1 Response to Reviewer 1

1.1 Specific Comments

Reviewer comment: Although detailed information of the coupled radia-
tive transfer model AccRT can be found in the literatures, I suggest to add
a concise description about it in the manuscript.

Response:

The coupled radiative transfer model (AccuRT) was described twice, on line
76~84 and 156~179 (including Table 2), which summarizes the two in-text
references, Stamnes et al., 2011 and 2018. However, because the material is
split across two sections that span three complete pages, we may have missed
communicating the concept clearly. Sections 1 and 2 have been reorganized
in the revised version.

Reviewer comment: The method of how to construct the synthetic dataset
(SD) with the coupled RTM is not clear. The detailed information about the
inherit optical properties (IOPs) listed in Table 2 are needed, such as the
data ranges, probability distribution, and constraints.

Response:

Physical parameters of ice, melt water on ice, and ocean water, physical pa-
rameters of snow cover, geometries, and atmospheric characteristics has been
included in the revised version. As a reference, this section is included at the
close of this response for your review (Tables ) prior to our submission
of the revised version.

Reviewer comment: The framework of the RTM/MLANN is not clear. I
suggest to add a flowchart for it.

Response:

We are grateful for the suggestion. A flowchart has been included (Fig. 1)) in
the revised version.

Reviewer comment: In the manuscript, the MLANN method to used esti-
mate the sea ice albedo. What are the performances of training, validating,
and predicting accuracies of this artificial neural network model?
Response:

We have included the following statistics to the revised version of this pa-
per: the RMSEs in training, out-of-sample validation and validation with
ACLOUD data are: 0.006, 0.063, 0.099, respectively.
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Figure 1: Flowchart of the proposed RTM/SciML framework for albedo re-
trieval.

Reviewer comment: The authors declared that the sensor-agnostic

albedo retrieval method has the ability to apply to any optical sensor, how-
ever few explanations about this are shown in the manuscript. I suggest
the authors to further explain the major theories of this method. In fact,
other methods such as the MPD and direct-estimation algorithm, can also
be adopted to other sensors easily. Please add a discussion about it.
Response:
The missing piece we did not include in the submitted version is how we de-
termined the ‘appropriate’ channels from any optical sensor. Apart from the
coupled RTM model that calculates the synthetic dataset, we use a technique
to ensure that the radiance we use in practice (input from satellite channels)
is consistent with that in our training data, allowing our machine learning
models to be directly applied to satellite data.

The following contents have been added to the revised paper.

With our knowledge of radiative transfer theory and the differences in the
radiative properties of the constituents in the coupled atmosphere-surface
system, we first chose the input channels based on the following criteria:

e Avoid wavelengths with significant absorption by water vapor and/or
other atmospheric constituents.

e Avoid sensor channels that have been found to be saturated in previous



sensitivity investigations.

e Select wavelengths that, based on their albedo spectra, can best identify
snow cover, bare ice, open water, and melt-pond surface.

With the assistance of the auto-associative neural network (AANN) tech-
nique, channels with a significant reconstruction error are deemed unsuitable
for use as input to the retrieval model. More specifically, an AANN is trained
using the synthetic data generated by radiative transfer model (RTM), which
takes as input the three sun-satellite geometry angles as well as all radiance
data that meets the aforementioned requirements and outputs all radiances.
The trained AANN is believed to have picked up on the patterns in the RTM-
generated dataset. Following that, the AANN is fed the same input features
derived from the satellite sensor. We calculate the absolute percentage error
of the reconstruction output and prune channels with an error greater than
5%.

This method is intended to avoid ‘covariate shift’ — a phrase used in
machine learning to refer to the difference between independent variables in
training and real-world data. Covariate shift is due to either (a) the satura-
tion of certain satellite channels, which results in a much narrower dynamic
range of radiance data from the satellite sensor (real world) than that cal-
culated using RTM (training data), or (b) the response function and wide
wavelength range results in a non-negligible difference between the radiance
derived from the central wavelength and that obtained from the sensor. It
has been demonstrated that the AANN technique is effective in detecting
mismatches between data acquired for the retrieval task and data utilized
for training. A recent papeIE| discusses how the AANN approach was used to
identify optimal channels for retrieving ocean color products using a variety
of sensors.

Similar approaches have been used to identify acceptable channels for
albedo retrieval. Table [ lists the MODIS channels that were utilized to
retrieve albedo, as well as the GCOM-C/SGLI channels that were evaluated
and eventually employed H

LFan, Yongzhen, et al. “OC-SMART: A machine learning based data analysis platform
for satellite ocean color sensors.” Remote Sensing of Environment 253 (2021): 112256.

20ur team initially discovered the saturation issue in the 673.5 nm channel using
AANN, submitted it to the GCOM-C/SGLI team, and obtained confirmation of the issue.



A of MODIS A of SGLI

469 443

955 530

645 673.5%
858.5 868.5
1240 1050
1640 1630
2130 2210

Table 1: A comparison of the centre wavelengths of the channels explored and
tested for the purpose of retrieving the broadband albedo at the cryosphere
surface using MODIS and SGLI sensors. The 673.5 nm wavelength channel
from SGLI (shown by an asterisk in the table) was proven to be saturated
and hence was not used to derive albedo. Details can be found in the revised
version.

Reviewer comment: The comparisons with MCD43D, MERIS, and OLCI
datasets were not easily for reader to interpret. I suggested to add scatter
plots to compare the differences of these datasets.

Response:

We appreciate your suggestion. Scatter plots were omitted due to the fact
that the retrievals did not cover equivalent areas. For example, our cloud
classification mask is stricter than those employed by OLCI and MERIS.
The melt-pond detection approach does not provide values for open-water
areas. Similarly, the MCD43 product returns values just along the coast. As
a result, we anticipated scatter plots would be less useful than albedo maps.
However, as you noted, quantitative depiction is helpful. We will explore
re-griding the data and providing statistics at the geological areas specified
in the revised version.

Reviewer comment: Figure 13, the authors declared that the MERIS
albedo product are higher than the albedo estimated by the MLANN method
in the areas with large melt pond fraction (greater than 50%). However, this
difference is not obvious, and the major differences appeared in the upper
right corner. Please provide an explanation for it.

Response:

Other than the wavelength difference (MERIS sensor does not have short-
wave near-infrared channels), we believe the discrepancy in the area covered

4



by snow is due to algorithmic difference.

In our training data (the synthetic dataset created by the radiative transfer
model), we explore the situation of snow-covered sea ice with snow depths
ranging from 0.01~0.2 m to 50~150 um (Table . Notably, 0.2 meter is
the optically thick snow threshold. We found that the trained models use
different channels and relations to retrieve the albedo of snow and ice surface.
This topic is discussed in a separate paper that will be submitted shortly,
in which we used the Shapley Value to deduce how these models compute
albedo based on input channels and geometry angles.

The MPD-based algorithm does not discriminate between snow-covered sea
ice and bare ice when retrieving albedo; both scenarios are classified as ‘ice’,
and for both snow and ice surface, the same iterative method and the same
channels were used to calculate spectral albedo. The spectral albedo is sub-
sequently integrated to obtain broadband albedo.

In the revised version, details of how the three approaches (SciML/RTM,
direct-estimation and MPD) differ in the treatment of snow-covered ice, melt-
pond and bare-ice will be discussed in more detail.

Reviewer comment: Figure 13, the measurements of campaigns were not
shown in this figure. Why? Please add the validation data for comparison.
Response:

The reason is that there are no campaign-measured data available to val-
idate these results. The two locations (top and bottom) and time period
(averaged between DOY 166 and DOY 170 in 2007) selected to compare the
results from our algorithm and those from MERIS are the same as those used
in the subsequent article:

Qu Y, Liang S, Liu Q, et al. Estimating Arctic sea-ice shortwave albedo from
MODIS datalJ]. Remote Sensing of Environment, 2016, 186: 32-46.

As noted in line 36~41, Qu and Peng retrieved sea-ice albedo using the di-
rect estimation method. Initially, we intended to utilize Qu’s results as a
benchmark for comparing the three algorithms. However, because we were
unable to obtain the authors’ original retrieval data in order to include it in
the subplot, we could only show three columns in Figure 13. For your refer-
ence, Fig. 2| below shows the comparison of the three products, and the first
column are screenshots of the results of Qu’s algorithm, taken directly from
their paper. For the second and third column, we used the same color-bar
to plot the results and manually boxed the same area, but due to difference
in printing and in coordinates, the colors/regions don’t exactly match with



panels (a) and (b).
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Figure 2: Maps of albedo and melt pond fraction averaged during a 5-day
period in 2007 between DOY 166 and 170. From left to right: Qu’s albedo
retrievals, MLANN-based and MPD-based albedo retrievals, as well as the
MPD-derived melt pond fraction, respectively (Qu2015Mapping, this study,
and Istomina2015Melt). The upper panels depict the Banks, Prince Patrick,
and Melville Islands, while the lower panels depict the Kara Sea. At the
bottom, colorbars representing the corresponding values are displayed. Note
that the images of Qu’s retrieval results (along with the colorbar) are taken
directly from Fig.10 in Qu2015Mapping, as no other data was obtainable. In
panels (c¢) and (d), empty regions represent cloud pixels that were detected
by the MLCM model (and hence removed), whereas empty regions in panels
(e) through (h) represent either cloud pixels or open-water areas that were
not processed by the MPD algorithm.

Reviewer comment: In the abstract, the mean absolute error (MAE) of
0.047 was used for indicating the accuracy of this method. I suggest to use
root mean standard error (RMSE) to represent the estimation accuracies for
the visible, near infrared, and shortwave albedo.

Response:

The text will be modified as follow to include the statistics shown in Table
A2 in abstract.



In comparison to the ACLOUD campaign’s albedometer measurements, the
3936 pixels of albedo retrieved under clear skies have RMSE values of 0.076,
0.137, and 0.087 in the visible, near-infrared, and short-wave bands, respec-
tively. The RMSE is 0.099 when 7964 clear-sky pixels are compared to pyra-
nometer observations from two aircraft during the ACLOUD campaign. The
best agreement was reached on June 25th, 2017, when the campaign region
experienced the least cloud cover.

1.2 Technical Corrections

Reviewer comment: Figure 7. The color ramp of this figure is not easily
to interpret. Please change it.

Response:

A figure with more distinguishable colors will be presented in the next ver-
sion.

Reviewer comment: Line 493, the sentences of “Istomina et al. (2015);
Istomina (2020)” can be rewritten as “Istomina et al. (2015; 2020)”.
Response: Revised.

Reviewer comment: Caption of Figure 13. “(Qu et al. (2015), this study,
and Istomina et al. (2015))”. The reference Qu et al. 2015 is not related
with this figure.

Response:

Revised.

Appendix



Parameter Sym. Unit Value

Sea-ice h m 0~3

thickness

Brine Vir - (—0.067 - log(h) + 0.1147) - (1 + 0.2 - 1)
pocket

volume

fraction

Brine Thr pm 300 ~ 700

pocket

radius

Air bubble Vi, — 0.0214 - h + 0.0068

volume

fraction

Air bubble 7, pum  —18.3-h% +222.7-h+96.5

radius

Table 2: Physical parameters of ice. In generating the sea-ice thickness, a
truncated-normal distribution with p = 0.03, 0 = 1.5 was used to ensure an
adequate amount of thin ice in the SD. The brine pocket radius conforms to
a Tukey-Lamdba distribution with A=0.5.

Parameter Units Value
Melt water thickness m 0~ 1.5
Chlorophyll concentrations mg/m?® 0.5 ~ 10
CDOM at 443 nm /m 0.01 ~ 0.1

Table 3: Physical parameters of melt water on ice and ocean water. Melt
water thickness and CDOM values follow randomly-distributed uniform dis-
tributions in the specified ranges. For the chl-a concentration, a reciprocal
continuous distribution (long tail extending to high values) was used.



Parameter Symbol Units  Value

Snow grain size Te pm 50 ~ 150
Snow density Ps kg/m3 200
Impurity fractions fimp - 107" ~ 1076
Snow thickness Rsnow m 0.01 ~ 0.2

Table 4: Physical parameters of snow cover. The snow grain size and snow
thickness were generated with a randomly uniform distribution in the speci-

fied ranges.

Parameters Value

Solar zenith angle  20~80 degrees
Sensor angle 0.01~50 degrees
Azimuth angle 0.01~180 degrees

AOD at 500 nm 0.01 ~ 0.3

Relative humidity 0.5
Fine mode fraction 0.9

Table 5: Geometries and atmospheric parameters. All parameters conform
to random-uniform distributions in the specified ranges.
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