 5m), which is
leveraged here to better geolocate imagery from Planet Labs. Similarly, while PlanetScope data contains several known issues
with radiometry and geolocation, imagery is available at a high spatial and temporal resolution. As demonstrated in our test
cases, a time series constructed from multiple sources can provide valuable information about the evolution of ice cover and
drainage mechanisms in addition to volume estimates. Given the accelerating sophistication of altimetry-based observations,

ongoing efforts to improve geolocation, radiometric quality or temporal frequency of high- resolution imagery are crucial.
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Additionally, the availability of simultaneous imagery and altimetry would enhance the capabilities of other satellite imagery
sources to fill out the time series by providing a calibration standard.

While this initial study focused on lakes in grounded ice in Greenland, Watta can potentially be applied to Antarctic

505 melt lakes as well. Additionally, lake depths calculated empirically can potentially be used to calibrate physically-based
methods towards developing ice-sheet-wide timeseries for the evolution of surface hydrology.

Our algorithm successfully detects a wide variety of lake types automatically, and can be applied to the growing set
of ICESat-2 and imagery data over large sections of Antarctica and Greenland. Identification of narrow stream features on
sloping surfaces, however, still needs visual verification due to a large number of false positives. This will be addressed in

510 future work, together with adding features to the interpretive layer, including slush layers as well as cracks, using the Planet
SkySat imagery dataset for testing purposes. In addition to these improvements, Watta, which is currently written in matlab,

is available in github with documentation,, but will eventually be moved to an open-source language.

Acknowledgements

515 We would like to acknowledge Lauren Andrews for her help in identifying drainage patterns, Jeremy Harbeck for his assistance
with Operation IceBridge CAMBOT imagery and the NASA Small Satellite Databuy Pilot Program as well as Planet Labs for
the use of Planet Imagery. B.W. acknowledges funding by NWO grants 016.Vidi.171.063 and OCENW.GROOT.2019.091.
R.T.D. was funded by the ICESat-2 Project Science Office

Competing Interests

520 Bert Wouters is editor of The Cryosphere.

Data Availability

Code for Watta can be found here: https://github.com/kettleofmonkeys/Watta.git
Imagery, IDs for which can be found in supplemental information can be accessed at the following urls:

525 For Planet Imagery: https://www.planet.com/

For Sentinel-2 and Landsat 7 and 8 imagery: https://earthexplorer.usgs.gov/
For ICESat-2 ATLO3: https://nsidc.org/data/atl03

25



530

535

540

545

550

555

References

Albright, A. & Glennie, C.: Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations, IEEE Geoscience
and Remote Sensing Letters , 2020, 18(5),900-904, https://doi.org/10.1109/LGRS.2020.2987778

Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., & Leeson, A. A: Distribution and seasonal evolution of supraglacial
lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere Discussions, 2020, 1-36, https://doi.org/10.5194/tc-2020-101,
2020.

Banwell, A.F, Caballero, M, Arnold, N., Blasser, N., Mac Cathles, L. & MacAyeal, D.: Supraglacial lakes on the Larsen B ice
shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study, Annals of Glaciology 55(66), 1-8, doi:
10.3189/2014A0G66A049, 2014.

Bell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance.
Nature Climate Change, 8(12), 1044—1052. https://doi.org/10.1038/s41558-018-0326-3, 2018.

Besl, P.J. & N. D. McKay.: A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2), 239-256, https://doi.org/10.1109/34.121791, 1992.

Box, J., & Ski, K.: Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics, Journal of

Glaciology, 53(181), 257-265. doi:10.3189/172756507782202883, 2007.

Bradley, D., & Roth, G.: Adaptive Thresholding using the Integral Image, Journal of Graphics Tools, 12(2), 13-21,
https://doi.org/10.1080/2151237X.2007.10129236, 2007.

Dell, R., Arnold, N., Willis, 1., Banwell, A., Williamson, A., Pritchard, H., & Orr, A.:Lateral meltwater transfer across an
Antarctic ice shelf, The Cryosphere, 14(7), 2313-2330, https://doi.org/10.5194/tc-14-2313-2020, 2020.

Fair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., & Gardner, A.: Using ICESat-2 and Operation IceBridge altimetry for
supraglacial lake depth retrievals, The Cryosphere, 14(11), 4253—4263, https://doi.org/10.5194/tc-14-4253-2020, 2020.

26



560

565

570

575

580

585

590

Fricker, H. A., Arndt, P., Brunt, K. M., Datta, R. T., Fair, Z., Jasinski, M. F., Kingslake, J., Magruder, L. A., Moussavi, M.,
Pope, A., Spergel, J. J., Stoll, J. D., & Wouters, B.: ICESat-2 melt depth retrievals: Application to surface melt on Amery Ice
Shelf, East Antarctica, Geophysical Research Letters, €2020GL090550, https://doi.org/10.1029/2020GL090550, 2020.

Gledhill, L. A., & Williamson, A. G.: Inland advance of supraglacial lakes in north-west Greenland under recent climatic

warming, Annals of Glaciology, 59(76ptl), 66—82, https://doi.org/10.1017/a0g.2017.31, 2018.

Howat, I. M., de la Pefia, S., van Angelen, J. H., Lenaerts, J. T. M., & van den Broeke, M. R.: Brief Communication:Expansion
of meltwater lakes on the Greenland Ice Sheet, The Cryosphere, 7(1), 201-204. https://doi.org/10.5194/tc-7-201-201, 2013.

Howat, I. M., Negrete, A., & Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation
data sets, The Cryosphere, 8(4), 1509—1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.

Ignéczi, A., Sole, A. J., Livingstone, S. J., Ng, F. S. L., & Yang, K.: Greenland Ice Sheet Surface Topography and Drainage
Structure  Controlled by the Transfer of Basal Variability, Frontiers in Earth Science, 6(101),
https://doi.org/10.3389/feart.2018.00101, 2018.

IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Portner, D.C. Roberts, V. Masson-
Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegria, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M.
Weyer (eds.)]. In press, 2019.

Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li, H., Spergel, J. J., & van Wessem, J. M.: Vulnerability
of Antarctica’s ice shelves to meltwater-driven fracture, Nature, 584(7822), 574-578, https://doi.org/10.1038/s41586-020-
2627-8, 2020.

Leeson, A. A., Shepherd, A., Briggs, K., Howat, 1., Fettweis, X., Morlighem, M., & Rignot, E.: Supraglacial lakes on the
Greenland ice sheet advance inland under warming climate, Nature Climate Change, 5(1), 51-55,

https://doi.org/10.1038/nclimate2463, 2015.
MacFerrin, M., Machguth, H., As, D. van, Charalampidis, C., Stevens, C. M., Heilig, A., Vandecrux, B., Langen, P. L.,

Mottram, R., Fettweis, X., Broeke, M. R. van den, Pfeffer, W. T., Moussavi, M. S., & Abdalati, W.: Rapid expansion of
Greenland’s low- permeability ice slabs, Nature, 573(7774), 403—407, https://doi.org/10.1038/s41586-019-1550-3, 2019.

27



595

600

605

610

615

620

Magruder, L. A., Brunt, K. M., & Alonzo, M.: Early ICESat-2 on-orbit Geolocation Validation Using Ground-Based Corner
Cube Retro-Reflectors, Remote Sensing, 12(21), 3653, https://doi.org/10.3390/rs12213653, 2020.

Martino, A., Field, C.T. & Ramos-lIzquierdo, L.: ICESat-2/ATLAS Instrument Linear System Impulse Response,
https://doi.org/10.1002/essoar.10504651, 2020.

Mouginot, J., Rignot, E., Bjerk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noél, B., Scheuchl, B., & Wood, M.:
Forty- six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences,

116(19), 9239. https://doi.org/10.1073/pnas.1904242116, 2019.

Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin, M., & Grigsby, S.: Derivation and validation
of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery, Remote Sensing of
Environment, 183, 294-303, https://doi.org/10.1016/j.rse.2016.05.024, 2016.

Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., & Abdalati, W.: Antarctic Supraglacial Lake Detection

Using Landsat 8 and Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes, Remote Sensing, 12(1), 134,
https://doi.org/10.3390/rs12010134, 2020.

Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S.
T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-
Izquierdo, L., Rebold, T., ... Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite — 2 mission: A global geolocated
photon product derived from the Advanced Topographic Laser Altimeter System, Remote Sensing of Environment, 233,

111325, https://doi.org/10.1016/j.rse.2019.111325, 2019.

Parrish, C. E., Magruder, L. A., Neuenschwander, A. L., Forfinski-Sarkozi, N., Alonzo, M., & Jasinski, M.: Validation of
ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance, Remote Sensing, 11(14), 1634,
https://doi.org/10.3390/rs11141634, 2019.

Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., & Grigsby, S.: Estimating supraglacial lake

depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10(1), 15-27.
https://doi.org/10.5194/tc-10-15-2016, 2016.

28



625

630

635

640

645

650

655

Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M.: Four decades of Antarctic
Ice Sheet mass balance from 1979-2017, Proceedings of the National Academy of Sciences, 116(4), 1095-1103,
https://doi.org/10.1073/pnas. 1812883116, 2019.

Sasgen, I., Wouters, B., Gardner, A. S., King, M. D., Tedesco, M., Landerer, F. W., Dahle, C., Save, H., & Fettweis, X.: Return
to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites, Communications Earth &
Environment, 1(1), 8, https://doi.org/10.1038/s43247-020-0010-1, 2020.

Saunier, S: TN on Quality Assessment for PlanetScope (DOVE)
https://earth.esa.int/eogateway/documents/20142/1305226/EDAP-REP-007-TN-on-Quality-Assessment-for-PlanetScope-

DOVE-v1.2.pdf, 2020.

Scheffler, D., Hollstein, A., Diedrich, H., Segl, K. and Hostert, P. : An Automated and Robust Open-Source Image Co-
Registration Software for Multi-Sensor Satellite Data, Remote Sensing,9(7),676, https://doi.org/10.3390/rs9070676, 2017.

Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C., Limonadi, D., Watkins, M. M., Morlighem, M., &
van den Broeke, M. R.: Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model

uncertainties using the ISSM framework, The Cryosphere, 12(11), 3511-3534, https://doi.org/10.5194/tc-12-3511-2018, 2018.

Slater, T., Hogg, A. E., & Mottram, R. : Ice-sheet losses track high-end sea-level rise projections, Nature Climate Change,
10(10), 879-881, https://doi.org/10.1038/s41558-020-0893-y, 2020.

Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S., Brunt, K. M., Csatho, B., Harbeck, K., Huth, A.,
Neumann, T., Nilsson, J., & Siegfried, M. R.: Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser
altimeter. Remote Sensing of Environment, 233, 111352, https://doi.org/10.1016/j.rse.2019.11135, 2019.

Sneed, W.A and Hamilton, G.S.:Evolution of melt pond volume on the surface of the Greenland Ice Sheet, Geophysical

Research Letters 34(3), 15-22, (doi: 10.1029/2006GL028697), 2007.
Stokes, C. R., Sanderson, J. E., Miles, B. W. J., Jamieson, S. S. R., & Leeson, A. A.: Widespread distribution of supraglacial

lakes around the margin of the East Antarctic Ice Sheet, Scientific Reports, 9(1), 13823. https://doi.org/10.1038/s41598-019-
50343-5, 2019.

29



660

665

670

675

680

685

Tedesco, M., Liithje, M., Steffen, K., Steiner, N., Fettweis, X., Willis, 1., Bayou, N., & Banwell, A.: Measurement and
modeling of ablation of the bottom of supraglacial lakes in western Greenland, Geophysical Research Letters, 39(2),

https://doi.org/10.1029/2011GL049882, 2012.

Tedesco, M., Willis, I. C., Hoffman, M. J., Banwell, A. F., Alexander, P., & Arnold, N. S.:. Ice dynamic response to two modes
of surface lake drainage on the Greenland ice sheet. Environmental Research Letters, 8(3), 034007.

https://doi.org/10.1088/1748-9326/8/3/034007, 2013.

Tedesco, M., & Fettweis, X.: Unprecedented atmospheric conditions (1948-2019) drive the 2019 exceptional melting season
over the Greenland ice sheet, The Cryosphere, 14(4), 1209—1223, https://doi.org/10.5194/tc-14-1209-2020, 2020.

Thomas, N., Pertiwi, A.P., Traganos, D., Lagomasino, D., Poursanidis, D., Moreno, S. & Fatoyinbo, L.: Space-Borne Cloud-
Native Satellite- Derived Bathymetry (SDB) Models Using ICESat-2 and Sentinel-2, Geophysical Research Letters, 28(6),
https://doi.org/10.1029/2020GL092170, 2020.

Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E., Fettweis, X., McConnell, J. R., Noél, B. P. Y., & van den
Broeke, M. R.: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564(7734), 104—108.
https://doi.org/10.1038/s41586-018-0752-4, 2018.

van den Broeke, M. R., Enderlin, E. M., Howat, 1. M., Kuipers Munneke, P., Noél, B. P. Y., van de Berg, W. J., van Meijgaard,

E., & Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10(5), 1933—
1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.

Williamson, A. G., Banwell, A. F., Willis, I. C., & Arnold, N. S.: Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of
supraglacial lakes in Greenland, The Cryosphere, 12(9), 3045-3065, https://doi.org/10.5194/tc-12-3045-2018, 2018.

Yang, K. & Smith, L. C.: Supraglacial Streams on the Greenland Ice Sheet Delineated From Combined Spectral-Shape
Information in High-Resolution Satellite Imagery, IEEE Geoscience and Remote Sensing Letters, 10(4), 801-805,
https://doi.org/10.1109/LGRS.2012.2224316, 2013.

Yang, K., Smith, L. C., Sole, A., Livingstone, S. J., Cheng, X., Chen, Z., & Li, M.: Automated High-Resolution Satellite Image

Registration Using Supraglacial Rivers on the Greenland Ice Sheet, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 10(3), 845-856, https://doi.org/10.1109/JSTARS.2016.2617822, 2017.

30



