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Abstract.  

The Arctic region is responding heavily to climate change, and yet, the air temperature of ice covered areas in the Arctic is 

heavily under-sampled when it comes to in situ measurements, resulting in large uncertainties in existing weather and 10 

reanalysis products. This paper presents a method for estimating daily mean clear sky 2 metre air temperatures (T2m) in the 

Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal 

Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear 

regression model, which has been tuned against in situ observations to estimate daily mean T2m based on clear sky satellite 

ice surface skin temperatures. The daily satellite derived T2m product includes estimated uncertainties and covers the Arctic 15 

sea ice and the Greenland Ice Sheet during clear skies for the period 2000-2009, provided on a 0.25 degree regular latitude-

longitude grid. Comparisons with independent in situ measured T2m show average biases of 0.30°C and 0.35°C and average 

root mean square errors of 3.47°C and 3.20°C for land ice and sea ice, respectively. The associated uncertainties are verified 

to be very realistic for both land ice and sea ice, using in situ observations. The reconstruction provides a much better spatial 

coverage than the sparse in situ observations of T2m in the Arctic and is independent of numerical weather prediction model 20 

input. Therefore, it provides an important supplement to simulated air temperatures to be used for assimilation or global surface 

temperature reconstructions. A comparison of T2m derived from satellite and ERA-Interim/ERA5 estimates shows that the 

satellite derived T2m validates similar or better than ERA-Interim/ERA5 against in situ measurements in the Arctic. 

1 Introduction 

The Arctic climate is changing rapidly with surface temperatures rising faster than other regions of the world due to Arctic 25 

amplification (Graversen et al., 2008; IPCC, 2013; Pithan and Mauritsen, 2014; Richter-Menge et al., 2017), with the maximum 

warming occurring during late fall and early winter (Box et al., 2019; Screen and Simmonds, 2010). Meteorological 

measurements in Greenland show a general warming since the 1780s (Cappelen (ed), 2021; Masson-Delmotte et al., 2012; 

Hanna et al., 2021; Abermann et al., 2017), with the 2000s being the warmest decade in western and southern Greenland, while 

the 2010s in parts of eastern Greenland were slightly warmer than the 2000s (Cappelen (ed), 2021).  30 
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The Arctic surface air temperature is one of the key climate indicators used to assess regional and global climate changes 

(Hansen et al., 2010; Pielke et al., 2007) and both model simulations and observations indicate that warming in the global 

climate is amplified at the northern high latitudes (e.g. Collins et al., 2013; Holland and Bitz, 2003; Overland et al., 2018). 

Traditionally, near surface air temperatures have been measured at the height of 1-2 m using automatic weather stations 

(AWSs) or buoys (Hansen et al., 2010; Jones et al., 2012; Rayner, 2003; World Meteorological Organization, 2014). Extreme 5 

temperatures, winds and the remoteness of the Arctic make in situ observations in the Arctic temporally and spatially sparse 

(Reeves Eyre and Zeng, 2017). Therefore, it is challenging to achieve climate-quality temperature records for this region. 

The key data sets used to assess the Arctic temperature changes are global gridded near surface air temperature datasets that 

are derived using in situ observations (Hansen et al., 2010; IPCC, 2013; Morice et al., 2012; Smith et al., 2008; Vose et al., 

2012). These datasets typically have higher uncertainties in the Arctic region due to the limited availability of in situ 10 

observations (Cowtan and Way, 2014; Lenssen et al., 2019; Rapaić et al., 2015). In addition, global reanalysis products such 

as ERA-Interim (ERA-I) and ERA5 (Dee et al., 2011; Hersbach et al., 2020) are frequently used to study the changes in the 

Arctic and to force ocean and sea ice models. Despite the assimilation of in situ data in the global reanalysis models, significant 

model differences have been reported for the Arctic (Davy and Outten, 2020; Delhasse et al., 2020; Lindsay et al., 2014; 

Wesslén et al., 2014) as well as large deviations from observations of T2m over Arctic sea ice (Wang et al., 2019). 15 

Observations from polar orbiting satellites offer a very good supplement to the in situ observations through high spatial and 

temporal coverage of the high latitudes and may improve the surface temperature products and the assessment of the Arctic 

climate changes. Therefore, daily near surface air temperatures derived from satellite temperature observations have the 

potential to increase the amount of information in the data sets and improve the quality of the climate records, as recognized 

in Merchant et al. (2013) and (Rayner et al., 2020).  20 

Two fundamental challenges exist when deriving a T2m product from infrared satellite observations. The first challenge is that 

infrared sensors (in the atmospheric window region of 10-12 micrometre wavelength) measure the ice surface skin temperature 

(ISTskin), whereas the current global temperature products include the near surface air temperature as measured continuously 

by AWSs and buoys. The surface skin temperature may differ considerably from the near surface air temperature measured by 

AWSs or buoys. Previous studies have compared satellite retrieved ISTskin and T2m from AWSs located on the Greenland Ice 25 

Sheet (GrIS; Dybkjær et al., 2012a; Hall et al., 2008, 2012; Koenig and Hall, 2010; Shuman et al., 2014) and over the Arctic 

sea ice (Dybkjær et al., 2012) and found temperature differences of which a significant part could be attributed to the 

temperature difference between T2m and ISTskin. Other studies have investigated the relationship between T2m and ISTskin 

over ice using in situ observations (Adolph et al., 2018; Hall et al., 2008, 2004; Hudson and Brandt, 2005; Nielsen-Englyst et 

al., 2019; Vihma et al., 2008). Nielsen-Englyst et al. (2019) found that on average T2m is 0.65-2.65°C higher than ISTskin with 30 

variations depending on the location of the measurement i.e. over sea ice, seasonal snow cover, and the following zones of the 

GrIS: lower ablation zone, upper-middle ablation zone, and accumulation zone. The T2m-ISTskin difference was found to vary 

seasonally with largest differences during the winter (when inversions are most common), and during melting conditions in 
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the summer (where the surface temperature is fixed at the melting point). In Nielsen-Englyst et al. (2019), wind speed and 

cloud cover were identified as key parameters determining the T2m- ISTskin difference. 

The second challenge, related to the use of satellite-derived infrared ISTskin to derive T2m, is that the availability of ISTskin 

observations is limited to clear sky conditions while T2m is measured continuously by AWSs and buoys. Previous studies 

have shown that a satellite-derived, clear-sky, surface temperature record can be significantly colder than an all-sky surface 5 

temperature record (Koenig and Hall, 2010; Nielsen-Englyst et al., 2019). To benefit from the good coverage of satellite surface 

temperature data, above mentioned challenges should be considered with caution. This work, starting with Nielsen-Englyst et 

al. (2019), has been initiated to estimate clear sky T2m from satellite observations (whenever these are available) for the Arctic 

sea ice and the GrIS in order to provide spatially-detailed observations for the areas unobserved by in situ stations and to 

supplement the in situ observations already available. Here, special attention have been given to above mentioned challenges 10 

and the relationships between the near surface air temperature and the satellite skin measurements have been explored in detail. 

A regression-based approach has been used to estimate daily T2m using satellite ISTskin and a seasonal cycle function as 

predictors based on the work presented in Høyer et al. (2018). The derived product covers only days with none or limited 

clouds, when satellite skin temperature observations are available. However, for those days when the satellite derived T2m 

product is available, it provides an estimate of the daily averaged all-sky T2m since it has been regressed towards in situ 15 

measurements from both clear and cloudy conditions. In order to further facilitate the usage of the derived product in modelling 

and for monitoring purposes, each satellite retrieved T2m estimate comes with uncertainties.  

Similar efforts have been done to estimate clear sky near surface air temperatures (and corresponding uncertainties) over land, 

ocean and lakes using satellite observations to cover all surfaces of the Earth (Good, 2015; Good et al., 2017; Høyer et al., 

2018). The previous work has mostly been done as a part of the European Union’s Horizon2020 project EUSTACE (EU 20 

Surface Temperatures for All Corners of Earth, 2015-2019, https://www.eustaceproject.org) with the overall aim to produce a 

globally complete gap-free daily near surface temperature analysis since 1850. It is outside the scope of this paper to produce 

a continuous gap-free daily near surface temperature analysis. However, within EUSTACE this has been done using a statistical 

model to combine satellite derived clear sky near surface air temperatures and in situ observations, and their respective 

uncertainty estimates (Morice et al., 2019; Rayner et al., 2020). The clear sky T2m product derived in this paper has been used 25 

to generate this daily gap-free EUSTACE T2m product for the GrIS and the Arctic sea ice, while similar clear sky temperature 

products have been used over land, ocean, and lakes, respectively.  

This paper is structured such that Sect. 2 describes the in situ data and the satellite data. Section 3 presents the method used to 

estimate clear sky daily T2m and uncertainties. The resulting T2m dataset and its validation are presented in Sect. 4 and 

discussed in Sect. 5. Conclusions are given in Sect. 6.  30 
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2 Data 

2.1 In Situ data 

In situ observations of near surface air temperatures have been collected from weather stations, expeditions and campaigns 

covering ice and snow surfaces to assemble the DMI-EUSTACE database. The database includes quality controlled and 

uniformly formatted temperature observations covering ice and snow surfaces during the period 2000-2009 (Høyer et al., 5 

2018). For the GrIS we use the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) data provided by the 

Geological Survey of Denmark and Greenland (GEUS; Ahlstrøm et al., 2008; van As et al., 2011) and the Greenland Climate 

Network data (GC-Net; Kindig, 2010; Shuman et al., 2001; Steffen and Box, 2001). Only PROMICE data from the middle-

upper ablation zone and accumulation zone have been used to ensure that data are only acquired over permanently snow or ice 

covered surfaces. Observations covering seasonal snow have also been used from the Atmospheric Radiation Measurement 10 

(ARM) Program from the two sites: Atqasuk (ATQ) and Barrow (BAR), at the North Slope of Alaska (Ackerman and Stokes, 

2003; Stamnes et al., 1999). Data from Arctic sea ice are primarily retrieved from the meteorological observation archive at 

the European Centre for Medium-Range Weather Forecasts (ECMWF) MARS data storage facility, providing 196 unique data 

series from drifting buoys. These sea ice data are supplemented with data from 10 U.S. Army Cold Regions Research 

Engineering Laboratory (CRREL) mass balance buoys (Perovich et al., 2016; Richter-Menge et al., 2006) and observations 15 

from a weather station located 29 m above the sea surface on the research vessel, Polarstern, operated by the Alfred-Wegener-

Institute in the sea ice covered parts of the Arctic Ocean (Knust, 2017; König-Langlo et al., 2006). We also use air temperature 

measurements obtained from ice buoys deployed in the Fram Strait region within the framework of the Fram Strait Cyclones 

(FRAMZY) campaigns during the years 2002, 2007, and 2008 as well as air temperatures from the Arctic Climate System 

Study (ACSYS) campaign in 2003 (Brümmer et al., 2011b, c, 2012b, a). Finally, we use data from two ice buoy campaigns 20 

operated by the Meteorological Institute of the University of Hamburg within the framework of the integrated EU research 

project DAMOCLES (Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies; 

Brümmer et al., 2011a). 

The different in situ types measure the air temperature at different heights that furthermore differ over time depending on the 

amount of snow fall, snow drift and snow melt. Here, we will refer to T2m for all observation types regardless of these 25 

variations. Nielsen-Englyst et al. (2019) showed small changes (<0.22°C) in T2m-ISTskin differences when using only 

observations within the measurement range of 1.90-2.10 m in height compared to using all measurements (ranging in 

measurement height from 0.3 m to 3 m). The observations from Polarstern at 29 metres height are not included in the derivation 

of the near surface air temperature data set, but only used for the validation. The accuracy of the air temperature sensors for 

all observation sites is approximated to 0.1°C (Hall et al., 2008; Høyer et al., 2017b). Few data sources provide both skin and 30 

air temperatures e.g. the PROMICE and ARM stations. The PROMICE skin temperatures have been calculated from up-

welling longwave radiation, measured by Kipp & Zonen CNR1 or CNR4 radiometer, assuming a surface longwave emissivity 

of 0.97 (van As, 2011). All in situ data have been screened for spikes and other unrealistic data artefacts by visual inspection. 
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Afterwards, the in situ observations have been averaged to daily temperatures using all available observations. Figure 1 shows 

the number of daily averaged in situ observations each year (2000-2009) of ISTskin and T2m over Arctic land ice and sea ice. 

The two ARM stations are included as land ice stations in this analysis, and only data from snow covered periods are used. In 

total 65,810 observations with daily T2m and 7,057 observations with daily ISTskin are available over land ice. See Table 1 for 

more information on the in situ observations used in this study. 5 

2.2 Satellite data 

The satellite data used in this study is from the Arctic and Antarctic Ice Surface Temperatures from thermal Infrared satellite 

sensors (AASTI; Dybkjaer et al., 2018; Dybkjær et al., 2014; Høyer et al., 2019) data set, covering high latitude seas, sea ice, 

and ice sheet with clear sky surface temperatures based on satellite infrared measurements from the CLARA-A1 data set 

compiled by EUMETSAT’s Climate Monitoring, Satellite Application Facility (CM-SAF; Karlsson et al., 2013). The data set 10 

is based on one of the longest existing satellite records from the Advanced Very High Resolution Radiometer (AVHRR) 

instruments on board a long series of NOAA satellites. AASTI contains swath based (i.e. Level 2; L2) ice surface skin 

temperature (ISTskin_L2) data processed and error corrected on the original Global Area Coverage (GAC) grid. The first version 

of the AASTI product, which is used in this study, is available from 2000 to 2009 in the original projection and resolution 

(L2), i.e. ~0.05 arc degree resolution and multiple daily coverage. Since 2000, seven different AVHRR instruments have been 15 

orbiting the globe, each 14 times per day, and thus providing approximately bi-hourly coverage of the Polar Regions (Figure 

2). The number of operational satellites has increased from 2 to 6 from 2000 to 2009. The IST algorithm used to generate the 

AASTI data set is based on thermal infrared brightness temperatures of AVHRR channel 4 (centre wavelength at ~11 microns) 

and 5 (centre wavelength at ~12 microns), and the satellite zenith angle. The algorithm is a split window algorithm, working 

within three temperature domains for each individual satellite (Key et al., 1997). The retrieval calibration of each domain has 20 

been done by relating modelled surface temperatures with modelled top-of-atmosphere brightness temperatures, determined 

by a radiative transfer model (Dybkjær et al., 2014). Cloud masking has been performed using the Polar Platform System 

(PPS) processing cloud processing software (Dybbroe et al., 2005a, b).  

As discussed in Merchant et al. (2017), satellite-based climate data records should include uncertainty estimates. The AASTI 

ISTskin_L2 data come with uncertainties divided into three independent uncertainty components, each with different 25 

characteristics: the random uncertainty (𝜇𝑟𝑛𝑑_𝐿2), a locally systematic uncertainty (𝜇𝑙𝑜𝑐𝑎𝑙_𝐿2) and a large-scale systematic 

(“global”) uncertainty (𝜇𝑔𝑙𝑜𝑏_𝐿2). These three components have been chosen since they behave differently when aggregating 

the observations in time or space (see Sect. 3.2). This uncertainty methodology has been developed within the sea surface 

temperature (SST) community (Bulgin et al., 2016; Rayner et al., 2015) and will be followed here. The total uncertainty on the 

ISTskin_L2, µtotal_L2, is calculated by summing each component in quadrature (i.e., square root of sum of squares). Excluding the 30 

cloud mask uncertainty, grid-cell systematic uncertainties (µglob_L2) are set to a fixed value of 0.1°C to represent systematic 

uncertainties in the forward models (see e.g. Merchant et al., 1999; Merchant and Le Borgne, 2004). The AASTI ISTskin_L2 



6 

 

data also come with a quality level (QL) from 1 (bad data) to 5 (best quality), with the addition of level 0 (no data) (GHRSST 

Science Team, 2010).  

Here, we have aggregated the AASTI ISTskin_L2 observations into 3 hourly and daily, gridded Level 3 (L3) averages of ISTskin_L2 

on a fixed 0.25 by 0.25 degrees regular geographical grid. This grid was chosen within the EUSTACE project to ensure a 

common grid to be used globally. The daily gridded averages (ISTskin_L3) are calculated by averaging all available ISTskin_L2 5 

observations with a quality flag of 4 (good) or 5 (best) for a given date and within the 0.25 degree bin. This has been done to 

facilitate the development of the relationship model and to ease the user uptake. The data in the daily aggregated files contain 

mean surface temperature observations from 00:00 to 24:00 hours local solar time, 3-hourly bin averages of surface 

temperatures and also the number of observations in the eight time bins during each day. The 3-hourly numbers of observations 

are used to estimate the satellite sampling throughout the day, and the 3-hourly temperature data to gain confidence in the daily 10 

cycle estimates (see quality checks below). Figure 3 shows the mean number of observations per day in each of the eight time 

intervals given in local time for the Arctic region. The variation in coverage throughout the day is a combined effect of the 

satellite overpassing, performance of the cloud screening algorithm, and the cloud free conditions during the day. In addition, 

the fixed 0.25 degrees regular geographical grid results in a decreasing L3 bin area when approaching the North Pole. The 

maximum satellite coverage is generally seen around 80°N with a minimum at the North Pole. Cloud free conditions over the 15 

GrIS are primarily observed around noon and the early afternoon.  

In order to best resolve the diurnal cycle with satellite information, we require data both during the night (between 18:00 and 

6:00 local solar time) and the day (between 6:00 and 18:00 local solar time) in order to calculate ISTskin_L3. To identify sea ice, 

we use an ice mask for which sea ice is characterised by sea ice concentrations above 30 lar according to the EUMETSAT 

OSISAF Global Sea Ice Concentration Climate Data Record (Tonboe et al., 2016). A few more checks have been set up in 20 

order to minimize the temporal sampling errors, the effects of undetected clouds and outliers as well as inconsistencies between 

the ice mask and the surface temperatures. Following Høyer et al. (2018), the ISTskin_L3 is discarded if one of the following 

criteria is met:   

 ISTskin_L3 exceeds +5°C, indicating inconsistency between the ice mask and the surface temperatures. 

 The standard deviation of satellite ISTskin_L2 during one day exceeds 7.07°C, corresponding to a sinusoidal daily cycle 25 

with a difference between day and night of 20°C.  

 The difference between ISTskin_L3 and the average of all available 3 h bin averages exceeds 10°C.  

 ISTskin_L3 is more than 10°C colder than the corresponding average of up to 24 neighbouring cloud free observations 

(in a 5 by 5 grid cell square) with the same surface type. 

The criteria above have been derived from analysis and inspection of the satellite data and with considerations to the results 30 

presented in Nielsen-Englyst et al. (2019). Inconsistencies between the ice mask and surface temperature typically occur along 

the coasts and sea ice edge, where the OSISAF product is subject to land-spillover effects causing spurious ice in ice-free areas 

(Lavergne et al., 2019). Using a surface temperature threshold of 5°C reduces the land-spillover effects and results in increased 

consistency between the ice mask and the surface temperatures.  
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The satellite-derived surface temperature has seasonal differences in daily variability, with largest standard deviations during 

the summer in Greenland and during the winter for sea ice, when the freeze-up of sea ice causes higher variability along the 

sea ice margin (Fig. 4). The main uncertainty components of the ISTskin_L3 estimates are erroneous cloud screening and the 

spatial variance of snow and ice surface emissivity, which are not accounted for in the retrieval algorithm. The presence of 

non-detected clouds will contribute to increased standard deviations and usually a cold ISTskin_L3 bias, since the cloud tops and 5 

other atmospheric constituents generally are colder than the surface (Dybkjær et al., 2012). 

 

2.2.1 Validation 

Additional satellite versus in situ differences arise when comparing satellite observations with pointwise ground measurements 

due to different spatial and temporal characteristics. To assess the magnitude of these effects, the ISTskin_L3 data have been 10 

validated against in situ observations from the PROMICE and ARM stations. Table 2 shows the validation results of daily 

ISTskin_L3 against in situ skin temperatures (ISTskin_insitu) and in situ 2 metre air temperatures (T2minsitu), respectively. The 

maximum matchup distance is 14.6 km and the average distance is 8.1 km, considering the AWSs in Table 2. The topography 

mask included in the HIRHAM5 regional climate model (see e.g. Langen et al. 2015) has been used to calculate the differences 

in elevation (Δh) between the in situ stations and corresponding satellite pixels. There is no clear correlation between the large 15 

biases and large elevation differences from this table, but the elevation effects are contributing to the spatial sampling error. 

The spatial and temporal sampling errors contribute to the overall uncertainty, but effects from erroneous cloud screening, 

algorithm simplifications, and uncertainties in the in situ observations are also included in the results. Previous studies find 

that erroneous cloud screening (undetected clouds) is one of the main reasons for the cold biases observed when comparing 

satellite observed IST with in situ measurements (Hall et al., 2004, 2012; Koenig and Hall, 2010; Østby et al., 2014; 20 

Westermann et al., 2012). Another important contribution is the effect of comparing clear sky satellite observations with all-

sky in situ observations, as discussed in Nielsen-Englyst et al. (2019). In general, ISTskin_L3 correlates better with T2minsitu than 

with the ISTskin_insitu. Moreover, the ISTskin_L3-T2mInSitu difference shows smaller standard deviations than ISTskin_L3-ISTskin_insitu. 

However, as expected the biases and root mean squared differences (RMS) are larger for the ISTskin_L3-T2minsitu differences 

than for the ISTskin_L3-ISTskin_insitu differences. The reason is that the radiometric surface skin temperature can be significant 25 

different from the surface air temperature measurements (Adolph et al., 2018; Hall et al., 2008; Hudson and Brandt, 2005; 

Nielsen-Englyst et al., 2019; Vihma et al., 2008). On average, the skin temperature is colder than the air temperature (Nielsen-

Englyst et al., 2019), resulting in even more negative biases, when the ISTskin_L3 is compared to in situ measured T2m, instead 

of in situ skin temperatures. The generally high correlations are dominated by the synoptic (2-5 days) and seasonal variations, 

which are pronounced in both IST and T2m.  30 
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3 Methods 

3.1 Regression model 

Nielsen-Englyst et al. (2019) analysed a large number of in situ stations with simultaneous T2m and ISTskin observations and 

showed that empirical relationships exist between T2m and ISTskin. However, it was also shown that the relationships varied 

for different regions. Based upon these results, it was decided to use a simple regression based method in this paper to derive 5 

the daily mean T2m from the satellite ISTskin_L3 observations. Separate regression models have been derived for land ice and 

sea ice.  

To test different types of regression models, the ISTskin_L3 data have been matched up with in situ observations for each day 

(Høyer et al., 2018). This is done by requiring a distance to nearest in situ site of less than 15 km. The average matchup distance 

is 8.6 km and 7.2 km for land ice and sea ice, respectively, which means that all in situ observations are made within the area 10 

of the satellite pixel. The corresponding mean elevation difference is 30 m (while the absolute mean elevation difference is 45 

m) and is calculated using the topography mask included in HIRHAM5 (Langen et al., 2015) for the 23 GrIS AWSs. Out of 

the 23 AWSs, four of them (GC-net JAR1, TAS_U, QAS_U and UPE_U) have corresponding elevation differences above 100 

m. In the Section 4.3, the effect of these AWSs has been estimated and discussed. All in situ observations, described in Sect. 

2.1., have been matched with ISTskin_L3 data, resulting in a total number of daily matchups of 65,810 from 275 different 15 

observation sites (see Table 1). These have been divided into two subsets: one for training and one for validation of the different 

regression models for land ice and sea ice, respectively. This has been done while ensuring similar coverage of training and 

validation data over the two domains, which is shown in Fig. 5. The result is that 40 % (13,792 matchups) are used for testing 

the regression models (and generating the regression coefficients) and the remaining 60 % (20,872 matchups) are left for 

validation of the regression models over land ice. Over sea ice 48 % (15,035 matchups) are used for testing and 52 % (16,111 20 

matchups) are left for validation.  

The regression model is based on multiple linear regression analysis using least squares (Menke, 1989). The multiple linear 

regression analysis equations can be written in matrix form, 

       𝒅𝒐𝒃𝒔 = 𝐆𝒎 + 𝒆         (4) 

            𝒅𝒑𝒓𝒆 = 𝐆𝒎,      (5) 25 

where dobs and dpre are vectors containing the observed and modelled in situ air temperatures, respectively, G is a matrix 

containing the various predictors, m is a vector containing regression coefficients, and e is the fitting error. 

The regression coefficients are found using damped least squares (Menke, 1989). The least squares method is used since the 

problem is generally over-determined, and the damping is added to limit effects of noisy data. The regression coefficients are 

thus given as: 30 

𝐆−𝐠 = (𝐆𝐓𝐆 + 𝜀2𝐈)−1𝐆𝐓                (6) 

𝒎 = 𝐆−𝐠𝒅𝒐𝒃𝒔,                  (7) 
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where G-g is called the generalized inverse, ε is a damping factor and I is an identity matrix (with ones in the diagonal and 

zeros elsewhere). The superscript operator T denotes transposing and -1 denotes inversion. We have tested a range of damping 

factors to assess the relation to the error coefficients. A damping factor of 0.2 was chosen to avoid overfitting noise in the data, 

while keeping the error coefficients low.  

The choice of predictors is based on current knowledge of the parameters that influence the relationship between ISTskin and 5 

T2minsitu (Adolph et al., 2018; Hall et al., 2008; Hudson and Brandt, 2005; Nielsen-Englyst et al., 2019; Vihma and Pirazzini, 

2005), limited by the available satellite data. Nielsen-Englyst et al. (2019) showed that the T2m-Tskin difference varies over 

the season with the smallest differences during the spring, fall, and summer in non-melting conditions. For that reason, we 

have also tested the effect of including a seasonal cycle as predictor. A total of 5 regression models with different predictors 

have been tested (Høyer et al., 2018): 10 

ÎSTskin:        𝑇2𝑚𝑠𝑎𝑡 = 𝛼0 + 𝛼1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3  (8) 

ÎSTskinSWd:       𝑇2𝑚𝑠𝑎𝑡 = 𝛼0 + 𝛼1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3 + 𝛼2𝑆𝑊𝑑 (9) 

ÎSTskinWS:       𝑇2𝑚𝑠𝑎𝑡 = 𝛼0 + 𝛼1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3 + 𝛼2𝑊𝑆 (10) 

ÎSTskinLat:       𝑇2𝑚𝑠𝑎𝑡 = 𝛼0 + 𝛼1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3 + 𝛼2𝐿𝑎𝑡 (11) 

ÎSTskinSeason:         𝑇2𝑚𝑠𝑎𝑡 = 𝛼0 + 𝛼1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3 + 𝛼2COS (
𝑡·2𝜋

1 𝑦𝑟
) + 𝛼3SIN (

𝑡·2𝜋

1 𝑦𝑟
) (12) 

 

The regression model in Eq. (8) is limited to an offset and a scaling of ISTskin_L3, where the latter term accounts for the synoptic 

and seasonal variations, which are the dominating factors in both the IST and T2m variability. This part is thus included in all 

regression models tested. The other regression models also have a third predictor, which is included to examine how to best 

represent the residual variations in the T2m-IST difference. The model in Eq. (9) uses theoretical top of atmosphere shortwave 15 

radiation, Eq. (10) uses the wind forcing (from ERA-I and ERA5, respectively), Eq. (11) uses latitude variation, and Eq. (12) 

uses a seasonal variation. In the regression model in Eq. (12), the seasonal variation is assumed to be the shape of a cosine 

function, 𝐴 · COS (
𝑡·2𝜋

1 𝑦𝑟
− 𝜑), where A is the amplitude, φ is the phase and t is time. Since COS(𝑥1 − 𝑥2)  =  COS(𝑥1)COS(𝑥2) +

SIN(𝑥1)SIN(𝑥2), the seasonal cycle can be rewritten to the form in Eq. (12) with 𝐴 = √𝛼2
2 + 𝛼3

2 and 𝜑 = ARCTAN (
𝛼3

𝛼2
). 

The training data have been used to calculate the regression coefficients for each regression model covering the land ice and 20 

sea ice, respectively. The performance of each regression model has been investigated using the training data and the results 

are shown in Table 3. The best performance is found by using the regression model where T2msat is predicted from ISTskin_L3 

combined with a seasonal variation (ÎSTskinSeason). This model predicts T2msat better compared to the other regression models, 

with correlations above 96 % and RMS values of 3.25-3.28°C against training data for both surface types (Table 3). In the 

following, we will use the regression model given in Eq. (12) with the seasonal term included and with separate regression 25 
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coefficients for land ice and sea ice (see Table 4). The phase corresponds to a maximum the 19th January and 12th February for 

land ice and sea ice, respectively. This is in agreement with Nielsen-Englyst et al. (2019) who found the strongest clear-sky 

inversion during the winter months (Dec-Feb) for all sites included in the analysis except from the ones located in the lower 

ablation zone (not included here), where pronounced surface melt takes place for long periods of time. 

 5 

3.2 Uncertainty estimates for T2msat 

Uncertainty estimates on the derived T2msat are crucial to facilitate the usage of the data set in modelling and for monitoring 

purposes. The uncertainty estimates of the satellite-derived T2msat data follow the approach in Bulgin et al. (2016) and Rayner 

et al. (2015), which has also been used for the AASTI data. The uncertainty on a single T2msat estimate is divided into random, 

locally correlated and systematic uncertainty components, with the total uncertainty µtotal_t2m given as the square root of the 10 

sum of the three squared components: 

𝜇𝑡𝑜𝑡𝑎𝑙_𝑇2𝑚 = √𝜇𝑟𝑛𝑑_𝑇2𝑚
𝟐 + 𝜇𝑙𝑜𝑐𝑎𝑙_𝑇2𝑚

𝟐 + 𝜇𝑔𝑙𝑜𝑏_𝑇2𝑚
𝟐 

The random uncertainty component for the T2msat belonging to a particular grid cell at a particular point in time is found by 

propagating the AASTI ISTskin_L3 random uncertainty through the regression model: 

𝜇𝑟𝑛𝑑_𝑇2𝑚 = √(𝛼1𝜇𝑟𝑛𝑑_𝐿3)
2
,  15 

with µrnd_L3 given as the aggregated 𝜇𝑟𝑛𝑑_𝐿2: 

𝜇𝑟𝑛𝑑_𝐿3 =  
𝜇𝑟𝑛𝑑_𝐿2

√𝑁
, 

where N is the number of observations for each bin in the aggregation from L2 to L3. The √𝑁 reduction applies because the 

random uncertainty of each L2 data point that goes into the L3 calculation is by definition independent from the other.  

The L3 global uncertainty component does not average out in any aggregation and is thus transferred directly from the L2 20 

uncertainty estimate and multiplied by 𝛼1 to make up 𝜇𝑔𝑙𝑜𝑏_𝑇2𝑚: 

𝜇𝑔𝑙𝑜𝑏_𝑇2𝑚 = 𝛼1𝜇𝑔𝑙𝑜𝑏_𝐿3=𝛼1 ∙ 0.1°C 

The µlocal_T2m contains both the local uncertainty component of L2, a sampling error µlsamp_L3 related to sampling errors in space 

and time due to the aggregation, a relationship error, cloud mask uncertainty etc. When aggregating from L2 to daily L3, 

additional sources of uncertainty enter through the gridding process as ISTskin_L3 can only be retrieved for clear sky pixels. This 25 

introduces a temporal and spatial sampling uncertainty. If all our satellite observations were obtained during all-sky conditions, 

we assume that the high polar temporal coverage is such that the temporal sampling uncertainty in the L3 files can be set to 

zero. However, this is not the case and using only clear-sky observations generally leads to a clear-sky bias in averaged ISTskin 

satellite observations when compared to in situ observations (Hall et al., 2012; Nielsen-Englyst et al., 2019; Rasmussen et al., 

2018). The relationship error represents the standard deviation of the residuals calculated at in situ stations, where both skin 30 

and air temperatures are available, i.e. T2msat-T2minsitu. Estimating all the different components that make up the µlocal_T2m is a 



11 

 

very challenging task and is out of the scope of this paper. Instead, we estimate the µlocal_T2m component using a simple 

regression model fitted to the satellite derived T2m and in situ T2m differences. Separate models have been chosen for the 

land ice and sea ice, due to the differences in the error characteristics. The variables to include in the uncertainty regression 

models have been chosen from a careful examination of the matchup data set. For land ice and sea ice the most relevant 

variables were the ISTskin_L3 itself and the number of 3 h time bins with observations in the L3, Nbins. 5 

For land ice the regression model for µlocal_T2m is given as following: 

𝜇𝑙𝑜𝑐𝑎𝑙_𝑇2𝑚_𝑙𝑎𝑛𝑑𝑖𝑐𝑒 = 𝛽0 + 𝛽1𝐼𝑆𝑇𝑠𝑘𝑖𝑛_𝐿3 + 𝛽2𝑁𝑏𝑖𝑛𝑠 , 

while the regression model for sea ice is given as: 

𝜇𝑙𝑜𝑐𝑎𝑙_𝑇2𝑚_𝑠𝑒𝑎𝑖𝑐𝑒 = 𝛾0 + 𝛾1𝐼𝑆𝑇𝑠𝑘𝑖𝑛𝐿3
+ 𝛾2𝐼𝑆𝑇𝑠𝑘𝑖𝑛𝐿3

2 + 𝛾3𝑁𝑏𝑖𝑛𝑠 . 

The coefficients have been determined by fitting to the T2msat-T2minsitu standard deviations calculated for the training data 10 

with ISTskin_L3 bin intervals of 2°C and Nbins interval of 1. The 𝜇𝑟𝑛𝑑_𝑇2𝑚and 𝜇𝑔𝑙𝑜𝑏_𝑇2𝑚 components have been removed from 

the standard deviations in each bin as well as an assumed in situ uncertainty of 0.1°C and an average sampling uncertainty of 

0.5°C (Høyer et al., 2017a; Reeves Eyre and Zeng, 2017) before fitting the regression models. The optimal regression 

coefficients for each domain are listed in Table 5. 

4 Results 15 

In Sect. 3.1, we selected the best (Eq. 12) of the five different algorithms and used it together with the derived coefficients 

(Table 3 and 4) to retrieve T2m from satellite surface temperature estimates. The derived dataset consists of daily estimates of 

near surface air temperature on a 0.25 degree regular latitude-longitude grid, during the period 2000-2009 (Høyer et al., 2018; 

Kennedy et al., 2019). Days with clouds and few clear sky observations (as explained in Section 2.2) are not included in the 

dataset. However, for those days when the satellite derived T2m product is available, it provides an estimate of the daily 20 

averaged all-sky T2m (see Sect. 5). Each temperature estimate is associated with three components of uncertainty on the 0.25 

degree daily scale: a random uncertainty, a synoptic scale correlated uncertainty and a globally correlated uncertainty excluding 

uncertainties related to the masking of clouds. The three types of uncertainties are also gathered in a total uncertainty estimate 

(see Sect. 3.2). The land ice temperatures have been calculated for grid cells categorized as ice sheet by ETOPO1 global relief 

model (Amante and Eakins, 2009), averaged to the 0.25 degree grid. Sea ice temperatures have been calculated for grid cells 25 

with sea ice concentrations above 30 %, according to OSISAF (Tonboe et al., 2016). 

4.1 Validation of T2msat 

The derived T2msat product has been validated against independent in situ data (i.e. the validation subset described in Sect. 

3.1). Figure 6 shows an example of the daily near surface air temperature coverage (from Jan 1st, 2008). Circles are in situ 

T2m measurements from coincidence independent AWSs and buoys and there seems to be quite good agreement between 30 

these and T2msat during this specific day. The overall model performance, when compared to all independent AWS and buoy 
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observations, is summarized in Table 6. The satellite derived air temperatures are about 0.3°C warmer than measured in situ 

air temperature for both land ice and sea ice. For the GrIS, the bias is partly explained by topographic effects (see Sect. 4.3). 

The correlations are above 95 % for both surface types and the RMS is 3.47°C and 3.20°C for land and sea ice, respectively. 

Note that the uncertainty of the in situ data is also included in these RMS values.  

Figure 7 shows the average seasonal variation in bias and standard deviation for land ice and sea ice, respectively. For both 5 

land ice and sea ice, there is a seasonal dependency in standard deviation with the largest values during the winter and smallest 

values during the summer. This is likely explained by a better cloud screening performance during sunlit periods (Karlsson 

and Dybbroe, 2010) and by the smaller natural thermal variability that is observed during summer conditions. Similar 

seasonality in performance is seen in five reanalysis products (including ERA-I/ERA5) for the GrIS (Zhang et al., 2021). As 

shown in Fig. 7, the average seasonal variation in bias is largest over sea ice with the largest values in March and August. 10 

However, this seasonal tendency in bias over sea ice is only reflected at the beginning of the time period (i.e. 2000-2004). This 

can be seen in Fig. 8 which shows the seasonal averaged independent validation statistics for the entire period for land ice and 

sea ice, respectively. The figure also shows a quite stable performance over the time period for both land ice and sea ice. 

As more satellite observations have become available over the time period, increased coverage of the surface temperature is 

expected over time. Figure 9 shows the average number of filled 3 h bins per day for the GrIS and Arctic sea ice for 2000-15 

2009. Both surface types show an increase in filled 3 h bins over time, with large seasonal variations. In most years, sea ice 

has 1-1.5 filled bins per day more during winter than summer, due to a more extensive cloud cover over sea ice during summer 

(Curry et al., 1996; Beesley and Moritz, 1999). The GrIS typically has fewer filled bins per day during the winter and summer, 

than spring and fall, which is also explained by differences in cloud coverage (Griggs and Bamber, 2008). Note that the increase 

in the average number of filled 3 h bins from 2000 to 2009 is not reflected in the performance of the T2m product (Figure 8).   20 

Figure 10 shows T2msat-T2minsitu differences plotted as a function of AASTI L3 skin temperature for land ice and sea ice, 

respectively. Over land ice, the standard deviation decreases as a function of ISTskin_L3, while the bias is around zero for 

ISTskin_L3 between -45°C and -10°C, positive for higher temperatures and negative for lower temperatures. For sea ice, the 

maximum standard deviation is found at skin temperatures of about -20°C, with smaller standard deviations for higher and 

lower ISTskin_L3. Positive biases are found for very cold skin temperatures (< -25°C) and for temperatures around the melting 25 

point (> -4°C), while the intermediate temperatures have a slightly negative bias. This effect is included in the uncertainty 

estimates as presented in Sect. 3.2, which include ISTskin_L3 as a predictor for both land ice and sea ice.  

Figure 11 shows the validation results of the estimated uncertainties, where the T2msat-T2minsitu difference is plotted against 

the theoretical total uncertainties as obtained in Sect. 3.2 for land ice and sea ice, respectively. The dashed lines represent the 

ideal uncertainty with the assumptions that the in situ observations have an uncertainty of 0.1°C and that the sampling 30 

uncertainty is 0.5°C. The estimated uncertainties show good agreement with the observed uncertainties when the error bars 

follow the dashed line, which is the case here for both land ice and sea ice. 



13 

 

4.2 Comparison with reanalyses 

The performance of T2msat has been compared to the performance of T2m from ECMWF’s reanalysis ERA-I (T2mERA-I; Dee 

et al., 2011) and the replacement reanalysis, ERA5 (T2mERA5; Hersbach et al., 2020). Table 7 shows the performance of 

T2mERA-I and T2mERA5 against the independent in situ T2m observations, which should be compared with the performance of 

the regression derived T2msat as shown in Table 6. The comparison may not be truly independent as a number of stations and 5 

buoys have been assimilated into the ERA-I and ERA5 data products (Dee et al., 2011; Hersbach et al., 2020), which would 

favour the reanalysis products in the comparison. Yet, the bias is significantly lower for T2msat than for both T2mERA-I and 

T2mERA-5, while the other validation parameters are similar, with slightly better correlation and standard deviation, but slightly 

worse RMS results for T2mERA. Previous studies have also found that ERA-I suffers from a consistent warm bias in the Arctic 

(Lüpkes et al., 2010; Jakobson et al., 2012; Vihma et al., 2002; Batrak and Müller, 2019; Simmons and Poli, 2014), and recent 10 

studies suggest that the warm bias still exists in ERA5 over sea ice (Wang et al., 2019; Graham et al., 2019). Similarly, recent 

studies found no significant improvements in 2 m temperatures over the GrIS for ERA5 compared to ERA-I (Delhasse et al., 

2020; Zhang et al., 2021). Note, however, that the NCEP-CFSR, which is based on a coupled atmosphere – sea ice – ocean 

model, has shown better performance than ERA-I for near-surface atmospheric variables over sea ice (Jakobson et al., 2012). 

Figure 12 shows the RMS difference between in situ measured T2m and T2mERA-I, T2mERA5 and T2msat, respectively, for the 15 

individual validation sites and both surface types. Due to the large number of buoys these have been validated for each data 

source with all observations weighted equally. The last bars refer to the RMS obtained by validating all validation sites in one 

long time series weighting all daily observations equally. The total T2msat agrees better with in situ observations for both 

surface types compared to both ERA-I and ERA5. For most land ice stations, the T2msat outperforms ERA-I and ERA5. One 

exception is the ARM station (BAR), where a bias of 2.49°C gives rise to a relatively large RMS error for T2msat. This is likely 20 

explained by physical differences between the seasonal snow covered sites and the GrIS sites, which are not fully captured by 

the regression model. ERA5 is significantly better than ERA-I over the GrIS, but ERA5 performs worse than both ERA-I and 

T2msat over sea ice. Over sea ice, T2mERA-I agrees better with in situ observations from ECMWF data stream and Polarstern. 

However, these may be assimilated into both ERA-I and ERA5. The validation against Polarstern is relatively good even 

though the temperature measurements are made at 29 metres height. This is likely because the data are mainly from the 25 

summer, when the vertical temperature gradients in the boundary layer are mostly small, and the performance of the cloud 

screening algorithm reaches its maximum. The independent in situ observations by ACSYS, CRREL, DAMOCLES and 

FRAMZY are better reproduced by the satellite-derived T2m. The errors in the T2mERA-I/T2mERA5 and T2msat data sets are 

expected to be independent and uncorrelated. For that reason, a combination of either T2mERA-I or T2mERA5 and T2msat can 

lead to an improved T2m estimate. 30 
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4.3 Topographic effects 

The effects from topography over the GrIS have been assessed by introducing a new matchup data set that ensures that the 

elevation difference between satellite and in situ observations is less than 100 m over the GrIS. Excluding those AWSs (4 out 

of 23) with a larger elevation difference than 100 m results in a reduction of the training data set of 2,935 matchups (i.e. from 

GC-net_JAR1 and PROMICE TAS_U) and a reduction in the validation data set of 560 matchups (i.e. from PROMICE 5 

QAS_U and UPE_U). The performance of the satellite derived T2m improves, in particular the bias, which decreases to 0.07ºC, 

while the standard deviation decreases to 3.41ºC over land ice. ERA-I and ERA5 show limited changes in performance, with 

slightly increased biases of 3.48ºC and 2.07ºC, and standard deviations of 3.14ºC and 3.08ºC, respectively, when introducing 

the new matchup data set over land ice. A similar good performance of the regression model is found when the 2 AWSs in the 

validation subset are kept. Despite the increased performance of the regression model, we have included all observations in 10 

the training of the model to ensure a robust and spatial representative solution.  

4.4 Analysis of T2msat 

The monthly mean T2msat is shown in Fig. 13 for March, June, September and December averaged over the period 2000-2009. 

The interior and northern part of the GrIS is typically colder than other parts of the Arctic in all months, while the warmest 

regions are found along the sea ice marginal ice zone and the ablation zone of the GrIS. Limited spatial variability is seen over 15 

the Arctic sea ice during summer.  

Figure 14 shows the monthly mean near surface air temperature estimates averaged over the GrIS for the period 2000-2009. 

The GrIS records a distinct annual cycle in near surface air temperature, with the maximum temperatures of around of -4°C 

during July and minimum temperatures of about -28°C during winter. The range in monthly mean air temperature is in 

agreement with those reported by van As et al. (2011) at a number of PROMICE AWSs. The temporal variability is largest 20 

during winter due to a larger cloud radiative effect (compared to near-zero during summer) and a larger meridional temperature 

gradient resulting in a more vigorous atmospheric circulation in winter (Serreze et al., 1993). In addition, the temporal 

variability is lower during summer due to the fact that when the surface begins to melt, the sensible heat is used for melting 

and hence reducing surface air temperature variability (Steffen, 1995).  

As illustrated in Fig. 15, T2msat provides increasing coverage over the period 2000-2003 and quite stable coverage for the 25 

years 2003-2009. The average daily coverage is 84 % and 67 % for land ice and sea ice, respectively, for the stable 2003-2009 

period and the 0.25 degree grid. When considering a 1 degree grid resolution, these numbers increase to 94 % and 81 %, 

respectively. Over land ice, the maximum coverage is during the spring and fall, while the sea ice coverage has a clear drop in 

coverage during the summer due to increased cloud cover (Curry et al., 1996; Beesley and Moritz, 1999).  
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5 Discussion 

Due to the limited number of in situ observations in the Arctic, and especially over sea ice, gathering in situ observations for 

testing and validating the regression models is not a simple task. The lack of observations that represent all conditions and 

regions in the Arctic, and the resulting matching threshold of 15 km combined with the large topographical variations over the 

GrIS, increase the uncertainty in the pixel-to-point comparison thereby complicating the derivation and validation of the 5 

regression models. Despite this, the validation against independent in situ observations and the comparison with ERA-I and 

ERA5 demonstrate the value of the T2msat product in the Arctic.  

Five regression models were tested, and the best regression model predicts T2msat from daily satellite ISTskin_L3 combined with 

a seasonal variation. The performance of the T2msat product did not improve much when the wind speed information from 

ERA-I or ERA5 (Table 3) was included despite the fact that previous studies have shown a strong dependency of wind speed 10 

for both land ice and sea ice (Adolph et al., 2018; Hudson and Brandt, 2005; Miller et al., 2013; Nielsen-Englyst et al., 2019). 

This was unexpected, at least for sea ice. The reason is likely that the quality of the wind speed fields is not adequate for use 

in the relationship model. In particular, accurately representing katabatic winds in numerical weather prediction (NWP) models 

is a challenging task due to the high resolution needed in the vertical direction (Grisogono et al., 2007; Steeneveld, 2014; Weng 

and Taylor, 2003; Zilitinkevich et al., 2006). Furthermore, the representation of surface roughness and the processes of snow-15 

surface coupling, radiation and turbulent mixing are hampered by limited resolution, while the relative importance of the 

processes varies with wind speed (Sterk et al., 2013). More accurate information on the wind speed is expected to improve the 

performance of the regression model which includes wind speed as predictor. In particular, the higher resolution NWP output 

may be very beneficial in the regions of the GrIS, where the local topography interacts with the wind through katabatic effects 

(DuVivier and Cassano, 2013; Oltmanns et al., 2015; Renfrew, 2004). Regional high resolution reanalysis products are 20 

currently being developed within the Copernicus Arctic regional Reanalysis service C3S project 

(https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service). It is likely that such products will provide winds 

that can be used within a relationship model. 

Since infrared satellites cannot measure the surface temperature during cloudy conditions, a cold clear-sky bias is often 

observed in infrared satellite ISTskin_L3 averages compared to all-sky temperature averages (see, e.g., Table 2; Hall et al., 2008; 25 

Koenig and Hall, 2010). When using satellite ISTskin_L3 observations, it is thus important to be aware of the clear-sky bias, 

which moreover varies with different temporal averaging windows (Nielsen-Englyst et al., 2019). Here, when using an 

empirical statistical method, which is trained against daily averaged in situ T2m (obtained both in clear sky and cloudy 

conditions), the conversion from ISTskin_L3 to T2msat removes the systematic ISTskin_L3 clear-sky bias effects that may be present 

in the satellite data. As a result, we obtain a T2msat estimate which performs similar or better than the ISTskin_L3, when validated 30 

against in situ observations. For the ISTskin_L3, the temporal sampling errors resulting from clouds have been minimized through 

a number of requirements. For short-lasting (<24 hours) cloudy conditions, the division into 3 h bin averages and the 

requirement of filled 3 h bins both during the night (between 18:00 and 6:00 local solar time) and day (between 6 and 18 local 
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solar time) ensure that the diurnal cycle is best resolved despite the gaps with clouds. For long-lasting (>= 24 hours) cloudy 

conditions, ISTskin_L3 is not available, and we do not retrieve T2msat for these days. 

The T2msat product derived here provides increasing coverage over the period 2000-2003 and stable coverage for 2003-2009. 

The coverage varies with the season with the minimum coverage over sea ice in the period from July to September due to 

extensive cloud cover over the Arctic sea ice during summer (Curry et al., 1996; Beesley and Moritz, 1999). Nevertheless, the 5 

average daily coverage is 84 % and 67 % for land ice and sea ice, respectively, for the stable 2003-2009 period. The high 

percentages in coverage demonstrate that the gaps due to cloudy days are limited (except for over sea ice in the summer) and 

that the data set contains a significant amount of information on the all-sky daily T2m even though it is based on clear sky 

satellite observations. 

Atmospheric models using data assimilation or statistical techniques may be applied to fill in the gaps due to clouds. This has 10 

already been done in the EUSTACE project by using an advanced statistical model to combine in situ observed and clear sky 

satellite derived T2m estimates (over land, lakes, ocean and ice), including uncertainty estimates,  into a global and gap-free 

daily analysis of surface air temperatures from 1850 to 2015 (Morice et al., 2019; Rayner et al., 2020). The T2msat product 

derived in this paper is used as input to the EUSTACE surface air temperature analysis for the GrIS and the Arctic sea ice.  

The T2msat data set developed here only covers the Arctic, but the AASTI satellite data set also covers the Antarctica. This 15 

implies that similar statistical methods can be derived for the Antarctic ice sheet and sea ice. Preliminary investigations indicate 

that a T2m product can be derived for the Antarctic ice sheet with similar performance to GrIS, whereas the Southern Ocean 

sea ice is challenging due to very few in situ observations (Morice et al., 2012). For both Southern regions, more in situ 

observations are needed to repeat the work performed for the Arctic and to determine a reliable statistical model. This product 

can also be extended to seasonal snow and ice, but it requires a dynamic surface mask and that the derivation of the regression 20 

model is repeated. However, similar efforts have already been made within EUSTACE to cover seasonal snow (Good, 2015; 

Morice et al., 2019; Rayner et al., 2020).  

The AASTI version builds on the Clara version 1 data set from the CM-SAF. A version 2 of the data set is now available 

(Karlsson et al., 2017), which facilitates the production of an AASTI version 2 data set that covers the period 1982 up to 

present. With consistency in the retrieval algorithm and data sets, it will be possible to use the relationship model to produce 25 

a satellite-based climate data record of T2m from 1982 to today. 

Including other available satellite products such as MODIS IST observations (Hall et al., 2004) or the (A)ATSR data set (Ghent 

et al., 2017) may improve the quality of the T2msat product. However, adding new data requires detailed knowledge of the 

characteristics of the data set such as sampling frequency and uncertainty of the IST observations. In addition, determination 

of the relationship model is needed again. At the same time, adding more satellite overpasses to the daily estimates may not 30 

reduce the uncertainty of the products. This is evident when comparing Fig. 7 and 8 where the variation in the number of 

satellite observations during the record (Fig. 8) is not reflected in a similar variation in the performance of the product (Fig. 

7). The uncertainty in the beginning of the record is comparable to the uncertainty at the end of the record, despite an almost 

doubling of the observed 3-hourly averages throughout the day.  
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6 Conclusions 

The surface air temperature is one of the key indicators for Arctic climate change, and it can easily be compared with climate 

change indicators from other regions. This study introduces a methodology for using satellite skin temperatures for estimating 

air temperatures to compensate for the lack of in situ measurements and as a supplement to reanalysis products in the Arctic. 

Daily near surface air temperatures (T2m) have been estimated based on daily clear sky satellite Level 3 (L3) observations of 5 

ice surface skin temperatures (ISTskin_L3), using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared 

satellite sensors (AASTI) reanalysis. A regression based method has been used and tuned against in situ observed T2m using 

ISTskin_L3 observations covering both Arctic sea ice and the Greenland Ice Sheet (GrIS). In general, there is a good correlation 

between T2m and ISTskin_L3 due to the seasonal cycle in both IST and T2m. Different models have been tested to examine how 

to best capture the variability in the T2m-IST difference. The highest correlation and lowest RMS were found using a model 10 

where T2msat is predicted from daily satellite ISTskin_L3 combined with a seasonal variation, assumed to have the shape of an 

annual harmonic. This model has been used to derive daily T2m on a 0.25 degree regular latitude-longitude grid from the clear 

sky AASTI ISTskin_L3 over the Arctic during the time period 2000-2009 (Kennedy et al., 2019), using different regression 

coefficients for land ice and sea ice. Days with clouds or limited clear sky observations have been excluded from the analysis. 

Considering a 1 degree regular latitude-longitude grid, the average daily coverage of the T2msat product is 94 % over the GrIS 15 

and 81 % for sea ice for the years 2003-2009. The days when the T2msat is available, the T2m estimate can be considered as a 

daily averaged all-sky T2m, since it has been tuned against all-sky in situ observations. 

The estimated T2msat data show average biases of 0.30°C and 0.35°C and average root mean square errors of 3.47°C and 

3.20°C for land ice and sea ice, respectively, when validated against independent in situ observations. All daily T2msat estimates 

include a total uncertainty estimate divided into a random, locally systematic, and large-scale systematic uncertainty 20 

component. The total uncertainty of T2msat shows good validation results when validated against independent in situ 

observations. A comparison with two of ECMWF’s reanalyses (i.e. ERA-I and ERA5) shows that T2msat validates similar or 

better than both of these even though the reanalyses actively assimilate available in situ observations. The T2msat product is 

independent of the quality of the NWP forecasts, and thus, it represents an important supplement to the model based T2m. The 

errors in NWP products (e.g. T2mERA-I or T2mERA5) and the errors in the product derived here (T2msat) are expected to be 25 

independent and uncorrelated, and a combination of a NWP product and the T2msat data can therefore lead to an even better 

T2m estimate. The regression models presented here both work on satellite observations that are available from reprocessed 

records but opens up for a near real time estimation of T2m from satellites. The results obtained for the ice covered areas show 

that there is a large potential for using satellite observed surface temperatures to estimate near surface air temperatures. These 

estimates are not supposed to replace the already existing air temperature measurements or reanalyses, but rather to supplement 30 

these e.g. in areas where no in situ observations are currently available. 
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7. Data availability 

The derived surface air temperatures from satellite surface skin temperatures over ice can be downloaded from 

http://dx.doi.org/10.5285/f883e197594f4fbaae6edebafb3fddb3 (Kennedy et al., 2019). The PROMICE data can be accessed 

through http://www.promice.dk (last access: 16 November 2018). The ARM data are available at 

https://www.archive.arm.gov/discovery/\#v/results/s/s::co (last access: 21 December 2018). GC-Net data can be found 5 

through doi:10.5067/6S7UHUH2K5RI  (Greenland Climate Network (GC-Net) Radiation for Arctic System Reanalysis, 

Version 1., 2016). Data from CRREL mass balance buoys are available from: http://imb-crrel-dartmouth.org (last access: 24 

November 2016), while Polarstern data can be downloaded at https://dship.awi.de/Polarstern.html (last access: 24 

November 2016. FRAMZY data are available from doi:10.1594/WDCC/UNI_HH_MI_FRAMZY2002 (Brümmer et al., 

2012b), http://dx.doi.org/doi:10.1594/WDCC/UNI_HH_MI_FRAMZY2007 (Brümmer et al., 2011b), and 10 

http://dx.doi.org/doi:10.1594/WDCC/UNI_HH_MI_FRAMZY2008 (Brümmer et al., 2011c), while ACSYS data are found 

here: DOI: 10.1594/WDCC/UNI_HH_MI_ACSYS2003. Damocles data can be found here: 

doi:10.1594/wdcc/uni_HH_MI_DAMOCLES2007 (Brümmer et al., 2011a). The traditional buoy and ship data obtained 

from ECMWF are distributed through the World Meteorological Organization’s (WMO) Global Telecommunication System 

(GTS) and available for members at the ECMWF Meteorological Archival and Retrieval System (MARS). Finally, the 15 

AASTI ISTskin_L2 data are available from http://dx.doi.org/10.5285/60b820fa10804fca9c3f1ddfa5ef42a1 (Høyer et al., 2019).  
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Table 1: Overview of in situ observations used in this study, covering the period 2000-2009. 

 No. of sites, (AWS, 

buoys or ships) 

No. of days with 

observations  

Surface Type Observation 

Type 

Temperature 

measurements 

ACSYS 7 280 Sea ice Buoy T2m 

ARM 2 2,846 Seasonal snow AWS T2m, ISTskin 

CRREL 10 1,031 Sea ice Buoy T2m 

DAMOCLES 25 2,160 Sea ice Buoy T2m 

ECMWF 196 27,235 Sea ice Buoy T2m 

FRAMZY 11 251 Sea ice Buoy T2m 

GC-NET 15 29,133 Land ice AWS T2m 

POLARSTERN 1 189 Sea ice Ship T2m 

PROMICE 8 2,685 Land ice AWS T2m, ISTskin 

 

 

Table 2. Validation of daily AASTI v.1 Level 3 IST (ISTskin_L3) against in situ ISTskin (ISTskin_insitu) and T2m observations (T2minsitu). 

N: number of matchups, Corr: correlation, Std: standard deviation, RMS: root mean square difference, d is the matchup distance 5 
and Δh is the difference in elevation (AWS – Satellite). 

 

 

  ISTskin_L3 - ISTskin_insitu  ISTskin_L3 – T2minsitu d (km) Δh (m) 

Station N Corr  Bias Std RMS Corr Bias Std RMS   

ARM_ATQ 1235 93.8 -2.47 3.69 4.44 93.7 -3.17 3.69 4.87 10.8 - 

ARM_BAR 1594 94.1 -0.73 4.30 4.36 94.6 -1.14 4.02 3.86 6.1 - 

PROMICE KAN-M 422 93.9 -3.65 3.37 4.96 94.6 -4.56 3.14 5.53 7.6 15 

PROMICE KAN-U 239 93.9 -1.75 3.32 3.75 94.4 -3.39 3.17 4.64 14.6 21 

PROMICE KPC-U 488 97.6 -1.31 2.62 2.92 98.2 -3.20 2.27 3.92 5.1 29 

PROMICE NUK-U 296 77.7 -4.09 5.00 6.45 84.7 -7.19 4.01 8.23 14.4 64 

PROMICE QAS-U 407 83.9 -1.65 4.20 4.51 86.3 -3.70 3.75 5.27 6.5 197 

PROMICE SCO-U 403 91.5 -4.60 4.25 6.26 93.7 -7.55 3.75 8.43 4.2 20 

PROMICE TAS-U 386 67.5 -1.03 5.43 5.52 79.5 -3.61 4.39 5.68 8.4 214 

PROMICE UPE-U 125 88.2 -3.13 3.88 4.97 90.0 -5.49 3.50 6.50 3.0 110 

All data 5595 92.9 -2.03 4.24 4.70 93.2 -3.36 4.12 5.32 8.1 83.8 
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Table 3: Statistics on the relation between observed and modelled temperatures for the training data. N: number of matchups used 

for testing, Corr: correlation, RMS: root mean square difference. Since, the training data are used for the regression, the bias is zero 

and thus the standard deviation equals RMS. 

  N Corr (%) RMS (°C) 

 

 

Land ice 

ÎSTskin 13792 95.7 3.51 

ÎSTskinSWd 13792 96.2 3.28 

ÎSTskinWSERA-I 13792 95.8 3.47 

ÎSTskinWSERA5 13792 95.9 3.42 

ÎSTskinLat 13792 95.8 3.48 

ÎSTskinSeason 13792 96.3 3.28 

 

 

Sea ice 

ÎSTskin 15035 96.0 3.32 

ÎSTskinSWd 15035 96.0 3.32 

ÎSTskinWSERA-I 15035 96.0 3.32 

ÎSTskinWSERA5 15035 96.0 3.32 

ÎSTskinLat 15035 96.1 3.28 

ÎSTskinSeason 15035 96.2 3.25 

 

Table 4: Model regression coefficients for ÏSTskinSeason. 5 

 Offset, α0  (°C) ISTskin_L3 factor, α1 Amplitude, A Phase, 𝜑 

Land ice 4.20 1.06 2.26 -0.33 

Sea ice 1.46 0.89 1.83 -0.75 

 

Table 5: Uncertainty model regression coefficients 

Land ice β0  = 3.82°C β 1 = -0.24  β 2 = -0.03  

Sea ice γ0  = 2.01°C γ1  = -0.06 γ2  = -0.12 γ3  = -0.001 

 

 

Table 6: Statistics on the relation between satellite-derived and in situ measured temperatures for comparison with independent 10 
validation data. N: number of matchups used for validation, Corr: correlation, bias: T2msat – T2minsitu difference, Std: standard 

deviation, RMS: root mean square difference. 

 N Corr (%) bias (°C) Std (°C) RMS (°C) 

Land ice  20872 95.5 0.30 3.45 3.47 

Sea ice  16111 96.5 0.35 3.18 3.20 
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Table 7: Statistics on the relation between ERA-I/ERA5 and in situ measured temperatures for independent test data. N: number 

of matchups used for validation, Corr: correlation, bias: T2mERA – T2minsitu difference, Std: standard deviation, RMS: root mean 

square difference. 

 

 5 

 

 

 

 

 10 

 

Figure 1: Total number of daily averaged in situ observations of T2m and ISTskin over Arctic land ice and sea ice per year covering 

the period 2000-2009. 

 

 15 

Figure 2: NOAA and Metop satellites carrying the AVHRR sensor, used for AASTI version 1. 

 N   Corr (%) Bias (°C) Std (°C) RMS (°C) 

Land ice 20872 
 ERA-I  96.4 3.41 3.18 4.66 

 ERA5 97.1 2.03 3.08 3.69 

Sea ice 16111 
 ERA-I   96.9 1.14 3.02 3.22  

 ERA5 95.7 2.19 3.67 4.27 
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Figure 3: Mean number of observations per day in the L3 bins for each of the eight local solar time intervals, averaged for the period 

2000-2009.  

 5 

Figure 4: Standard deviations (°C) of daily satellite surface temperature observations for March, June, September and December 

of each year averaged for the years 2000-2009.  
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Figure 5: Positions of matchups on sea ice and land ice (red: training, blue: validation) 

 
Figure 6: Daily mean 2 m air temperature over land ice and sea ice from January 1, 2008. Circles show in situ measurements. 
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Figure 7: Estimated T2m minus observed T2m averaged for each month for (a) land ice and (b) sea ice. The dashed lines are standard 

deviations while the solid lines are biases. The bars show the average number of matchups for each month.  

 

Figure 8: Estimated T2m minus observed T2m (bin size of 1°C) for the full time period (bin size of 90 days) for (a) land ice and (b) 5 
sea ice. The dashed lines are standard deviations while the solid lines are bias in the upper figures. The surface plots in the middle 

figures show the number of matchups in each bin, while the bottom plots show the number of matchups (blue) and the cumulative 

percentage of matchups (red) in each time bin.  
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Figure 9: Average number of filled 3 h bins per day for the Greenland Ice Sheet and the Arctic sea ice. 

 

Figure 10: Estimated T2m minus observed T2m (bin size of 1°C) as a function of binned (bin size of 1°C) satellite ISTskin_L3 for (a) 

land ice and (b) sea ice. The dashed lines are standard deviations while the solid lines are bias in the upper figure. The surface plots 5 
in the middle figures show the number of matchups in each bin while the bottom plots show the number of matchups (blue) and the 

cumulative percentage of matchups (red) in each ISTskin_L3 bin. 
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Figure 11: Satellite estimated T2m uncertainty validation with respect to independent in situ T2m for (a) land ice and (b) sea ice. 

Dashed lines show the modelled uncertainty accounting for uncertainties in the in situ T2m and the sampling error. Solid black lines 

show one standard deviation of the estimated minus in situ differences for each 0.1 °C bin. The bottom plots show the number of 5 
matchups (blue) and the cumulative percentage of matchups for each bin (red). 

 

Figure 12: Root mean square (RMS) differences calculated for the (a) land ice sites and (b) sea ice sites using T2m from ERA-

Interim, ERA5 and the regression model, respectively. Only buoys with more than 200 observations are included. The last two bars 

listed as “total” are the RMS obtained by using all validation data. 10 
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Figure 13: Monthly mean T2msat during March, June, September and December, averaged for the period 2000-2009. 

 

Figure 14: Monthly mean T2msat for the Greenland Ice Sheet. The shading represents the variability. 

 5 

Figure 15: T2msat coverage averaged for a) each year and b) each month for land ice and sea ice, and using a grid resolution of 0.25 

degree and 1 degree, respectively. 


