
1 Response to Reviewer 2

1.1 Question & Suggestion

Reviewer comment: The coupled RTM is used to simulate TOA re-
flectance from various sea ice surface and atmospheric properties. The surface
parameters are listed but the values were not mentioned as well as the sam-
pling strategy. I cannot figure out how the authors determine the distribution
and relevance among the parameters. Similar concern for the atmospheric
parameters and the solar/view angles.
Response:
Physical parameters of ice, melt water on ice, and ocean water, physical
parameters of snow cover, geometries, and atmospheric characteristics have
been included in the revised version. As a reference, this section is included
at the close of this response for your review (Tables 2∼5)) prior to our sub-
mission of the revised edition.

Reviewer comment: The machine learning method needs more detailed
description about how it was used. How to deal with the invalid retrievals
from the relationship? Is there a post-processing? It was mentioned there
are two models trained. What are their difference and advantages?
Response to ‘how post/pre-processing were used to avoid invalid
retrievals’:
A flowchart (Figure 1) illustrating the process of obtaining a final retrieval
model was included in the revised version.

The training dataset only contains snow, ice and melt-pond surface types.
As a result, a machine learning classification mask (MLCM) 1 is employed
as a post-processing step to filter out invalid pixels.

In addition to ‘post-processing’, we use auto-associative neural network
(AANN) technique as a ‘feature selection’ tool to avoid the machine learning
model obtains invalid retrievals. AANN can effectively avoid ‘covariate shift’
and ensure that the data range of radiance we use in practice (input from
satellite channels) is consistent with that in our training data (synthetic
dataset derived from radiative transfer model).

The following paragraphs are included in the revised version to
elaborate on the AANN.

1Chen, Nan, et al. “New neural network cloud mask algorithm based on radiative
transfer simulations.” Remote Sensing of Environment 219 (2018): 62-71.
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Figure 1: Flowchart of the proposed RTM/SciML framework for albedo re-
trieval.

With the assistance of the auto-associative neural network (AANN) tech-
nique, channels with a significant reconstruction error are deemed unsuitable
for use as input to the retrieval model. More specifically, an AANN is trained
using the synthetic data generated by radiative transfer model (RTM), which
takes as input the three sun-satellite geometry angles as well as all radiance
data that meets the aforementioned requirements and outputs all radiances.
The trained AANN is believed to have picked up on the patterns in the
RTM-generated dataset. Following that, the AANN is fed the same input
features derived from satellite sensor. We calculate the absolute percentage
error of the reconstruction output and prune channels with an error greater
than 5%.

This method is intended to avoid ‘covariate shift’ — a phrase used in
machine learning to refer to the difference between independent variables in
training and real-world data. Covariate shift is due to either (a) the satura-
tion of certain satellite channels, which results in a much narrower dynamic
range of radiance data from the satellite sensor (real world) than that cal-
culated using RTM (training data), or (b) the response function and wide
wavelength range results in a non-negligible difference between the radiance
derived from the central wavelength and that obtained from the sensor. It
has been demonstrated that the AANN technique is effective in detecting
mismatches between data acquired for the retrieval task and data utilized
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for training. A recent paper2 discusses how the AANN approach was used to
identify optimal channels for retrieving ocean color products using a variety
of sensors.

Response to ‘difference between the two neural networks’
This article discussed two neural network models, the only distinction be-

ing the wavelength range of the broadband albedo output. The pyranometer
and the albedometer have distinct ranges of wavelengths. The albedometer
measures spectral irradiance (up/down) in the range of 0.4∼2.1 µm, whereas
the pyranometer measures broadband irradiance (up/down) in the range of
0.3∼3.6 µm. As a result, we trained two distinct models to make the most use
of the data from the two types of equipment. The revised version includes
a ‘Data’ section that separates the backgrounds of satellite and validation
data sources from the discussion of the results. Table 1 is included to show
the difference between the equipment types and the matching models.

Model 1 Model 2
λ range (nm) validation data λ range (nm) validation data

Visible 300-700 / 400-700 albedometer
Near Infrared 700-2500 / 700-2100 albedometer
Shortwave 300-2500 pyranometer 400-2100 albedometer

Table 1: Difference between the two models mentioned in the text. Figures
3, 6 and Table A2 show retrieval and validation results of the two models.

Reviewer comment: The author emphasized many times about the ad-
vantage of the proposed method than the previous MPD or direct-estimation
methods. However, many descriptions needs to be clarified or discussed more.
What are the advantage of the coupled RTM rather than the separate ra-
diative transfer models? Is there any quantitative comparison about this?
Is a classification within sea-ice surface needed in previous methods? The
method is claimed as independent on sensor or spatial resolution, how that is
realized without considering the spectral response function difference? Did
the previous method restrict to a specific spatial resolution?
Response:

2Fan, Yongzhen, et al. “OC-SMART: A machine learning based data analysis platform
for satellite ocean color sensors.” Remote Sensing of Environment 253 (2021): 112236.
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The following text has been added to the revised version to
discuss the advantages of utilizing a coupled RTM over decoupled
models.

Due to the fact that uncoupled RTMs make disparate assumptions about
the atmosphere and surface when constructing the BRDF, albedo retrieval
with uncoupled RTMs is difficult to scale.

While MPD-based approaches are capable of retrieving both the albedo
and melt pond percentage for a surface composed of melt water and white
ice, they are only effective during particular seasons (discussed in 3 4 5). Ad-
ditionally, because the spectral reflection coefficients for the melt-pond and
thin ice boundaries, as well as the thick ice and snow-cover boundaries, are
manually adjusted based on the surface condition, there are greater uncer-
tainties in the retrieval during the transitional seasons of spring-summer and
summer-autumn, as well as when the surface is highly heterogeneous (low sea
ice concentration, discussed in Istomina2015Melt). Two more issues with the
method are its omission of open-water conditions and restriction of sea ice
type. The MPD algorithm models sea ice’s BRDF exclusively for dry and
white ice (based on the absorption of yellow pigments), ignoring the effects
of air bubbles and brine pockets (discussed in Zege2015Algorithm).

In the direct-estimation method, linear relations between TOA reflectance
and surface albedo are derived for different angular bins. Qu2015Mapping 6

and Peng2018VIIRS 7 generated datasets detailing the intervals of geometry
angles in their models, which already have over 40,000 combinations. Multi-
plying the RTM-simulated or measured surface BRDFs (which range between
100,000 and 120,000 for their retrievals) by the possible atmospheric configu-
rations and by the geometry-angle dataset, results in an extremely big value

3Istomina, L., et al.“Melt pond fraction and spectral sea ice albedo retrieval from
MERIS data–Part 2: Case studies and trends of sea ice albedo and melt ponds in the
Arctic for years 2002–2011.” The Cryosphere 9.4 (2015): 1567-1578.

4Istomina, L., et al. “Melt pond fraction and spectral sea ice albedo retrieval from
MERIS data–Part 1: Validation against in situ, aerial, and ship cruise data.” The
Cryosphere 9.4 (2015): 1551-1566.

5Zege, E., et al. “Algorithm to retrieve the melt pond fraction and the spectral albedo
of Arctic summer ice from satellite optical data.” Remote Sensing of Environment 163
(2015): 153-164.

6Qu, Ying, et al. “Mapping surface broadband albedo from satellite observations: A
review of literatures on algorithms and products.” Remote Sensing 7.1 (2015): 990-1020.

7Peng, Jingjing, et al. “The VIIRS sea-ice albedo product generation and preliminary
validation.” Remote Sensing 10.11 (2018): 1826.
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for the look-up table (LUT). However, note that only hundreds-thousand
level surface conditions were characterized using the monstrous LUT, and
because a LUT is essentially a linear regression model, the LUT does not
learn the possible interactions between the input features (geometry angles
and radiance/reflectance values from various channels), making the approach
less efficient.

It is worth noting that the ‘RTM-simulated surface BRDFs’ mentioned
earlier for estimating the radiative properties of sea-ice and snow surface
was derived from the IOP model, which is employed by the coupled-RTM
that we are utilizing 8. Because Qu’s algorithm decouples the atmosphere
from the ocean layer, it is unable to accurately simulate the ‘snow-covered
sea ice’ situation. In a coupled-RTM, snow is simulated as a layer of snow
floating on the surface above the interface (the upper slab of the coupled
system), and sea ice is simulated as a layer of ice with brine pockets and air
bubble inclusions floating on deep ocean water (the lower slab of the coupled
system).

Although Qu used the same IOP model to calculate the optical properties
of the two media, the ‘snow surface’ scenario refers to snow that has been
placed on land. Additionally, snow possesses complex surface cover (that
varies with density, impurity inclusions, thickness, and effective grain size),
but the LUT only included a snow layer of a fixed depth. The same issue
exists with regard to sea ice conditions. Due to the fact that the direct-
estimation algorithm is very dependent on the quality of the LUT, Qu’s
model’s snow and ice retrieval is rather crude in comparison to the more
refined approach used in this study.

One last methodological difference is, when using the direct estimation
method and building a BRDF table, the reflectance anisotropy (namely,
the strong forward peak of snow and ice), which occurs when the solar
zenith angle equals the sensor zenith angle, is manually corrected offline
(see Qu2016Estimating). However, in our coupled-RTM, the forward peak
can be adjusted inside the radiative transfer calculations (described in 9).

Quantitative comparison between a coupled and decoupled

8Stamnes, Knut, et al. “Modeling of radiation transport in coupled atmosphere-snow-
ice-ocean systems.” Journal of Quantitative Spectroscopy and Radiative Transfer 112.4
(2011): 714-726. was cited in the relevant sections

9Jiang, Shigan, et al. “Enhanced solar irradiance across the atmosphere-sea ice inter-
face: a quantitative numerical study.” Applied optics 44.13 (2005): 2613-2625.
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model?
Response:

Unfortunately, there currently is no literature comparing the performance
between a ‘coupled’ and a ‘decoupled’ RTM. This topic is also out of the
scope of the current paper.

Is a classification within sea-ice surface needed in previous meth-
ods?
To clarify, the classification in our framework is a ‘post-processing’ step; it
is conducted independently and has no effect on the albedo retrieval results.

For both the direct-estimation method and the MPD-based method, other
than cloud-screening, they did not have a post–processing classification al-
gorithm to identify the surface type of each pixel after the surface albedo is
retrieved. However, the logic of MPD algorithm requires the surface to be
classified and obtains spectral albedo afterwards. In 2.3.2 of Zege’s paper,
it was mentioned that three channels are used to separate and discard open
water pixels, two channels are used to separate the white surface (snow and
ice are considered as the same category) from melt pond. The added contents
(from the previous response) should help to clarify this issue.

Clarification on the spatial resolution
Other than the MCD43 product, all the other three methods discussed can
all retrieve albedo based on single-angular observations. MCD43 requires
data from multiple days and therefore the spatial and temporal resolution
are lower.

1.2 Minor Comments

Reviewer comment in the context of ‘but there is currently no reliable,
operational albedo retrieval product capable of assessing the global sea-ice
albedo with sufficient spatial-temporal resolution for studies of sea-ice dy-
namics and for use in global climate models:’, How about the GLASS
sea ice albedo and VIIRS sea ice albedo?
and the relevant comment in the context of ‘indicates that the two data
sources (measurements and retrieval) are similar, but does not provide sta-
tistical evidence for the albedo product’s reliability’. The issue is, the
insufficient or unreliable validation data does not means the algo-
rithm/product is not reliable.
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Response:
We appreciate that you have brought the GLASS albedo to our attention; it
will be added to Table 1.
In the revised version, Sections 1 and 2 have been reorganized to emphasize
on the algorithmic difference rather than the use of validation data.

Reviewer comment in the context of ‘can be applied to any optical sensor
that measures appropriate radiance data’. The word any needs to be
moderated.
and the relevant comment in the context of ‘The accurate RTM ensures that
the ‘forward problem’ is solved correctly ’ Reviewer comment: I would
suggest moderate the word. Any model has its limitations. We cannot get
the truth by simulation.
Response:
Noted and agree. The sentences have been modified in the revised version.

Reviewer comment MCD43: That is very limited coverage for a cross-
comparison
Response:
We agree that the spatial coverage from MCD43 is not ideal. However,
MCD43 actually is used by GLASS to ‘validate’ the visible and near-IR
albedo retrieval, as mentioned on page 329 of the following manuscript.

Liang, Shunlin, et al. “The global land surface satellite (GLASS) product
suite.” Bulletin of the American Meteorological Society 102.2 (2021): E323-
E337.

Reviewer comment in the context of “SciML models can be used to solve
the ‘inverse problem’ ”: There might be ill-posed problems.
Response:
We try to avoid the ‘over-fitting’ induced by ill-posed problems in two ways:
(1) Generate a large synthetic dataset to provide a large size of training data.
(2) Halt the training when the metrics (mean absolute error) of out-of-sample
data does not improve.

Reviewer comment: Looks like a section 1 content. on the 2.1 section,
Existing albedo retrieval procedures and their constraints.
Response:
In the revised version, Sections 1 and 2 have been reorganized

Reviewer comment: What are the value range of these properties?
Table 2 only includes the IOPs of the surface condition. How about the at-
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mospheric conditions used?
Suggest more specific/detailed description about the atmospheric parame-
ters.
Are they independently sampled?
What are the angle ranges? Are the angles all independently randomly sam-
pled?
Response:
Addressed and replied in the previous section.

Reviewer comment in the context of ‘compatible with any optical sensor
capable of measuring TOA radiance in suitable wavelength channels, and the
albedo map’s spatial resolution matches that of the sensor footprint’: This
sentence seems irrelevant with this paragraph. Moreover, do you
mean that the RTM model does not have a scale effect and could
be used for all spatial resolutions? Or your training relationship
could be used for all sensors? How about the spectral response
function difference?
Response:
In the revised version, this sentence is removed.
We hope the added flowchart in the revised version helps to explain why the
framework is ‘sensor agnostic’; for other sensors, retrieval can be obtained
with the same framework as shown in in Fig. 1.
Adequate treatment of spectral response function is important, as discussed
and shown in Figure 1 of the following paper: Chen, Nan, et al. “Fast
yet accurate computation of radiances in shortwave infrared satellite remote
sensing channels.” Optics express 25.16 (2017): A649-A664.

Reviewer comment: Not sure why the authors want to emphasize a
classification-avoided advantage here. The referred method do not need any
classification step before the albedo retrieval. Make sure the citation is ob-
jective and you really understand the previous studies.
Response:
As addressed in the previous section, the MPD-based approach implicitly
classifies pixels.

Reviewer comment: (1) Does the rank of the parameters influence the
performance in the model?
(2) Which section is about comparison of the different MLANN models?
What are the difference between the models?
(3) The statistics of bias, RMSE, and unbiased RMSE are desired.
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Response:
(1) The values of the hyper-parameters influence model performance, but
not to a large extent if the training is successful (i.e., gradient explosion or
overfitting are avoided). Take the number of neurons in each hidden layer as
an example. In our exploration, we found that a neural network model with
two hidden layers and more neurons in each layer (256 × 512) has comparable
results to a model with three hidden layers but much fewer neurons (16 × 10
× 8 ). When analyzed with the Shapley value, the two models have learned
the same relations from the training data.
(2) Table 1 is included in the revised version to explain why there were two
MLANN models.
(3) Table A2 in the Appendix shows the statistics of bias, RMSE, etc.

Reviewer comment: What is the differences between (c) and (d),
albedometer vs. pyranometer?
Response: Addressed in the previous section.

Reviewer comment: It would be more clear to list a table to show the
statistics, compared to other products.
Response:
Statistics will be added in the revised version.

Appendix
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Parameter Sym. Unit Value
Sea-ice
thickness

h m 0 ∼ 3

Brine
pocket
volume
fraction

Vbr − (−0.067 · log(h) + 0.1147) · (1 + 0.2 · rbu)

Brine
pocket
radius

rbr µm 300 ∼ 700

Air bubble
volume
fraction

Vbu − 0.0214 · h+ 0.0068

Air bubble
radius

rbu µm −18.3 · h2 + 222.7 · h+ 96.5

Table 2: Physical parameters of ice. In generating the sea-ice thickness, a
truncated-normal distribution with µ = 0.03, σ = 1.5 was used to ensure an
adequate amount of thin ice in the SD. The brine pocket radius conforms to
a Tukey-Lamdba distribution with λ=0.5.

Parameter Units Value
Melt water thickness m 0 ∼ 1.5
Chlorophyll concentrations mg/m3 0.5 ∼ 10
CDOM at 443 nm /m 0.01 ∼ 0.1

Table 3: Physical parameters of melt water on ice and ocean water. Melt
water thickness and CDOM values follow randomly-distributed uniform dis-
tributions in the specified ranges. For the chl-a concentration, a reciprocal
continuous distribution (long tail extending to high values) was used.
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Parameter Symbol Units Value
Snow grain size re µm 50 ∼ 150
Snow density ρs kg/m3 200
Impurity fractions fimp - 10−7 ∼ 10−6

Snow thickness hsnow m 0.01 ∼ 0.2

Table 4: Physical parameters of snow cover. The snow grain size and snow
thickness were generated with a randomly uniform distribution in the speci-
fied ranges.

Parameters Value
Solar zenith angle 20∼80 degrees
Sensor angle 0.01∼50 degrees
Azimuth angle 0.01∼180 degrees
AOD at 500 nm 0.01 ∼ 0.3
Relative humidity 0.5
Fine mode fraction 0.9

Table 5: Geometries and atmospheric parameters. All parameters conform
to random-uniform distributions in the specified ranges.
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