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1 Model equations and parameters

We use a flowline model solving the 1-D Shallow-shelf approximation for ice flow. This assumes that flow is dominated by
longitudinal stretching and basal sliding, and the stress balance is:
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This equation expresses how driving stress (left-hand side) is balanced by a combination of longitudinal stretching (right-hand,
first term) and basal drag (right-hand, second term). p; is the density of ice, g is acceleration due to gravity, h is local ice
thickness, and ds/0x is the surface slope. u is the horizontal ice velocity, and A and n are the Glen flow coefficient and
exponent, respectively. C' and m are the sliding coefficient and exponent, respectively, which here assume a Weertman-type
sliding relationship.

The evolution of local ice thickness h is expressed by a continuity equation,
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where S is the local surface mass balance.

The terminus is assumed to always be at flotation, and thus the thickness boundary condition there is
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where p,, is the density of seawater, and b(z,) is the (negative) bed elevation at the terminus position. We assume the terminus

is not buttressed by an ice shelf, and so following Schoof (2007), the velocity boundary condition at the terminus is
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The inland boundary is assumed to be an ice divide where horizontal velocity is zero.
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Figure S1. Schematic diagram for numerical grid near the grounding line. Velocities are solved at grid points marked by open circles.
Thickness is solved via the continuity equation at grid points marked by black circles, and via the flotation condition at the gray point. The
continuity equation thus requires interpolating u to the A grid to calculate flux divergence. For the point A, this also includes a flux term

from frontal ablation (112).

We follow the numerical implementation described in detail in Schoof (2007). The thickness (k) and velocity (u) equations
are scaled to a grid from o0 =0 to o0 = 1, where the grounding line always corresponds to the grid point at o = 1. The grid
thus stretches with grounding-line variations. The h and u grids are staggered such that the last u-grid point corresponds to
the grounding line, and the last h-grid point where thickness is solved from the continuity equation is a half grid spacing (i.e.,
Ao /2) upstream from the grounding line. However, the grounding line thickness A is also solved at o = 1 via the flotation
condition (Fig. 1).

The equations are solved using finite differences with an implicit time step. The continuity equation (Eq. 2) is discretized
with an upwind scheme. Schoof (2007) provides a full description of the numerics. However, one difference from Schoof
(2007) is that we have added frontal ablation at the terminus, described as follows and illustrated in Fig. 1. Generally, flux

divergence at a thickness gridpoint ¢ is discretized as
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Note that u must be interpolated because of the staggered grid, both at the thickness point ¢ and its “upwind” point ¢ — 1. At
the last thickness grid point (¢ = V), there is an extra term in the output flux to account for the frontal ablation rate 1mn:
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Note that because it is assumed to occur at N + 1/2 where the thickness is hy (Fig. 1), it must be scaled by ,% This frontal
ablation is a very general flux anomaly at the terminus. Its effect is to require additional input flux to the the last grid point to
balance the continuity equation. Because the terminus is constrained to be at flotation, this results in a steeper surface slope

just upstream of the terminus.
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Figure S2. Ensemble retreat probabilities across variations in bed-peak height (which affect the steady-state distance from the bed peak) and
the amount of frontal ablation variability. a) Results for the original idealized glacier, which has mean frontal ablation of 30 m/yr, meaning
that the lower bound of zero frontal ablation truncates some anomalies, especially for greater cr 4. b) as for a), except for a glacier with
mean frontal ablation of 75 m/yr, which minimizes the effect of the zero bound. In either case, however, increasing o7 4 can have a large

effect on the probability of retreat.

2 Effect of different frontal ablation assumptions

Throughout our experiments, we impose frontal ablation anomalies drawn from distributions with o4 = 12-27 m/yr, but in
the numerical model we stipulate a lower bound of zero absolute frontal ablation. This avoids numerical issues associated
with adding ice at the terminus. However, it means that the most extreme negative anomalies are truncated, and the variability
is more asymmetric for greater o 4. Compared to a symmetric distribution of frontal ablation anomalies, this increases the
time-mean of frontal ablation, and therefore moves the time-mean of the terminus fluctuations inland (i.e., closer to the bed
peak in our idealized geometry). In principle, this affects the probability of retreat from the bed peak. Thus, our analysis in Fig.
3 of the main text does not fully separate the two effects of proximity to the bed peak and magnitude of variability upon the
probability of retreat, because increasing the magitude of o 4 also pushes the glacier closer to the bed peak, on average.

To assess this effect, we also considered a glacier with a higher mean frontal ablation (75 m/yr), so that the zero-bound plays
little role for the same range of o 4. That is, for the strongest variability of o4 = 27 m/yr, the lower bound on variability is
approximately 2.8¢. To compensate for higher frontal ablation while still yielding a similar steady-state terminus position, we
uniformly raised the entire bed with respect to sea level (approximately 60 m), bed kept the dimensions of the bed peak the
same with respect to the surrounding topography.

We compare the retreat probabilities in perturbed parameter ensembles for these two glaciers, adjusting the bed-peak height
to change the steady-state terminus position (Fig. S2). Panel (a) shows results from the original glacier (i.e., a subset of results

from Fig. 3c of the main text), while panel (b) shows results for the glacier with higher mean frontal ablation. Note that the
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steady-state distances from the bed peak (and the relation between bed-peak perturbations and this distance) are not exactly
the same between glaciers. However, the general results are the same: proximity to the bed peak and the magnitude of climate
variability are clear controls on the probability of retreat. Thus, while a zero-bound on frontal ablation may contribute slightly
to the increased probability of retreat as o 4 is increased, it appears the main effect of larger o 4 is simply the addition of
larger perturbations.

We also note that other nonlinearities may also affect the mean terminus position as variability is introduced or increased
(Robel et al., 2018). These issues have to be considered when initializing any simulation with noisy forcing, and are in part

why we include a transient spinup period in our simulations.

3 Synthetic attribution experiments for a range of parameters

Here we provide additional synthetic attribution analyses with different parameter choices. This helps illustrate the range of
probabilities that might be encountered in ensemble experiments, as well as the amounts by which an anthropogenic forcing
trend changes the probability of retreat. Frontal ablation trends are applied over the full 150-year experimental interval, and
except where noted, the glacier geometry and parameters are as described in the main text.

First, we consider consider a glacier with a higher bed peak (94 m) in order to lower the null probability of rapid retreat (the
simulations in Fig. 5 of the main text assumed a bed peak of 90 m) . We apply the same o4 and Ap 4 as in the main text (18
m/yr and 24 m/yr, respectively), with A4 applied over the entire 150-year simulation. The trend increases the probability of
retreat to approximately 0.5 (Fig. S3a). Such a case would constitute a strong probabilistic attribution statement, since rapid
retreat is very unlikely (P < 1%) in the absence of a trend, and thus the multiplier on probability is large. However, that
only 50% of simulations produce rapid retreat even with the trend indicates that retreat is still partially contingent on internal
variability.

As an alternative case, we consider stronger natural variability (cp4 = 24 m/yr) and 90 m bed peak, which increase the
null probability of retreat to approximately 0.25 (Fig. S3b). A trend of A4 = 32 m/yr (giving the same ratio of Apa/0p4)
increases the retreat probability to 0.81. This is still a marked increase—more than tripling the likelihood of rapid retreat—but
is distinct from a case where rapid retreat is nearly impossible without a trend.

Finally, to generalize further, we aggregate results from multiple ensembles in Fig. S4. Probability of retreat is plotted against
the magnitude of the forcing trend, with colors denoting different assumptions about the magnitude of variability and the time
of onset of the trend. In all cases, the probability of retreat tends towards unity as A 4 increases. However, differences in
or 4 (blue, red, and yellow markers) affect how rapidly the probability increases (and its baseline in the absence of a trend).
Additionally, a trend concentrated in the last 50 years (purple markers) is again seen to increase the probability of retreat less

than the early-onset trends.
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Figure S3. Synthetic attribution experiments with different parameter choices (compare to Fig. 5 in the main text). For clarity, not all
simulations are plotted. Left panels show simulations with no trend, center panels show simulations with an anthropogenic trend, and
right panels show the frontal ablation anomalies for both scenarios. a) Simulations assuming a slightly higher bed peak, yielding a lower
null probability of rapid retreat, and significantly increased probability due to the frontal ablation trend. b) Simulations assuming stronger
stochastic frontal ablation variability, yielding higher null retreat probability. A frontal ablation trend still increases the probability of retreat,

though by a lesser fractional amount.
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Figure S4. Retreat probabilities from 28 ensemble simulations with different frontal ablation variability and trends. Results are plotted
against the total frontal ablation trend, with colors corresponding to differences in the variability or trend onset as indicated. Purple markers

correspond to trends applied only over the last 50 years of the 150-year experimental interval; all others assume a 150-year trend.
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Figure SS. Simulations for the population of glaciers (compare to Fig. 7 of main text). (a) Terminus change (relative to year 0) for each
glacier, all forced with the same frontal ablation anomalies (top), which have no external forcing trend. Dashed lines show retreat thresholds.
(b) as for (a), except with an external forcing trend in frontal ablation, with a total increase of 30 m/yr over 150 years. (c) Box plot showing
proportion of glaciers in the population exceeding the retreat threshold, across six trend scenarios. “A frontal ablation" refers to the total
linear trend over 150 years. For each level of forcing trend, 20 simulations of the glacier population are run with different realizations of
climate variability, with the distribution of retreats indicated with box-and-whisker markers for each retreat threshold.
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4 Alternative retreat metrics for population of glaciers

In Fig. S5, we show the same synthetic attribution experiment for the population of glaciers as in the main text (Fig. 7), but with
multiple retreat thresholds (1, 2, and 4 km). Because each glacier has a different proximity to the closest bed peak (see Fig.
6¢), a single retreat threshold applied to the population is somewhat arbitrary. The fraction of glaciers counted as retreating
depends on the threshold for retreat, but considering multiple thresholds shows that fraction increases with higher forcing

trends regardless of threshold (Fig. S5c¢).

Code availability. Code for the flowline glacier model is available at https://doi.org/10.5281/zenod0.5245271, and additional scripts for the
ensemble analysis and figures are available in a public repository at https://github.com/johnerich/XXXX (will be added in final version).
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