
1 General comments
The manuscript „Wave-triggered breakup in the marginal ice zone…”

by Nicolas Mokus and Fabien Montiel describes a numerical study of wave
propagation in sea ice and wave-induced sea ice breaking. The main focus
of the paper are the properties of floe size distributions (FSDs) resulting
from breaking of ice with different properties (strength, thickness) by waves
of different periods and amplitudes.

Undoubtedly, the problems discussed in the study are important for
the current research on sea ice–wave interactions. Our better understand-
ing of the physical mechanisms underlying wave-induced sea ice breaking
is crucial for developing better parameterizations of those processes for
large-scale sea ice and climate models. Although I find the manuscript and
the results interesting and valuable, and the model developed by the Au-
thors well presented, I have some doubts, described below, regarding some
parts of the analysis. I recommend the manuscript for publication in The
Cryosphere after a major revision.

We thank the reviewer for their positive comments and suggestions,
which are addressed below.

2 Major comments

2.1

The main point in my critics is related to the procedure described in
Section 5.1: the whole algorithm is based on an assumption that the FSD
resulting from sea ice breaking on irregular waves is the ‘weighted average
of distributions resulting from monochromatic model runs’. Why?

I really can’t see the reason why it should be so simple.
Let’s consider a very simple example of a wave field composed of two

monochromatic waves with very different wavelengths, and let’s assume
that wave #1 does break the ice and produces very small floes, and wave #2
is very long and doesn’t break the ice at all (or produces very large floes).
The ice sheet in that case would break into small floes, corresponding to
that resulting from wave #1 anyway, so computing FSD from a weighted
average would produce truly weird results!

It’s the part of the spectrum that leads to breakup that’s important,
not the whole spectrum!

As the Authors rightfully demonstrate in their manuscript for
monochromatic waves, the relationships between floe size, ice properties,
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and wave length are quite complex and nonlinear, so there is no reason
why the FSD resulting from a wave energy spectrum should behave as the
Authors assume.

This is a valid concern. Obviously, this is a model, hence a simplifica-
tion of reality. We will make clearer in our manuscript that our approach in
Sect. 5 is indeed heavily assumption-dependent. The underlying assump-
tion is that waves, carrying the whole energy of the spectrum at discrete
time periods, would act independently to break the ice. The resulting
distribution would be the average of the distributions generated by these
independent periods, with weights related to the spectrum, in coherence
with linear theory. In reality, waves of different periods would interact with
one another, but our model cannot represent these interactions.

I have the impression that the shapes of FSDs in Fig. 6 to a large
degree simply reflect the shape of the wave frequency spectrum, and that
this is an artefact of the algorithm (or, more precisely, its part related to
the computation of weighted averages).

In my opinion, it is a very weak part of the analysis, but the Authors
don’t even discuss those weaknesses.

Of course, as I have serious objections regarding the above-mentioned
assumption, I have also doubts regarding the results presented in sections
5.2–5.4 of the manuscript.

We ran comparisons using alternative weighting functions, represented
on Figure 1. Descriptions of these functions can be found in Table 1.

The lognormal density function has, qualitatively, a shape similar to the
Pierson-Moskowitz spectrum when displayed as as a function of frequency.
However, we obtain similar, skewed unimodal densities with a range of
symmetrical weighting functions, as displayed on Figure 2.

The one case that stands out, with several secondary peaks, is n_md.
It corresponds to a function giving more weights to high frequency waves
(5 to 15m), which is unrealistic in the context of our model.

Why can’t the model be forced by a superposition of monochromatic
waves? The scattering model is linear, isn’t it, so it shouldn’t be difficult.
All one needs to do is to add up the wave solutions for individual spectral
components (assuming random phases) and use those to compute strain
(as, e.g., in section 6 of Kohout and Meylan (2008)).
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Figure 1: Representation of functions used as alternative weights. They are
all normalised on the positive real half-line; because of the finite range of fre-
quencies supported by our model, truncations imply some of them integrate
to less than unity. Description of the legend entries can be found in Table 1.

We implemented the approach suggested by the referee (Mokus and
Montiel 2022, conference proceedings). The results are different (Figure 3),
which is not an argument in favour of either of the methods. The later ap-
proach has limitations has well, as it assumes steady state to be reached by
waves of all periods at the same time, even though longer waves propagate
faster. These models would need experimental validation for additional
support.

We will insist on the assumptions and underlying limitations in the
revised manuscript, and mention the alternative parametrisation (strain
superposition) in the discussion.

2.2
Are the FSDs obtained for monochromatic waves lognormal as well?
Why is that pdf introduced first in Section 5.2 and not earlier? That

would allow comparisons between FSDs obtained for regular and irregular
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Figure 2: Densities obtained when combining monochromatic model runs
with different weighting functions, as represented on Figure 1.

wave forcing.

The PDFs obtained for monochromatic simulations seem to be well fit-
ted by lognormal distribution as well (see Figure 4). This will be discussed
in the revised manuscript. We delayed the introduction of the lognormal
PDF to Sect. 5 of the manuscript for two reasons. First, Sect. 4 of the
manuscript was meant to be an introduction to its Sect. 5. Therefore,
we did not want to deep dive into a parametric representation of these
FSDs. Second, the linear combination of lognormal PDFs (as presented in
Sect. 5) is not, in general, a lognormal PDF. The opposite can be true, as
a lognormal PDF can arise from the sum of other functions.

2.3
The algorithm, as described in Section 3.3, does not take into account

the time evolution of breakup – in the sense that the breaking events during
one “sweep” are all taking place at the same time instance, and a breaking
event at one location does not influence what is going on in an immediate
vicinity of that location (sudden stress release etc.).
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Table 1: Details of several weighting methods.
Name Type Effective sample size

pm Pierson-Moskowitz, Tp = 5 s 23451
n_0 Gaussian, µ = 0.2Hz, σ = 0.05Hz 42859
n_md Gaussian, µ = 0.4Hz, σ = 0.05Hz 550
n_mh Gaussian, µ = 0.1Hz, σ = 0.05Hz 65347
n_dd Gaussian, µ = 0.2Hz, σ = 0.1Hz 71280
n_dh Gaussian, µ = 0.2Hz, σ = 0.025Hz 19158
uni uniform 77486
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Figure 3: Comparison of results from two ways of considering the poly-
chromatic forcing. Lognormal fits overlayed over histograms. The leftmost
histogram (orange hue) corresponds to the method presented in Section 5 of
the present paper. The rightmost histogram (blue hue) corresponds to the
alternative method presented by Mokus and Montiel (2022), where we use
strain superposition to determine the fracture points. Both histogram areas
are normalised, the log x-axis skewing this perception.
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Figure 4: Histograms from Fig. 3 of the manuscript, and associated lognormal
fits.

I’m not criticizing it, I just wonder whether/how this limitation can
influence the resulting FSDs. What is the Authors’ opinion about that?

This is hard to answer. Wave scattering being solved in the frequency
domain is an obvious limitation of our model, on which we will insist more
in the revised manuscript. A truly transient model would be necessary to
evaluate the influence of this simplification, and that is out of the scope
of the present manuscript. In a sense, our iterative approach, allowing for
each floe to break several time, is a (restricted) substitute for true time
evolution.

2.4

Figure 4a,b shows the total number of floes for various combinations of
the model forcing. How does the width of the MIZ (i.e., the total length of
the broken ice) change? It is an important parameter for several reasons,
so it would be interesting to see plots analogous to those in Fig.4ab, but
showing the MIZ width. Or at least some comments on that in the text.

We thank the reviewer for this suggestion. We will modify Fig. 4 in
the manuscript to show the MIZ width, as shown in Figure 5. The peak of
MIZ width as a function of wavelength is reached at a wavelength slightly
larger than that causing the largest number of broken floes. If weakening
the ice increases the MIZ width, making it thicker, counterintuitively, does
so as well.
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Figure 5: Figure 4 from the manuscript with additional panels showing the
width of the MIZ.
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Figure 6: Attenuation of the extremum strain along a model transect, and
associated exponential fit. The xaxis is the ordinal floe number in the prop-
agation direction.

I know it’s beyond the scope of this paper, but I’m just curious: Have
the Authors analyzed the shape of the attenuation curves produced by
their model? Are they approximately exponential, or are there deviations
from the exponential curve (as in eq. 2.1 of Squire, Phil Trans A, 2018),
especially close to the ice edge?

We have not done so consistently for all our tests. We did, at a prelim-
inary stage, study the shape of the strain attenuation. These were indeed
exponential (Figure 6). We may add a short discussion of wave attenuation
in Sect 4.
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3 Minor, technical and other comments

3.1 Line 38

‘Hence…’ suggests this sentence follows from the previous one, but I
don’t really see the connection. I think I know what is meant here, but I’d
suggest formulating it more clearly.

We mean that the role waves played in the emergence of an observed
FSD is not well established for many of these studies. We will alter the
phrasing to make it clearer.

3.2 Lines 41–43

I’d suggest to add here that this technique not only leads to erroneous
values of the power law exponents, but, in the first place, suggests the
existence of power law tails even when there aren’t any and when the pdfs
aren’t heavy-tailed at all.

We will make that addition.

3.3 Line 93

The recent paper by Dumas-Lefebvre and Dumont (currently under
discussion in TCD: https://tc.copernicus.org/preprints/tc-2021-328/) is
worth citing here, as it describes a wonderful observational dataset of sea
ice breaking by waves. (It’s not self-advertisement, I’m not an author of
that paper.)

We agree. The paper is a more detailed version of Dumas-Lefebvre and
Dumont (2020), that we cite. We will make the substitution.

3.4 Lines 256–258

I understand that those tests suggest that the details of how the floes
are placed after breaking are not important.

Maybe it’s a naïve question, but are those empty spaces between floes
necessary? Does the algorithm work for densely packed ice field, with zero
spaces between floes?
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We consider the fluid to be inviscid, so the distance travelled by the
waves between floes does cause attenuation. The numerical model would
need a bit of tweaking for zero spacing to work, but currently spacing could
be as small as machine precision allows (double precision floating numbers).
We could have settled on assigning a random phase to the forcing wave,
at each algorithm iteration, instead of randomly positioning the floes, to
achieve the same result.

3.5 Lines 265–266

‘FSD dispersion’. Dispersion? As the term ‘dispersion’ has a clearly
defined meaning in the context of waves, I’d suggest replacing it here with
‘median floe size’.

‘Dispersion’ also has a clearly defined meaning in the context of statis-
tics. Variance and interquartile range are typical measures of dispersion.
It is indeed confusing and so we will replace the word by e.g. ‘spread’.

3.6 Lines 268–269

‘a positive relationship between the ice mechanical resistance […] and
the presence of larger floes’. But the skewness is larger for smaller strength
and thinner ice, isn’t it? The presence of larger floes itself can result from
a simple shift of the distribution to the right and is not directly related to
the skewness, so this sentence is a bit misleading.

The distributions being skewed is a general, qualitative comment and
we do not quantify skewness in the paper. The presence of larger floes can
indeed result from a shift of the distribution to the right; we do not mean
to link it to the skewness in any way. We will alter the phrasing to make
it clearer.

We did compute skewness here for the sake of the discussion (Figure 7).
We do not observe any trends for stronger ice at higher time periods (from
T = 8 s); however, skewness does increase for weaker ice at shorter time
periods (T = 4 s). Interestingly, at a given εc, it does not evolve monoton-
ically with T . The evolution of skewness as a function of ice thickness is
not monotonic at any period, and we do not attempt to analyse it further.

3.7 Lines 268–269
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Figure 7: (a) Sample skewness for different forcing periods and evolving
strain threshold. The dots correspond to mean values, and the shaded area
to one standard deviation around it, over 100 realisations. (b) Same as (a)
for evolving ice thickness. In (a), h = 1; in (b), εc = 4 × 10−5. In both,
a = 50 cm.

And further: “Qualitatively, increasing εc has only a moderate effect on
the FSD and seems to be only affecting its mode, shifting it towards larger
floes, while its shape remains the same.” Is it really so? Are the shape
parameters of the pdfs in Fig.3a really so similar? My impression from the
figure is quite different. It might be wrong, of course, but please back up
this statement by some numbers, e.g., skewness values (maybe you could
add them to the panels in Fig.3a,b for those three cases presented?).

As far as the mode is concerned, in Fig. 3a it changes by 1̃00% between
case 1 and 3, so I’d say it is a quite substantial change.

The skewness can be seen as a measure of shape. As shown in Fig-
ure 7 (a), the skewness is indeed quite stable, for T = 8 s and increasing
εc. For reference, the skewness values corresponding to the histogram pre-
sented in Fig. 3 (a, b) of the manuscript are given in Table 2.

The modes in Fig. 3 (a) of the manuscript do increase with εc, and
we point it out. It can result from a horizontal translation of the distri-
bution. It is a noticeable quantitative change, but not in contradiction
with the shape evolving little. We will clarify that statement in the revised
manuscript.

3.8 Line 274

11



Table 2: Skewness values for the different model configurations presented in
Fig. 3 (a, b) of the manuscript. The given values are the means over 100
realisations and the associated standard deviations.

εc h skewness

2× 10−5 1m 1.48± 0.15
4× 10−5 0.5m 2.92± 0.62
4× 10−5 1m 1.46± 0.23
4× 10−5 2m 2.63± 0.69
8× 10−5 1m 1.63± 0.37

Line 274: ‘the dispersion in floe sizes’: again, it’s not clear what exactly
is meant here. The range of floe sizes? (i.e. pdf width?)

We mean the spread of the distribution, as represented in Figure 3 (c,d)
by the interquartile ranges. We will change it in relation with comment 3.5.

3.9 Line 277

Line 277: crisp -> sharp? rapid?

Changed to rapid.

3.10 Line 349

Line 349: ‘the definition of the ice edge is not clear, as it is period-
dependent’. I don’t understand this statement, please clarify. And further:
‘the total length of ice in each period category’. Period category? Overall,
I’d recommend rephrasing this whole paragraph, as it contains a lot of
statements that are hard to follow (although the overall meaning is clear,
of course).

By period category, we meant the period bins used to discretise the
spectrum. The ice edge location, or the MIZ width, will depend on the
wave period used to force the system in a particular monochromatic run.
We agree on this paragraph needing some rephrasing.

3.11 Lines 426–427
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Lines 426-427: ‘scattering alone is not effective enough at dissipating
wave energy’!!! Scattering does not dissipate energy at all! Moreover, in
a 1D setting, scattering alone does not lead to wave energy attenuation
within sea ice: even for an extremely long ice cover, the wave energy at its
downwave end must be equal to the energy of the incomming wave minus
the energy reflected from the from the upwave edge. In other words, if any
attenuation is observed in the scattering-only model runs, it only results
from numerical inaccuracies.

‘Attenuating’ is indeed better suited here than ‘dissipating’. We believe
it is clear from the context this comment is about multiple scattering.
Successive reflections do lower the downwave amplitude, as expected by
comment 2.5.
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