
We thank all three reviewers for taking the time to read through our paper ‘Predicting ocean-
induced ice-shelf melt rates using a machine learning image segmentation approach ’and for their
thoughtful comments.

The key criticism of two of the reviewers is our use of two networks, consisting of a segmentation
network followed by an auto-encoder, instead of a single Convolutional Neural Network (CNN). We
explain our reasons for using this approach in more detail below, but fundamentally we must use
this two-step approach (or something similar) to arrive at a decision for each pixel of our image.
Using the CNN approach as the reviewers suggest, would not give use the required spatially
distributed field and its multi-scale dependency on the input fields. Our approach is quite novel and
new, and we do realize that we should have spend more space in the manuscript explaining the
advantages of our new approach, and had we done so the reviewers would have been in a better
position to understand that a typical CNN approach does provide the information required. We will
clearly need to expand the discussion of the methodology in our manuscript, but we remain
convinced of the methodological advantages of our approach.

In our response, we have first combined these comments and replied to them together. The
remainder of our response is structured by replying (in italics) to each reviewer comment
sequentially. Where we have made changes these are described in underlined text.

Extracts from reviews:

Regarding choice of architecture (Guillaume Jouvet)

As you design an ANN mapping 2D to 2D fields with continuous variables, the most logical and
intuitive to me would be to use a standard Convolutional Neural Network (CNN) trained as a
regression problem with a L1 or L2 loss (e.g. similarly to the CNN I use to learn ice dynamics). You
may have also considered a U-NET architecture as well to better capture underlying multiscales, if
any. Therefore, my main point is: why do you split in two networks? -- a first
segmentation/classification and an auto-encoder (AE) -- I just do not see what this brings except
unnecessary complications (and probable loss of information!). Unfortunately, I could not find any
line of justification for this choice, namely transforming the problem into a classification one, and
then afterwards recovering the lost information (or 'corrupted' as you term it) by an AE. To me,
the final paper should either i) try to simplify their approach using a single and simple regression
network if this proves to be as efficient OR ii) clearly justify the choice of going to a more complex
network sequence and explain why the simplest approach was unsatisfactory. In case of i),
consider revising the paper title and removing references to segmentation.

Regarding choice of architecture (Jordi Bolibar)

Despite all this strong aspects, I must say I am very surprised by the modelling choices regarding
the neural network(s). Right from the title it is clear that the authors have decided to use an image
classification architecture for this problem. This is quite bizarre, since this problem is clearly a
regression problem, not a classification/segmentation one. As I was reading the manuscript, I was

expecting the authors to explain such a strange choice, but I could not find any justification for
that choice.

This has been by far the most striking feature of this manuscript. The authors have chosen to use
an image classification network for a regression problem. From the results, this method seems to
work, but in order to do so the authors have had to ”force” the architecture into this problem,
resulting in some awkward modelling strategies. Since there is no justification for this choice,
there might be two potential explanations to this: (1) The authors have a clear strategy behind
this, but did not explain it in the main manuscript. (2) The authors have re-used an already existing
architecture (a very common and totally correct ML practice) from image classification, and tried
to apply it to this problem without knowing that it was designed for a completely different task. I
would like to know the exact reasons behind this choice, but on the meantime I will try to argue
why I think such an architecture is not the best choice for this task.

Deep learning models can be applied to two main different types of problems: classification and
regression. Classification is the most popular one, involving a nonlinear transformation of input
data into a new space, in which a segmentation is performed based on a specific number of classes
or labels in a supervised or unsupervised manner. On the other hand, regression models are in
general less well known, and they are more challenging to train, validate and apply to physical
systems. While the validation of a classification model is quite straightforward, since it is very easy
to verify if the labels are accurate or not, this is not true for a regression problem. Regression
problems for physical systems are trickier to validate, as one needs to make sure that the model is
learning the physical relationships for the right reasons.

The fact that the authors chose a classification model for a regression problem has a series of
consequences which add unnecessary complexity to the modelling framework:

 • The discussion on the choice and impact of the number of classes for the first network could
have been completely avoided just by choosing a regression model. Since the modelled variable
(melt) is a continuous variable, it does not make sense to model it in a discrete way with a
classification framework.

 • The authors compensate this strange choice by adding a second neural network, an
autoencoder, in order to interpolate the discrete classes obtained by the first network. As for the
previous point, this second network could have been directly discarded if a regression model had
been chosen.

• The model(s) presented in this study do seem to work, but I cannot help wondering how simpler
and potentially faster might have been a solution with a regression network.

Since everything else in the study is well conceived, the model seems to work and the authors
have even verified the physical plausibility of the learnt model, I do not think these reasons above
are enough to deny publication. However, I would ask the authors at the very least to clearly
explain in the discussion the reasoning behind this strange choice and comment on what the use
of a regression model could imply for such a modelling framework.

Moreover, if the authors think it is something relatively simple to achieve, I would encourage
them to re-train a regression CNN to see if the results are improved. In lines 357-359, the authors
mention that they trained a single CNN that performed the same tasks as both networks. If that is
really the case, that should be a regression network, otherwise it would not be possible to go from
a continuous input to a continuous output. They also mentioned that such a network proved

harder to train. It would be interesting to know if that is because they simply re-used the same
architecture with some minor changes (e.g. just changing some activation functions), or if they
chose a specific architecture suited to regression problems. As I said, training and validating
regression networks is often trickier, but it is very likely that this might result in a better model. I
will not enforce these changes, due to the above mentioned reasons. If they decide that it is too
much work and they would rather keep the current model, then this should be clearly added in
the discussion as a future perspective, including the current shortcomings of the model. The
current model is overly complicated for this problem. A regression model would largely simplify
the modelling pipeline, and could potentially result in a more accurate and expressive model.

Our response regarding the choice of architecture

The main concern raised by reviewers Jordi Bolibar and Guillaume Jouvet was regarding the choice of
network architecture used to predict melt rates. The approach we present in the paper is to combine
two networks: a segmentation network that takes input images and returns labelled melt rates and
an autoencoder that takes these labelled melt rates and converts them to a continuous melt rate
field. Jordi and Guillaume question why we did not use a simpler network, for example a CNN or
regression network.

The motivation behind our choice of a segmentation network is to extract information from our input
fields at multiple spatial scales. A typical CNN architecture is made up of several convolutional layers
with the final layer being a fully connected network. Each convolutional layer learns the features in
the image from the previous layer. The convolutional layer learns to detect features from the
incoming image, and this is repeated in every layer until the final layer which typically takes on the
role of decision maker, for example, to classify the image as a cat or dog. The convolutional layers
perform feature extraction while the last layer is the decision maker. As the input image is passed
from layer to layer in the CNN, the information in the image tends to be progressively more abstract
and sparser such that some information is lost at the end. Most common CNNs only give a single
output as a global decision for the whole input image. In other words, they generally do not make a
decision for every single pixel of the image.

The segmentation network (segnet) overcomes both limitations. As the input image passes through
the convolutional layers, the features are firstly extracted at different spatial scales and therefore,
the extracted features at every layer become more meaningful, representable and interpretable by
humans. In addition, the features from different spatial scales (coming from different convolutional
layers) are progressively reconstructed at the decoder stage. This effectively enables the segnet to
learn and internalise a multiscale spatial representation of the inputs representing bathymetry, ice
shelf draft, temperature and salinity. The last layer of Segnet classifies every pixel of the penultimate
layer s features into one-of-N labels.

While a CNN is not limited to classifying images, for example the model by Jouvet (2021), they are
limited to operating on the same region of an image, defined by the filter size. Here, therefore, is the
great advantage of using a segmentation network: the CNN filters in the segmentation network
architecture operate at multiple spatial scales.

The magnitude and spatial distribution of melt rates beneath an ice shelf is inherently a problem
determined by processes at multiple spatial scales. Some are entirely local: for example the
difference between the local melting point and ocean temperature, or the local ice shelf slope;

whereas some are nonlocal: for example the path that meltwater plumes take from deep grounding
line points, and overall circulation beneath the ice shelf. Thus, our approach makes use of the
multiscale learning enabled by the segmentation network architecture to predict melt rates using
local and nonlocal features in our input images.

The downside of our approach is that, since the segmentation network is designed to output labelled
images, we then need to convert these labels to a continuous melt rate field in order to have a useful
output that could be deployed directly within an ice sheet model. In practice this is only a minor
inconvenience since the output from the first network serves directly as the input for the second
network.

There are also clear advantages to having two distinct networks. The segmentation network
ultimately does the heavy lifting, extracting features in an image at various spatial scales to predict
where there might be strong ice-shelf melting, some refreezing, etc., which it assigns as labelled
regions of the image. The autoencoder network, with an architecture typically used for denoising an
image, only needs to learn how to convert from labels to a continuous field. An autoencoder is very
suitable for this since the problem is somewhat analogous to taking a compressed pixelated
representation of an image and extracting the original. In this context, the compression is that melt
rates are only represented by N labels. Each network specialises in its respective task, and, for
example, the second step goes some way to regularise the output melt rate field, since part of what
the autoencoder learns is that the melt rate field is generally quite smooth. Essentially, the
autoencoder interpolates between the discrete labels from the segmentation network so that a
generally smooth map is achieved. This also enables this map to be more interpretable to human
users and more useful for input into an ice sheet model.

We accept that justification for our choice of architecture is largely missing from the manuscript, and
we will add a condensed explanation of this in a revised version.

Jordi Bolivar states that our choice of architecture is ‘quite bizarre, since this problem is clearly a
regression problem, not a classification/segmentation one’. From a machine learning point of view,
prediction is an extrapolation problem, and not interpolation. If we treated this as a regression
problem there would indeed be no need for the second autoencoder, and the model becomes an end-
to-end model. However, such an end-to-end model would struggle to learn the extrapolation problem
and is known to have poor generalization ability in the event where it is presented with data different
from what it has been trained on. Furthermore, as mentioned by Jordi, regression problems for
physical systems are trickier to validate, as one needs to make sure that the model is learning the
physical relationships for the right reasons. So, in an end-to-end model, there is no guarantee that
the model is learning the physical relationships. One of the novel aspects of our methodology is that
we are able to circumvent this problem by casting the prediction problem as a sequence of a
classification problem followed by interpolation problem.

Jordi Bolibar references a section in our manuscript regarding an alternative architecture that we
tried to use to avoid having two distinct networks. The line numbers he refers to appear incorrect,
but we assume he is referring to lines 337-339: We developed and tested an architecture that
combined both DAE and segmentation components into one network, however this proved harder to
optimise than the approach we have presented here. As Jordi Bolibar explains, this network is
solving a regression rather than classification problem, since its output is a continuous melt rate field,
although it is not a CNN network. Once again, we accept that we did not go into sufficient details in
our manuscript about alternative architectures that we tried for this problem, and we can provide
more detail on this point in a revised manuscript. As we stated in the manuscript, this architecture
proved much harder to train. This is not surprising, since the Segnet is solving a multiclass

classification problem while the DAE is solving an interpolation problem (as a nonlinear regressor). It
is tempting to combine both networks into a single integrated network, since the architectures are
visually similar, however each network solves a different problem and so any attempt to optimise the
single integrated network will only favour one over the other.

Guillaume Jouvet specifically mentioned U-NET architecture as an alternative. U-NET is a very similar
architecture to the segmentation network that we have used, only differing in how information is
transferred from pooling to unpooling, and thus also results in a labelled image. Since the output of
U-NET would also need to be converted from labels to a continuous melt rate field, and the main
concern seemed to be regarding our choice of using two networks rather than one, we do not
understand how this approach would improve on, or differ significantly from, our own. From previous
research in related applications (e.g. lung segmentation), it was shown that both Segnet and U-NET
show similar accuracy performance but that Segnet is computationally less intensive (Saood &
Hatem, 2021)

We have taken on board the reviewers concern regarding our choice of architecture and further
explored alternative methods but our approach continues to perform significantly better than using
a single network. We have added justification for our choice of architecture in the discussion section,
along with briefly mentioning other options that we explored and our thoughts on why these do not
perform as well. We have also considerably expanded the training and validation sets to lend further
confidence with regards to the performance of our model.

Review by Timothy Smith

Specific Comments

Making predictions with an ML surrogate is much cheaper than running an ocean model, but the
training is not free and can be quite computationally demanding. The authors allude to this in Line
64:

 "Since the computational cost of a machine learning algorithm is insignificant once it has been
trained,"

However, I think it should be mentioned in this way in the abstract and earlier in the introduction,
e.g. around Line 39, since model training can be a major computational expense in ML for high
dimensional problems such as those in the geosciences. Moreover, I think the paper would be
strengthened by providing some estimate of the computational costs of training and and making
predictions with MELTNET. This could be as simple as a table with training and validation walltime
for each network, along with the architecture (e.g. was this on a laptop or run in the cloud? how
many nodes/cores/threads were used?). Providing these details would help quantify the
statement that predictions are almost free, and would help establish to the community that,
generally speaking, ML based emulators are worth pursuing.

Training of the submitted version of the segmentation network, which was by far the most
computationally expensive, took less than 24 hours day on an NVIDIA Quadro K5200 GPU. The
much larger computational cost is associated with running the thousands of NEMO simulations to
create the training set that the network is trained on. Calculating melt rates from an input once
trained takes MELTNET ~0.05 seconds. We will add more information/discussion regarding
computational cost in a revised manuscript.

We have added a sentence in the abstract and introduction emphasising the advantages in terms of
computational cost. In addition, we have added a paragraph in the discussion that expands on the
computational costs and speedup when compared to the other models used.

Lines 101-105: I have a philosophical disagreement with using the temperature and salinity
conditions at the icefront instead of using the open boundary conditions to NEMO. MELTNET is an
emulator for NEMO (as far as I understand), and therefore it should not use anything that NEMO
produces as an input. Rather, it should be given the same boundary conditions and then bypass
NEMO altogether. It is fortunate and also useful to note that using either of these conditions
provides essentially equivalent result, since this provides an exciting opportunity in the case
where ample icefront T/S data are available and could be used as inputs to MELTNET. However, in
this paper MELTNET is being presented as a NEMO emulator, so I recommend keeping this note,
but using results based on using the same forcing for NEMO and for MELTNET.

The reviewer raises an excellent point and we did discuss this very same point at length during our
experimental design phase. There are presumably no simple answers here, but as the reviewer points
out, our results are insensitive to these choices. We agree with the reviewer that if MELTNET is
considered an emulator of NEMO then it should not be given anything from NEMO as an input, and
we were initially reluctant to do this in case it provided an unfair advantage. Due to the idealised
nature of the ocean modelling setup (e.g. no surface forcing), we think there is little water mass
transformation occurring between the northern boundary and the ice front. For this reason, the
results were fairly insensitive to this choice. The reason we ended up using ice front NEMO T+S as
input to the network was that this would make MELTNET a more useful tool for ice sheet modellers
moving forward and is more consistent with other parameterisations (Burgard et al. 2022). In terms
of future climate forcing – open ocean T+S conditions are unlikely to change markedly around
Antarctica, and instead the main driver of change is expected to be processes such as a deepening of
the thermocline near and beneath ice shelves, enabling warmer water to access the ice shelf base.
Therefore, we believe ice sheet modellers would find it more useful to be able to force MELTNET with
ice front conditions than open ocean conditions.

We have reworked the section on input temperature and salinity in a way that hopefully makes our
motivation behind this choice clearer.

Lines 262-270 and 309-314: The comparison to PICO and PLUME in this paper is entirely
appropriate. However, in some sense the comparison is unfair since these models are calibrated
by tuning 2 global parameters while MELTNET has many degrees of freedom which are optimized
during training. One could argue that to make the comparison as fair as possible PICO and PLUME
should have spatially varying parameters, which should be calibrated. PICO and PLUME are not
used in this way, so I don't think this should be implemented, but it raises a couple of points that I
think are worth discussing.

• Some details on MELTNET should be included, such as: the degrees of freedom (i.e.
number of nodes) for each layer, the number of layers in each stage of the model, and
the cost function that is optimized during training (is it simply the norm of the
model/data misfit? is there regularization used to penalize large weights?)

We agree that these important details were missing and we have added extensive additional
information on these points in two appendices. We chose not to include these in the main paper
since the majority of the readership will likely be unfamiliar with the terminology and uninterested
in some of these details.

• The PICO and PLUME parameters are not really optimized, but "hand tuned" so I would
suggest changing that wording, especially since MELTNET *is* optimized (trained).
Additionally, I think that the difference in degrees of freedom could be worth

mentioning. In a sense, one could make the argument that the neural network is a way
of capturing the additional degrees of freedom that we would want to have in the PICO
or PLUME models (for instance with spatially varying parameter fields) but that we
don't know how to specify. All in all - I think some discussion or hypotheses for
potential reasons on why MELTNET outperforms these models would improve the
paper.

We admittedly skip over the details of this in the submitted manuscript but the PICO and PLUME
parameters are optimised – we use MATLAB’s fmincon optimisation function to find the parameters
for each model that minimise our chosen cost function. We have added this information to the
relevant section and we also added a section in the discussion reflecting on the reviewers second
point.

Minor/Technical Comments and Suggestions

lines 35 and 37: Please fix citations: "e.g." comes after the citation but should come before

Done

line 59: "lower complexity parameterizations", I suggest to make the minor clarification that these
are ice sheet model parameterizations

Done

Fig 1: I suggest adding a note in the figure caption mentioning that the GAN step is merely a
method to generate many realistic T/S profiles for training, but is not necessary for making
predictions once MELTNET is trained, with a reference to section 2.3.2 (and possibly Appendix A).
The training and prediction stages are clearly delineated in the figure, and your figure caption is
well written, but I think adding a note like this will help a reader who is skimming through the
figures as quickly as possible (which, of course, will be many people …).

Done

line 120: I recommend being a bit more specific than "these filters are learned", for instance
something like "the weights that make up these filters are learned”

Done

line 148: I recommend referencing Fig B2 before making the parenthetical note comparing swish
are ReLU, since I went to Fig B2 looking for a comparison between the two, rather than a
description of the normalisation and layers

This was resolved by moving the explanation of the choice of activation function to the detailed
model description in the appendix.

line 159-161: For the ocean modellers, could you provide some citations for the specific subgrid-
scale parameterizations used? E.g. it sounds like the vertical mixing scheme is from (Gaspar et al,
1990, https://doi.org/10.1029/JC095iC09p16179). What is the scheme for generating lateral
viscosity coefficients (Smagorinsky, Leith, etc)? What horizontal and vertical diffusivities are used?
I think these details will be nice without being overloading.

Line 169: what is the vertical spacing for each of the 45 vertical levels?

Each vertical level had a vertical spacing of ~45.5m.

Line 208: wouldn't the constraint on ice shelf area be a maximum, rather than a minimum?

The idea of this constraint is to ensure that smaller ice shelves are sometimes generated, even if the
geometry would have been accepted by the algorithm otherwise because it fulfils all other criteria.

Fig 3: Have these ice shelf images been rotated to all be in the same orientation, since you
mention that you provide ice shelves in all cardinal directions to MELTNET? If so, you may want to
mention that some of these are rotated (e.g. "north isn't always up") in the caption.

Originally this was the case but our latest version of MELTNET actually no longer gets trained on
rotated images and we keep the orientation of the images the same as NEMO. Since Coriolis is
included in the ocean model, melt rates are not independent of orientation and removing this
aspect of data augmentation lead to improvements in MELTNET performance

Line 242: Please add the year to the citation Boyer et al

Done

Line 250: Do you mean to say "all models *are* judged”?

Fixed

Line 260: Misspelled “parameterisations"

Fixed

Line 264: "tunetable" -> “tunable"

Fixed

Fig 4 caption: Please add the units to the contour intervals in the statement: "contoured from 200
to 800 m at 100 *m* intervals”

Done

Line 291: I would recommend putting this part of the paper (discussing the idealized geometry
experiments) in its own subsection or even section. This would help the reader since you are
testing a new hypothesis.

Done

Line 351: Another small wording suggestion: "NN emulators *that are* constrained, ..."

Done

Review by Jordi Bolivar

Note: major comments related to network architecture were extracted to be addressed separately
above.

1.2
Another aspect of the modelling framework that I believe should be improved is its validation.
According to the manuscript, only 5% of the dataset is used for validation, which seems extremely
low. The authors justify this low fraction of data for test arguing that this maximizes the training
dataset, thus improving the overall model performance. This is even more surprising knowing that
this is in fact a surrogate model, whose training and validation data can be generated at will.
Expanding the validation dataset would be as easy as generating more synthetic ice-shelf
geometries and running NEMO on them. From Figure B4 we can see that the train performance
plateaus at around 2500 synthetic cases. However, there is no information on how the test set
impacts the performance. In machine learning it is essential to monitor the simultaneous
evolution of the train and test performance, since they give important clues regarding overfitting
or underfitting.

Some extra analyses should be performed in order to improve our confidence in the surrogate
model(s):

• I believe the test dataset should be expanded. 5% might (or will likely) not be enough to
correctly evaluate the out-of-sample model performance in a large variety of ice-shelf and ocean
configurations.

• The test performance should be added to Figure B4, in order to track its evolution with different
dataset sizes. If computational costs are behind the use of just 5%, I would still encourage the
authors to expand it as much as possible, and then add these reasons explicitly in the manuscript.

It is correct that, since MELTNET is trained using synthetic data, we are not limited by the size of
our training set - except in terms of the computational cost required to run the NEMO simulations
(which is not insignificant). However, perhaps there is some confusion because the accuracy
plotted in Figure B4 is validation accuracy, not training accuracy. We can add a line showing
training accuracy in the same plot and we can expand the size of the overall training set (which
would also increase the size of the validation set) to provide further evidence that the size of the
validation set is sufficient.

We have substantially increased the size of the training set by a factor of ~4, and the validation set,
which is now a larger fraction of the overall samples, has increased by a factor of ~8. We have also
included a more informative plot showing replacing the one in Figure B4.

1.3

Another downside of the manuscript is the lack of transparency regarding the model details. The
main issue in my opinion is the fact that the model source code is not open-source. There is only a
statement saying that the synthetic geometries are available upon request, without any mention
of the model code itself. This makes it even harder to review the model, and goes against the open
science values from journals such as The Cryosphere. Many of my doubts or questions could have
been directly resolved by checking a properly documented repository on GitHub (or elsewhere).
Therefore, I strongly encourage the authors to share their source code in a public repository. By
making it citeable (e.g. using Zenodo), there are virtually no downsides to sharing it.

We have added a GitHub repository with the model code, a link can be found in the manuscript code
availability section

This has also been commented by the other reviewer. I think overall there is a lack of details
regarding the model configuration in the manuscript. I understand that the authors do not want to
flood the text with technicalities, but it would still be interesting to know a little bit more about
the model in an Appendix or Supplementary material. Details regarding the optimizer for the
gradient descent, regularization techniques used to avoid overfitting, learning rates, etc...

We have added extensive additional information on these points in two appendices, for both the
segmentation network and the DAE network

2.0 Specific comments

L120 Please add more details about the optimizer and gradient descent in either the text or an
additional section in the Appendix or Supplementary material.

We have added considerable detail on this in the appendix.

L126-127 By simply evaluating the loss at the pixels covering the ice shelf this could be easily
solved. A matrix mask could be used to filter out those values. This yet another consequence of
using a classification framework.

We use a weighted loss function, based on label frequency but with zero weight attached to pixels
that lie outside of the ice shelf, which is essentially the same as directly masking out those pixels.
This is now described in more detail in the appendix.

L133 A simple leaky ReLu could have sufficed, which is also less computationally expensive

We tested leaky ReLu and found that the swish activation function outperformed it. The Swish
activation function is bounded below (meaning as x approaches negative infinity, y approaches some
constant value) but unbounded above (meaning as x approaches positive infinity, y approaches
infinity). However, unlike leaky ReLU, Swish is smooth (it does not have sudden changes of motion or
a vertex). Unboundedness is desirable for activation functions because it avoids a slow training time
during near-zero gradients — functions like sigmoid or tanh are bounded above and below, so the
network needs to be carefully initialized to stay within the limitations of these functions. Being
bounded below may be advantageous because of strong regularization — functions that approach
zero in a limit to negative infinity are great at regularization because large negative inputs are
discarded. This is important at the beginning of training when large negative activation inputs are
common. In addition, Swish’s non-monotonicity increases ‘expressivity’ of an input and improves
gradient flow. The smoothness helps optimise and generalise the performance of Segnet and
autoencoder.

We have added some justification for this choice in the appendices that describe the networks in
detail

L277-280 This should be explained in the legend, otherwise it is impossible to understand.

This has been added to the figure caption

L281 By remaining panels do you mean the panels shown in Fig. 4?

Yes, modified the sentence to make this clearer

L283-284 This should also be mentioned in the figure. It is important to mention that you are
showing an out-of-sample performance.

Done

It is also unclear why the performances of the two parametrizations are not included. One would
expect to see the comparison here, otherwise there is no baseline performance to compare with.

The purpose of this plot is to show visually how the sampling from distribution of scores works out in
practice. A comparison to performance of the two parameterisations is shown in Figure 5.

Figure 4 ”Note the colour map gradient is not linear, but is greatest around zero, to make it easier
to distinguish the magnitude of melting/refreezing over the bulk of the ice shelves.” What do you
mean? To me the colourmap from the plot appears to be linear.

The colour axis interval is constant but the colourmap gradient is not linear, for the reason stated.

L303-304 Couldn’t you change the loss of these two models? This could be easily solved by tuning
all models with a combined loss: e.g. the (NRMSE local + NRMSE average)/2.

That certainly could have been done but as explained elsewhere in the paper average melt rate is less
important than matching the melt rate in certain key parts of the ice shelf and so tuning for average
melt would not make much sense.

L315 Indeed, this study has focused on modelling the spatial information of ice shelf melt.
Modelling of the temporal dimension remains untackled, and it might prove more challenging to
do (see e.g. Bolibar et al. (2020) The Cryosphere). A validation in the spatial dimension doesn’t
ensure a good performance in the temporal dimension, which would be mandatory for any real
world application as a surrogate for NEMO.

We do not see this as a major limitation of the model we present. In the context of Antarctic ice
shelves, melt rates vary as a function of ice shelf geometry and ocean forcing, both of which will vary
as a function of time, and both of which are inputs to the network. Therefore, assuming the system
has had sufficient time to adjust to any changes in forcing, we should expect the network to capture
this temporal dimension. Variability at very short timescales, for which the cavity circulation has not
had time to adjust to, is unlikely to be relevant to large-scale ice sheet simulations.

L331 Do you mean to the surrogate model? How would you add new physical processes to a
surrogate model? I am not sure this is that straightforward to achieve. This model acts as a black
box here, it just can be trusted because it is emulating a physical model that can be well
understood.

New physical processes can be incorporated into the network automatically if they are included in
the ocean model that network is trained to emulate. We have expanded on this point slightly in the
discussion.

Review by Guillaume Jouvet

Note: major comments related to network architecture were extracted to be addressed separately
above.

The most convincing to me is the fidelity result of the ANN to the instructor NEMO, but then I
think it would be good to clearly give clear numbers and report it in abstract and conclusion. You

may choose a metric and state how far (in %) is MELTNET solutions from NEMO? By contrast, I
unsure that comparisons with other simpler models should be too elaborated. E.g. Fig. 4 is useful
as it shows that the loss in accuracy between MELTNET from NEMO is small/negligible compared
to the discrepancy between low and high complexity models (PICO vs PLUME). I think that is
enough as I expect the paper mostly to focus on the accuracy of the MELTNET to reproduce its
instructor model -- the in-between model comparisons being a substantial task to make sure this
is done fairly (I don't have the expertise to assess this). From Fig. 4 I retain that comparing
MELTNET with other models is roughly the same as comparing NEMO with others as the two are
(hopefully) very close to each other (as the ANN makes a very good job). This also means that the
rest is a pure comparison of models no longer involving deep learning, and this may go beyond
this scope of the paper. In conclusion, I would probably keep the comparison with PICO & PLUME
rather concise, and favor MELTNET/NEMO comparisons.

We agree that it would be helpful to provide a metric in the abstract that directly compares the
performance of MELTNET with NEMO, as this will be one of the things readers will want to know
from the outset. We would prefer to keep our comparison with the PICO and PLUME
parameterisations, however, since these are commonly used by the ice sheet modelling community
and so a detailed comparison is the most likely approach to convince modellers that MELTNET
provides a useful alternative.

We have added a sentence in the abstract that gives a metric for the ability of MELTNET to replicate
NEMO melt rates.

The main point of using deep learning emulators is the huge computational gain versus minor loss
in accuracy. While you have quantified the accuracy (Fig. 4), it is a pity that you do not do it for
computational time. What speed-up? I expect several orders of magnitude. Quantifying the
computational time is essential for your paper. You may also comment on the fact ANNs run
extremely well on GPU (which is not the case of CPU), giving another important advantage of your
method (compared e.g., to NEMO which may not take the same advantage on GPU).

We have added a section in the discussion that goes into this in some detail and we also mention
this in the abstract

I think the paper can be made more efficient by moving technical machinery in Section 2.3.1 to
appendix. The generation of synthetic geometries is necessary, but of lower interest. Moreover,
using a GAN is an elegant strategy, but this is probably nonessential.

We have moved section 2.3.1 to the appendix, as suggested, although information regarding the
GAN is already almost all in the appendix and we feel what is included in the main text is a bare
minimum needed to understand our approach.

I think Section 2.2 should come first for the sake of clarity. It sounds more logical to first describe
the physical model, and then the ANN you design to learn from the physical model as the choice of
the ANN architecture is motivated by the type of emulated physics.

We have moved section 2.2 to the start of the methods, as suggested.

Why not using Antarctica and Greenland real topographies to generate ice shelf geometry? This
would avoid to generate synthetic geometries?

As we state in the paper, there are insufficient real world examples of ice shelves to make a useful
training set for our machine learning approach. In particular since we choose to predict melt rates
beneath entire ice shelves, rather than subsets of ice shelves. As explained in our response to
questions about the choice of architecture, this is an intentional choice to allow for the possibility of
the network to make predictions based on non-local general circulation processes rather than just
local melt processes.

Minor comments:

For clarity, I think you should call MELTNET like NEMO-trained MELTNET or at least include NEMO
as you may train MELTNET with other models.

It is certainly true that the approach we have used is not limited to being trained by NEMO, and we
can add a comment regarding this in the paper, however we prefer to keep the name of the model
concise and since only one version of the model exists we do not feel that it is necessary to specify in
its name which ocean model the network has been trained on.

l76: suggest "the inputs and NEMO resulting melt rates …"

Done

l79: fix the typo with “paramterisations"

Done

"These filters are learnt ..." not sure this is understandable for who is unfamiliar with ML
vocabulary

Rephrased this sentence

l127-128: why not cropping the area of interest instead of weighting? Anyway, you normally can
feed your ANN with different frame dimensions.

Since the ice shelves have a wide variety of shapes and sizes, cropping would still result in many
training images with far more pixels of some classes than others. Weighting is a very common
approach for image segmentation used to ensure that this does not bias the training to certain
classes over other, less represented classes.

l129: You can state clearly you do data augmentation.

Our latest version of MELTNET actually no longer gets trained on rotated images and we keep the
orientation of the images the same as NEMO. Since Coriolis is included in the ocean model, melt
rates are not independent of orientation and removing this aspect of data augmentation lead to
improvements in MELTNET performance.

l169 2000 m

Done

l273 Figure 2 presents THE main result of the study, ….

Done

Is the AE a U-NET architecture? If yes, you should say it.

No this is a very different architecture, as with the segmentation network we have expanded on the
description in the appendix

l 352: you may call it PINN for Physically Informed Neural Network.

We are not sure what part the reviewers suggestion refers to

l 345: ~ 502 km2

Done

References

Saood, A., Hatem, I. COVID-19 lung CT image segmentation using deep learning methods: U-Net
versus SegNet. BMC Med Imaging 21, 19 (2021). https://doi.org/10.1186/s12880-020-00529-5

Jouvet G, Cordonnier G, Kim B, Lüthi M, Vieli A, Aschwanden A (2021). Deep learning speeds up ice
flow modelling by several orders of magnitude. Journal of Glaciology 1–14. https://doi.org/10.1017/
jog.2021.120

Burgard, C., Jourdain, N. C., Reese, R., Jenkins, A., and Mathiot, P.: An assessment of basal melt
parameterisations for Antarctic ice shelves, The Cryosphere Discuss. [preprint],
https://doi.org/10.5194/tc-2022-32, in review, 2022.

	Regarding choice of architecture (Guillaume Jouvet)
	Regarding choice of architecture (Jordi Bolibar)
	Our response regarding the choice of architecture
	Specific Comments
	Minor/Technical Comments and Suggestions
	1.2
	1.3
	2.0 Specific comments
	Minor comments:
	References

