
We thank all three reviewers for taking the time to read through our paper ‘Predicting ocean-
induced ice-shelf melt rates using a machine learning image segmentation approach’ and for their 
thoughtful comments.  

The key criticism of two of the reviewers is our use of two networks, consisting of a segmentation 
network followed by an auto-encoder, instead of a single Convolutional Neural Network (CNN). We 
explain our reasons for using this approach in more detail below, but fundamentally we must use 
this two-step approach (or something similar) to arrive at a decision for each pixel of our image. 
Using the CNN approach as the reviewers suggest, would not give use the required spatially 
distributed field and its multi-scale dependency on the input fields. Our approach is quite novel and 
new, and we do realize that we should have spend more space in the manuscript explaining the 
advantages of our new approach, and had we done so the reviewers would have been in a better 
position to understand that a typical CNN approach does provide the information required. We will 
clearly need to expand the discussion of the methodology in our manuscript, but we remain 
convinced of the methodological advantages of our approach.  

In our response, we have first combined these comments and replied to them together. The 
remainder of our response is structured by replying (in italics) to each reviewer comment 
sequentially.  

 

Extracts from reviews: 

Regarding choice of architecture (Guillaume Jouvet) 
 

As you design an ANN mapping 2D to 2D fields with continuous variables, the most logical and 
intuitive to me would be to use a standard Convolutional Neural Network (CNN) trained as a 
regression problem with a L1 or L2 loss (e.g. similarly to the CNN I use to learn ice dynamics). You 
may have also considered a U-NET architecture as well to better capture underlying multiscales, if 
any. Therefore, my main point is:  why do you split in two networks? -- a first 
segmentation/classification and an auto-encoder (AE) -- I just do not see what this brings except 
unnecessary complications (and probable loss of information!). Unfortunately, I could not find any 
line of justification for this choice, namely transforming the problem into a classification one, and 
then afterwards recovering the lost information (or 'corrupted' as you term it) by an AE. To me, the 
final paper should either i) try to simplify their approach using a single and simple regression 
network if this proves to be as efficient OR ii) clearly justify the choice of going to a more complex 
network sequence and explain why the simplest approach was unsatisfactory. In case of i), 
consider revising the paper title and removing references to segmentation. 

 

Regarding choice of architecture (Jordi Bolibar) 
 

Despite all this strong aspects, I must say I am very surprised by the modelling choices regarding the 
neural network(s). Right from the title it is clear that the authors have decided to use an image 
classification architecture for this problem. This is quite bizarre, since this problem is clearly a 
regression problem, not a classification/segmentation one. As I was reading the manuscript, I was 



expecting the authors to explain such a strange choice, but I could not find any justification for that 
choice. 

This has been by far the most striking feature of this manuscript. The authors have chosen to use an 
image classification network for a regression problem. From the results, this method seems to work, 
but in order to do so the authors have had to ”force” the architecture into this problem, resulting in 
some awkward modelling strategies. Since there is no justification for this choice, there might be 
two potential explanations to this: (1) The authors have a clear strategy behind this, but did not 
explain it in the main manuscript. (2) The authors have re-used an already existing architecture (a 
very common and totally correct ML practice) from image classification, and tried to apply it to this 
problem without knowing that it was designed for a completely different task. I would like to know 
the exact reasons behind this choice, but on the meantime I will try to argue why I think such an 
architecture is not the best choice for this task.  

Deep learning models can be applied to two main different types of problems: classification and 
regression. Classification is the most popular one, involving a nonlinear transformation of input data 
into a new space, in which a segmentation is performed based on a specific number of classes or 
labels in a supervised or unsupervised manner. On the other hand, regression models are in general 
less well known, and they are more challenging to train, validate and apply to physical systems. 
While the validation of a classification model is quite straightforward, since it is very easy to verify if 
the labels are accurate or not, this is not true for a regression problem. Regression problems for 
physical systems are trickier to validate, as one needs to make sure that the model is learning the 
physical relationships for the right reasons. 

The fact that the authors chose a classification model for a regression problem has a series of 
consequences which add unnecessary complexity to the modelling framework: 

 • The discussion on the choice and impact of the number of classes for the first network could have 
been completely avoided just by choosing a regression model. Since the modelled variable (melt) is a 
continuous variable, it does not make sense to model it in a discrete way with a classification 
framework. 

 • The authors compensate this strange choice by adding a second neural network, an autoencoder, 
in order to interpolate the discrete classes obtained by the first network. As for the previous point, 
this second network could have been directly discarded if a regression model had been chosen.  

• The model(s) presented in this study do seem to work, but I cannot help wondering how simpler 
and potentially faster might have been a solution with a regression network.  

Since everything else in the study is well conceived, the model seems to work and the authors have 
even verified the physical plausibility of the learnt model, I do not think these reasons above are 
enough to deny publication. However, I would ask the authors at the very least to clearly explain in 
the discussion the reasoning behind this strange choice and comment on what the use of a 
regression model could imply for such a modelling framework. 

Moreover, if the authors think it is something relatively simple to achieve, I would encourage them 
to re-train a regression CNN to see if the results are improved. In lines 357-359, the authors mention 
that they trained a single CNN that performed the same tasks as both networks. If that is really the 
case, that should be a regression network, otherwise it would not be possible to go from a 
continuous input to a continuous output. They also mentioned that such a network proved harder to 
train. It would be interesting to know if that is because they simply re-used the same architecture 



with some minor changes (e.g. just changing some activation functions), or if they chose a specific 
architecture suited to regression problems. As I said, training and validating regression networks is 
often trickier, but it is very likely that this might result in a better model. I will not enforce these 
changes, due to the above mentioned reasons. If they decide that it is too much work and they 
would rather keep the current model, then this should be clearly added in the discussion as a future 
perspective, including the current shortcomings of the model. The current model is overly 
complicated for this problem. A regression model would largely simplify the modelling pipeline, and 
could potentially result in a more accurate and expressive model. 

 

Our response regarding the choice of architecture 
 

The main concern raised by reviewers Jordi Bolibar and Guillaume Jouvet was regarding the choice of 
network architecture used to predict melt rates. The approach we present in the paper is to combine 
two networks: a segmentation network that takes input images and returns labelled melt rates and 
an autoencoder that takes these labelled melt rates and converts them to a continuous melt rate 
field. Jordi and Guillaume question why we did not use a simpler network, for example a CNN or 
regression network.  

The motivation behind our choice of a segmentation network is to extract information from our input 
fields at multiple spatial scales. A typical CNN architecture is made up of several convolutional layers 
with the final layer being a fully connected network. Each convolutional layer learns the features in 
the image from the previous layer. The convolutional layer learns to detect features from the 
incoming image, and this is repeated in every layer until the final layer which typically takes on the 
role of decision maker, for example, to classify the image as a cat or dog. The convolutional layers 
perform feature extraction while the last layer is the decision maker. As the input image is passed 
from layer to layer in the CNN, the information in the image tends to be progressively more abstract 
and sparser such that some information is lost at the end. Most common CNNs only give a single 
output as a global decision for the whole input image. In other words, they generally do not make a 
decision for every single pixel of the image.  

The segmentation network (segnet) overcomes both limitations. As the input image passes through 
the convolutional layers, the features are firstly extracted at different spatial scales and therefore, 
the extracted features at every layer become more meaningful, representable and interpretable by 
humans. In addition, the features from different spatial scales (coming from different convolutional 
layers) are progressively reconstructed at the decoder stage. This effectively enables the segnet to 
learn and internalise a multiscale spatial representation of the inputs representing bathymetry, ice 
shelf draft, temperature and salinity. The last layer of Segnet classifies every pixel of the penultimate 
layer’s features into one-of-N labels.  

While a CNN is not limited to classifying images, for example the model by Jouvet (2021), they are 
limited to operating on the same region of an image, defined by the filter size. Here, therefore, is the 
great advantage of using a segmentation network: the CNN filters in the segmentation network 
architecture operate at multiple spatial scales. 

The magnitude and spatial distribution of melt rates beneath an ice shelf is inherently a problem 
determined by processes at multiple spatial scales. Some are entirely local: for example the 
difference between the local melting point and ocean temperature, or the local ice shelf slope; 



whereas some are nonlocal: for example the path that meltwater plumes take from deep grounding 
line points, and overall circulation beneath the ice shelf. Thus, our approach makes use of the 
multiscale learning enabled by the segmentation network architecture to predict melt rates using 
local and nonlocal features in our input images. 

The downside of our approach is that, since the segmentation network is designed to output labelled 
images, we then need to convert these labels to a continuous melt rate field in order to have a useful 
output that could be deployed directly within an ice sheet model. In practice this is only a minor 
inconvenience since the output from the first network serves directly as the input for the second 
network. 

There are also clear advantages to having two distinct networks. The segmentation network 
ultimately does the heavy lifting, extracting features in an image at various spatial scales to predict 
where there might be strong ice-shelf melting, some refreezing, etc., which it assigns as labelled 
regions of the image. The autoencoder network, with an architecture typically used for denoising an 
image, only needs to learn how to convert from labels to a continuous field. An autoencoder is very 
suitable for this since the problem is somewhat analogous to taking a compressed pixelated 
representation of an image and extracting the original. In this context, the ‘compression’ is that melt 
rates are only represented by N labels. Each network specialises in its respective task, and, for 
example, the second step goes some way to ‘regularise’ the output melt rate field, since part of what 
the autoencoder learns is that the melt rate field is generally quite smooth. Essentially, the 
autoencoder interpolates between the discrete labels from the segmentation network so that a 
generally smooth map is achieved. This also enables this map to be more interpretable to human 
users and more useful for input into an ice sheet model. 

We accept that justification for our choice of architecture is largely missing from the manuscript, and 
we will add a condensed explanation of this in a revised version. 

Jordi Bolivar states that our choice of architecture is ‘quite bizarre, since this problem is clearly a 
regression problem, not a classification/segmentation one’. From a machine learning point of view, 
prediction is an extrapolation problem, and not interpolation. If we treated this as a regression 
problem there would indeed be no need for the second autoencoder, and the model becomes an end-
to-end model. However, such an end-to-end model would struggle to learn the extrapolation problem 
and is known to have poor generalization ability in the event where it is presented with data different 
from what it has been trained on. Furthermore, as mentioned by Jordi, regression problems for 
physical systems are trickier to validate, as one needs to make sure that the model is learning the 
physical relationships for the right reasons. So, in an end-to-end model, there is no guarantee that 
the model is learning the physical relationships. One of the novel aspects of our methodology is that 
we are able to circumvent this problem by casting the prediction problem as a sequence of a 
classification problem followed by interpolation problem. 

Jordi Bolibar references a section in our manuscript regarding an alternative architecture that we 
tried to use to avoid having two distinct networks.  The line numbers he refers to appear incorrect, 
but we assume he is referring to lines 337-339: ‘We developed and tested an architecture that 
combined both DAE and segmentation components into one network, however this proved harder to 
optimise than the approach we have presented here.’ As Jordi Bolibar explains, this network is solving 
a regression rather than classification problem, since its output is a continuous melt rate field, 
although it is not a CNN network.  Once again, we accept that we did not go into sufficient details in 
our manuscript about alternative architectures that we tried for this problem, and we can provide 
more detail on this point in a revised manuscript. As we stated in the manuscript, this architecture 
proved much harder to train. This is not surprising, since the Segnet is solving a multiclass 



classification problem while the DAE is solving an interpolation problem (as a nonlinear regressor). It 
is tempting to combine both networks into a single integrated network, since the architectures are 
visually similar, however each network solves a different problem and so any attempt to optimise the 
single integrated network will only favour one over the other.  

Guillaume Jouvet specifically mentioned U-NET architecture as an alternative. U-NET is a very similar 
architecture to the segmentation network that we have used, only differing in how information is 
transferred from pooling to unpooling, and thus also results in a labelled image. Since the output of 
U-NET would also need to be converted from labels to a continuous melt rate field, and the main 
concern seemed to be regarding our choice of using two networks rather than one, we do not 
understand how this approach would improve on, or differ significantly from, our own. From previous 
research in related applications (e.g. lung segmentation), it was shown that both Segnet and U-NET 
show similar accuracy performance but that Segnet is computationally less intensive (Saood & 
Hatem, 2021) 

 

Review by Timothy Smith 
 

Specific Comments 

Making predictions with an ML surrogate is much cheaper than running an ocean model, but the 
training is not free and can be quite computationally demanding. The authors allude to this in Line 
64: 

    "Since the computational cost of a machine learning algorithm is insignificant once it has been 
trained," 

However, I think it should be mentioned in this way in the abstract and earlier in the introduction, 
e.g. around Line 39, since model training can be a major computational expense in ML for high 
dimensional problems such as those in the geosciences. Moreover, I think the paper would be 
strengthened by providing some estimate of the computational costs of training and and making 
predictions with MELTNET. This could be as simple as a table with training and validation walltime 
for each network, along with the architecture (e.g. was this on a laptop or run in the cloud? how 
many nodes/cores/threads were used?). Providing these details would help quantify the statement 
that predictions are almost free, and would help establish to the community that, 
generally speaking, ML based emulators are worth pursuing. 

Training of the submitted version of the segmentation network, which was by far the most 
computationally expensive, took less than 24 hours day on an NVIDIA Quadro K5200 GPU. The much 
larger computational cost is associated with running the thousands of NEMO simulations to create 
the training set that the network is trained on. Calculating melt rates from an input once trained 
takes MELTNET ~0.05 seconds. We will add more information/discussion regarding computational 
cost in a revised manuscript. 

Lines 101-105: I have a philosophical disagreement with using the temperature and salinity 
conditions at the icefront instead of using the open boundary conditions to NEMO. MELTNET is an 
emulator for NEMO (as far as I understand), and therefore it should not use anything that NEMO 
produces as an input. Rather, it should be given the same boundary conditions and then bypass 
NEMO altogether. It is fortunate and also useful to note that using either of these conditions 



provides essentially equivalent result, since this provides an exciting opportunity in the case where 
ample icefront T/S data are available and could be used as inputs to MELTNET. However, in this 
paper MELTNET is being presented as a NEMO emulator, so I recommend keeping this note, but 
using results based on using the same forcing for NEMO and for MELTNET. 

The reviewer raises an excellent point and we did discuss this very same point at length during our 
experimental design phase. There are presumably no simple answers here, but as the reviewer points 
out, our results are insensitive to these choices. We agree with the reviewer that if MELTNET is 
considered an ‘emulator’ of NEMO then it should not be given anything from NEMO as an input, and 
we were initially reluctant to do this in case it provided an unfair advantage. Due to the idealised 
nature of the ocean modelling setup (e.g. no surface forcing), we think there is little water mass 
transformation occurring between the northern boundary and the ice front. For this reason, the 
results were fairly insensitive to this choice. The reason we ended up using ice front NEMO T+S as 
input to the network was that this would make MELTNET a more useful tool for ice sheet modellers 
moving forward and is more consistent with other parameterisations (Burgard et al. 2022). In terms 
of future climate forcing – open ocean T+S conditions are unlikely to change markedly around 
Antarctica, and instead the main driver of change is expected to be processes such as a deepening of 
the thermocline near and beneath ice shelves, enabling warmer water to access the ice shelf base. 
Therefore, we believe ice sheet modellers would find it more useful to be able to force MELTNET with 
ice front conditions than open ocean conditions.  

Lines 262-270 and 309-314: The comparison to PICO and PLUME in this paper is entirely appropriate. 
However, in some sense the comparison is unfair since these models are calibrated by tuning 2 
global parameters while MELTNET has many degrees of freedom which are optimized during 
training. One could argue that to make the comparison as fair as possible PICO and PLUME should 
have spatially varying parameters, which should be calibrated. PICO and PLUME are not used in this 
way, so I don't think this should be implemented, but it raises a couple of points that I think are 
worth discussing. 

• Some details on MELTNET should be included, such as: the degrees of freedom (i.e. number 
of nodes) for each layer, the number of layers in each stage of the model, and the cost 
function that is optimized during training (is it simply the norm of the model/data 
misfit? is there regularization used to penalize large weights?) 

We will add this information to a revised version of the manuscript. 

• The PICO and PLUME parameters are not really optimized, but "hand tuned" so I would 
suggest changing that wording, especially since MELTNET *is* optimized (trained). 
Additionally, I think that the difference in degrees of freedom could be worth mentioning. 
In a sense, one could make the argument that the neural network is a way of capturing 
the additional degrees of freedom that we would want to have in the PICO or PLUME 
models (for instance with spatially varying parameter fields) but that we don't know how 
to specify. All in all - I think some discussion or hypotheses for potential reasons on why 
MELTNET outperforms these models would improve the paper. 

We admittedly skip over the details of this in the submitted manuscript but the PICO and PLUME 
parameters are optimised – we use MATLAB’s fmincon optimisation function to find the parameters 
for each model that minimise our chosen cost function. We will provide more details on this and we 
agree that more discussion around differences in degrees of freedom is warranted. 

  



We will implement all minor comments suggested by Timothy Smith in a revised version of the 
manuscript. 

 

Review by Jordi Bolivar 
 

Note: major comments related to network architecture were extracted to be addressed separately 
above. 

1.2 

Another aspect of the modelling framework that I believe should be improved is its validation. 
According to the manuscript, only 5% of the dataset is used for validation, which seems extremely 
low. The authors justify this low fraction of data for test arguing that this maximizes the training 
dataset, thus improving the overall model performance. This is even more surprising knowing that 
this is in fact a surrogate model, whose training and validation data can be generated at will. 
Expanding the validation dataset would be as easy as generating more synthetic ice-shelf geometries 
and running NEMO on them. From Figure B4 we can see that the train performance plateaus at 
around 2500 synthetic cases. However, there is no information on how the test set impacts the 
performance. In machine learning it is essential to monitor the simultaneous evolution of the train 
and test performance, since they give important clues regarding overfitting or underfitting.  

Some extra analyses should be performed in order to improve our confidence in the surrogate 
model(s):  

• I believe the test dataset should be expanded. 5% might (or will likely) not be enough to correctly 
evaluate the out-of-sample model performance in a large variety of ice-shelf and ocean 
configurations.  

• The test performance should be added to Figure B4, in order to track its evolution with different 
dataset sizes. If computational costs are behind the use of just 5%, I would still encourage the 
authors to expand it as much as possible, and then add these reasons explicitly in the manuscript. 

It is correct that, since MELTNET is trained using synthetic data, we are not limited by the size of our 
training set - except in terms of the computational cost required to run the NEMO simulations (which 
is not insignificant). However, perhaps there is some confusion because the accuracy plotted in Figure 
B4 is validation accuracy, not training accuracy. We can add a line showing training accuracy in the 
same plot and we can expand the size of the overall training set (which would also increase the size 
of the validation set) to provide further evidence that the size of the validation set is sufficient. 

1.3 

Another downside of the manuscript is the lack of transparency regarding the model details. The 
main issue in my opinion is the fact that the model source code is not open-source. There is only a 
statement saying that the synthetic geometries are available upon request, without any mention of 
the model code itself. This makes it even harder to review the model, and goes against the open 
science values from journals such as The Cryosphere. Many of my doubts or questions could have 
been directly resolved by checking a properly documented repository on GitHub (or elsewhere). 



Therefore, I strongly encourage the authors to share their source code in a public repository. By 
making it citeable (e.g. using Zenodo), there are virtually no downsides to sharing it. 

We will add GitHub repository with the model code to a revised version of the manuscript. 

This has also been commented by the other reviewer. I think overall there is a lack of details 
regarding the model configuration in the manuscript. I understand that the authors do not want to 
flood the text with technicalities, but it would still be interesting to know a little bit more about the 
model in an Appendix or Supplementary material. Details regarding the optimizer for the gradient 
descent, regularization techniques used to avoid overfitting, learning rates, etc... 

We will add more details on the model, including specific details mentioned above, in a revised 
version of the manuscript. 

2.0 Specific comments 

All minor comments will be implemented as suggested in a revised version of the manuscript, but a 
with a few exceptions that we address directly below: 

L133 A simple leaky ReLu could have sufficed, which is also less computationally expensive 

We tested leaky ReLu and found that the swish activation function outperformed it. The Swish 
activation function is bounded below (meaning as x approaches negative infinity, y approaches some 
constant value) but unbounded above (meaning as x approaches positive infinity, y approaches 
infinity). However, unlike leaky ReLU, Swish is smooth (it does not have sudden changes of motion or 
a vertex). Unboundedness is desirable for activation functions because it avoids a slow training time 
during near-zero gradients — functions like sigmoid or tanh are bounded above and below, so the 
network needs to be carefully initialized to stay within the limitations of these functions. Being 
bounded below may be advantageous because of strong regularization — functions that approach 
zero in a limit to negative infinity are great at regularization because large negative inputs are 
discarded. This is important at the beginning of training when large negative activation inputs are 
common. In addition, Swish’s non-monotonicity increases ‘expressivity’ of an input and improves 
gradient flow. The smoothness helps optimise and generalise the performance of Segnet and 
autoencoder.  We will add the above details to a revised version of the manuscript. 
 
L283-284 It is also unclear why the performances of the two parametrizations are not included. One 
would expect to see the comparison here, otherwise there is no baseline performance to compare 
with. 

The purpose of this plot is to show visually how the sampling from distribution of scores works out in 
practice. A comparison to performance of the two parameterisations is shown in Figure 5. 

Figure 4 ”Note the colour map gradient is not linear, but is greatest around zero, to make it easier to 
distinguish the magnitude of melting/refreezing over the bulk of the ice shelves.” What do you 
mean? To me the colourmap from the plot appears to be linear. 

The colour axis interval is constant but the colourmap gradient is not linear, for the reason stated.  

L315 Indeed, this study has focused on modelling the spatial information of ice shelf melt. Modelling 
of the temporal dimension remains untackled, and it might prove more challenging to do (see e.g. 
Bolibar et al. (2020) The Cryosphere). A validation in the spatial dimension doesn’t ensure a good 
performance in the temporal dimension, which would be mandatory for any real world application 
as a surrogate for NEMO. 



We do not see this as a major limitation of the model we present.  In the context of Antarctic ice 
shelves, melt rates vary as a function of ice shelf geometry and ocean forcing, both of which will vary 
as a function of time, and both of which are inputs to the network. Therefore, assuming the system 
has had sufficient time to adjust to any changes in forcing, we should expect the network to capture 
this temporal dimension. Variability at very short timescales, for which the cavity circulation has not 
had time to adjust to, is unlikely to be relevant to large-scale ice sheet simulations. 

L331 Do you mean to the surrogate model? How would you add new physical processes to a 
surrogate model? I am not sure this is that straightforward to achieve. This model acts as a black box 
here, it just can be trusted because it is emulating a physical model that can be well understood. 

New physical processes can be incorporated into the network automatically if they are included in 
the ocean model that network is trained to emulate. 

 

Review by Guillaume Jouvet 
 

Note: major comments related to network architecture were extracted to be addressed separately 
above. 

 

The most convincing to me is the fidelity result of the ANN to the instructor NEMO, but then I think it 
would be good to clearly give clear numbers and report it in abstract and conclusion. You may 
choose a metric and state how far (in %) is MELTNET solutions from NEMO? By contrast, I unsure 
that comparisons with other simpler models should be too elaborated. E.g. Fig. 4 is useful as it shows 
that the loss in accuracy between MELTNET from NEMO is small/negligible compared to the 
discrepancy between low and high complexity models (PICO vs PLUME). I think that is enough as I 
expect the paper mostly to focus on the accuracy of the MELTNET to reproduce its instructor model -
- the in-between model comparisons being a substantial task to make sure this is done fairly (I don't 
have the expertise to assess this). From Fig. 4 I retain that comparing MELTNET with other models is 
roughly the same as comparing NEMO with others as the two are (hopefully) very close to each 
other (as the ANN makes a very good job). This also means that the rest is a pure comparison of 
models no longer involving deep learning, and this may go beyond this scope of the paper. In 
conclusion, I would probably keep the comparison with PICO & PLUME rather concise, and favor 
MELTNET/NEMO comparisons.  

We agree that it would be helpful to provide a metric in the abstract that directly compares the 
performance of MELTNET with NEMO, as this will be one of the things readers will want to know 
from the outset. We would prefer to keep our comparison with the PICO and PLUME 
parameterisations, however, since these are commonly used by the ice sheet modelling community 
and so a detailed comparison is the most likely approach to convince modellers that MELTNET 
provides a useful alternative.  

The main point of using deep learning emulators is the huge computational gain versus minor loss in 
accuracy. While you have quantified the accuracy (Fig. 4), it is a pity that you do not do it for 
computational time. What speed-up? I expect several orders of magnitude. Quantifying the 
computational time is essential for your paper. You may also comment on the fact ANNs run 
extremely well on GPU (which is not the case of CPU), giving another important advantage of your 
method (compared e.g., to NEMO which may not take the same advantage on GPU). 



In line with similar comments by Timothy Smith, we will add more discussion and specific numbers 
regarding the computational expense of this approach compared to others in the paper.  

I think the paper can be made more efficient by moving technical machinery in Section 2.3.1 to 
appendix. The generation of synthetic geometries is necessary, but of lower interest. Moreover, 
using a GAN is an elegant strategy, but this is probably nonessential. 

We will section 2.3.1 to the appendix, as suggested, although information regarding the GAN is 
already almost all in the appendix and we feel what is included in the main text is a bare minimum 
needed to understand our approach. 

I think Section 2.2 should come first for the sake of clarity. It sounds more logical to first describe the 
physical model, and then the ANN you design to learn from the physical model as the choice of the 
ANN architecture is motivated by the type of emulated physics. 

We will move section 2.2 to the start of the methods, as suggested. 

Why not using Antarctica and Greenland real topographies to generate ice shelf geometry? This 
would avoid to generate synthetic geometries? 

As we state in the paper, there are insufficient real world examples of ice shelves to make a useful 
training set for our machine learning approach. In particular since we choose to predict melt rates 
beneath entire ice shelves, rather than subsets of ice shelves. As explained in our response to 
questions about the choice of architecture, this is an intentional choice to allow for the possibility of 
the network to make predictions based on non-local general circulation processes rather than just 
local melt processes. 

 

We will implement all minor comments suggested by Guillaume Jouvet in a revised version of the 
manuscript, with one exception: 

For clarity, I think you should call MELTNET like NEMO-trained MELTNET or at least include NEMO as 
you may train MELTNET with other models. 

It is certainly true that the approach we have used is not limited to being trained by NEMO, and we 
can add a comment regarding this in the paper, however we prefer to keep the name of the model 
concise and since only one version of the model exists we do not feel that it is necessary to specify in 
its name which ocean model the network has been trained on. 
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