
Response to RC1

1 General comments
The authors use a 2D wave–ice model involving wave scattering, vis-

coelastic dissipation and a strain breaking threshold to conduct a detailed
statistical analysis of the steady-state FSD produced by wave forcing.
Strong evidence is given that the model predicts lognormal FSDs. The
study is communicated clearly and the key outcome is potentially a valu-
able contribution towards modelling the marginal ice zone.

I recommend revisions before publication.

We thank the reviewer for their positive comments and suggestions,
which are addressed below.

2 Specific comments

2.1 Introduction

The Introduction is missing an overview of the considerable literature
on modelling wave propagation in the MIZ. At present, readers could be led
into thinking that the model used is accepted by the community, when, as
the authors surely know, debate and open questions remain. There are, for
example, different methods for modelling wave scattering and many differ-
ent models of viscous damping. Certain models have been validated using
experimental data. A similar comment applies to models of ice breakup
caused by waves. It should be clear at the end of the overview why the
particular wave propagation and ice breakup models have been chosen for
the present investigation.

We acknowledge that our literature review was biased towards models
similar to that used in our study. We will add references and a discussion
regarding other methods, such as continuous viscous layer and 3D wave
scattering models.
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2.2 Page 2
The two paragraphs starting from the bottom of page 2 are not par-

ticularly relevant for the study presented (e.g. the ideas are not picked up
again later) and would be better in Sect 6, leading into a discussion on
how the proposed model and findings could be implemented in CICE, etc.
Sect 6 would also be strengthened by comments on possible implications of
the reduced dimension of the model (e.g., in comparison to the 3D model
of Montiel and Squire 2017) and whether the predicted FSD properties are
consistent with the ideas used by Dumont, Williams and co to parameterize
power-law FSDs (such as the maximum floe size being half a wavelength).

We thank the reviewer for this suggestion which would strengthen the
discussion section. We will incorporate it in the revised manuscript.

2.3 Sect 5.1
At the beginning of Sect 5.1, the move from monochromatic to poly-

chromatic forcing requires more explanation and justification. Presumably
the definition of the FSD for polychromatic forcing in equation (23) is com-
putationally efficient, but is it representative of the ensemble average FSD
created by (random) irregular wave forcing that obeys the prescribed spec-
trum? Can examples be given to demonstrate this? Better understanding
of this aspect of the model will improve interpretation of the results. Inci-
dentally, I was unable to find fL and f̃L when scanning back through the
paper at this point. Perhaps the latter could be introduced in Sect 2.

We considered an alternative way to introduce the polychromatic forc-
ing, with results shown in the conference proceeding paper Mokus and
Montiel (2022). Instead of considering the weighted average of FSDs from
monochromatic forcings, we considered the FSD resulting from the re-
peated breakup by an irregular-wave-induced strain field simulated from
a discretised spectrum with random phases. The results are quantita-
tively different, but the distribution shape remains similar (unimodal, mode
clearly distinct from the smallest observation), with the lognormal model
significantly stronger than the power law model. An illustration of the dif-
ference can be seen on Figure 1. However, we do not think one of these two
parametrisations of a polychromatic forcing is obviously better. Both rely
on different sets of assumptions. In particular, the irregular wave-forcing
simulation assumes steady state to be reached by waves of all periods at
the same time, even though longer waves propagate faster. Our initial ap-
proach assumes different periods act independently to break the ice, and
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that their effects can be averaged over. Which one is physically the most
sensible is unclear and will need experimental confrontation.

We will insist on the assumptions and underlying limitations in the
revised manuscript, and mention the alternative parametrisation (strain
superposition) in the discussion.
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Figure 1: Comparison of results from two ways of considering the poly-
chromatic forcing. Lognormal fits overlayed over histograms. The leftmost
histogram (orange hue) corresponds to the method presented in Section 5 of
the present paper. The rightmost histogram (blue hue) corresponds to the
alternative method presented by Mokus and Montiel (2022), where we use
strain superposition to determine the fracture points. Both histogram areas
are normalised, the log x-axis skewing this perception.

2.4 Title

A title that indicates the scope of the study would be better, e.g. Model
predictions of lognormal floe size distributions in the marginal ice zone
caused by wave forcing
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We will consider alternative titles.

3 Minor comments

3.1 25

With thinner and weaker first-year ice becoming dominant in the Arctic

‘in the Arctic’ added

3.2 28

Elaborate on the sentence starting The individual description.

We mean that the dynamic of every floe, at the basin scale, cannot be
reasonably determined and kept track of. We will clarify this in the revised
manuscript.

3.3 55

The sentence on short time scales for breakup appears to contradict the
steady state model assumption.

Breakup happens on time scales shorter than thermodynamics pro-
cesses, that our model does not resolve. Recent observations (Dumas-
Lefebvre and Dumont 2021) showed the breakup front moves slower than
the wave front within the ice cover, so we believe these assumptions hold.
We will clarify the sentence in the revised manuscript.

3.4 Sec 3.1

Similar wave scattering models should be referenced at the beginning of
the section Kohout and Meylan 2008; Montiel et al. 2012, and any notable
differences identified.

Our model is indeed directly inspired by these. We will make the con-
nection to other similar models more obvious in our description.

3.5 149
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travelling and evanescent …

We will add a reference to evanescent modes.

3.6 170

For completeness, say that the complex roots can become purely imag-
inary for high frequencies and/or thick ice.

We believe this point is slightly out of scope, as this is very unlikely to
happen in any geophysically realistic setting (Bennetts 2007).

3.7 178

I think the phases are used to normalize rather than cancel out the
exponential terms.

We meant cancel in the sense of making them neutral with respect to
multiplication. We will make the phrasing clearer.

3.8 Eqn (13)

Replace the full stop with a comma.

Corrected.

3.9 248+250

for every floe and none of the floes break

Corrected.

3.10 253

Give the distribution used to randomly redistribute the floes after
breakup.

Floes are positioned from left to right and localised by their left edge.
The leftmost floe is placed at a random location, drawn from a uniform
distribution, around its location at the previous iteration. For subsequent
floes, the left bound corresponds to the right edge of the last positioned floe
(on their left). The right bound corresponds to the previous right bound,
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Figure 2: Illustration of the floe repositioning method. The top row shows
current floes with identified breakup location marked by vertical bars and the
resulting lengths. Successive rows show the iterative positioning as described
in the text. Below each row, a segment shows the interval from which a
location will be randomly drawn; the cross marks that location.

augmented by the length of the last positioned floe. A location is drawn
from a uniform distribution between these two bounds; an illustration is
given in Figure 2. As the width of that interval quickly tends to 0, we
enforce a minimal length for our random draw. Floes can still get arbitrarily
close to one another, as long as they do not overlap. The room allocated
to the first floe (labelled δinit on the schematic in Figure 2) as well as that
minimum width are set to 100m and 1 cm, respectively. We ran simulation
with alternative values to ensure these values do not have any impact on
our results.

We will include these details as an appendix to the revised manuscript.

3.11 258

Give details on the local resonances plus references.

For any single realisation of the array, local resonances can take place
due to additive interference between scattered waves. These can be filtered
out through ensemble averaging. This behaviour, and the solution, are
described by Kohout and Meylan (2008). The reference will be added in
the revised manuscript.
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3.12 Figure 3d

The levelling off/decrease of the median floe size with increasing ice
thickness for T=8s is interesting and worth discussing in the text.

We will discuss this feature in the revised manuscript.

3.13 Figure 4 caption

Figure 4 caption: State the amplitude(s) used.

It is the same as in the previous figure, 50 cm. We will correct the
omission.

3.14 348
348: Space needed after the full stop.

Corrected.

3.15 428

Note that the value γ = 13.5Pa s m−1 was derived from measurements
in the Antarctic MIZ (Massom et al. 2018).

We thank the reviewer for this reference, that we did not know about.
A smaller value (6.9Pa s m−1) is derived in Mosig et al. (2015). The value
13Pa s m−1 is used in Williams et al. (2013) and subsequent studies; how-
ever, it is unclear how this parameter may depend on, e.g., the ice thickness
or rigidity, so we settled on a slightly more conservative estimate. Even
though not presented here, we conducted experiments with a range of vis-
cosities. We will develop this point in the discussion, and add the suggested
reference to our review.

3.16
Mathematics needs a capital M in the institution name.

Corrected.

References
Bennetts, L. G. (2007). “Wave scattering by ice sheets of varying thickness”.

PhD thesis. University of Reading.
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Response to RC2

1 General comments
The manuscript „Wave-triggered breakup in the marginal ice zone…”

by Nicolas Mokus and Fabien Montiel describes a numerical study of wave
propagation in sea ice and wave-induced sea ice breaking. The main focus
of the paper are the properties of floe size distributions (FSDs) resulting
from breaking of ice with different properties (strength, thickness) by waves
of different periods and amplitudes.

Undoubtedly, the problems discussed in the study are important for
the current research on sea ice–wave interactions. Our better understand-
ing of the physical mechanisms underlying wave-induced sea ice breaking
is crucial for developing better parameterizations of those processes for
large-scale sea ice and climate models. Although I find the manuscript and
the results interesting and valuable, and the model developed by the Au-
thors well presented, I have some doubts, described below, regarding some
parts of the analysis. I recommend the manuscript for publication in The
Cryosphere after a major revision.

We thank the reviewer for their positive comments and suggestions,
which are addressed below.

2 Major comments

2.1
The main point in my critics is related to the procedure described in

Section 5.1: the whole algorithm is based on an assumption that the FSD
resulting from sea ice breaking on irregular waves is the ‘weighted average
of distributions resulting from monochromatic model runs’. Why?

I really can’t see the reason why it should be so simple.
Let’s consider a very simple example of a wave field composed of two

monochromatic waves with very different wavelengths, and let’s assume
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that wave #1 does break the ice and produces very small floes, and wave #2
is very long and doesn’t break the ice at all (or produces very large floes).
The ice sheet in that case would break into small floes, corresponding to
that resulting from wave #1 anyway, so computing FSD from a weighted
average would produce truly weird results!

It’s the part of the spectrum that leads to breakup that’s important,
not the whole spectrum!

As the Authors rightfully demonstrate in their manuscript for
monochromatic waves, the relationships between floe size, ice properties,
and wave length are quite complex and nonlinear, so there is no reason
why the FSD resulting from a wave energy spectrum should behave as the
Authors assume.

This is a valid concern. Obviously, this is a model, hence a simplifica-
tion of reality. We will make clearer in our manuscript that our approach in
Sect. 5 is indeed heavily assumption-dependent. The underlying assump-
tion is that waves, carrying the whole energy of the spectrum at discrete
time periods, would act independently to break the ice. The resulting
distribution would be the average of the distributions generated by these
independent periods, with weights related to the spectrum, in coherence
with linear theory. In reality, waves of different periods would interact with
one another, but our model cannot represent these interactions.

I have the impression that the shapes of FSDs in Fig. 6 to a large
degree simply reflect the shape of the wave frequency spectrum, and that
this is an artefact of the algorithm (or, more precisely, its part related to
the computation of weighted averages).

In my opinion, it is a very weak part of the analysis, but the Authors
don’t even discuss those weaknesses.

Of course, as I have serious objections regarding the above-mentioned
assumption, I have also doubts regarding the results presented in sections
5.2–5.4 of the manuscript.

We ran comparisons using alternative weighting functions, represented
on Figure 1. Descriptions of these functions can be found in Table 1.

The lognormal density function has, qualitatively, a shape similar to the
Pierson-Moskowitz spectrum when displayed as as a function of frequency.
However, we obtain similar, skewed unimodal densities with a range of
symmetrical weighting functions, as displayed on Figure 2.

The one case that stands out, with several secondary peaks, is n_md.
It corresponds to a function giving more weights to high frequency waves
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(5 to 15m), which is unrealistic in the context of our model.
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Figure 1: Representation of functions used as alternative weights. They are
all normalised on the positive real half-line; because of the finite range of fre-
quencies supported by our model, truncations imply some of them integrate
to less than unity. Description of the legend entries can be found in Table 1.

Why can’t the model be forced by a superposition of monochromatic
waves? The scattering model is linear, isn’t it, so it shouldn’t be difficult.
All one needs to do is to add up the wave solutions for individual spectral
components (assuming random phases) and use those to compute strain
(as, e.g., in section 6 of Kohout and Meylan (2008)).

We implemented the approach suggested by the referee (Mokus and
Montiel 2022, conference proceedings). The results are different (Figure 3),
which is not an argument in favour of either of the methods. The later ap-
proach has limitations has well, as it assumes steady state to be reached by
waves of all periods at the same time, even though longer waves propagate
faster. These models would need experimental validation for additional
support.
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Figure 2: Densities obtained when combining monochromatic model runs
with different weighting functions, as represented on Figure 1.

We will insist on the assumptions and underlying limitations in the
revised manuscript, and mention the alternative parametrisation (strain
superposition) in the discussion.

2.2

Are the FSDs obtained for monochromatic waves lognormal as well?
Why is that pdf introduced first in Section 5.2 and not earlier? That

would allow comparisons between FSDs obtained for regular and irregular
wave forcing.

The PDFs obtained for monochromatic simulations seem to be well fit-
ted by lognormal distribution as well (see Figure 4). This will be discussed
in the revised manuscript. We delayed the introduction of the lognormal
PDF to Sect. 5 of the manuscript for two reasons. First, Sect. 4 of the
manuscript was meant to be an introduction to its Sect. 5. Therefore,
we did not want to deep dive into a parametric representation of these
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Table 1: Details of several weighting methods.
Name Type Effective sample size

pm Pierson-Moskowitz, Tp = 5 s 23451
n_0 Gaussian, µ = 0.2Hz, σ = 0.05Hz 42859
n_md Gaussian, µ = 0.4Hz, σ = 0.05Hz 550
n_mh Gaussian, µ = 0.1Hz, σ = 0.05Hz 65347
n_dd Gaussian, µ = 0.2Hz, σ = 0.1Hz 71280
n_dh Gaussian, µ = 0.2Hz, σ = 0.025Hz 19158
uni uniform 77486
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Figure 3: Comparison of results from two ways of considering the poly-
chromatic forcing. Lognormal fits overlayed over histograms. The leftmost
histogram (orange hue) corresponds to the method presented in Section 5 of
the present paper. The rightmost histogram (blue hue) corresponds to the
alternative method presented by Mokus and Montiel (2022), where we use
strain superposition to determine the fracture points. Both histogram areas
are normalised, the log x-axis skewing this perception.
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Figure 4: Histograms from Fig. 3 of the manuscript, and associated lognormal
fits.

FSDs. Second, the linear combination of lognormal PDFs (as presented in
Sect. 5) is not, in general, a lognormal PDF. The opposite can be true, as
a lognormal PDF can arise from the sum of other functions.

2.3

The algorithm, as described in Section 3.3, does not take into account
the time evolution of breakup – in the sense that the breaking events during
one “sweep” are all taking place at the same time instance, and a breaking
event at one location does not influence what is going on in an immediate
vicinity of that location (sudden stress release etc.).

I’m not criticizing it, I just wonder whether/how this limitation can
influence the resulting FSDs. What is the Authors’ opinion about that?

This is hard to answer. Wave scattering being solved in the frequency
domain is an obvious limitation of our model, on which we will insist more
in the revised manuscript. A truly transient model would be necessary to
evaluate the influence of this simplification, and that is out of the scope
of the present manuscript. In a sense, our iterative approach, allowing for
each floe to break several time, is a (restricted) substitute for true time
evolution.

2.4
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Figure 4a,b shows the total number of floes for various combinations of
the model forcing. How does the width of the MIZ (i.e., the total length of
the broken ice) change? It is an important parameter for several reasons,
so it would be interesting to see plots analogous to those in Fig.4ab, but
showing the MIZ width. Or at least some comments on that in the text.

We thank the reviewer for this suggestion. We will modify Fig. 4 in
the manuscript to show the MIZ width, as shown in Figure 5. The peak of
MIZ width as a function of wavelength is reached at a wavelength slightly
larger than that causing the largest number of broken floes. If weakening
the ice increases the MIZ width, making it thicker, counterintuitively, does
so as well.

2.5

I know it’s beyond the scope of this paper, but I’m just curious: Have
the Authors analyzed the shape of the attenuation curves produced by
their model? Are they approximately exponential, or are there deviations
from the exponential curve (as in eq. 2.1 of Squire, Phil Trans A, 2018),
especially close to the ice edge?

We have not done so consistently for all our tests. We did, at a prelim-
inary stage, study the shape of the strain attenuation. These were indeed
exponential (Figure 6). We may add a short discussion of wave attenuation
in Sect 4.

3 Minor, technical and other comments

3.1 Line 38

‘Hence…’ suggests this sentence follows from the previous one, but I
don’t really see the connection. I think I know what is meant here, but I’d
suggest formulating it more clearly.

We mean that the role waves played in the emergence of an observed
FSD is not well established for many of these studies. We will alter the
phrasing to make it clearer.

3.2 Lines 41–43
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Figure 5: Figure 4 from the manuscript with additional panels showing the
width of the MIZ.

I’d suggest to add here that this technique not only leads to erroneous
values of the power law exponents, but, in the first place, suggests the
existence of power law tails even when there aren’t any and when the pdfs
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Figure 6: Attenuation of the extremum strain along a model transect, and
associated exponential fit. The xaxis is the ordinal floe number in the prop-
agation direction.
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aren’t heavy-tailed at all.

We will make that addition.

3.3 Line 93
The recent paper by Dumas-Lefebvre and Dumont (currently under

discussion in TCD: https://tc.copernicus.org/preprints/tc-2021-328/) is
worth citing here, as it describes a wonderful observational dataset of sea
ice breaking by waves. (It’s not self-advertisement, I’m not an author of
that paper.)

We agree. The paper is a more detailed version of Dumas-Lefebvre and
Dumont (2020), that we cite. We will make the substitution.

3.4 Lines 256–258
I understand that those tests suggest that the details of how the floes

are placed after breaking are not important.
Maybe it’s a naïve question, but are those empty spaces between floes

necessary? Does the algorithm work for densely packed ice field, with zero
spaces between floes?

We consider the fluid to be inviscid, so the distance travelled by the
waves between floes does cause attenuation. The numerical model would
need a bit of tweaking for zero spacing to work, but currently spacing could
be as small as machine precision allows (double precision floating numbers).
We could have settled on assigning a random phase to the forcing wave,
at each algorithm iteration, instead of randomly positioning the floes, to
achieve the same result.

3.5 Lines 265–266

‘FSD dispersion’. Dispersion? As the term ‘dispersion’ has a clearly
defined meaning in the context of waves, I’d suggest replacing it here with
‘median floe size’.

‘Dispersion’ also has a clearly defined meaning in the context of statis-
tics. Variance and interquartile range are typical measures of dispersion.
It is indeed confusing and so we will replace the word by e.g. ‘spread’.

3.6 Lines 268–269
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‘a positive relationship between the ice mechanical resistance […] and
the presence of larger floes’. But the skewness is larger for smaller strength
and thinner ice, isn’t it? The presence of larger floes itself can result from
a simple shift of the distribution to the right and is not directly related to
the skewness, so this sentence is a bit misleading.

The distributions being skewed is a general, qualitative comment and
we do not quantify skewness in the paper. The presence of larger floes can
indeed result from a shift of the distribution to the right; we do not mean
to link it to the skewness in any way. We will alter the phrasing to make
it clearer.

We did compute skewness here for the sake of the discussion (Figure 7).
We do not observe any trends for stronger ice at higher time periods (from
T = 8 s); however, skewness does increase for weaker ice at shorter time
periods (T = 4 s). Interestingly, at a given εc, it does not evolve monoton-
ically with T . The evolution of skewness as a function of ice thickness is
not monotonic at any period, and we do not attempt to analyse it further.
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Figure 7: (a) Sample skewness for different forcing periods and evolving
strain threshold. The dots correspond to mean values, and the shaded area
to one standard deviation around it, over 100 realisations. (b) Same as (a)
for evolving ice thickness. In (a), h = 1; in (b), εc = 4 × 10−5. In both,
a = 50 cm.

3.7 Lines 268–269
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Table 2: Skewness values for the different model configurations presented in
Fig. 3 (a, b) of the manuscript. The given values are the means over 100
realisations and the associated standard deviations.

εc h skewness

2× 10−5 1m 1.48± 0.15
4× 10−5 0.5m 2.92± 0.62
4× 10−5 1m 1.46± 0.23
4× 10−5 2m 2.63± 0.69
8× 10−5 1m 1.63± 0.37

And further: “Qualitatively, increasing εc has only a moderate effect on
the FSD and seems to be only affecting its mode, shifting it towards larger
floes, while its shape remains the same.” Is it really so? Are the shape
parameters of the pdfs in Fig.3a really so similar? My impression from the
figure is quite different. It might be wrong, of course, but please back up
this statement by some numbers, e.g., skewness values (maybe you could
add them to the panels in Fig.3a,b for those three cases presented?).

As far as the mode is concerned, in Fig. 3a it changes by 1̃00% between
case 1 and 3, so I’d say it is a quite substantial change.

The skewness can be seen as a measure of shape. As shown in Fig-
ure 7 (a), the skewness is indeed quite stable, for T = 8 s and increasing
εc. For reference, the skewness values corresponding to the histogram pre-
sented in Fig. 3 (a, b) of the manuscript are given in Table 2.

The modes in Fig. 3 (a) of the manuscript do increase with εc, and
we point it out. It can result from a horizontal translation of the distri-
bution. It is a noticeable quantitative change, but not in contradiction
with the shape evolving little. We will clarify that statement in the revised
manuscript.

3.8 Line 274

Line 274: ‘the dispersion in floe sizes’: again, it’s not clear what exactly
is meant here. The range of floe sizes? (i.e. pdf width?)

We mean the spread of the distribution, as represented in Figure 3 (c,d)
by the interquartile ranges. We will change it in relation with comment 3.5.
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3.9 Line 277

Line 277: crisp -> sharp? rapid?

Changed to rapid.

3.10 Line 349

Line 349: ‘the definition of the ice edge is not clear, as it is period-
dependent’. I don’t understand this statement, please clarify. And further:
‘the total length of ice in each period category’. Period category? Overall,
I’d recommend rephrasing this whole paragraph, as it contains a lot of
statements that are hard to follow (although the overall meaning is clear,
of course).

By period category, we meant the period bins used to discretise the
spectrum. The ice edge location, or the MIZ width, will depend on the
wave period used to force the system in a particular monochromatic run.
We agree on this paragraph needing some rephrasing.

3.11 Lines 426–427

Lines 426-427: ‘scattering alone is not effective enough at dissipating
wave energy’!!! Scattering does not dissipate energy at all! Moreover, in
a 1D setting, scattering alone does not lead to wave energy attenuation
within sea ice: even for an extremely long ice cover, the wave energy at its
downwave end must be equal to the energy of the incomming wave minus
the energy reflected from the from the upwave edge. In other words, if any
attenuation is observed in the scattering-only model runs, it only results
from numerical inaccuracies.

‘Attenuating’ is indeed better suited here than ‘dissipating’. We believe
it is clear from the context this comment is about multiple scattering.
Successive reflections do lower the downwave amplitude, as expected by
comment 2.5.

References
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Response to RC3

1 General comments

This paper aims to develop an efficient model of wave breakup of sea
ice floes including a random component of floe positioning that can be
used to generate statistical descriptions of floe size (probability) distri-
butions (FSD) that might emerge from wave breakup from sea ice and
rapidly explore relevant parameter spaces within this setup (e.g. wave pe-
riod, sea ice thickness). The study finds that the emergent FSD can be
best characterised using a lognormal distribution and discusses implica-
tions of these results for finding the best fit to observations of floe size and
for future parametrisations of floe breakup by waves in sea ice models.
This work intersects two areas of research that have had significant focus
in recent years: modelling the role of individual processes in determining
the emergent FSD in sea ice models and modelling interactions between
waves and sea ice and how sea ice can impact wave propagation. This
study builds on earlier efforts to develop simple but accurate models of
wave breakup of floes. The value of the model presented here is that it
is efficient and can be used to rapidly explore relevant parameter spaces
and include stochastic elements within the model to represent uncertainty
/ variability (in this case to capture variability in floe positioning with-
out a full treatment of sea ice dynamics). I therefore believe this paper
makes a useful contribution to both the sea ice and wave modelling com-
munities, and also has potential value in understanding and characterising
observations of floe size.

The scientific quality of the work presented is generally strong, with
good associated analysis and discussion. The figures are of a very good
quality and appropriate to the discussion. The structure of the paper
seems fine and is easy to follow, though it would be good to see a more
thorough overview of the paper structure at the end of the introduction.
The paper reads well, is clear in its conclusions, and also has a represen-
tative abstract and title. I do have a couple of major concerns that would
need to be addressed before I can recommend publishing. Firstly, I am
not sure the methodology used has been sufficiently justified. Specifically,
the choice to use monochromatic model runs and then taking the weighted
average to determine the emergent FSD from a full wave spectrum is not
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properly justified / supported as a reasonable approximation. In addition,
the study repeatedly refers to whether observations of the FSD should be
fitted to a power law. Whilst this is an important discussion, I find the
paper focuses too much on this point and insufficiently on other impacts
/ conclusions of the findings presented. Full details of these concerns are
provided in the specific comments.

Overall, I believe that this paper is within the scope of The Cryosphere
and, provided the above concerns can be adequately addressed, merits
publishing.

We thank the reviewer for their positive comments and suggestions,
which are addressed below.

2 Specific comments

2.1 General point

The study uses this result to backup conclusions from other studies
such as Stern et al. 2018 that other possible fits should be tested against
observations of floe size, not just a power law. These conclusions are
justified on the basis of the evidence presented. However, throughout the
manuscript the authors question the validity of power law fits to FSD
data. Whilst this is a reasonable and justified question to ask and one
several previous papers have discussed as noted in the manuscript, I find
this point is too frequently made within the manuscript, at the expense of
other important results that emerge from this study, given this study does
not appear to present any new evidence to suggest that a power law does
not produce a valid fit to observed FSDs (as opposed to new evidence to
support the testing of alternative fits to observations, which the study does
present, as noted above). Even in regions of high wave activity, observed
FSDs are not necessarily solely a result of wave breakup. Even if they are,
there are physical features that may determine the FSD not considered
within the model used here (e.g. variable ice thickness, existing weaknesses
in the sea ice, fractures that are not perpendicular to the direction of wave
propagation). The emergence of a lognormal distribution from this model
does not necessarily tell us anything about the validity of a power law
fit to observations of floe size unless this model can be validated using
observations of an FSD under wave control, which has not been presented
in this study.

We agree that the FSD is impacted by more than just wave activity.
We have shown in a separate paper (Montiel and Mokus 2022, manuscript
under revision) that the lognormal model can be applied to observations
previously analysed under the power law hypothesis. However, wave con-
ditions at the time of these measurements were not available. Confronting
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our results to more controlled experiments would be the only way to vali-
date them. We will make more obvious that our findings do not negate the
collection of studies based on the FSD following a power law distribution.

We acknowledge that any parametric model would be a simplification,
and that many non-controlled factors, such as pre-existing cracks, can
locally impact the FSD. Additionally, limits on the floe sizes that can be
remotely discriminated tend to truncate observations. We note that the
tail of the lognormal distribution, excluding the region of values smaller
than the mode, asymptotically identifies to a power law distribution.

2.2 P2 L28–29

‘The individual description of these, floating pieces of sea ice is not
possible.’ What do you mean by this comment? Individual pieces of
ice cannot presently be simulated in continuum models, but they can in
discrete element models of sea ice.

We mean they cannot be represented at the scale of an ocean-wide
numerical simulation. We will clarify this point in the revised manuscript.

2.3 P3 L65–68

You should also describe/discuss the most recent study from Horvat
and Roach 2022 that introduced a machine-learning-derived parameter-
ization of wave breakup of floes that can be used within the prognostic
model.

We were not aware of this study when we submitted ours. We will
include it in our revised manuscript.

2.4 P2 L57–P3 L81

In this section you have described existing treatments of wave breakup
of floes within sea ice models but there are other approaches that you have
not described e.g. both Bateson et al. 2020; Boutin et al. 2021 include
treatments of wave breakup of sea ice within FSD models. It would be
helpful to either briefly discuss these treatments or at least highlight that
your discussion is not exhaustive.

We will add these references.

2.5 P3 L80–81

‘Nevertheless, the model sensitivity analysis conducted by (Zhang et
al. 2016) revealed compelling improvement on ice extent simulation when
considering their FSD formulation.’ What were the improvements? This
statement is vague and should be clarified.
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Their implementation yielded improvements in terms of ice extent and
location of the ice edge. Their simulations including the parametrisation
were better able to replicate observations than those which did not. We
will make this point clearer in the revised manuscript.

2.6 P4 L97–105

It would be helpful to describe the overall structure of the paper at
the end of the introduction i.e. describe how the paper proceeds, section
by section.

We will add this description to the introduction.

2.7 P8 L202–203

Why did you decide to use a fixed sea ice thickness in your simulations?
Do you anticipate that a lognormal distribution would still emerge if the
sea ice thickness was variable in a single evaluation of the model?

This stems from the experiment design. Our scattering formulation
assumes individual floes are of constant thickness. As we populate the
MIZ by breaking off floes off a single initial floe, it comes out that all
resulting floes share this initial thickness. This thickness could be altered
after breakup has happened, but we choose to keep it constant as breakup
happens on time scales shorter than those of the processes that would
alter the thickness. As stated in the text, the model is capable of han-
dling floes with varying properties, including the thickness. However, such
simulations are outside the scope of this paper, that focuses on FSDs re-
sulting from repeated breakup events. Therefore, we cannot comment on
the FSDs we would obtain in such a simulation.

2.8 P8 L205–206

‘A sensitivity analysis (not shown here) proved Nv = 2 to be adequate
in terms of convergence.’ Please provide more details on this. How are
you assessing adequate convergence here?

We studied the convergence in terms of energy conservation. We placed
five floes of finite length and zero viscosity in the domain. Scattering does
not dissipate energy, so energy carried by travelling modes is expected to
be conserved for reflection/transmission by individual floes and overall,
when considering the array of floes as a single scatterer. Note that under
the integral method used to solve for the scattering (Williams and Porter
2009), the number of modes used to establish the scattering kernel (Nk =
100 in our case) is distinct from the number of modes used to expand
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the potential (Nv = 2), once determined. We found that beyond the first
evanescent mode (Nv = 1), adding them slowly deteriorate the energy
conservation (Figure 1). However, we decided to include the second mode
as it is susceptible to have a marginal impact on the location of the strain
extremum.

We have not formally assessed it, but we believe the behaviour would
be similar for a larger number of floes, given the very small spread between
the successive floes, presented in Figure 1. Additionally, we note that
the domain-wide energy is very well conserved whatever the number of
evanescent modes considered.

Figure 1: Energy conservation in a five-floe setting, with 100 kernel modes.
The coloured lines, from darker to lighter hues, identify floes from left to
right, where the wave forcing is incident from the left. The black line charac-
terises energy conservation over the whole domain. Thinner lines indicate 10
individual runs, with randomly placed and spaced floes, and the thicker lines
the average of these runs. With non-viscous floes, we expect the difference
1−

(
|R|2 + |T |2

)
(vertical axis) to be 0, where R and T are the complex re-

flection and transmission coefficients associated with the propagating mode,
respectively.

2.9 Section 4
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In this section you provide a physical explanation/interpretation of
the results presented in Fig. 4 but not Fig. 3. It would be good to see
more discussion of the results in Fig. 3; in particular, can you explain the
different trends in the variability/dispersion of floe size shown in panels
(c) and (d) in Fig. 3?

For the experiments related to the strain threshold (panels (a) and
(c)), we believe that the apparent translation of the histogram is due to
the fact that higher strains are reached further from the floe edges (as
we use free edge boundary conditions), leading to more frequent longer
broken-off floes. We will investigate this behaviour further.

For the experiments related to the ice thickness (panels (b) and (d)),
we expect non-linear patterns as the thickness impacts both the strain un-
dergone by the floe and the wave transmission coefficient, which translates
to the under-floe wave amplitude, hence the deflection undergone by the
floe and ultimately, the strain. Short waves (4 s) are much more effectively
reflected by thickening ice than longer waves (Figure 2), leading to very
little breakup (apparent oscillatory behaviour between 1.5m and 2m for
T = 4 s on panel (d)), which can be seen on Figure 4 (b).

We will add a discussion on these trends in the revised manuscript.

Figure 2: Reflection coefficient (|R|2) for increasing ice thickness and various
wave periods.
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2.10 Figure 3

Why did you decide to use the median floe size to characterise the
average floe size (rather than, for example, a linear-weighted mean)? An
explanation in the text somewhere would be useful.

Given the skewness of the distribution of floe sizes (top panel), we
decided to use the combination median–interquartile range as measures
of central tendency and dispersion, rather than the combination mean–
standard deviation, the data being clearly non-normal. The results pre-
sented on Figure 3 are average over realisations of a single, monochromatic
case: no weighting is used. This choice is clarified in the text.

2.11 Figure 3

Do you have any explanation for the oscillatory behaviour in panel (d)
for the two shorter wave periods when the ice thickness exceeds 1.5m?

We do note this apparent oscillatory behaviour. For the shortest pe-
riod, we believe it to be no more than a spurious effect due to the fairly
low amount of breakup, enhancing the apparent variability. We will add
a comment to the revised manuscript.

2.12 P13 L295–297

‘To estimate the effect of a developed sea on the FSD fL, we take the
weighted average of distributions resulting from monochromatic model
runs,’. This appears to be a significant model assumption to only consider
single amplitude-frequency pairs at once rather than the full wave spec-
trum since it ignores possible interactions between the different pairs in
fracturing the sea ice. What is the justification for this model approach?
There needs to be some evidence presented (e.g. test cases evaluating the
model using full polychromatic forcing) to show that the error resulting
from this approximation is not large enough to impact the conclusions.

The assumption behind our approach is that wave periods act inde-
pendently, which is in line with our linear theory. We did consider ‘full
polychromatic forcing’ in the sense of evaluating the strain induced by
each period separately, taking the weighted average, and using it to de-
termine whether floes should break (Mokus and Montiel 2022, conference
proceedings). The two approaches yield different results. However, it is
not clear which one is physically more justifiable, as the strain-averaged
approach assumes steady state to be reached by waves of all periods at
the same time, even though longer waves propagate faster. These models
would need experimental validation for additional support.
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Table 1: Details of several weighting methods.
Name Type Effective sample size

pm Pierson-Moskowitz, Tp = 5 s 23451
n_0 Gaussian, µ = 0.2Hz, σ = 0.05Hz 42859
n_md Gaussian, µ = 0.4Hz, σ = 0.05Hz 550
n_mh Gaussian, µ = 0.1Hz, σ = 0.05Hz 65347
n_dd Gaussian, µ = 0.2Hz, σ = 0.1Hz 71280
n_dh Gaussian, µ = 0.2Hz, σ = 0.025Hz 19158
uni uniform 77486

We will insist on the assumptions and underlying limitations in the
revised manuscript, and mention the alternative parametrisation (strain
superposition) in the discussion.

2.13 P13 L300

Can you comment on the sensitivity of your results to the choice of
spectrum?

We ran comparisons using alternative weighting functions, represented
on Figure 3. Descriptions of these functions can be found in Table 1.

The lognormal density function has, qualitatively, a shape similar to
the Pierson-Moskowitz spectrum displayed as as a function of frequency.
However, we obtain similar, skewed unimodal densities with a range of
symmetrical weighting functions, as displayed on Figure 4.

The one case that stands out, with a lot of secondary peaks, is n_md.
It corresponds to a function giving more weights to high frequency waves
(5 to 15m), which is unrealistic in the context of our model.

We will comment on this sensitivity in the revised manuscript.

2.14 P14 L310

What is the reason for drawing a single FSD fl at random rather than
including all 50 realisations?

For each wave period, we obtain 50 distinct FSDs f̃L. We select at
random one of each before combining them, according to Eq. (23), into
a FSD fL. Proceeding like so allows us to observe variations between
different fL, as represented on Fig. 5 of the manuscript, and virtually
gives us infinitely many ways to build fL (50200 ≈ 6 × 10339, as we have
50 realisations of 200 periods).

8



0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

0

2

4

6

8

10

12

14

16
W

ei
gh

t
pm
n_0
n_md
n_mh
n_dd
n_dh
uni

Figure 3: Representation of functions used as alternative weights. They
are all normalised on the positive real half-line; because of the finite range
of frequencies supported by our model, truncations imply some of them
integrate to less than unity. Description of the legend entries can be found
in Table 1.

2.15 Section 5.3

As it currently exists, I am not sure this section is adding much insight
to the manuscript and it could be removed without detracting from the
paper. All this section demonstrates is that the average floe size increases
moving away from the ice edge, a behaviour several previous observational
and modelling studies have identified. What might make this section more
insightful would be if the results could be used to generate a mathematical
description of how the emergent FSD changes with distance from the ice
edge or plots to show how the parameters of the lognormal fit change with
distance from the ice edge.

We added this subsection as we found the displayed features interest-
ing. We agree it can be further extended. Most importantly from our per-
spective is that the behaviour stays lognormal. In the revised manuscript,
we will change our non parametric density estimates to lognormal fit and
add the evolution of the parameters with respect to distance from the
edge.
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Figure 4: Densities obtained when combining monochromatic model runs
with different weighting functions, as represented on Figure 3.

2.16 P16 L364–365

‘For simplicity, even though we did conduct multivariate simulations,
we focus here’. Why mention this if you are not going to discuss the results?
It would be beneficial to discuss some of these results—since in the results
you present much of the parameter space is unexplored leaving open the
potential for different behaviour elsewhere in the parameter space.

We acknowledge that some new behaviour may emerge from multivari-
ate simulations. We will alter the manuscript to state that such simula-
tions are outside the scope of the study.

2.17 P17 L382–384

‘As the peak propagating wavelength is proportional to the significant
wave height, this non-monotonic evolution does not support wave proper-
ties alone govern the dominant floe size,’. Can you provide a more precise
explanation of why this happens? Given the simplified model treatment
used, it should be possible to explain how this behaviour emerges.

We believe this is due to the period-averaging. For small waves, wave
periods leading to the most breakup do not match the wave periods dom-
inating the spectrum. We will investigate this behaviour further.

10



2.18 Section 6

It would be good to see more focus in the discussion/conclusions on
what needs to be done to validate this model using observations of floe
size i.e. what are the key emergent features of the FSD produced by this
model that could potentially be identified in observations (not just the
general lognormal shape, but how the distribution evolves with changes
to key parameters such as the distance from the ice edge).

We are currently engaged in discussions with experiment-focused teams
regarding that matter. We will expand this Section accordingly. We would
also like to highlight the lognormal model proved to be successful at de-
scribing observation data (Montiel and Mokus 2022), even though these
could not be linked to wave activity.

2.19 P21 L446–447

‘These results aim at being a step towards the parametrisation of wave
action in FSD-evolving models.’ Working towards this parametrisation
seems to be a key result of this study and merits more than a single line
in the discussion/conclusion section. What more needs to be done to
develop this parameterisation? How will this parameterisation compare
to the alternative scheme developed by (Horvat and Roach 2022)?

Results can be used to, e.g., parametrise the distribution of floe sizes
used in the wave fracture parametrisation implemented in CICE by (Roach
et al. 2018) and labelled SP-WIFF in the aforementioned reference. The
current scheme relies on an histogram (A(r) in Horvat and Roach 2022)
derived from a strain-based breakup scheme applied on an ice transect,
i.e. a configuration with geometry assumptions similar to the model we
present here. Binned floe sizes are computed off-line for a number of ice
and wave conditions. A parametric distribution, whose parameters may
depend on these ice and wave conditions, could be used as an alternative
to this ad-hoc breakup parametrisation.

We will expand on this in the text.

3 Technical Corrections

3.1 P2 L30–31

‘In particular, fragmentation caused by ocean waves makes the floes
more sensitive to melt’. Maybe change ‘In particular’ to ‘Of particular
interest here’ or something similar, since there exists other mechanisms of
ice fragmentation that can drive the same feedback.
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‘Of particular interest here’ conveys the intended meaning and we made
the change.

3.2 P2 L36–37

Most studies listed fit the observed FSD to a simple power law (or
combination of the two). I am not sure it is correct to describe these as
Pareto distributions (see e.g. Herman, 2010).

In Herman (2010), the author called densities proportional to
x−1−α exp

(
1−α
x

)
truncated Pareto distributions, or GLV distributions.

Without any constraint on the normalisation term, it is actually an in-
verse gamma distribution, whose density is 1

Γ(α)x
−(1+α) exp

(
− 1

x

)
when

setting the scale to 1. The Pareto distribution probability density func-
tion is αx−(α+1), when setting the scale to 1 (α > 0), and often abusively
called power-law distribution.

3.3 P2 L37–38

‘However, a variety of processes such as failure from wind or internal
stress, lateral melting or growth, ridging, rafting or welding, are suscepti-
ble to alter the FSD.’ Can you provide references for these processes having
been observed to influence the FSD?

These processes are listed by Rothrock and Thorndike (1984) in their
seminal paper. Many studies treating the floe size distribution reference
them without further justification by observation. Some modelling stud-
ies give them a mathematical treatment as well (Horvat and Tziperman
2015). For more accuracy, we will change our statement to highlight its
conjectural nature.

3.4 P2 L48–49

‘evaluate the impact of its introduction on other quantities such as ice
thickness or concentration (Roach et al., 2018)’. There are other studies
you should consider referencing here e.g. Bateson et al., 2020; Boutin et
al. 2021.

We will add these references.

3.5 P3 L92

‘ensuing’. Should this be ensuring?
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We will change it to ‘leading to’ which might better convey the in-
tended meaning.

3.6 P4 L96

Reference is incorrect. Boutin et al. (2020b) should be Boutin et al.
(2021).

Indeed, we referenced the Discussion paper, this will be corrected.

3.7 P9 L243–244

‘Hence, the number of floes at most doubles, if all the floes break in a
single simulation.’ If my understanding is correct, single iteration would
be a clearer choice here rather than single simulation.

In this subsection, we try to present the breakup scheme in a general
manner. Using ‘iteration’ conveys the idea of repeating breakup event.
It is, indeed, what we present in the following subsection; but it has not
been introduced so far. This is why we settled on using ‘simulation’, as in
‘breakup simulation’.

3.8 P18 L394–395

‘The prevalence of smaller floes, however, tends to build up slightly.’
Phrasing here is awkward.

We can replace it with ‘The fraction of floes in the smallest size cate-
gories tends to increase’.

3.9 P19 L399

‘shows’/‘points out’ rather than ‘point out’.

Corrected.
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Response to CC1

We thank you for your kind comments and suggestions. We address your
concerns below.

1 Methods

1.1 Strain parametrisation
Using the location of the extremum strain as the location of fracture is indeed
arbitrary. It comes with the simplicity of yelding an absolute answer to the
breakup point question. As this location is phase-dependent, We believe that
the extensive randomisation we set up mitigates the effects of this choice on
the FSD.

1.2 Relationship between fracture location,
ice and wave properties

We have not attempted to establish such a relationship. We meant to focus
on the emerging distribution, rather than on demonstrating results that could
be applied to single floes. Even though Having precise, deterministic results
connecting ice mechanical properties and a prescribed wave forcing would
be captivating, it feels less in line with moving to larger scales, which are
inherently stochastically driven.

1.3 Young’s modulus
We chose the value of 6GPa in line with previous studies (Kohout and Meylan
2008; Williams et al. 2013). We do not attempt to evaluate its impact on
our results.
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2 Monochromatic forcing
For the right-boundary semi-infinite floe, strain is embedded in an envelope,
as shown in Kohout and Meylan (e.g. 2008) and displayed in Figure 1. For
finite floes, the free edge boundary condition makes the strain go to 0 on both
edges. Within this envelope, strain being a superposition of propagating,
attenuated and evanescent modes, oscillates with a wavelength close to the
main propagating mode. It is exponentially attenuated, in the direction of
propagation, in relation with the chosen viscosity; no attenuation exist for
zero viscosity simulations. The amplitude of these oscillations is proportional
to the wave amplitude, hence it diminishes with successive wave reflections.

Figure 1: Along-floe strain envelope evolution, for various ice thicknesses,
T = 8 s, a = 50 cm. The first stress in excess of our reference strain threshold
εc = 4× 10−5 is located by a dot on each line.

3 Main comment
Displayed distributions are indeed so-called number FSDs. The same analysis
can be applied to areal FSDs. If a relationship is known, or assumed, between
metrics of length and floe area, going back and forth between the two is
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straightforward. In order to not make such an assumption, we stuck to
displaying number-based results.

We present a comparison between number FSD and areal FSD in Figure 2.
We obtain the second by assuming floe area to be directly proportional to
the square of floe length (which holds for e.g. rectangular or elliptical floes
with constant aspect ratio). It can be shown that if a random variable X
follows a two-parameter lognormal distribution, then powers of X also follow
lognormal distributions, whose parameters depend on the original parameters
and the power used. If X follows a three-parameter lognormal distribution,
then powers of X follow linear combinations of lognormal distributions; the
larger the location shift, the further these combinations would be from a pure
lognormal. Therefore, if the floe lengths, when considering their frequency
of observation, are lognormally distributed with a small shift, we expect the
areal FSD to be close to lognormal as well.

Figure 2: Comparison between number (ND) and area (NA) FSDs, and
overlaid lognormal fits.
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4 Forecast based on fitted parameters
We do not attempt to fit analytical trends to the lognormal parameters.
Their evolutions with respect to the model physical parameters suggests that
it would be a reasonable exercise to do so and we will consider it.

5 Discussion and conclusion
This omission is due to a a submission timing. We do cite Dumas-Lefebvre
and Dumont (2020), and we will reference Dumas-Lefebvre and Dumont
(2021) in the revised manuscript.
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