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Abstract.

The Greenland Ice Sheet (GIS) is subject to amplified impacts of climate change and its monitoring is essential for un-

derstanding and improving scenarios of future climate conditions. Surface temperature over the GIS is an important variable,

regulating processes related to the exchange of energy and water between the surface and the atmosphere. Few local observa-

tion sites exist, thus space-borne platforms carrying thermal infrared instruments offer an alternative for surface temperature5

observations and are the basis for deriving Ice Surface Temperature (IST) products.

In this study several satellite IST products for the GIS were compared and the first multi-sensor, gap-free (Level 4, L4)

product was developed and validated for 2012. High resolution Level 2 (L2) products from the European Space Agency (ESA)

Land Surface Temperature Climate Change Initiative (LST_cci) project and the Arctic & Antarctic Ice Surface Temperatures

from Thermal Infrared Satellite Sensors (AASTI) dataset, were assessed using observations from the PROMICE stations and10

IceBridge flight campaigns. AASTI showed overall better performance compared to LST_cci data, which had superior spatial

coverage and availability. Both datasets were utilised to construct a daily, gap-free, L4 IST product using the optimal interpo-

lation (OI) method. The resulting product performed satisfactorily when compared to surface temperature observations from

PROMICE and IceBridge. Combining the advantages of satellite datasets, the L4 product allowed for the analysis of IST over

the GIS during 2012, when a significant melt event occurred. Mean summer (June-August) IST was −5.5°C±4.5°C, with an15

annual mean of −22.1°C±5.4°C. Mean IST during the melt season (May-August) ranged from −15°C to −1°C, while almost

the entire GIS experienced at least between 1 and 5 melt days when temperatures were −1°C or higher.

Finally, this study assessed the potential for using the satellite L4 IST product to improve model simulations of the GIS

Surface Mass Balance (SMB). The L4 IST product was assimilated into an SMB model of snow and firn processes during

2012, when extreme melting occurred, to assess the impact of including a high resolution IST product on the SMB model.20

Compared with independent observations from PROMICE and IceBridge, inclusion of the L4 IST dataset improved the SMB-

model simulated IST during the key onset of the melt season, where model biases are typically large and can impact the amount

of simulated melt.
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1 Introduction

There has been an increase in the rate of Arctic ice loss over the last two decades, including accelerated retreat of glaciers and25

ice sheets, a reduction in the extent and timing of seasonal snow and a reduced sea ice extent and thickness as a result of climate

change (IPCC, 2019). The Greenland Ice Sheet (GIS) has had a net negative mass balance for at least the last 25 years, resulting

from the combination of increased dynamic thinning, i.e. loss due to accelerated flow and calving, and decreased surface mass

balance (SMB) (Shepherd et al., 2020; Mottram et al., 2019; Mankoff et al., 2020). From September 2019 to August 2020 the

GIS experienced ice loss higher than the average for the period from 1981 to 2010 (Moon et al., 2020).30

SMB is the budget of accumulation, via snowfall, and ablation via melt and runoff. Also important are processes of meltwater

percolation into the snow and firn (snow that has survived at least one annual cycle) where meltwater can be retained as a liquid

if there is sufficient pore space and may refreeze if the cold content is sufficient, potentially forming aerially extensive ice layers

(Broeke et al., 2009; Ettema et al., 2010; Machguth et al., 2016; Reijmer et al., 2012). A decrease in SMB over the last 25 years

is the largest contributor to the mass loss of the GIS, largely due to enhanced melting during the summer melt season (Shepherd35

et al., 2020). SMB is directly measured at only a few point locations in Greenland and regional climate models (RCMs) are

used to make integrated estimates over the whole ice sheet (Shepherd et al., 2020). However, as analysis by Fettweis et al.

(2020) shows, there are large discrepancies between models in terms of both the components of SMB (mainly melt rates and

precipitation) and the geographical pattern of SMB. Satellite observations over large areas are therefore essential for evaluating

models and are also useful in process studies, to identify sources of model error as well as being potentially useful in correcting40

model biases via assimilation in climate and weather models.

Land surface temperature (LST) can be observed by satellites and is classified as an Essential Climate Variable (ECV)

according to the Global Observing System for Climate (GCOS) (GCOS, 2016). The temperature of the snow and ice covered

land surfaces (Ice Surface Temperature, IST), usually calculated from the surface energy balance from observations or RCMs,

controls both melt rates and other snow pack processes that are important for characterising SMB. As firn provides an important45

buffer for meltwater, it must be included in SMB models to determine rates of ice sheet loss. However there is a wide variation

in the performance of different firn models and the parameterisations used within them (Langen et al., 2017; Vernon et al.,

2013). As an example, retention and refreezing of liquid water are modulated by grain size and densification, which are in

turn strongly influenced by surface temperatures over the GIS (Vandecrux et al., 2020). Improving modelled IST is therefore

important for SMB estimates of the GIS.50

Satellite observations in the thermal infrared (IR) have allowed monitoring of clear-sky ISTs over the last four decades. Infra-

red sensors operate in the atmospheric window where wavelengths range between 10µm and 12µm, thus measurements refer to

the skin Ice Surface Temperature, which may differ considerably from, e.g. in-situ stations which typically measure the 2-m air

temperature. Furthermore, infra-red measurements can only be obtained under clear-sky conditions, thus are representative of

instances when temperature is typically lower compared to cloudy conditions (Nielsen-Englyst et al., 2019). Nielsen-Englyst55

et al. (2021) used clear-sky skin temperature observations from satellite infra-red radiometers to derive daily mean clear-sky 2

m air temperatures (T2m) in the Arctic, including the Greenland Ice Sheet.
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The primary IR sensors used for estimating IST are the Advanced Very High Resolution Radiometer (AVHRR) available

since August 1981 (Comiso and Hall, 2014; Dybkjær et al., 2012; Comiso, 2003), the Moderate-Resolution Imaging Spectro-

radiometer (MODIS) available since 1999 (Hall et al., 2008, 2012, 2013), the (Advanced) Along Track Scanning Radiometers,60

(A)ATSRs, available since 1991 (Dodd et al., 2019) and the Sea and Land Surface Temperature Radiometer (SLSTR) A/B as

successors of the (A)ATSR series. Recently, the European Space Agency (ESA) funded LST_cci project, part of the Agency’s

Climate Change Initiative (CCI) Programme, released initial versions of data products from several satellites that provide

temperature information across land surfaces regionally and globally, with a temporal extent of 20 years (Perry et al., 2020).

Averaged clear-sky IST observations from AVHRR have previously been analysed and used to calculate climate trends65

in the Arctic (Comiso, 2003; Wang and Key, 2005). However, the clear-sky limitation of IR observations usually results in

differences when compared to the averaged ISTs measured during all-sky conditions (Comiso, 2003; Koenig and Hall, 2010;

Nielsen-Englyst et al., 2019), which may impact the accuracy of the observed trends (Liu et al., 2008). Furthermore, single

sensor IST observations have gaps due to missing data, typically resulting from over-cast conditions, thus direct comparisons

with in situ measurements are further complicated by data unavailability. Currently, no gap-free (level 4, L4) IST product exists70

for the GIS.

This study presents the results from a user case study within the ESA LST_cci project regarding uptake of the first satellite

multi-sensor, optimally-interpolated L4 IST fields covering the GIS for the test year 2012, when an extreme melting event

occurred. IST data from IR satellite sensors were used from the ESA LST_cci project as well as from the Arctic and Antarctic

Ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) dataset (Dybkjaer et al., 2018; Høyer et al., 2019).75

The individual satellite IST products were inter-compared and validated against in situ measured radiometric surface tempera-

tures from the PROMICE stations and IceBridge flight campaigns. The year 2012 was selected due to extensive surface melt

over most of the ice sheet (Box et al., 2012; Nghiem et al., 2012; Hall et al., 2013) resulting in the lowest SMB on record;

a challenging event for climate models, many of which underestimated the contribution of turbulent heat fluxes to melting,

especially the sensible heat flux (Fausto et al., 2016). Finally, this study assessed the potential to integrate the L4 IST product80

into climate models by first evaluating against and then assimilating the daily L4 IST data into a SMB model forced by the

RCM HIRHAM5 (Langen et al., 2015, 2017).

2 Data

2.1 Satellite Data

As the GIS is located at high latitudes, it is not feasible to use aggregated day/night observations from ascending and descending85

orbits. L2 v1.0 data (without the subsequent enhancements to the algorithms, cloud masking and uncertainties) from the ESA

LST_cci project were used, consisting of 1-km IST observations from AATSR on ENVISAT (only available until April 2012)

and MODIS on the Aqua and Terra platforms (LST_cci, 2020). In addition, IST observations from the AASTI v2 L2 dataset,

available multiple times per day with 4 km resolution, were included in the analysis (Dybkjaer et al., 2018; Høyer et al.,

2019). This dataset is generated using Global Area Coverage (GAC) retrievals from AVHRR onboard the NOAA and METOP90
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platforms. The AASTI dataset extends north of 50°N and south of 50°S, providing surface temperatures for sea ice, land ice,

open water and marginal ice zone areas from 1982 to 2015. The satellite products assessed in this study are listed in Table 1.

Table 1. Input satellite data used for the derivation of the daily L4 IST product.

Product String Version Sensor type Resolution Data availability

ENVISAT AATSR L2P 1.0 IR 1 km Jan-Apr, 2012

TERRA MODIS L2P 1.0 IR 1 km Jan-Dec, 2012

AQUA MODIS L2P 1.0 IR 1 km Jan-Dec, 2012

AASTI AVHRR GAC 2.0 IR 4 km Jan-Dec, 2012

2.2 PROMICE

The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) data are provided by the Geological Survey of Den-

mark and Greenland (Ahlstrøm et al., 2008; van As and Fausto, 2011; Fausto et al., 2021). Surface temperatures are derived95

from upwelling longwave radiation measured by Kipp and Zonen CNR1 or CNR4 radiometers, assuming an emissivity of 0.97

(Fausto et al., 2021). Only PROMICE data from the upper ablation and accumulation zones were used to ensure that data are

only acquired over permanently snow- or ice- covered surfaces. Figure 1 (left), shows the geographical distribution of the eight

selected PROMICE stations and their elevation, also listed in Table 2.

Table 2. PROMICE observation sites including the surface type, co-ordinates and elevation.

Site Station Surface Type Latitude °N Longitude °W Elevation (m)

Kangerlussuaq KANU ACC 67.00 47.03 1840

Crown Prince Christian Land KPCU ACC 79.83 25.17 870

Scoresbysund SCOU UAB 72.39 27.23 970

Qassimiut QASU UAB 61.18 46.82 900

Tasiilaq TASU UAB 65.67 38.87 570

Nuuk NUKU UAB 64.51 49.27 1120

Upernaviq UPEU UAB 72.89 53.58 940

Thule THUU UAB 76.42 68.15 760

Surface type UAB: Upper-Middle Ablation zone, ACC: accumulation area.
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Figure 1. Left: Locations of the used PROMICE stations along the Greenland Ice Sheet and their elevation. Right: All IceBridge flights used

for validation (gray lines) and the one used in Figures 8 and 13 (black).

2.3 IceBridge100

The Operation IceBridge project (Kurtz et al., 2013) conducts flight campaigns over the Arctic sea ice and the GIS, carrying

various instruments including a thermal infrared radiometer, KT19, which observes in a similar IR frequency interval as the

AHVRR Channel 4 (9.6-11.5 µm). Surface temperatures are retrieved by measuring brightness temperatures and assuming

a constant surface emissivity of 0.97. In total, IST retrievals from 27 IceBridge flights (version 2) (Studinger, 2020) starting

at the end of March and ending on May 16th 2012 were used. Due to the high resolution footprint of the KT-19 instrument -105

approximately 15m at 450 above ground (Studinger, 2020) - which results in high variability of the observed radiometric surface

temperature, IceBridge observations were averaged every kilometre to make them more comparable to the lower resolution

satellite data. The IceBridge observations were not screened for potential clouds; under the presence of clouds between the

aircraft and the surface, the radiometer observes the, usually colder, cloud temperature instead of the surface.

3 Methods110

3.1 Level 4 OI IST

L2 observations were aggregated on a fixed grid to Level 3 (L3) and combined using a statistical methodology similar to Høyer

and Karagali (2016), resulting in L4 gap-free, merged and optimally interpolated (OI) daily fields with a 0.01° latitude and 0.02°

longitude resolution. Prior to the optimal interpolation, an intermediate L3 super-collated (L3S) product was generated from

the collation of all the L3 fields. The OI method is similar to the one from the high latitude SST DMI processing scheme (Høyer115

and She, 2007; Høyer and Karagali, 2016), which operates with anomalies from a first guess field. In the current approach, a

persistence-based method is applied, which uses the previous analysis field as the first guess field. The IST observations from

within 48 hours of the analysis time are aggregated and interpreted as anomalies with respect to the first guess field. The OI
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method, given statistical input such as a first guess error variance or co-variance functions and uncertainties of the individual

observations, finds the solution with lowest errors for each grid point (Høyer et al., 2014). The search radius for the OI method120

is set to 75 km and the maximum number of satellite observations included in the optimal estimation is 16. A spatially and

temporally varying dynamical bias correction has been applied to reference the MODIS products against the AASTI GAC data

(Høyer et al., 2014). This occurs when constructing the L3S product prior to generating the L4 IST product. The temporal

window for the dynamical correction is 7 days and the bias fields are smoothed over 500 km. Due to the limited temporal

availability and sampling pattern (see Section 4.1), AATSR data were not used for the generation of the L4 IST product.125

The satellite products used in this study represent the clear-sky IST as the IR satellite sensors cannot observe the surface

through clouds. As a result, a clear-sky bias is usually observed when comparing averaged clear-sky surface temperatures

against averaged all-sky temperatures (Koenig and Hall, 2010; Comiso, 2003). Nielsen-Englyst et al. (2019) used PROMICE

observations to estimate the clear-sky bias introduced when averaging using different temporal windows. Using a 72-hour

averaging window, they found a clear-sky bias of -0.96°C when PROMICE stations located in the middle/upper ablation zone130

and the accumulation zone were used. Here, this clear-sky bias of 0.96°C has been added to the satellite products in order

to provide an estimate of the corresponding all-sky daily IST fields, which can be compared to the all-sky ISTs observed by

PROMICE and IceBridge.

3.2 HIRHAM5 Regional Climate Model (RCM) and Surface Mass Balance (SMB) model

The HIRHAM5 RCM simulates the climate of Greenland with a 5 km resolution (Mottram et al., 2017). The RCM contains a135

simplified SMB model and a 5-layer snow and ice sub-surface scheme. The surface energy and water budget from the RCM,

i.e. the radiative and turbulent heat fluxes and precipitation, evaporation and sublimation outputs are then used to force an

offline SMB model with more and deeper layers and a more sophisticated treatment of snowpack processes to calculate the ice

sheet SMB. The full model set up is described in Mottram et al. (2017); Langen et al. (2015, 2017).

The Lagrangian set-up with 32 unequally spaced layers down to 100 m of water equivalent depth in the snow and glacier140

subsurface scheme is used (Hansen et al., 2021). Assimilating an albedo product over bare glacier ice based on MODIS data

can improve ice sheet surface melt estimates (Langen et al., 2017), however satellite-derived albedo data are not available as far

back in the past and suffer from other biases. Thus, the focus in this study was exclusively on IST assimilation without albedo

data assimilation; for the latter an internally calculated albedo scheme was used. The SMB model calculates the accumulation of

snow and ablation based on the surface energy balance by calculating a theoretical skin temperature. Since the skin temperature145

of ice cannot go above 273.15 °K, i.e. the melting point, this is converted to energy available for melting surface ice. The skin

temperature also influences deeper snow pack temperatures via diffusion.

Meltwater is assumed to run off immediately if bare glacier ice is exposed, but if there is snow on glacier ice, percolation into

the deep layers and the associated latent heat released by refreezing in deeper layers is accounted for until the heat capacity and

porosity of the layers is filled and no more percolation is possible. The sum of precipitation minus evaporation, sublimation150

and runoff of meltwater gives the daily SMB over the ice sheet.
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For the control simulation, surface energy balance outputs from the RCM were used to calculate the IST and melt potential as

normal. This control simulation was initially evaluated against the L4 IST data (not shown). For the simulation with assimilation

of the L4 IST, HIRHAM5 RCM forcing was initially used to calculate IST, and if this was below -2°C at a grid point for a given

time-step, the L4 IST product was assimilated. Therefore, at any given time-step, the GIS IST output by the SMB model is a155

combination of modelled and observed L4 IST. The threshold was chosen to filter out biases at higher temperatures observed

within the L4 IST product compared with PROMICE weather station data. The L4 IST product is available once daily, yet

modelled IST is dependent on the full surface energy balance and thus, highly variable in space and time; assimilating the

L4 IST product inevitably introduces some biases. Therefore, the aim of this assimilation experiment is to act as a proof of

concept for the potential ingestion of satellite derived data into the model. For this reason focus is on the month of May when160

IST and surface melt are highly variable; then the inclusion of satellite observations is likely to have the highest added value in

identifying surfaces close to the melting point.

4 Results

4.1 Inter-comparison of IST products

Examples of the different L3 satellite products generated from the L2 data-sets described in Table 1 are shown in Figure 2. The165

L3 products are aggregated for January 9, 2012 - winter time when cloud cover, impervious to IR radiation, is higher - into the

L3S product (bottom left) while after optimal interpolation, the L4 gap free product (bottom right) is produced for the same

date. The coarser spatial resolution of AASTI (top left) compared to MODIS (top middle) is visible, resulting in AASTI grid

points with missing information while MODIS daily aggregated L3 data offer superior coverage over the GIS. The sampling

of AATSR (top right) with its narrow swath and lower temporal resolution results in characteristic artefacts resembling the170

ENVISAT platform orbit. Such artefacts do not appear neither for the MODIS nor the AASTI products.

Figure 3 shows time-series of mean daily ISTs and their standard deviation (shaded area) for 2012 from aggregated AASTI

L3, MODIS L3, AATSR L3, L3S and L4 IST. To estimate the mean daily IST for each dataset, a mask defining the Greenland

Ice Sheet was applied and all valid and available measurements were averaged to a daily value. Therefore, daily mean values

shown in Figure 3 are means over the entire area of consideration and while the L4 IST product always has the same number of175

valid pixels used for the daily mean, the single-sensor products have a varying number of available measurements depending

on data quality and cloud coverage. The L3S product is the combination of all single-sensor products so its average is based

on all available points from all single-sensor products.

MODIS and AATSR (when available) show lower ISTs in particular during winter and late autumn compared to the other

products, with minimum MODIS ISTs of about -50°C and AASTI and the L3S and L4 IST products reaching their lowest ISTs180

of -35°C to -40°C. All products, including the L4 IST, well represent the annual cycle with warming starting in early March

and peaking in July, followed by cooling and winter minimum at the end of December.

The mean monthly IST and its standard deviation for all L3 products and the L4 IST are shown in Figure 4. AATSR was

only available until the beginning of April, thus no monthly value was calculated. From January to March, mean monthly ISTs
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Figure 2. Examples of aggregated IST observations from Jan 9th, 2012 over the Greenland Ice Sheet. Top row: Level 3 AASTI (left), Level

3 MODIS on Aqua & Terra (middle), Level 3 AATSR (right). Bottom row: Level 3S (left), Level 4 Optimal Interpolated IST (right).

from MODIS (magenta) and AATSR (green) were similar and significantly lower than AASTI (blue), the L3S (cyan) and the185

L4 IST product (red) accompanied by a higher standard deviation. These differences decreased from April to June, yet MODIS

consistently showed lower values and higher variability compared to AASTI and the derived L3S and L4 products, which

consistently agreed throughout the year. All products showed a peak mean monthly value in July, while June was warmer than

August. From January to March, mean monthly temperatures were comparable to November-December means and standard

deviations were of the same order.190

Such differences and variabilities are also reflected in the mean seasonal and annual estimates, shown in Table 3 for the

different L3 products (excluding AATSR) and the L4 IST product. AASTI, L3S and L4 IST showed higher, and similar,

seasonal and annual means compared to MODIS. Discrepancies between the estimates ranged from 0.5°C in winter to ∼1°C

in summer, between AASTI, the L3S and L4 IST products. MODIS was 3°C-8°C colder, with discrepancies being smallest in

spring. Mean annual IST over the GIS ranged from −22.1±5.4°C for the L4 IST to −27.9±5.9°C from MODIS.195

The spatial variability of mean annual IST over the Greenland Ice Sheet for 2012 from AASTI, MODIS, the L3S and L4

OI products is shown in Figure 5 along with the number of days with observations used to derive the means. For the MODIS

and AASTI datasets, the intermediate L3 gridded products were used for the estimates, i.e. the original 1-km and 4-km L2

observations were re-gridded to the 5-km final grid. MODIS mean IST was significantly lower over the entire Greenland Ice
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Figure 3. Mean daily IST (solid line) and its standard deviation (shaded area) over the Greenland Ice Sheet from the L3 AASTI, L3 MODIS,

L3 AATSR (when available) and the derived L3S and L4 IST product.

Table 3. Mean annual and seasonal IST with standard deviation in °C, from the different L3 and the L4 IST products for the Greenland Ice

Sheet for 2012.

Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON) Annual

AASTI -33.9±5.9 -25.1±6.3 -8.2±4.3 -26.8±6.9 -23.4±5.9

MODIS -41.2±6.9 -27.8±5.2 -11.5±5.2 -31.5±6.4 -27.9±5.9

L3S -33.4±6.4 -24.0±5.8 -5.4±5.2 -25.1±6.6 -21.9±6.0

L4 IST -33.6±5.7 -24.1±5.4 -5.5±4.5 -25.3±6.1 -22.1±5.4

For all products, winter mean temperatures were determined by averaging January, February and December of 2012.

AATSR was excluded as data were only available until April.

Sheet compared to the AASTI estimates, although significantly more observations were available for the former. Mean IST200

from the L3S and L4 OI products appear more similar to AASTI mean estimates.

The primary reason for the lower LST_cci v1.0 MODIS and AATSR IST values, used in the present study, is the type of

cloud masking applied in the first version of the data. No post-filtering or implementation of the cloud masking techniques

(later developed within the LST_cci for both instruments) were applied in the v1.0 of the data presented here but only the

standard operational cloud mask; this frequently failed to properly flag clouds, which are typically colder, resulting in lower205
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Figure 4. Mean monthly IST (dots) and its standard deviation (bars) over the Greenland Ice Sheet from the L3 AASTI, L3 MODIS, L3

AATSR and the derived L3S and L4 IST product, when available.

surface temperature values. For the case of AATSR, in addition to the cold bias, there also was the sampling issue (see Figure 2)

and the limited availability of data for the reference year 2012 (contact with ENVISAT was lost in April). Therefore, AATSR

was not included in the final L3S and L4 IST product. With respect to the MODIS product, the pixel-to-pixel variability is

smaller than for AASTI, mostly associated with the better coverage (see Figure 2) and it was thus decided to use it for the

generation of the L4 IST product.210

4.2 Validation of IST products

Figure 6 shows aggregated daily mean biases and standard deviations for AASTI, MODIS, L3S and the L4 IST product against

the PROMICE stations (see left panel of Figure 1 and Table 2). Note that, for each day, all available PROMICE stations were

used and that number differs from day to day, as not all stations have availability for all days. The overall bias of AASTI

data was −2.16°C±3.89°C, significantly smaller than −11.59°C±7.48°C reported for MODIS. The L3S product bias was215

−4.30°C±5.80°C while the L4 IST product was also found cold with a mean bias of −4.04°C±5.15°C, i.e. 0.26°C lower bias

and 0.65°C lower standard deviation compared to the L3S product. During summer, mean bias and standard deviation for

AASTI was very stable and close to zero which was not the case for MODIS. The L3S and L4 IST products also showed

higher variability in the daily bias and standard deviation during summer, compared to AASTI, yet they appear more stable

than MODIS, indicating the benefits of using the OI methodology to generate daily, gap-free IST fields. Furthermore, the lower220
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Figure 5. Mean IST over the Greenland Ice Sheet in 2012 from L3 AASTI, L3 MODIS and the derived L3S and L4 IST products (top) along

with the number of days used to derive the mean values.

bias and standard deviation of the L4 IST product against PROMICE stations, along with its better coverage demonstrate its

potential advantage over single sensor or daily aggregated fields.

When examining the performance of the L3 and L4 products individually for each PROMICE station (Table 4), AASTI

consistently had lowest bias (from −3.24°C to −1.34°C) and standard deviation values (3.29°C-5.83°C) for all stations, in-

dependent of altitude, type of ice sheet zone and geographical location. MODIS, beyond higher bias and standard deviation225

values also showed higher variability, with biases ranging from −17.43°C to −5.97°C and standard deviations between 6.41°C

and 9.39°C. Such behaviour provides additional evidence that the cold-bias issue stems from the early version of MODIS data

used in this study and the cloud masking approach implemented.

Other studies have shown similar cold biases in surface temperatures derived from MODIS (Wan et al., 2002; Hall et al.,

2012, 2013). However, as shown in Section 4.1, the important contribution of the aggregated MODIS observations in achieving230

a proper coverage over the GIS justifies the dynamical bias correction of the MODIS product against the AASTI data described

in Section 3.1 and its further use for the generation of the L4 IST product.

This higher variability of the MODIS product influenced the performance of both the L3S and the L4 IST product, where

biases ranged from −8.61°C to −0.62°C and standard deviations from 3.68°C to 7.42°C. The overall performance using

the PROMICE stations was −2.22°C±4.32°C for AASTI, −11.9±8.17°C for MODIS, −4.58°C±6.47°C for the L3S and235
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Figure 6. Time-series of mean daily bias estimates (line) and their standard deviation (shaded area) for AASTI, MODIS, L3S and L4 IST

against aggregated in situ observations from the PROMICE stations.

Table 4. Mean bias and standard deviation of errors for AASTI, MODIS, L3S and L4 IST against in situ observations for each of the

PROMICE stations.

KANU KPCU NUKU QASU SCOU TASU THUU UPEU Total

AASTI -2.13±5.02 -1.33±3.83 -3.12±4.06 -3.24±5.83 -1.96±4.34 -2.12±4.16 -1.82±3.29 -2.0±4.07 -2.22±4.32

MODIS -10.05±8.88 -5.97±6.41 -13.94±9.17 -12.78±9.39 -16.01±7.44 -17.43±9.24 -8.03±7.46 -11.0±7.33 -11.9±8.17

L3S -2.87±7.41 -0.71±4.32 -5.72±7.17 -5.08±7.48 -6.56±6.21 -8.96±8.29 -2.51±5.07 -4.26±5.83 -4.58±6.47

L4 IST -2.67±6.52 -0.62±3.68 -5.20±6.80 -5.0±7.17 -6.01±5.0 -8.61±7.42 -2.37±4.43 -4.03±5.18 -4.31±5.78

−4.31°C±5.78°C for the L4 IST product. The stable performance of AASTI and the L4 IST indicated that no single station

and its characteristics (location, altitude) influenced the validation statistics.

Using the 1-km averaged surface temperature observations from 27 IceBridge flight campaigns, starting in March 30 and

ending in May 16, mean bias (dots) and standard deviation (vertical bars) were estimated and are shown in Figure 7 for AASTI,

MODIS, L3S and the L4 IST. For most flights, AASTI observations were in agreement with the IceBridge observations, with240
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Figure 7. Mean bias (dots) and standard deviation of errors (bars) for AASTI, MODIS, L3 IST and L4 IST against individual IceBridge

flight observations from March to May 2012. The total bias and standard deviation values are reported.

overall zero bias (−0.01°C±4.03°C) and a very stable behaviour as no major outliers occurred; biases ranged from −2.10°C to

2.10°C. MODIS was cold compared to the flight measurements, manifested as a negative bias (−5.19°C±4.8°C), and with a

pronounced variability during the period evident from the oscillating bias (from −14.15°C to 2.20°C) and standard deviation

values (from 2°C to 7.2°C).

The L3S and L4 IST products (bottom panels of Figure 7) showed significantly lower bias and standard deviation compared245

to MODIS although with a similar, yet reduced variability in the statistics depending on the campaign; biases ranged from

−6.66°C to 3.98°C and standard deviations from 1.7°C to 6.6°C. Overall, the L3S product had a bias of −0.63°C±4.27°C and

the L4 IST a bias of −0.61°C±3.59°C, i.e. the lowest standard deviation of all datasets considered, ∼0.44°C and ∼0.6°C lower

than the AASTI and L3S product, respectively. As was the case for the PROMICE comparisons, the L4 IST product combined

stability and robustness in its validation performance and along with its improved spatial coverage can be considered more250

relevant for applications, e.g. related to SMB modelling of the ice sheet.

An example of one IceBridge flight campaign is shown in Figure 8 for April 19th 2012. Flight measurements, corresponding

to the coloured flight path on the right panel for Figure 1, averaged every 1 km as a function of distance covered during the
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Figure 8. 1-km averaged IST from Icebridge on April 19th 2012 (magenta) and standard deviation (shaded area) along with the corresponding

L4 IST values (blue).

flight (magenta) and their standard deviation (shaded area) are shown along with values from the L4 IST product, extracted

for the grid points corresponding to the flight path (blue line). The mean bias for that campaign was 0.40°C±4.30°C. This255

campaign, which started and ended at the west coast, covered various zones of the GIS, and the variability of the IST was

intense as revealed by the 1 km averaged measurements. Beyond the warm bias during the first 800km of the flight, the L4

IST captured the variability of the ISTs over the GIS remarkably well. As the IceBridge radiometer measures the radiometric

surface temperature from an aircraft at an approximate height of 450 meters above ground level without any cloud screening,

the presence of clouds may explain the discrepancies for the first 800 km of the flight where the IceBridge data are significantly260

colder than the L4 IST.

In order to assess the impact of the high resolution footprint of the IceBridge measurements on the validation statistics, i.e.

1-km averages over 5-km averages of the L3 and L4 IST products, the standard deviation of averaging raw measurements over

different spatio-temporal windows minus the raw measurements were computed (not shown). This is an assessment of biases

introduced from comparing flight data of very high resolution, i.e. resolving small-scale variability, against space-borne sensors265

which although are referred to between 1 km and 5 km grids, are known to resolve scales lower than their reference grid.

Using only IceBridge campaign data, averaging for different spatial windows, i.e. 1 km, 5 km and 25 km, and subtracting raw

measurements, the standard deviation values for each campaign were estimated (not shown). The largest component standard

deviation was introduced when processing the raw data to 1-km averages, in the order of 2°C. Depending on the campaign,

an additional 0.1°C to 0.6°C of the standard deviation was attributed to the averaging from 1 km to 5 km. When averaging270

from 1km to 25 km, differences in the standard deviation reached 0.9°C while the mean difference in the standard deviation

over all campaigns was 0.22°C from 1 km to 5 km averaging and 0.4°C from 1 km to 25 km. Thus, between 0.2°C to 0.4°C of
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the standard deviation in all comparisons against IceBridge campaigns (see Figure 7) can be attributed to the different spatial

scales represented in the IceBridge data compared to satellite observations.

The validation of the AASTI, MODIS, L3S and L4 IST datasets showed that for both PROMICE and IceBridge, AASTI275

had an overall better performance, with lower biases and standard deviations. MODIS v1.0 data data from the LST_cci project,

used in this study, had a significant cold bias, associated to the less advanced cloud mask algorithm applied to this early version;

this influenced the performance of the derived L4 IST product. Nonetheless, the better spatial coverage and higher resolution

of MODIS rendered it crucial for the generation of the L4 IST product and thus its inclusion was justified. A new, improved

version of the MODIS L2P dataset, to be released by the LST_cci, is expected to result in better performance of the L4 IST OI280

product.

4.3 Analysis of L4 IST

Monthly averages from the L4 IST product for 2012, shown in Figure 9, indicate the extent of warming during the summer

months where temperatures on the GIS ranged from −16° to zero, especially during July and for most of the ice sheet. Similar

ranges were reported in Hall et al. (2008) for the period 2000-2006 from MODIS LST products as well as in Hall et al. (2012),285

using daily MODIS IST between 2000 and 2010.

The number of aggregated observations from AASTI and MODIS used to generate the L4 IST product (not shown), revealed

a seasonal pattern where most observations were available between May and August while fewest observations were available

from November to February. The northern part of the GIS was consistently observed fewer times compared to the central part.

This spatial and temporal variability in the availability of observations from MODIS and AASTI is related to the availability290

of observations in the infra-red which is limited by cloud cover.

The annual mean IST over the GIS for 2012 is shown in Figure 10 (left panel), using the L4 IST product. Values ranged from

−30°C for the central part of the ice sheet and increased up to −8°C for the terminal zones, particularly for latitudes south of

70°N. Hall et al. (2008) reported similar values using MODIS data between 2000 and 2006. Furthermore, the mean IST during

the melt period May-August 2012 (Figure 10, middle) estimated from the L4 IST product showed values ranging from −15°C295

and up to 0°C, in agreement with Hall et al. (2008).

Melt days were defined as days for which the IST was −1°C or higher, following Hall et al. (2013). They were estimated for

the period May 1st to August 31st, at each grid point over the GIS. Figure 10 (right panel) shows the number of melt days from

the L4 IST product, where white areas experienced zero melt days and coloured areas indicate at least one melt day or more.

Melting was observed over large parts of the GIS for more than one day while significant parts of the middle and lower zones300

experienced more than 30 days of melt conditions.

4.4 IST Assimilation experiment

Figure 11 shows mean monthly IST values for May, estimated from the control (left) and updated simulation (middle), i.e.

including assimilation of the L4 IST product; the estimated anomaly is shown on the right panel. May was selected as it is

the month when the onset of melting commonly occurs across much of western and southern Greenland; this is a challenging305
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Figure 9. Mean monthly ice surface temperature over the Greenland Ice Sheet for 2012, from the L4 IST product.

Figure 10. Mean IST for 2012 (left), for the melt season May-August 2012 (middle) and number of melt days during the melt season (right,

minimum 1 day, white areas on the GIS indicate zero days), from the L4 IST product.
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Figure 11. Mean monthly surface temperature for May 2012 from the control (left) and updated simulation experiment (middle) along with

the anomaly (right).

period for SMB models to simulate and the use of IST observations can potentially have a positive impact on the simulated

IST and consequently the amount of simulated melt (not directly assessed in this study).

When examining the simulated surface temperature, the updated simulation using assimilation of L4 IST, was generally

warmer over a large part of the GIS, especially the east and north-east regions. The difference between the two mean May

surface temperature estimates, computed by subtracting mean May surface temperature estimates of the control simulation310

from the one using assimilation of the L4 IST (right panel in Figure 11) highlighted the areas for which the control simulation

was consistently colder by 2°C or more, even up to 5°C, extending to the north, south and east parts of the GIS. To the contrary,

the control simulation showed warmer temperatures on the west and central part of the GIS yet differences in this case did not

exceed 1°C and only for small areas were they up to 3°C.

Comparing the simulated surface temperatures against the PROMICE stations for May 2012 (Table 5) showed that mean315

daily temperatures from both the control (top) and updated simulation (bottom), using assimilation of the L4 IST product, were

colder compared to PROMICE station measurements. The bias was lower for the updated simulation (−1.14°C) compared to

the control simulation (−2.16°C) yet the standard deviation was higher, 3.55°C for the updated compared to 2.9°C for the

control. Only at the TASU station did both simulations indicate warmer surface temperatures, but this needs to be assessed

cautiously given the very few observations available in May 2012 at this station (not shown).320

Figure 12 shows comparison of surface temperatures with the IceBridge flight campaign measurements to assess the control

(top) and updated simulation (bottom), with assimilation of the L4 IST product; a marked improvement with the assimilation

of L4 IST data was found, with a reduction in both the bias and the standard deviation compared to the control. The reduced
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Table 5. Mean bias and standard deviation of errors for the control simulation and the one using assimilation of L4 IST against the individual

PROMICE stations for May 2012.

KANU KPCU NUKU QASU SCOU TASU THUU UPEU Total

Control -2.29±3.57 -2.73±3.93 -2.57±3.34 -1.75±3.14 -4.19±2.63 4.35±0.65 -3.79±2.68 -4.31±3.24 -2.16±2.90

Assim 0.47±3.28 2.65±1.78 -2.90±4.75 -2.51±3.83 -5.77±3.60 3.43±1.98 -0.41±3.44 -4.10±5.71 -1.14±3.55

Figure 12. Mean bias (dots) and standard deviation (bars) for the control simulation (top) and the one using assimilation of L4 IST (bottom)

against the IceBridge flight campaigns.

standard deviation for the IceBridge data comparison, as compared to PROMICE observations, was consistent with what was

reported in Section 4.2.325

An example of surface temperature measurements from one IceBridge flight and the associated surface temperatures from the

SMB simulations is shown in Figure 13, similar to what was shown for the L4 IST in Figure 8. Flight measurements, averaged

every 1 km, as a function of distance covered during the flight (magenta) and their standard deviation (shaded area) are shown

along with surface temperature values from the SMB model control (green) and updated simulation using assimilation of

the L4 IST product (cyan), extracted for the grid points corresponding to the flight path. For this specific flight, the mean330

bias and standard deviation with respect to the IceBridge measurements was −7.10°±6.74°C for the control simulation and

−0.80°±5.07°C, for the updated one.

The L4 IST product was shown to improve the SMB model simulated surface temperatures when compared to PROMICE

stations and IceBridge flight campaign measurements, for the test case of May 2012, selected as the typical onset of the melting

season. Experiments for other months of 2012 (not shown) indicated a neutral impact of the L4 IST product, providing more335

confidence in the existing SMB internal parameterisations for the simulation of surface temperature, for least challenging

periods.
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Figure 13. 1-km averaged IST from IceBridge on April 19th 2012 (magenta) and standard deviation (shaded area) along with the corre-

sponding values from the control (green) and updated SMB simulations (cyan).

5 Discussion

In this study, infra-red observations from the reprocessed archive of the ESA LST_cci project and the AASTI dataset were

utilised to demonstrate the capability for generating a Level 4 Ice Surface Temperature product over the Greenland Ice Sheet,340

based on existing long-term, homogenised datasets from satellite sensors. The aim was to demonstrate the generation, quality

and performance of the new L4 IST product compared to its single-sensor predecessors and in situ observations and finally

the applicability of such a product for monitoring IST over Greenland and its potential utilisation in a Surface Mass Balance

model.

Validation of the upstream input datasets and the derived L4 IST indicated larger differences between the satellite products345

and PROMICE measurements during winter, which can likely be associated to the higher diurnal variability in IST during

winter (Nielsen-Englyst et al., 2019) and the fact that cloud masking algorithms can suffer from reduced skill to identify

cloudy from clear-sky pixels over ice-covered surfaces during the polar winter season (Dybkjær et al., 2012).

The validation of satellite IST products against in situ observations suffers from the lack of available fiducial reference

observations for the IST over the GIS. As discussed in Høyer et al. (2017), the use of point-wise in situ observations can350

introduce a sampling uncertainty ranging from 0.4°C to 5°C, depending on the type of in situ observations, when compared to

satellite observations with a 1km footprint. Such contributions are not related to the performance of the satellite products but

arise from the spatial and temporal sampling uncertainty and the type of in situ observations.

For the types of in situ observations used for validation in this study, it is expected that the PROMICE broadband IST

observations will have higher uncertainties compared to the IceBridge data. This is a consequence of the PROMICE broad355

band radiometer observations versus the narrow band IceBridge observations; the snow and ice surface emissivity effects,
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arising from surface properties or incidence angles, vary much more for the broadband observations compared to the narrow

band radiometer. In addition, although the Spectral Response Functions (SRFs) of the IceBridge KT19 instrument are very

similar to the actual IR satellite SRFs, the instrument footprints are different. Therefore, the results from the inter-comparison

should not be viewed as an estimate of the uncertainty of the satellite products.360

Beyond the differences in the broad band PROMICE versus narrow band IceBridge measurements, another reason for the

reduced standard deviation can be associated to the fact that the IceBridge flights also cover the interior of the ice sheet, where

temperatures are lower and there is little melt. The PROMICE stations lie mostly within the ablation zone where there are large

diurnal and seasonal changes in IST that are challenging for both model and satellite observations to characterise.

The choice of 75 km for the search radius of the Optimal Interpolation scheme was a compromise between selecting a large365

search radius that ensured enough data to be included in the OI estimate and a computationally feasible search grid box. The

average number of observations found within the 75 km search radius is near the maximum number available of observations,

thus the selected search radius is not severely limiting the number of observations available for the OI. The threshold of 75 km

is being used for the operational production of the Near-Real-Time Arctic Ocean L4 SST/IST (Høyer et al., 2021).

Analyses of the annual spatio-temporal variability of IST over GIS revealed extended warming during the summer months370

of 2012, already reported as an extreme melt year (Box et al., 2012; Nghiem et al., 2012). Assessing mean annual IST values

over the GIS for 2012, Hall et al. (2013) reported mean annual IST of −23.62±6.24°C from MODIS, which is closer to the L4

IST values, compared to what is derived from MODIS in this study. Hall et al. (2013) manually removed daily MODIS IST

fields when the cloud mask erroneously identified the ice surface as cloud free, particularly occurring during the summer. Their

2012 summer season mean IST was −6.38±3.98°C, which is significantly higher than the −11.5±5.2°C found for MODIS in375

the present study, and closer to the −5.5±4.5°C for the L4 IST product.

Both Hall et al. (2008), for the period 2000-2006, using MODIS LST products and Hall et al. (2012), using daily MODIS

IST between 2000 and 2010, reported similar ranges of IST values over the GIS as found in this study. Furthermore, the 2012

annual mean IST over the GIS reported in this study (see left panel of Figure 10), is similar to what was derived in Hall et al.

(2008) using MODIS observations for 2000-2006. For the melt period defined between May and August 2012, mean IST from380

the L4 IST product (middle panel of Figure 10) was found in agreement with Hall et al. (2008) (see their Figure 2), although

for that study non ice-covered land surface temperatures where also considered thus above zero values were included.

Hall et al. (2013) reported more than two melt days for most of the GIS during the melt season of 2012, based on MODIS

data, which also indicated the warmest summer in the MODIS record with mean IST of −6.38±3.98°C, in good agreement

with the mean summer IST from the L4 IST product reported in Table 3. In Nghiem et al. (2012), extended melt over the GIS385

was identified from a combination of space-borne sensors, including MODIS in alignment with findings from this study (see

Figure 10). The extreme melt event of 2012 reported in this and past studies, was associated with unusually high geopotential

heights and atmospheric pressure anomalies over the ice sheet in Hanna et al. (2014).

As the year 2012 was significant in terms of melting over the GIS, the month of May specifically poses a challenge, as

it signifies the onset of the melt season, i.e. a challenging period for SMB models to simulate correctly as biases in winter390

accumulation can lead to significant discrepancies between observed and simulated melt onset. Hermann et al. (2018) showed
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that overestimates of winter snow close to the ice sheet margin delayed the onset of simulated melt compared to reality in

southern Greenland, with the reverse bias being found higher up where snow fall rates were underestimated. The use of IST

data to mitigate against this bias has the potential to improve annual melt and SMB estimates.

Both the control and updated simulation, using the L4 IST product, were forced by the HIRHAM5 RCM, which provides395

the required 6-hourly forcing fields and allows for calculation of surface temperature at a higher temporal resolution; this also

captures the diurnal cycle, likely an important process to resolve in the ablation zone, especially in spring. The coarser temporal

resolution of surface temperature assimilated into the model in the updated simulation using the L4 IST dataset, compared to

the control run, can be considered a challenge for assimilating such products. This is a topic that needs careful consideration

when aiming to generate optimally interpolated IST fields from space-borne sensors for the purpose of providing input to400

models that are typically in need of temporally resolved parameters with a frequency higher than daily. Nonetheless, the high

spatial coverage offered by the L4 IST product is an attractive and important attribute when aiming to capture and represent

surface temperature variability over large areas of the GIS, as demonstrated in Section 4.3, that can not be resolved through in

situ measuring stations and is typically under-represented in large (global) and medium (meso) scale model simulations.

The L4 OI IST dataset generated and presented here was the result of a user case from the ESA LST_cci project and was405

only generated for the selected year of 2012 to assess the impact and applicability of such a product over the Greenland Ice

Sheet. Ideally such a product can be expanded to cover the entire period of available L2 input data, thus resulting in more

climatologically relevant time scales in the order of 20 to 30 years. Such a task will become significantly more relevant during

the second phase of ESA LST_cci during which the current suite of products will be improved and temporally extended and

new products will be included, e.g. the AVHRSS series (NOAA 7-19 and MetOp-A/B/C).410

6 Conclusions

The ESA LST_cci v1.0 L2 MODIS Aqua/Terra data were used along with AASTI AVHRR GAC data to generate daily, gap-

free, optimally interpolated L4 IST composites for the Greenland Ice Sheet (GIS) for the year 2012, chosen due to the extreme

melt conditions. The upstream satellite data and the newly derived L4 product were validated using PROMICE and IceBridge

observations. Furthermore, the L4 IST product was used to assess mean monthly, annual and seasonal IST over the GIS and415

provided the basis for estimating melt during 2012.

Comparisons against the PROMICE stations and airborne IST observations from the IceBridge flights, suggest that the

LST_cci MODIS data are cold-biased by several degrees. This was attributed to the cloud masking algorithm used for the

generation of the v1.0 MODIS data within the LST_cci, as no post-filtering or techniques (later developed by the LST_cci)

were implemented. The equivalent AASTI AVHRR data did not exhibit such a cold bias and this demonstrates the importance of420

the multi-sensor inter-comparisons. After implementing a bias-correction to the MODIS data, agreement between the derived

L4 IST data and PROMICE stations and airborne IST measurements improved, but a residual cold bias was still evident in

the L4 IST product. This suggests that the large number of MODIS observations included in the generation of the L4 IST,

compared to AASTI, might challenge the bias adjustment scheme and that an improvement could be made regarding this in a
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future development. In general, we suggest that dedicated improvements on the IST retrievals and cloud masking algorithms425

could reduce both the bias and the large regional errors presented in this study.

The larger biases and standard deviations identified for all satellite products against PROMICE stations compared to the

ones for the IceBridge campaigns, were associated with the higher uncertainties of the broad band radiometers used on the

PROMICE stations. The IceBridge campaigns used a narrow band radiometer whose spectral response functions are very

similar to the ones from thermal infra-red satellite instruments. The locations of PROMICE stations in the ablation zone of the430

ice sheet can be the reason for larger diurnal variability in terms of surface energy budget that is not necessarily captured by a

daily data product.

By combining upstream IST satellite products, the gap-free, daily L4 IST product exhibited a stable, high quality perfor-

mance when compared to the PROMICE stations and IceBridge flight measurements. Thus, advantages from AASTI, i.e.

accuracy, stability and robustness, and MODIS, i.e. spatial resolution and coverage, were inherited in the L4 IST product.435

This allowed for a thorough analysis of IST spatial and temporal variability over the GIS during the challenging year of 2012.

Findings were in agreement with other studies, which were nonetheless based on single sensor satellite products. The L4 prod-

uct is thus useful for understanding larger spatial and temporal variability over the GIS, not achievable using limited, local

measurements or single-sensor satellite observations.

L4 IST daily fields were also ingested into an SMB model, forced by outputs from a regional climate model, to estimate ice440

melt and retention. The impact of using observed IST data in the model was assessed by comparing modelled and observed

estimates of the surface temperature for 2012 when extreme melting occurred. A major challenge in this approach was the

degradation in temporal resolution of surface temperature by forcing the assimilation of daily IST values from the gap-free

L4 IST product. Nonetheless, for the melt onset period of May 2012 it was found that assimilating the daily L4 IST product

produced more realistic surface temperatures, when compared to PROMICE stations and IceBridge flight campaigns than the445

control simulation with an internal calculation of surface temperatures. This suggests that, while a continuous forcing of the

SMB model with daily L4 IST may not provide significant improvements at all locations and times of the year, at least when

the temporal resolution of satellite IST products is daily, allowing for assimilation of the product during challenging periods of

the year, e.g. onset and during the melt season, can improve SMB estimates through better surface temperature estimates.

Furthermore, a significant value for the L4 IST dataset was identified as a means to evaluate climate and SMB models450

and to conduct process studies. Even with coarser temporal resolution, IST data assimilation was found to improve surface

temperatures over the large interior of the ice sheet and this is in itself an important result. Sensitivity studies, e.g. changing

the time step of assimilation and accounting for the time of IST data acquisition, are likely to further improve the use of IST

data in weather and climate models.

Data availability. PROMICE data are available from http://www.promice.dk. Operation IceBridge data are available from https://www.nasa.455

gov/mission_pages/icebridge/index.html. ESA LST_cci data are available from the JASMIN facility http://gws-access.jasmin.ac.uk/public/
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esacci_lst/. AASTI AVHRR GAC data are available upon request. The generated L4 IST dataset is to be distributed through the dedicated

ESA LST_cci repositories, pending upload. SMB model simulations are available on Zenodo (DOI to be confirmed).
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