We thank anonymous referee #1 and Greg Balco for their constructive comments. We have made the following revisions:

- 1. Following comments from referee #1, all figures have been adjusted to within the page margins and their resolution increased.
- 2. Following comments from Greg Balco, we adjusted the main emphasis of the paper. We are confident about our measured ¹⁴C values and the in situ ¹⁴C partitioning between CO₂, CO and CH₄. As discussed in the manuscript, the muogenic *in situ* ¹⁴C production rates in ice and the partitioning between ¹⁴C species are critical to disentangle the paleoatmospheric and cosmogenic ¹⁴C signals in ice cores. Thus, we believe on their own these results have a lot of scientific merit.
- 3. Our data also imply that the Heisinger et al. production rates are too high. Following comments from Greg Balco, we added several paragraphs in the discussion section thoroughly examining the possibility of our measurements being biased. We also conducted the sensitivity analyses (which we summarize below). Unfortunately, we still do not have a good explanation behind the discrepancy between production rates implied by our data and that of Heisinger et al. ¹⁴C in organic phases such as formaldehyde might explain some, but very likely not all of the discrepancy. As our author team lack the expertise in nuclear chemistry to further investigate the causes behind this disagreement, within the scope of this manuscript we now present the disagreement as more of a conundrum that requires further research.

Detailed responses to comments from Greg Balco:

We added a thorough discussion about the possibility that our measurements might be biased (page 15, line 471 to page 16, line 518). We separate this discussion between the ¹⁴CO and ¹⁴CO₂ measurements (the CH₄ fraction of total ¹⁴C is <1%).

We believe that our ¹⁴CO measurements are robust as we use a well-established technique. In air, the analytical technique we use yields comparable results to independent atmospheric ¹⁴CO measurements from other research groups, as well as expected atmospheric ¹⁴CO concentrations based on our knowledge about the sources and sinks of ¹⁴CO in the present atmosphere (Petrenko et al., 2021). We also have ¹⁴CO measurements from firn air and relatively recent (preindustrial) ice from Summit, Greenland (Hmiel et al., 2020; Hmiel, 2020). The ¹⁴CO data from Summit, Greenland agree within uncertainties with the inferred ¹⁴CO production rates from Taylor Glacier (Hmiel, 2020). We also collected field procedural blanks to

characterize the system blanks. To conclude, to the best of our knowledge, we have no reason to believe that our measurements are biased or that we are systematically losing ¹⁴CO.

We acknowledge that our ¹⁴CO₂ measurements used a more novel and previously untested sublimation technique. However, we carefully characterize the system blanks using our bubble-free ice samples while flowing two standard gases with "modern" and "dead" ¹⁴CO₂ activities. The results of these tests are presented in Table S8. We do not see significant alterations in the measured ¹⁴CO₂ over bubble-free ice – indicating that the process of sublimating ice and flowing gas through the system components recovers ¹⁴CO₂ as expected. As was also already shown in the supplement (Table S9, measured vs expected mass), we are getting close to the expected amounts of carbon from CO2 (i.e., there is no systematic loss of CO2 during ice processing).

Another strong indication that our measurements are robust is the good agreement with independent results from Van der Kemp et al. (2002) collected from a different study site (Scharffenbergbotnen) using entirely different analytical techniques. First, we find good agreement in the ratio of ¹⁴C compounds (¹⁴CO₂ fraction = 0.66 ± 0.12 in this study, 0.69 in Van der Kemp et al., 2002). The ¹⁴C ratios are independent of the ablation rates and ¹⁴C production model; they are strictly a measure of the analytical technique robustness. Van der Kemp et al. (2002) used a dry extraction system for their ¹⁴CO₂ and ¹⁴CO measurements. We used a sublimation technique for ¹⁴CO₂ and a wet extraction (melting) for ¹⁴CO. The agreement in the ratios suggests that our extraction methods (and theirs) were not systematically losing either ¹⁴CO or ¹⁴CO₂ (which would then bias the ¹⁴CO₂ and ¹⁴CO fraction). It is theoretically possible that both our measurements and Van der Kemp et al. (2002) are wrong, but it would require all 3 analytical systems from these studies to be systematically/coincidentally wrong in the same direction and by the same magnitude to produce the same ¹⁴CO₂ and ¹⁴CO fractions; this seems unlikely.

Second, we also find good agreement with Van der Kemp et al. (2002) for the *in situ* muogenic production rates, for both negative muon capture and fast muon reaction. This agreement takes into account the ablation rates from both areas. The deepest sample from Scharffenbergbotnen study is 45m and in our analysis we take the ¹⁴CO₂ and ¹⁴CO from this depth as the initial condition. Because the Scharffenbergbotnen ablation rate based on stake reading is 0.16 ± 0.04 cm/yr, with the 1D ablation model our calculation only covers ~280 years. As discussed in the revised manuscript, a 14-year-long observation study published around the same time (Sinisalo et al., 2003) showed no significant and systematic change in the ablation rate of Scharffenbergbotnen blue ice area.

Very large (factor of 3 or more) changes in the ablation rate at both Scharffenbergbotnen and Taylor Glacier would be required to reconcile our and Van der Kemp et al (2002) measurements with the Heisinger et al. (2002) estimates, with the long-term ablation rates being much higher than those measured by stakes in recent years. Ablation rate at blue ice areas is controlled by climate via a combination of temperature, insolation and wind (mainly catabatic). To get a much higher long-term ablation rate at both Taylor Glacier and Scharffenbergbotnen (which are on opposite sides of Antarctica), we would need either the temperatures to have dropped sharply in the last couple of decades (definitely not the case), the winds to have slowed dramatically (this would be surprising given the steady to extreme catabatic winds Taylor Glacier experiences now), or for insolation to sharply decrease (this also seems highly unlikely given our experience on Taylor Glacier, which is about 80% sunny during peak summer in November - January). Finally, the Kavanaugh et al (2009 a, 2009b) glaciological studies of Taylor Glacier indicated that the glacier is approximately at steady-state given the stake-measured ablation rates, also arguing against large recent changes in ablation rates. To conclude, a large decrease in ablation rates in recent years as compared to the long-term average does not seem to be a realistic explanation.

We conducted sensitivity analyses following the comments from Greg Balco. We increased the total ¹⁴C by +25% to account for possible *in situ* ¹⁴C in organics and used the high ablation rate / deep ice flow scenario (Fig. S8). In the first test, we set the ¹⁴C production from negative muon to be 84% of the Heisinger et al. (2002) production rate. We then tuned the ¹⁴C production rate from fast muons under this scenario and find that the best-fit ¹⁴C production rate from fast muons is zero. However, the fit is still not very good (dashed red line, Fig. 6D). This shows that our data, even assuming 25% contribution from organics and high ablation rate / deep ice flow scenario (which correspond to high ¹⁴C production rates) cannot be reconciled with negative muon capture ¹⁴C production rate from Heisinger et al. (2002).

Figure 1 (of this response letter, see below) further illustrates how the¹⁴C production rate from Heisinger et al. (2002) is not compatible with our data, even when ¹⁴C production from fast muon is set to zero and the data is uniformly scaled by +100% to account for ¹⁴C in organics. The Heisinger et al. (2002) negative muon capture production rate yields a much higher total ¹⁴C especially between 6.85 – 20 m ice depth (depths where production from negative muon capture dominates). One simply cannot improve the model-data fit by uniformly scaling the measurements to account for ¹⁴C in organics. The only way to fit the shape of the data/measurement curve is to lower the ¹⁴C production rate from negative muon capture and add some ¹⁴C production rate from fast muon to improve the fit at depths >30m. It is still theoretically possible to fit the data if the *in situ* production from negative muon capture and fast muon produce *in situ* ¹⁴C-bearing organic materials at different ratios relative to total expected ¹⁴C. In other words, if somehow a lot of ¹⁴C

produced via negative muon capture becomes ¹⁴C-bearing organics to compensate for model-data mismatch between 6.85 - 20 m ice depth. However, as our data show that the two muogenic reactions produce constant ¹⁴CO, ¹⁴CO₂, and ¹⁴CH₄ ratios, we consider this explanation as unlikely.

We included more discussion of several hypotheses that could possibly explain the disagreement between the ¹⁴C production rates inferred from our data and those of Heisinger et al. (2002). Although we consider it unlikely, it may in principle be possible that ¹⁴C in organics might account for a very large fraction of *in situ* ¹⁴C from muons (enough to compensate up to a factor of 6 for negative muon capture and a factor of 3 for fast muon reaction). Second, it may be possible that the overall probability for ¹⁴C production from ¹⁶O in ice is much lower than in quartz – as the laboratory irradiation done by Heisinger et al. (2002) used quartz (and not water/ice) as the target compound. Third, it may be possible that the power factor used to scale the production rates from high energy muons used in Heisinger et al. (2002) laboratory experiment to lower average energy muons in the natural setting is incorrect. Unfortunately, we lack the experimental setup to characterize ¹⁴C in organics. We also do not have the expertise or the analytical capability within our current author team to properly explore the nuclear chemistry aspects of this. As a result, we present this discrepancy as an open question to the greater scientific community to be pursued in future studies and focus the manuscript more specifically on constraining the ¹⁴CO, ¹⁴CO₂, and ¹⁴CH₄ production rates in ice from muon reactions.

Figure 1. Model-data disagreement between measured total ¹⁴C values, measured total ¹⁴C values (+100% to account for organics), and expected total ¹⁴C values from Heisinger et al., with and without ¹⁴C production from fast muon mechanism.

References

Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth. Planet. Sc. Lett., 200, 357–369, 2002.

Hmiel, B.: A Study of In Situ Cosmogenic 14C and Paleoatmospheric 14CH4 From Accumulating Ice at Summit, Greenland, University of Rochester, 2020.

Hmiel, B., Petrenko, V. V., Dyonisius, M., Buizert, C., Smith, A. M., Place, P. F., Harth, C. M.,Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D. M.,Bromley, T. M., Schmitt, J., Fain, X., Weiss, R. F., and Dlugokencky, E. J.: Preindustrial 14CH4indicates that anthropogenic fossil CH4 emissions are underestimated, Nature, 578, 409-412, 2020.

Kavanaugh, J. L., Cuffey, K. M., Morse, D. L., Conway, H., and Rignot, E.: Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities, J. Geophys. Res., 114, F04010, 2009a.

Kavanaugh, J. L., Cuffey, K. M., Morse, D. L., Bliss, A. K., and Aciego, S. M.: Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance, J. Geophys. Res., 114, F04012, 2009b.

Petrenko, V. V., Smith, A. M., Crosier, E. M., Kazemi, R., Place, P., Colton, A., Yang, B., Hua, Q., and Murray, L. T.: An improved method for atmospheric ¹⁴CO measurements, Atmos. Meas. Tech., 14, 2055–2063, https://doi.org/10.5194/amt-14-2055-2021, 2021.

Sinisalo, A., Moore, J. C., Wal, R. S. W. V. D., Bintanja, R., and Jonsson, S.: A 14 year mass-balance record of a blue-ice area in Antarctica, Ann. Glaciol., 37, 213–218, https://doi.org/10.3189/172756403781816013, 2003.

Van der Kemp, W. J. M., Alderliesten, C., Van der Borg, K., De Jong, A. F. M., Lamers, R. a. N., Oerlemans, J., Thomassen, M., and Van De Wal, R. S. W.: In situ produced 14C by cosmic ray muons in ablating Antarctic ice, Tellus. B, 54, 186–192, 2002.