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Abstract. Fragmentation of the sea ice cover by ocean waves is an important mechanism impacting ice evolution. Fractured ice

is more sensitive to melt, leading to a local reduction in ice concentration, facilitating wave propagation. A positive feedback

loop, accelerating sea ice retreat, is then introduced. Despite recent efforts to incorporate this process and the resulting floe size

distribution (FSD) into the sea ice components of global climate models (GCM), the physics governing ice breakup under wave

action remains poorly understood, and its parametrisation highly simplified. We propose a two-dimensional numerical model5

of wave-induced sea ice breakup to estimate the FSD resulting from repeated fracture events. This model, based on linear

water wave theory and viscoelastic sea ice rheology, solves for the scattering of an incoming time-harmonic wave by the ice

cover and derives the corresponding strain field. Fracture occurs when the strain exceeds an empirical threshold. The geometry

is then updated for the next iteration of the breakup procedure. The resulting FSD is analysed for both monochromatic and

polychromatic forcings. For the latter results, FSDs obtained for discrete frequencies are combined appropriately following a10

prescribed wave spectrum. We find that under realistic wave forcing, lognormal FSDs emerge consistently in a large variety of

model configurations. Care is taken to evaluate the statistical significance of this finding. This result contrasts with the power-

law FSD behaviour often assumed by modellers. We discuss the properties of these modelled distributions, with respect to the

ice rheological properties and the forcing waves. The projected output will be used to improve empirical parametrisations used

to couple sea ice and ocean waves GCM components.15

1 Introduction

Sea ice is a distinctive feature of both polar oceans and has a profound influence on our climate. It blankets a significant

fraction of the Earth, is hard to reach, and offers particularly harsh fieldwork conditions. Consequently, numerical modelling

is a valuable tool not only for forecasting ice extent evolution, but also to gain insights, at a global scale, into the physical

processes shaping this evolution. Hindcasting results straying away from observations (Stroeve et al., 2007) hints at not fully20

understood internal climate variability (Zhang et al., 2018; Castruccio et al., 2019) or missing physics, such as the effect of

waves on the ice cover (Squire, 2020). Global coupled models (GCM) have typically overlooked this impact, even if advances

were made in recent years (Roach et al., 2018; Boutin et al., 2020a). Waves can break the ice, especially as thinner ice becomes

prevalent. For instance, the 2012 record-low Arctic sea ice extent was amplified by wave activity (Parkinson and Comiso,
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2013). With thinner and weaker first-year ice becoming dominant (Kwok et al., 2009; Kwok, 2018), the sea ice grows more25

vulnerable to flexure-induced failure.

The marginal ice zone (hereafter MIZ), a belt of loosely to densely packed ice floes, serves as a buffer between the ice-free

open ocean and the pack ice; it is a region notably affected by waves (Dumont et al., 2011). The individual description of these

isolated, floating pieces of sea ice is not possible. Since the pioneering work of Rothrock and Thorndike (1984), researchers

have taken interest in describing the floe size distribution (hereafter FSD) and its effect on the climate system. In particular,30

fragmentation caused by ocean waves makes the floes more sensitive to melt (Steele, 1992; Perovich and Jones, 2014), even

for larger ones (Horvat et al., 2016), locally decreasing the ice concentration and allowing waves to propagate further into the

MIZ. It leads to more fragmentation, thus introducing an ice–wave feedback loop (Asplin et al., 2012; Thomson and Rogers,

2014).

Remote sensing and airborne observations of floe sizes (e.g. Rothrock and Thorndike, 1984; Toyota et al., 2006; Steer et al.,35

2008; Toyota et al., 2011; Wang et al., 2016) have led to the rooted conception that the FSD follows a power law; an – often

truncated – Pareto distribution. However, a variety of processes such as failure from wind or internal stress, lateral melting or

growth, ridging, rafting or welding, are susceptible to alter the FSD. Hence, it is unclear how wave action may have been behind

those findings, as wave conditions prior or during observations, as well as ice properties, are not always reported (Herman

et al., 2021). Additionally, a broad spectrum of acquisition techniques, areas and times of studies, and a priori assumptions40

led to parametrisations of this power law covering a large span of exponents. Stern et al. (2018) exposed that the widespread

distribution fitting technique used, least squares regressions in log-log space, is likely to have led to significant bias in these

exponent estimates.

Although an extensive body of observational research (e.g. Squire and Moore, 1980; Wadhams et al., 1988; Meylan et al.,

2014; Montiel et al., 2018) has been conducted on quantifying the attenuation of ocean waves within a field of ice floes, the45

reciprocal response of the ice to the waves is unsatisfactorily understood as direct observations of wave-induced floe breakup are

scarce, and localised both in time and space. Various models have implemented a breakup parametrisation, either to investigate

the FSD (Montiel and Squire, 2017; Herman, 2017) or to evaluate the impact of its introduction on other quantities such as

ice thickness or concentration (Roach et al., 2018). These parametrisations are usually based on either stress (Williams et al.,

2017; Montiel and Squire, 2017) or strain (Kohout and Meylan, 2008; Williams et al., 2013; Horvat and Tziperman, 2015;50

Boutin et al., 2018) or a combination of both (Dumont et al., 2011). When these quantities exceed a critical value, breakup is

triggered. These models cover a large span of complexities, from ad-hoc configuration with simplified geometry to inclusion

in a global sea ice model run in stand alone mode (Bennetts et al., 2017) or coupled to other GCM components (Roach et al.,

2019; Boutin et al., 2020a). In this study, we model the wave-induced breakup process in isolation with the aim of quantifying

the resulting FSD. We assume breakup happens on short time scales, as reported by Collins et al. (2015), allowing us to neglect55

other processes affecting the FSD.

A framework to model the evolution of the ice thickness distribution (ITD) has been introduced by Thorndike et al. (1975).

The ITD does not have a preferred functional form (Dupont et al., 2021) and is usually represented at the sub-grid level in sea

ice model, such as CICE (Hunke et al., 2021), by various thickness categories. Horvat and Tziperman (2015) extended this
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framework to include the floe size through a joint floe size and thickness distribution, which evolves under the action of separate60

physical processes such as thermodynamics, ridging and wave-induced breakup. Their formulation for the latter process relies

on generating a unidirectional, random sea surface elevation transect (aimed at representing a GCM grid cell) from a prescribed

spectrum. The elevation is then attenuated in the direction of propagation using an empirical fit to attenuation data generated

by Kohout and Meylan (2008) that depends on ice thickness and wave period. Finally, the resulting strain is derived and used to

parametrise the breakup. This scheme has then been implemented in CICE (Roach et al., 2018) to incorporate wave effects on65

the FSD, and, ultimately, sea ice dynamics and observable quantities such as ice concentration. Roach et al. (2019) further built

upon this implementation by coupling CICE to a wave model, effectively delegating the wave attenuation previously handled

within CICE.

Zhang et al. (2015) proposed a FSD theory treating breakup as a stochastic process redistributing floe sizes and abstracting

the wave forcing into a model parameter, a so-called participation factor. The authors also included formulations for other70

FSD-rearranging processes, such as lead opening and ridging, but contrary to Horvat and Tziperman (2015) they make the FSD

evolve alongside the ITD rather than considering the joint distribution. They extended their approach to an implementation in

the sea ice model PIOMAS (Zhang et al., 2016), proposing a functional for the participation factor. They made it depend on

the local wind, ice concentration, floe size and ice thickness. Hence, locally generated waves are taken into account, but the

propagation and attenuation of swell waves are not included in a straightforward manner. The authors did not clarify the choice75

of this functional form, which depends on empirical parameters calibrated to replicate observations. This issue is dealt with

assuming a power law distribution of floe sizes and the ensuing scale invariance property. Additionally, they fit power laws

to their model results, without clarifying the fit method used nor the bias that may be introduced by binned data (Stern et al.,

2018). In contrast, the approach used by Roach et al. (2018) allows for more flexibility as no parametric form is expected for

the FSD. Nevertheless, the model sensitivity analysis conducted by Zhang et al. (2016) revealed compelling improvement on80

ice extent simulation when considering their FSD formulation.

Recent numerical experiments have been conducted to investigate the wave effect on the FSD without a priori assumptions

on the distribution shape. Montiel and Squire (2017) extended the 3D linear wave scattering model of wave attenuation in the

MIZ proposed by Montiel et al. (2016) by including a stress-based failure criterion. They investigated the FSD obtained after

repeated breakup events and found that near normal or bimodal distributions emerged for a wide range of wave and ice con-85

ditions. However, computational constraints limited their ability to perform simulations on sufficiently large scales to conduct

robust statistical analyses of these distributions. Herman (2017) coupled a non-hydrostatic, nonlinear wave model to sea ice

represented as bonded grains, hence relaxing assumptions inherent to potential flow theory and allowing for the computation

of a transient solution; at the expense of computational efficiency, limiting the usability of the model to smaller scale config-

urations. The resulting FSDs were narrow, bounded distributions governed by the grain sizes. Both approaches rely on some90

binning of the floe sizes, either directly (Montiel and Squire, 2017) or indirectly though the use of discrete elements (Herman,

2017), effectively ensuing discrete distributions. Recent observations of floes directly impacted by waves (Dumas-Lefebvre

and Dumont, 2020; Herman et al., 2021) and laboratory experiments (Herman et al., 2018; Dolatshah et al., 2018; Passerotti

et al., 2021) also suggest contrasting distributions. Despite indications that the power law FSD is not universally appropriate,

3

https://doi.org/10.5194/tc-2021-391
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



or linked to wave-induced breakup, wave modellers still use it to parametrise the MIZ in wave models (Williams et al., 2017;95

Boutin et al., 2020a, b).

We propose a model of wave–ice interaction, under monochromatic forcing, in an idealised domain. Our model takes wave

scattering and dissipation into account and includes a strain-based breakup parametrisation. We let a FSD emerge by repeatedly

breaking off floes from a semi-infinite ice cover, and we link the resulting distribution to the ice properties and the wave forcing.

This approach is similar to the work presented by Montiel and Squire (2017); however, we simplify the geometry in order to100

generate sufficient breakup for robust statistical analysis. We observe that under a realistic wave forcing, our model generates

FSDs appropriately described by lognormal distributions; this holds in a large span of model configurations. We discuss the

effects of the wave and the ice properties on the distribution parameters. Even though we acknowledge that any parametric

distribution is likely to be an inaccurate depiction of a real ice cover, they have the advantage of efficiently encoding the

informations to be exchanged between GCM components (Horvat and Tziperman, 2015).105

2 Preliminaries

We consider surface gravity waves propagating in a two-dimensional fluid domain of constant, finite depth H associated with

a Cartesian coordinate system (x,z), where x and z are the horizontal and vertical coordinates, respectively. Translational

invariance is assumed in the second horizontal direction. We assume the fluid to be inviscid and incompressible with density

ρw. The flow is assumed to be irrotational so that the fluid velocity can be described by the gradient of a scalar potential Φ,110

which satisfies Laplace’s equation:

∇2Φ = 0. (1)

We place an array of Nf + 1 non-overlapping ice floes, modelled as floating visco-elastic plates, in the domain; two ad-

jacent floes are separated by open-water. Their mechanical behaviour is determined by their density ρ, thickness h, flexural

rigidity D = Y h3

12(1−ν2) (where Y and ν are respectively Young’s modulus and Poisson’s ratio), and viscosity γ; their draught115

is d= ρ
ρw
h. Floe j, where j ∈ {0, . . . ,Nf}, is located in space by the horizontal coordinate of its left edge xj (ordered so

that xj < xj+1) and its length Lj , with LNf
being infinite. At rest, the fluid region covered by floe j is encompassed in

the sub-domain Ωfj = [xj ,xj +Lj ]× [−H,−d]. The interface with the ice ∂Ωfj is on z =−d. We denote Ωf =
⋃Nf

0 Ωfj and

∂Ωf =
⋃Nf

0 ∂Ωfj . The ice-free sub-domain left of the floe-covered sub-domain Ωfj is Ωwj so that at rest,

Ωwj =





[xj−1 +Lj−1,xj ]× [−H,0], j > 0

(−∞,x0]× [−H,0], j = 0
. (2)120

The horizontal bottom boundary ∂ΩH is at z =−H and the interface ∂Ωwj between the atmosphere and Ωwj is at z = 0 when

the fluid is at rest. We define Ωw and ∂Ωw in the same way as Ωf and ∂Ωf . The whole fluid domain is Ω = Ωw ∪Ωf . Our

notations and the geometry of the model are summarized on Fig. 1.

The system is forced by a monochromatic plane wave of angular frequency ω propagating in the positive x direction. The

wave amplitude a is assumed to be small compared to the wavelength. The perturbed top boundary of the fluid is located at125
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z = −H
∂ΩH

z = 0

z = −d

x = xj x = xj + Lj

h∂Ωf
j

Ωf
j

∂Ωw
j+1

Ωw
j+1

x = xj+1

Figure 1. Geometry of the model at rest. Wave forcing would alter the fluid boundaries around z = 0 and z = −d.

z = η(x,t), whether it is an interface with the atmosphere (in which case η ≈ 0) or with an ice floe (in which case η ≈−d).

We further set Φ = Re[φ(x,z)exp(−iωt)] with φ a time-independent, complex-valued function.

We consider the seabed to be impervious, hence not allowing for normal flow, so that on ∂ΩH
∂φ

∂z
= 0. (3)

The small amplitude forcing allows us to use linear surface waves theory in Ωw, leading to the boundary condition130

∂φ

∂z
=
ω2

g
φ (4)

on ∂Ωw, where g is the acceleration due to gravity. We model the flexural motion of the ice floes using the modified Kirchhoff-

Love plate theory introduced by Robinson and Palmer (1990). Coupling to the fluid motion in Ωf yields
(
D

ρwg

∂4

∂x4
+ 1− ω2d

g
− i γω

ρwg

)
∂φ

∂z
=
ω2

g
φ (5)

on ∂Ωf . Eqs. (4) and (5) stem from the assumptions that under small-amplitude wave forcing, waves do not break and fluid135

is at all time in contact with the bottom of the ice. Details on the derivations can be found in e.g. Fox and Squire (1994) or

Williams et al. (2013).

We also neglect the surge motion of the floes, meaning that

∂φ

∂x
= 0 (6)

on {xj ,xj +Lj}× [−d,0].140

We finally add the free edge conditions

∂3φ

∂x2z
= 0,

∂4φ

∂x3z
= 0 (7)

on {xj ,xj +Lj}×{−d}, which assume that bending moment and vertical stress vanish at the floe boundaries, respectively.

The boundary conditions given in Eqs. (3)-(7) together with Eq. (1) in its time-independent form, ∇2φ= 0, complete our

boundary value problem.145
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3 Methods

3.1 Wave scattering

In any sub-domain Ωwj or Ωfj , the velocity potential is decomposed as the superposition of a forward-travelling and a backward-

travelling plane waves, using the ansatz
[
c+ei(kx−θ

+) + c−e−i(kx−θ
−)
]
ζ(z), where c+, c− ∈ C are coefficients to be deter-

mined and θ+,θ− ∈ [0,2π) are phase shifts introduced to simplify analytical derivations and improve numerical stability.150

Solving the boundary value problem described in Sect. 2 in all sub-domains, the potential is expanded into series of wave

modes

φ=





∞∑

n=0

[
cw+
j−1,ne

i(kw
n x−θw+

j−1,n) + cw−j,n e
−i(kw

n x−θw−
j,n )
]
ζwn (z), (x,z) ∈ Ωwj

∞∑

n=−2

[
cf+
j,ne

i(kf
nx−θf+

j,n) + cf−j,ne
−i(kf

nx−θf−
j,n)
]
ζfn(z), (x,z) ∈ Ωfj

(8)

where superscripts w or f are related to an open-water or floe-covered sub-domain.

The wave numbers {kwn | n≥ 0} are the roots of the dispersion relation155

k tanh(kH) =
ω2

g
(9)

such that kw0 is a positive real number (therefore associated with left- and right-propagating wave modes in Ωw) while

{kwn | n > 0} are purely imaginary numbers with positive imaginary part, sorted by ascending imaginary part (associated with

exponentially decaying evanescent wave modes).

Likewise, the wave numbers {kfn | n≥−2} are the roots of the dispersion relation160

(
D

ρwg
k4 + 1− ω2d

g
− i γω

ρwg

)
k tanh(k(H − d)) =

ω2

g
(10)

such that {kfn | n >−2} are complex numbers in the first quadrant of the complex plane, sorted by ascending imaginary part

for n > 0, and kf−2 is a complex number in the second quadrant of the complex plane.

Since O
[
Re
(
kf0

)]
�O

[
Im
(
kf0

)]
, kf0 is associated with left- and right-propagating wave modes in Ωf . On the con-

trary, O
[
Re
(
kfn
)]
�O

[
Im
(
kfn
)]

for n > 0: these modes are associated with exponentially decaying wave modes. Finally,165

O
[
Re
(
kfn
)]

=O
[
Im
(
kfn
)]

for n ∈ {−2,−1}, so these two roots are associated with attenuating, propagating wave modes.

Details on these behaviours can be found in Williams et al. (2013). In the special case where γ = 0 (purely elastic floes) then

kf0 is a positive real number, kf−1 is in the first quadrant of the complex plane, kf−2 =−kf−1, and {kfn | n > 0} are purely imag-

inary numbers with positive imaginary part. We note that when 1− ω2d
g becomes negative (large frequencies or thicknesses),

instead of having the three distinct roots kf−2,k
f
−1 and kf0 , Eq. (10) may admit one double root or one triple root (Williams,170

2006, p. 39). Therefore, we enforce ω ≤
√

g
d in this study to avoid this issue. For an ice thickness of 1m, it corresponds to a

minimum admissible period of approximately 1.90s.
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For any wave mode n, floe j radiates four waves: two from its left edge (with coefficients cw−j,n , cf+
j,n) and two from its right

edge (with coefficients cw+
j,n , cf−j,n) with the exception of the leftmost, semi-infinite floe (j =Nf ) whose right edge is ignored.

The coefficients cw+
−1,n and cf−Nf ,n

are prescribed and represent the right-travelling incident wave forcing in Ωw0 and the absence175

of forcing in ΩfNf
, respectively: only cw+

−1,0 =−i gωa is non-zero. The quantity θ = θw+
−1,0 is an arbitrary phase associated with

the forcing. We also note that {θw+
−1,n | n > 0} and {θf−Nf ,n

| n≥−2} do not take part in the computation and are left undefined.

The remaining phases are determined to cancel out exponential terms in Eq. (8) when evaluating φ at the edge radiating the

wave, i.e.

θw+
j,n = kwn (xj +Lj) ; θw−j,n = kwn xj ; θf+

j,n = kfnxj ; θf−j,n = kfn (xj +Lj) . (11)180

Finally, the functions

ζwn (z) =
cosh(kwn (H + z))

cosh(kwnH)
, z ∈ [−H,0] ; ζfn(z) =

cosh(kfn(H + z))

cosh(kfn(H − d))
, z ∈ [−H,−d] (12)

are vertical basis functions in the free-surface sub-domains and the ice-covered sub-domains, respectively.

3.1.1 Scattering by one floe edge

We obtain the solution to the multiple scattering problem of the incident wave by the ice floes by imposing continuity of185

pressure and normal velocity across the vertical boundaries between adjacent ice-free and ice-covered sub-domains, i.e. at each

floe edge. These conditions are enforced by matching φ and u= ∂φ
∂x on both sides of each interface. The single edge matching

problem is solved using an integral equation method, as described by Williams and Porter (2009) and Mosig (2018).

Considering the scattering by the left edge of floe j and assuming knowledge of cw+
m−1,n and cf−m,n, the method generates a

set of scattering relations relating these incident wave modes coefficients to those associated with wave modes propagating or190

decaying away from the edge, cf+
j,n and cw−j,n . When truncating the series in Eq. (8) to Nv evanescent modes, the relations can

be summarised by the matrix equation


cf+

j

cw−j


=


Tfw

j Rf
j

Rw
j Twf

j




Swj 0

0 Sfj




cw+

j−1

cf−j


 . (13)

where Tfw ∈ CNv+3×Nv+1, Twf ∈ CNv+1×Nv+3, Rf ∈ CNv+3×Nv+3, Rw ∈ CNv+3×Nv+3 are matrices respectively de-

scribing transmission and reflection of waves in either directions through the floe edge, cw±j =
(
cw±j,0 , . . . , c

w±
j,Nv

)T

, cf±j =195
(
cf±j,−2, . . . , c

f±
j,Nv

)T

are vectors of unknown coefficients, and Sw ∈ CNv+1×Nv+1, Sf ∈ CNv+3×Nv+3 are diagonal phase shift

matrices.

By symmetry, the scattering by the right edge of floe j is described by

cw+

j

cf−j


=


Twf

j Rw
j

Rf
j Tfw

j




Sfj 0

0 Swj+1




cf+

j

cw−j+1


 . (14)
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The reflection and transmission matrices depend only on the quantities present in the dispersion relations, Eqs. (9) and (10).200

We note that in the arrangement considered here, these quantities are the same for every floe: the matrices need only be

computed once. Our model can however handle a general case with floes of varying thicknesses, flexural rigidities, densities

and viscosities. The information carried by the positions and dimensions of the floes are encapsulated in the phase shift matrices

which are truly floe-dependent.

A sensitivity analysis (not shown here) proved Nv = 2 to be adequate in terms of convergence. Therefore, we use it in the205

rest of this study.

3.1.2 Scattering by an array of floes

Wave fields radiated by adjacent floes are coupled, which is clearly shown by Eqs. (13) and (14). To solve the multiple scattering

problem described by these equations, we take advantage of the sparsity of the matrix representing the combined linear system,

using a dedicated solver (Demmel et al., 1999; Virtanen et al., 2020). Specifically, we solve210

Mc = f (15)

where M is a tridiagonal block matrix and c the vector of unknown potential coefficients.

An array of Nf + 1 finite floes leads to the matrix

M̃ =




M0 U1 0 · · · 0

L1 M1 U2

...

0 L2 M2
. . . 0

...
. . . . . . UNf

0 · · · 0 LNf
MNf




(16)

with each block element of M̃ is a square matrix of size 4(Nv + 2); 0,1 denote 0-filled matrices and identity matrices,215

respectively, with sizes compatible with other matrices in the same rows and columns.

As the last floe is here infinite, we obtain M introduced in Eq. (15) by trimming down M̃ from its last 2(Nv + 2) rows and

columns. While the size of M is [2(Nv + 2)(2Nf + 1)]2, it has only 4(Nv + 2)
[
Nf (2Nv + 5) + 1

2

]
non-zero elements: this

number grows linearly with Nf , instead of quadratically.

The vector of unknown coefficients is220

c =
(
c0 · · · cNf−1 cw−Nf

cf+
Nf

)T
, with cj =

(
cw−j cf+

j cf−j cw+
j

)T
, (17)

and the forcing term

f = eiθ
(
Rw

0 cw+
−1 Twf

0 cw+
−1 0 · · · 0

)T
. (18)

Building M and f and solving for c is linear in time for O (Nf )> 10. For Nf = 105, these operations are done in around

10ms on an Intel Core i5-6300U 2016 laptop. Solving Eq. (15) for c fully determines the spatial part of the potential field in225

Ω.
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3.2 Breakup parametrisation

To parametrise the breakup, we build upon the commonly used strain-based approach (e.g., Kohout and Meylan, 2008; Horvat

and Tziperman, 2015). When using the plane stress approximation and our symmetry assumption, the strain ε̃j undergone by

ice floe j is230

ε̃j (x′,z′) =−z′ ∂
2w

∂x′2
(19)

where (x′,z′) describes a coordinate system local to the floe, defined as x′ = x−xj and z′ = z−
(
h
2 − d

)
= z−h

(
1
2 −

ρ
ρ0

)
,

hence setting the origin on the intersection of the floe’s left edge and horizontal middle surface. Under the plane stress approx-

imation, the vertical displacement field undergone by the floe, w(x,t), does not depend on z′: w(x,t) = η(x,t). As |z′| ≤ h
2 ,

the maximum (in absolute value) strain, εj , is located on either surface of the floe, i.e. z′ =±h2 . It follows that235

εj (x′) =
h

2

∣∣∣∣
∂2η

∂x′2

∣∣∣∣=
hT

4π

∣∣∣∣Re
[
i
∂2

∂x′2
∂φ

∂z

]∣∣∣∣ (20)

with T = 2π
ω the wave period.

Floe j is set to break when

max
x′∈[0,Lj ]

εj (x′)> εc (21)

where εc is an empirically determined strain threshold.240

We situate the breakup point at

xb = argmax εj (22)

so that a floe of length Lj is turned into two floes of length xb and Lj −xb. Hence, the number of floes at most doubles, if all

the floes break in a single simulation.

3.3 Numerical experiment set-up245

The values of the parameters kept fixed across all simulations are given in Table 1. Our experiments unwind as follows:

1. The model is initialised with a set of physical parameters as input and a single, semi-infinite floe.

2. The scattered wave field is determined and the strain field evaluated for every floes in the domain. All the floes for which

the conditions for breakup are met are split and the domain is updated.

3. The second step is repeated until none of the floes breaks or a prescribed number of iterations reached.250

These steps are summarized in Fig.2. The output is the set of coordinate-length pairs describing the final geometry.

For a given iteration, all floes are scrutinised for breakup first, then their positions are updated. To prevent floes from over-

lapping, they are assigned random new locations, preserving their order. As we do not build any energy dissipation mechanism
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One infinite,
zero finite floes

• Solve scattering
• Update wave field
• Compute strain fields

Locate
strain maxima

ε ≥ εc
(at least one floe)

ε < εc
(all floes)

• Split relevant floes
• Update geometries

One infinite,
zero to N finite floes

Figure 2. Outline of the numerical experiment.

Table 1. Fixed model parameters and their values.

Symbol Name Value

g Acceleration of gravity 9.8m s−2

ρ Ice density 922.5kg m−3

γ Ice viscosity 20 Pa s m−1

ν Ice Poisson’s ratio 0.3

Y Ice Young’s modulus 6GPa

ρw Ocean density 1025kg m−3

H Ocean depth 2400m

for the fluid in Ωw, the width of the gap between the floes impacts the phase of the wave, but not its amplitude as it reaches floe

j+ 1 after transmission by floe j. Thus, whether floe j+ 1 breaks or not is unlikely to be affected by this gap, but the breakup255

location is. To account for this introduced randomness, we run each simulation as an ensemble with 50 separate realisations. We

ran a sensitivity analysis (not shown here) to confirm that the choice of the parameters governing the random placement does

not affect the resulting distribution of floe lengths and removes the potential effect of local resonances in any single realisation.

The final result extracted from the simulation is the set of newly formed floe lengths, excluding the semi-infinite floe on the

right of the domain, considered as a steady state FSD.260

4 Monochromatic forcing

Before considering the spectrum parametrisation we develop in Sect. 5, we investigate the FSD our model generates under

monochromatic forcing with prescribed wave period T , corresponding to angular frequency ω = 2π
T . In addition to wave

frequency, we seek to characterise the effect of the ice thickness h and the strain breakup threshold εc on the FSD. Figure 3 (a,b)

show example histograms of FSDs obtained for T = 8s and a= 50cm, while Fig. 3 (c,d) show the influence of T on the FSD265

dispersion. Strain threshold in the range 3× 10−5 to 8.5× 10−5 have been reported from scarce field measurements (Kohout

and Meylan, 2008).
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Figure 3. Impact of varying T , εc and h on the FSD with a= 50cm. (a) Histograms of the floe length for different εc. The bin width is 1m

and T = 8s. (b) Same as (a) but for different h. (c) Evolution of the median floe size, when increasing εc, for different T . The shaded area

indicates the corresponding interquartile range. (d) Same as (c) but for increasing h. In (a,c) h= 1m; in (b,d) εc = 4× 10−5. In the lower

panels, the contrasting dots indicate the values plotted in the corresponding top panels. All plotted quantities are ensemble averages over 100

realisations.

We obtain right-skewed distributions, with a positive relationship between the ice mechanical resistance (either through its

thickness or its strain threshold before failure) and the presence of larger floes. Qualitatively, increasing εc has only a moderate

effect on the FSD and seems to be only affecting its mode, shifting it towards larger floes, while its shape remains the same.270

However, increasing h not only shifts the distribution in a similar way, but also widens its spread and thickens its tail. For

both these variables, the median floe size tends to increase and the interquartile range to widen with increasing T , as shown in

Fig. 3 (c,d). In addition, for a fixed T , the median floe size increases steadily with εc or h, confirming the behaviour observed
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Figure 4. (a) Number of floes at the end of a simulation for different εc. (b). Same as (a) but for different h. (c) Minimum floe size in a

sample for different εc. (d) Same as (c) but for different h. In (a,c) h= 1m; in (b,d) εc = 4× 10−5; T = 8s for all panels. The wavelength

axis corresponds to the open-water propagating wavelength at a given T . The plotted lines are ensemble average, the shaded areas indicate

one standard deviation.

in the histograms. The dispersion in floe sizes does remain constant for increasing εc, at the exception of the shortest waves,

while it increases with h. The dispersion is also enhanced for longer waves.275

The final number of floes (number of floes reached when the forcing wave field no longer breaks any floe during a simulation)

depends sharply on T , as shown on Fig. 4 (a,b). Three regimes can be identified: a crisp increase with T for lower periods

(higher frequencies), then a plateau phase, preceding a sudden decrease at higher periods (lower frequencies). The precise

delimitations of these regimes depend on the ice properties, and can be explained by the non-linear relationship between T , h,

and the undergone strain. Increasing h or T explicitly increases the maximum strain (Eq. (20)). However, increasing T leads to280

a longer wavelength, translating to a decline in magnitude of the surface curvature term, offsetting the increase. Additionally,
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waves propagate with a longer wavelength under the ice than in open water: the thicker the ice, the longer the wavelength

becomes. Therefore, increasing h also decreases the surface curvature. Lastly, the fraction of wave energy transmitted by a floe

edge, close to 1 for longer waves, drops as period decreases (Fox and Squire, 1990); the precise magnitude of this dip depends

on floe length. When considering multiple scattering, these reflections exponentially stack up, making a few floes an effective285

barrier to low-period waves propagation.

The minimum floe size, shown in Fig. 4 (c,d), also follows three regimes roughly delimited by the same boundaries: a sharp

decrease from a local maximum when increasing T from the lowest periods, then a steady growth (appearing to be evolving

linearly with the wavelength) from a local minimum, corresponding to the plateau, and a more abrupt increase corresponding

to the drop at higher periods. We observe this qualitative behaviour independently from the values of εc or h. An increase in290

minimum floe size with the wavelength is expected. The initial decrease, for shorter wavelength, corresponds to simulations

with a very small number of floes: as aforementioned, floes effectively reflect waves of low period.

5 Polychromatic forcing

5.1 Wave spectrum

Our model, as described in Sect. 2 and Sect. 3, parametrises the wave forcing with a single amplitude–frequency pair. To esti-295

mate the effect of a developed sea on the FSD fL, we take the weighted average of distributions resulting from monochromatic

model runs, with weights taken from the energy density S of a theoretical ocean spectrum over a truncated frequency interval

[ωmin,ωmax] so that

fL(l) =

∫ ωmax

ωmin
f̃L(l,ω)S(ω)dω
∫ ωmax

ωmin
S(ω)dω

. (23)

Several parametrisations exist for S; we choose to use a Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964) as it300

can be easily adapted to depend only on the significant wave height Hs (Ochi, 2005), giving

S(ω) = c1
g2

ω5
exp

(
−c2

g2

ω4Hs
2

)
(24)

where c1 = 8.1× 10−3, c2 = 3.24× 10−2 are non-dimensional constants. This spectrum has been used in previous wave-sea

ice interaction studies (e.g., Kohout and Meylan, 2008; Dumont et al., 2011) and is a reduced version of the two-parameter

Bretschneider spectrum, used in this context as well (e.g., Horvat and Tziperman, 2015, 2017; Montiel and Squire, 2017).305

We evaluate Eq. (23) numerically on 200 linearly spaced frequency bins, setting Hs = 2a. As by definition

Hs = 4

√√√√√
+∞∫

0

S(ω)dω, (25)

the bounds of integration ωmin and ωmin are set so that the tails 16
Hs

2

∫ ωmin

0
S(ω)dω = 16

Hs
2

∫ +∞
ωmax

S(ω)dω = 5× 10−7, which

captures a significant part of the spectrum. If necessary, ωmax is adjusted to ensure ω ≤
√

g
d , as discussed in Sect. 3.1.
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For each frequency, we draw an FSD f̃L at random from the 50 realisations of this configuration. These FSDs are combined310

as aforementioned. We repeat (with replacement) this random drawing stage 500 times in order to constitute a distribution

ensemble from which statistics can be derived.

5.2 Reference configuration

We consider a reference configuration whereHs = 1m, h= 1m, εc = 4×10−5; this gives us frequency bounds that correspond

to the wave period varying from 1.90 to 9.23s. In Sect. 5.4, we discuss variations around this scenario.315

The resulting FSD, shown in Fig. 5 (a), is remarkably well fitted by a three-parameter lognormal distribution. A random

variable L is said to follow such a distribution with parameters µ, σ2, τ if log(L− τ) is normally distributed with mean µ and

variance σ2:

L∼ LN
(
µ,σ2, τ

)
⇔ log(L− τ)∼N

(
µ,σ2

)
. (26)

The associated density function fL(l) is positive for l > τ : hence τ is the smallest floe size describable by this statistical320

model. The scale parameter s= expµ has the physical dimension of the random variable – in this study, a length. The median

and the mode of the distribution are given by

median = τ + s ; mode = τ + sexp
(
σ−2

)
. (27)

More details on the lognormal distribution can be found in Crow and Kunio (1988). In the following, we use the notation

θ = (s,σ,τ) for the parameter vector.325

We obtain a point estimate θ̂ with maximum likelihood estimation (see e.g. Azzalini, 1996; Crow and Kunio, 1988). Among

the ensemble, θ̂ seems to be normally distributed, with strong correlations between the three parameters and small variances.

Therefore, we use the mean vector θ̄ to parametrise an underlying representative lognormal distribution, depicted on Fig. 5 (a,c)

as blue lines. The linear combination of lognormal distributions does not have a simplified expression and is not, generally,

a lognormal. By defining the mean distribution as a lognormal parametrised with θ̄, we ensure this model is preserved. This330

can be justified by the low dispersion of θ̂. In that regard, our random sampling aims at providing a confidence interval on

the parameters values. The transformation between σ2 and σ and between µ and s are obviously not linear. However, for the

range of values considered here, we find that averaging before or after taking the transformation leads to an absolute relative

difference of less than 1% (median for s: 4× 10−2 %; median for σ: 4× 10−2 %).

We outline the goodness of fit with a quantile-quantile plot shown in Fig. 5 (b). We standardised the data using (26) before335

deriving the quantiles, to ease the comparison between the 500 ensemble elements and utilize the symmetry property of the

normal distribution. Therefore, an ideal match would have the data lying on the main diagonal. We observe departure from this

line for larger floes, the shallower slope suggesting the lognormal parametrisation overpredicts large floes that are not generated

by the physical model. However, as 68% of the theoretical distribution belong between the ±1 ticks of the horizontal axis, and

95% belong between the ±2 ticks, we deem the fit to be excellent. Figure 5 (c) is another visualisation of the goodness of340

fit, comparing the (strictly speaking, complementary) empirical cumulative distribution functions (CDFs) to the CDF of the
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Figure 5. (a) FSDs for the reference configuration: lognormal fits to separate ensemble elements (thin black lines) and average distribution

as detailed in text (thicker blue line). The underlying histogram depicts the ensemble average distribution. (b) Normal quantile-quantile plots

of the standardised data: the coloured area corresponds to one standard deviation around the mean of the quantile-quantile lines; the dashed

line indicates the main diagonal. (c) Cumulative FSDs: individual empirical CDFs (thin black lines) and CDF of the average distributions

represented in (a) (thicker blue line).
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theoretical average lognormal distribution. They diverge significantly only from the 10−2 tick, indicating agreement for more

than 99% of the range of the data. As shown in Fig. 5 (c), the CDF of a random variable following a lognormal distribution

could easily be misinterpreted as piecewise straight lines when represented on a log-log plot. This kind of graph is often used

for field observations and is at the root of the ingrained power law or split power law conclusion.345

5.3 Sub-domain FSD evolution

We do not expect the FSD to have the same shape all across an ice pack or even across the MIZ. To illustrate this effect, we

analyse the evolution of the distribution when considering a subset of the domain.Because of our spectrum parametrisation and

our distributions being generated in parallel, the definition of the ice edge is not clear, as it is period-dependent. Therefore, we

use a sliding window with bounds relative to the total length of ice in each period category. We estimate the density f̃L;binf–bsup ,350

with 0≤ binf < bsup ≤ 1, not on all floe lengths {Lj | j ∈ {0, . . . ,Nf − 1}} but on the subset
{
Lj | binf <

Λj
Λ
≤ bsup

}
(28)

where Λj =
∑j
m=0Lm is the cumulated floe size up to floe j and Λ = ΛNf−1 is the total length of finite ice in the domain.

We ignore the open water gaps in the process. These monochromatic densities are then combined as detailed in Sect. 5.1. The

difference bsup− binf gives the width of the sliding window, that we keep fixed at 0.5. The results of this procedure, applied to355

the reference configuration introduced in Sec. 5.2, are presented in Fig. 6.

The distribution remains right-skewed. Our breakup parametrisation generates floes tending to get smaller as they get further

away from the semi-infinite floe marking the right boundary of the domain. This is true across all periods. As a consequence,

for increasing binf the frequency of larger floes grows, shifting the distribution mode towards larger floes while thickening the

distribution tail. This behaviour is similar to the effect of increasing the thickness, presented in Fig. 3 (b).360

We considered an alternate window parametrisation based on the ratio Λj

maxω Λ . Results were qualitatively similar and we do

not attempt to discuss the differences further.

5.4 Forecast based on fitted parameters

We expand the analysis conducted in Sect. 5.2 to other combinations of Hs, h, εc. For simplicity, even though we did conduct

multivariate simulations, we focus here on investing the effect of varying one variable at a time from their reference values.365

Hence, when the value of one variable is specified, the other variables assume their reference values, stated in Sect. 5.2. We

assess the suitability of fitting the lognormal model though exploratory analysis, as in Sect. 5.2. Histograms of these simulations

are presented in Appendix A.

We observe a remarkably good fit over most of the parametric space explored, with a few notable limitations. The smallest

waves (significant wave heights between 40cm and 60cm) give rise to different patterns, which we do not analyse further.370

This is mostly due to them causing small amounts of breakup, leading to a limited number of floes. The empirical distributions

obtained with thicker ice (h > 1.4m) are less skewed, have a more pronounced peak and thinner tails than the fitted lognormals.

Across most configurations, some limitations arise in the tails, with fits for stronger ice overpredicting larger floes, while fits
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Figure 6. FSDs, estimated by kernel density estimation, in the whole domain and various sub-domains. The area under the partial FSDs

are scaled by the number of observations, so that summing the first and the last windows, covering non-overlapping halves of the domain,

yields the whole domain FSD. The number of floes, relative to the total number of floes in the domain, decreases steadily from 0.61 to 0.39.

Densities averaged over 500 realisations.

for higher waves underpredict them. We report the estimated parameters, averaged over 500 realisations for each configuration,

in Fig. 7 (a–i). We note in Fig.7 (g) that τ̂ < 0 for large enough wave height, which would allow the model to generate negative375

floe sizes. This issue will be discussed in the next section. Additionally, we compute the Kolmogorov–Smirnov statistics to

further qualify the goodness of fit. The evolution of this statistics is presented in Appendix B.

As can be seen in Fig. 7, the lognormal fit parameters have fairly simple dependences on the physical variables and can be

interpolated between computed values, at the exception of the low-amplitude outliers (Fig. 7 (d)). We observe in Fig. 7 (k,l) that

the mode of the FSD (see Eq. (27)), or modal floe size, grows with stronger ice, i.e. thicker floes or a larger strain threshold. This380

behaviour is analogous to the monochromatic case, as reported in Fig. 3. More surprisingly, the modal floe size first decreases

with larger waves, reaching a local minimum for Hs = 1.2m before increasing with wave height. As the peak propagating

wavelength is proportional to the significant wave height, this non-monotonic evolution does not support wave properties alone

govern the dominant floe size, as stated by Herman et al. (2021).

The distribution parameters do not have a clear physical significance by themselves. Beyond the estimation of summary385

statistics, their main interest is the generation of floe sizes samples without the numerical cost of running the physical model.

We illustrate such forecasts, and the associated errors, in Fig. 8. We use the mean distributions, parametrised by θ̄ for each

model realisation, to determine the ranges of floe sizes that would be predicted by the lognormal model. Every vertical slice in

Fig. 8 (a–c) is a representation of the predicted FSD for the relevant physical variable on the horizontal axis.
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Figure 7. (a–i) Estimated lognormal parameters for different model configurations. (j-l) Distribution mode derived from the estimated

parameters. Mean values with one standard deviation error bars. The reference configuration is highlighted with a contrasting colour.

Figure 8 (b,c) again show the dependence of the FSD on h and εc lead to a behaviour similar to the monochromatic case.390

Increasing the ice thickness shifts the median floe size towards larger values and increases the dispersion, the distribution

covering a larger span, especially for floes sizes beyond the 75th percentile. The smaller floe categories, below the 50th per-

centile, are shifted upwards as well and do not contribute to the increasing spread. Increasing the strain threshold sparks a

steady increase in median floe size without much effect on the dispersion for εc ≥ 3× 10−5. The prevalence of smaller floes,

however, tends to build up slightly. Increasing the significant wave height (hence, indirectly, the peak wavelength) leads to a395
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Figure 8. (a–c) Ranges of forecast distributions, generated with mean estimated parameters. The lightest colour area on each panel is the

interquartile range; the dotted line denotes the median. The colour areas are symmetrical around the median. (d–f) Errors, with respect to the

experimental quantiles, on the forecast quantiles. The represented quantiles bound the colour areas in panels (a–c). The 25th, 50th and 75th

percentiles are respectively the first quartile, the median and the third quartile. Negative values suggest over prediction, while positive values

suggest under prediction. The reference configuration is highlighted by coloured ticks on the horizontal axes.

more nuanced behaviour. The general trend is an increase dispersion for both small and large floe extremes. There seems to be

an inflexion point around Hs = 1.2m for the growth of the 99.5th percentile, this wave height corresponding to the local mode

minimum (see Fig. 7 (j)).

Figure 8 (d–f) point out the limitation of the lognormal model by showing the differences between numerical results and

statistical predictions for chosen percentiles. As expected, differences arise for more extreme quantiles, corresponding to the400

long right tail of the distribution. These differences are more pronounced for low wave height and high thickness configurations.

The prevalence of extreme floe sizes in the numerical results is, by definition, low. The errors on the three quartiles, are smaller

than 1m on all the spans of the studied domains. The bulk of the FSD is hence well characterised by the lognormal model.
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6 Discussion and conclusions

The emergence of a lognormal FSD from repeated wave-induced breakup is the key outcome of this paper. It contrasts with the405

power laws often assumed in modelling studies (Williams et al., 2013; Bennetts et al., 2017; Boutin et al., 2020a), or with more

narrow distributions from process-based sea ice breakup modelling (Herman, 2017; Montiel and Squire, 2017). Anecdotally,

the lognormal distribution has been reported for the size of brash ice pieces in navigation channels (Huang, 1988; Bonath et al.,

2019). One of its earliest applications was the description of particles sizes from repeated breakup events (Kolmogoroff, 1941).

This statistical model does come with limitations. Field observations show the extensive spatial variability of the FSD. For410

instance, Paget et al. (2001) and Inoue (2004) both report an increase in the relative number of small floes when going towards

the ice edge, respectively in the Antarctic and the Arctic. Our modelling results mirror this trend, highlighting the difficulty

to settle on an all-around FSD parametrisation. We purposely ignore thermal and internal stress effects to focus on the effect

of waves on the FSD, so validation with observational data would only be appropriate for a MIZ post wave-induced breakup.

As detailed in Sect. 5.4 and illustrated in Fig. 8 (d–f), the distribution struggles to capture the behaviour of the most extreme415

floe sizes in our simulations. We note, however, that for such floe sizes wave-induced breakup is not likely to be the dominant

mechanism governing the evolution of the FSD (Roach et al., 2018). We further found that the lognormal fit is not valid

for small waves and the domain of thicknesses we analysed is at the limit of validity, suggesting that even in this simplified

setting the lognormal is not universal. Again, in such regimes, thermal and internal stress effects are likely to dominate over

wave-induced breakup. Another point of concern is that we have τ̂ < 0 for Hs ≥ 2m, meaning the probability of sampling420

negatively-sized floe is not 0. Constraining the MLE to yield positive estimates led to poor fit performance. This issue, which

concerns a small fraction (< 10−5) of the floes, can be easily circumvented by artificially bounding and rescaling the density

function.

Additionally to the wave height, the ice thickness and the strain threshold, we analysed the effect of varying the ice viscosity

γ (not shown here). We observed a significant contrast between γ = 0 (purely elastic ice) and γ > 0. The simulations we run425

with purely elastic floes are the only ones that reached the maximum number of iterations, set at 1000. It seems that scattering

alone is not effective enough at dissipating wave energy, leading to a rapid and sustained growth of the number of floes. How-

ever, marginal differences exist between ensuing distributions as long as some viscosity is introduced (γ in 1–100Pa s m−1).

Williams et al. (2013) used the same viscosity parametrisation with γ = 13Pa s m−1 derived from a 1979 campaign in the

Bering Sea, while Mosig et al. (2015) fitted γ = 6Pa s m−1 to a 2012 Southern Ocean dataset. We used γ = 20Pa s m−1430

throughout, which is a bit more conservative but, as stated, does not significantly impact the results. Although associated with

the ice, this parameter can be thought of as a parametrisation of the collection of all wave dissipation effects (Montiel et al.,

2016).

Clauset et al. (2009) analysed 14 empirical datasets of different continuous variables, originally modelled with power laws,

coming from a mixture of research areas. They observe that the power law is statistically appropriate for 8 of these datasets,435

while the lognormal holds for 13 of them. They use a relative goodness of fit test to show that the lognormal is more suitable

than the power law in 12 cases, and significantly so in 4 cases, concluding: “In general, we find that it is extremely difficult
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to tell the difference between log-normal and power-law behaviour” (Clauset et al., 2009). Stern et al. (2018) recommended

a procedure for analysing floe size data in order to raise awareness of better fit methods, with considering an alternative

distribution as an optional step. We believe this study heads in that direction and that the lognormal distribution should be440

considered as an alternative. Revisiting some of the studies tabulated by Stern et al. (2018) with this hypothesis could shed

some light on its validity.

Parametric distributions may never be flawless descriptions of the quantities they model. The power law used by multiple

models has some weaknesses, and its materialisation under the action of waves is not established. In this study, we show the

relevance of the lognormal distribution when considering wave-induced breakup. We describe the evolution of the distribution445

shape for a range of ice properties, under various wave forcings. These results aim at being a step towards the parametrisation

of wave action in FSD-evolving models.

Code and data availability. The model code, software tools developed for analysis and the resulting preprocessed output presented in this

paper are publicly available (Mokus and Montiel, 2021). The raw output is available upon request.

Appendix A: Histograms450

Appendix B: Kolmogorov–Smirnov statistics

The Kolmogorov–Smirnov statisticsDKS is the largest difference between an empirical cumulative distribution function (CDF)

and a reference CDF (Massey, 1951). By definition of the CDF, DKS is bounded by 0 and 1. When the distribution parameters

have been estimated from the data, DKS can be used to run a Lilliefors test (Lilliefors, 1967). By comparing DKS to a critical

value, depending on sample size and a chosen confidence level, one uses this test to reject a distribution hypothesis – not455

to confirm it. However, the power of this test, and others, notoriously increases with the sample size, making them able to

detect trivial deviations from a reference distribution. This is a simple consequence of the fact that a model cannot perfectly fit

the data. Hence, these tests only give a binary answer, not taking into account the usefulness of an imperfect model. A more

purposeful alternative consists in studying the relative goodness of fit between different models, which we do not explore in

detail here.460

Instead of rejecting the lognormal hypothesis at an arbitrarily-chosen confidence level, we reportDKS as an indicative perfor-

mance metric to compare our different configurations. More specifically, for each fitted lognormal with estimated parameters

θ̂ (that is, 500 different realisations per model configuration), we generate a random sample of size Neff from the distribution.

We use Kish’s effective sample size (Kish, 1965), the rounded up ratio of the squared sum of weights to the sum of the squared

weights, as Neff. We use maximum likelihood estimation (MLE) to estimate θ̂b from this sample, and we compute DKS for this465

sample and the distribution parametrised by θ̂b. We then define ∆DKS as the difference between DKS from the random sample

and DKS from our data. We repeat these three steps 1000 times to derive the distribution of ∆KS for each model configuration.

This is analogous to the bootstrapping method described by Clauset et al. (2009). It ensues that ∆DKS is bounded by−1 and 1,
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Figure A1. Histograms and average lognormal fits, as described in Sect. 5.2, for varying significant wave height.

with ∆DKS > 0 indicating cases where our data is fitted by the lognormal model better than data actually lognormally sampled,

in terms of distance between the CDFs.470

We report the results on Figs. B1–B3. This procedure quantitatively illustrate the conclusions derived from analysing his-

tograms and quantile–quantile plots.
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Figure A2. Histograms and average lognormal fits, as described in Sect. 5.2, for varying ice thickness.
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Figure A3. Histograms and average lognormal fits, as described in Sect. 5.2, for varying strain threshold.
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Figure B2. Same as Fig. B1 for varying ice thickness.
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20-UOO-173).480

28

https://doi.org/10.5194/tc-2021-391
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



References

Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic

storms, Journal of Geophysical Research: Oceans, 117, n/a–n/a, https://doi.org/10.1029/2011jc007221, 2012.

Azzalini, A.: Statistical inference : based on the likelihood, Monographs on statistics and applied probability ; 68, Chapman & Hall/CRC,

Boca Raton ; New York, 1st ed. edn., 1996.485

Bennetts, L. G., O’Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermo-

dynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017,

2017.

Bonath, V., Zhaka, V., and Sand, B.: Field measurements on the behavior of brash ice, in: Proceedings of the 25th International Conference

on Port and Ocean Engineering under Arctic Conditions, 2019.490

Boutin, G., Ardhuin, F., Dumont, D., Sévigny, C., Girard-Ardhuin, F., and Accensi, M.: Floe Size Effect on Wave-Ice Interactions:

Possible Effects, Implementation in Wave Model, and Evaluation, Journal of Geophysical Research: Oceans, 123, 4779–4805,

https://doi.org/10.1029/2017jc013622, 2018.

Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate

wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020a.495

Boutin, G., Williams, T., Rampal, P., Olason, E., and Lique, C.: Wave–sea-ice interactions in a brittle rheological framework, The Cryosphere,

https://doi.org/10.5194/tc-2020-19, 2020b.

Castruccio, F. S., Ruprich-Robert, Y., Yeager, S. G., Danabasoglu, G., Msadek, R., and Delworth, T. L.: Modulation of Arctic Sea Ice Loss

by Atmospheric Teleconnections from Atlantic Multidecadal Variability, Journal of Climate, 32, 1419–1441, https://doi.org/10.1175/jcli-

d-18-0307.1, 2019.500

Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in Empirical Data, SIAM Review, 51, 661–703,

https://doi.org/10.1137/070710111, 2009.

Collins, C. O., Rogers, W. E., Marchenko, A., and Babanin, A. V.: In situ measurements of an energetic wave event in the Arctic marginal

ice zone, Geophysical Research Letters, 42, 1863–1870, https://doi.org/10.1002/2015gl063063, 2015.

Crow, E. L. and Kunio, S.: Lognormal distributions : theory and applications, Statistics, textbooks and monographs ; v. 88, M. Dekker, New505

York, 1988.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H.: A Supernodal Approach to Sparse Partial Pivoting, SIAM Journal

on Matrix Analysis and Applications, 20, 720–755, https://doi.org/10.1137/s0895479895291765, 1999.

Dolatshah, A., Nelli, F., Bennetts, L. G., Alberello, A., Meylan, M. H., Monty, J. P., and Toffoli, A.: Letter: Hydroelastic interactions between

water waves and floating freshwater ice, Physics of Fluids, 30, 091 702, https://doi.org/10.1063/1.5050262, 2018.510

Dumas-Lefebvre, E. and Dumont, D.: Aerial observations of sea ice breakup by ship-induced waves, in: ArcticNet Annual Scientific Meeting,

https://doi.org/10.13140/RG.2.2.23493.40164, 2020.

Dumont, D., Kohout, A., and Bertino, L.: A wave-based model for the marginal ice zone including a floe breaking parameterization, Journal

of Geophysical Research, 116, https://doi.org/10.1029/2010jc006682, 2011.

Dupont, F., Dumont, D., Lemieux, J.-F., Dumas-Lefebvre, E., and Caya, A.: A probabilistic seabed-ice keel interaction model, The515

Cryosphere Discussions, https://doi.org/10.5194/tc-2021-273, preprint, 2021.

29

https://doi.org/10.5194/tc-2021-391
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Fox, C. and Squire, V. A.: Reflection and transmission characteristics at the edge of shore fast sea ice, Journal of Geophysical Research, 95,

11 629, https://doi.org/10.1029/jc095ic07p11629, 1990.

Fox, C. and Squire, V. A.: On the oblique reflexion and transmission of ocean waves at shore fast sea ice, Philosophical Transactions of the

Royal Society of London. Series A: Physical and Engineering Sciences, 347, 185–218, https://doi.org/10.1098/rsta.1994.0044, 1994.520

Herman, A.: Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model, The Cryosphere, 11,

2711–2725, https://doi.org/10.5194/tc-11-2711-2017, 2017.

Herman, A., Evers, K.-U., and Reimer, N.: Floe-size distributions in laboratory ice broken by waves, The Cryosphere, 12, 685–699,

https://doi.org/10.5194/tc-12-685-2018, 2018.

Herman, A., Wenta, M., and Cheng, S.: Sizes and Shapes of Sea Ice Floes Broken by Waves–A Case Study From the East Antarctic Coast,525

Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.655977, 2021.

Horvat, C. and Tziperman, E.: A prognostic model of the sea-ice floe size and thickness distribution, The Cryosphere, 9, 2119–2134,

https://doi.org/10.5194/tc-9-2119-2015, 2015.

Horvat, C. and Tziperman, E.: The evolution of scaling laws in the sea ice floe size distribution, Journal of Geophysical Research: Oceans,

122, 7630–7650, https://doi.org/10.1002/2016jc012573, 2017.530

Horvat, C., Tziperman, E., and Campin, J.-M.: Interaction of sea ice floe size, ocean eddies, and sea ice melting, Geophysical Research

Letters, 43, 8083–8090, https://doi.org/10.1002/2016gl069742, 2016.

Huang, H.-P.: Ice formation in frequently transited navigation channels, Ph.D. thesis, The University of Iowa, 1988.

Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N.,

Jean-Francois Lemieux, Osinski, R., Rasmussen, T., Ribergaard, M., Roberts, A., Francois Roy, Turner, M., and Worthen, D.: CICE-535

Consortium/CICE: CICE Version 6, https://doi.org/10.5281/zenodo.1205674, 2021.

Inoue, J.: Ice floe distribution in the Sea of Okhotsk in the period when sea-ice extent is advancing, Geophysical Research Letters, 31,

https://doi.org/10.1029/2004gl020809, 2004.

Kish, L.: Survey sampling, 04; HN29, K5., 1965.

Kohout, A. L. and Meylan, M. H.: An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone, Journal of540

Geophysical Research, 113, https://doi.org/10.1029/2007jc004434, 2008.

Kolmogoroff, A.: Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung, in: CR (Doklady)

Acad. Sci. URSS (NS), vol. 31, pp. 99–101, 1941.

Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018), Environmental Research

Letters, 13, 105 005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.545

Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi, D.: Thinning and volume loss of the Arctic Ocean sea ice

cover: 2003–2008, Journal of Geophysical Research, 114, https://doi.org/10.1029/2009jc005312, 2009.

Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown, Journal of the American Statistical

Association, 62, 399–402, https://doi.org/10.1080/01621459.1967.10482916, 1967.

Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46, 68–78,550

https://doi.org/10.1080/01621459.1951.10500769, 1951.

Meylan, M. H., Bennetts, L. G., and Kohout, A. L.: In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone,

Geophysical Research Letters, 41, 5046–5051, https://doi.org/10.1002/2014gl060809, 2014.

30

https://doi.org/10.5194/tc-2021-391
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Mokus, N. and Montiel, F.: Model code and simulation results for the investigation of a wave-generated floe size distribution,

https://doi.org/10.6084/m9.figshare.17303927, 2021.555

Montiel, F. and Squire, V. A.: Modelling wave-induced sea ice break-up in the marginal ice zone, Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Science, 473, 20170 258, https://doi.org/10.1098/rspa.2017.0258, 2017.

Montiel, F., Squire, V. A., and Bennetts, L. G.: Attenuation and directional spreading of ocean wave spectra in the marginal ice zone, Journal

of Fluid Mechanics, 790, 492–522, https://doi.org/10.1017/jfm.2016.21, 2016.

Montiel, F., Squire, V. A., Doble, M., Thomson, J., and Wadhams, P.: Attenuation and Directional Spreading of Ocean Waves Dur-560

ing a Storm Event in the Autumn Beaufort Sea Marginal Ice Zone, Journal of Geophysical Research: Oceans, 123, 5912–5932,

https://doi.org/10.1029/2018jc013763, 2018.

Mosig, J. E. M.: Contemporary wave–ice interaction models, Ph.D. thesis, University of Otago, 2018.

Mosig, J. E. M., Montiel, F., and Squire, V. A.: Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas,

Journal of Geophysical Research: Oceans, 120, 6072–6090, https://doi.org/10.1002/2015jc010881, 2015.565

Ochi, M. K.: Ocean waves: the Stochastic Approach, 6, Cambridge University Press, 2005.

Paget, M., Worby, A. P., and Michael, K. J.: Determining the floe-size distribution of East Antarctic sea ice from digital aerial photographs,

Annals of Glaciology, 33, 94–100, https://doi.org/10.3189/172756401781818473, 2001.

Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm,

Geophysical Research Letters, 40, 1356–1361, https://doi.org/10.1002/grl.50349, 2013.570

Passerotti, G., Bennetts, L. G., von Bock und Polach, F., Alberello, A., Puolakka, O., Dolatshah, A., Monbaliu, J., and Toffoli, A.: Interactions

between irregular wave fields and sea ice: A physical model for wave attenuation and ice break up, 2021.

Perovich, D. K. and Jones, K. F.: The seasonal evolution of sea ice floe size distribution, Journal of Geophysical Research: Oceans, 119,

8767–8777, https://doi.org/10.1002/2014jc010136, 2014.

Pierson, W. J. and Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorod-575

skii, Journal of Geophysical Research, 69, 5181–5190, https://doi.org/10.1029/jz069i024p05181, 1964.

Roach, L. A., Horvat, C., Dean, S. M., and Bitz, C. M.: An Emergent Sea Ice Floe Size Distribution in a Global Coupled Ocean-Sea Ice

Model, Journal of Geophysical Research: Oceans, 123, 4322–4337, https://doi.org/10.1029/2017jc013692, 2018.

Roach, L. A., Bitz, C. M., Horvat, C., and Dean, S. M.: Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves,

Journal of Advances in Modeling Earth Systems, 11, 4167–4181, https://doi.org/10.1029/2019ms001836, 2019.580

Robinson, N. and Palmer, S.: A modal analysis of a rectangular plate floating on an incompressible liquid, Journal of Sound and Vibration,

142, 453–460, https://doi.org/10.1016/0022-460x(90)90661-i, 1990.

Rothrock, D. A. and Thorndike, A. S.: Measuring the sea ice floe size distribution, Journal of Geophysical Research, 89, 6477,

https://doi.org/10.1029/jc089ic04p06477, 1984.

Squire, V. A.: Ocean Wave Interactions with Sea Ice: A Reappraisal, Annual Review of Fluid Mechanics, 52, 37–60,585

https://doi.org/10.1146/annurev-fluid-010719-060301, 2020.

Squire, V. A. and Moore, S. C.: Direct measurement of the attenuation of ocean waves by pack ice, Nature, 283, 365–368,

https://doi.org/10.1038/283365a0, 1980.

Steele, M.: Sea ice melting and floe geometry in a simple ice-ocean model, Journal of Geophysical Research: Oceans, 97, 17 729–17 738,

https://doi.org/10.1029/92jc01755, 1992.590

31

https://doi.org/10.5194/tc-2021-391
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Steer, A., Worby, A., and Heil, P.: Observed changes in sea-ice floe size distribution during early summer in the western Weddell Sea, Deep

Sea Research Part II: Topical Studies in Oceanography, 55, 933–942, https://doi.org/10.1016/j.dsr2.2007.12.016, 2008.

Stern, H. L., Schweiger, A. J., Zhang, J., and Steele, M.: On reconciling disparate studies of the sea-ice floe size distribution, Elementa:

Science of the Anthropocene, 6, https://doi.org/10.1525/elementa.304, 2018.

Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: Faster than forecast, Geophysical Research595

Letters, 34, https://doi.org/10.1029/2007gl029703, 2007.

Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean, Geophysical Research Letters, 41, 3136–3140,

https://doi.org/10.1002/2014gl059983, 2014.

Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The thickness distribution of sea ice, Journal of Geophysical Research,

80, 4501–4513, https://doi.org/10.1029/jc080i033p04501, 1975.600

Toyota, T., Takatsuji, S., and Nakayama, M.: Characteristics of sea ice floe size distribution in the seasonal ice zone, Geophysical Research

Letters, 33, https://doi.org/10.1029/2005gl024556, 2006.

Toyota, T., Haas, C., and Tamura, T.: Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone

in late winter, Deep Sea Research Part II: Topical Studies in Oceanography, 58, 1182–1193, https://doi.org/10.1016/j.dsr2.2010.10.034,

2011.605

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
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