

1 Evaluating Simplifications of Subsurface Process

2 Representations for Field-scale Permafrost Hydrology Models

3 Bo Gao, Ethan T. Coon

4 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

5 *Correspondence to:* Ethan T. Coon (coonet@ornl.gov)

6 **Abstract.** Permafrost degradation within a warming climate poses a significant environmental
7 threat through both the permafrost carbon feedback and damage to human communities and
8 infrastructure. Understanding this threat relies on better understanding and numerical
9 representation of thermo-hydrological permafrost processes, and the subsequent accurate
10 prediction of permafrost dynamics. All models include simplified assumptions, implying a tradeoff
11 between model complexity and prediction accuracy. The main purpose of this work is to
12 investigate this tradeoff when applying the following commonly made assumptions: (1) assuming
13 equal density of ice and liquid water in frozen soil; (2) neglecting the effect of cryosuction in
14 unsaturated freezing soil; and (3) neglecting advective heat transport during soil freezing and thaw.
15 This study designed a set of 62 numerical experiments using the Advanced Terrestrial Simulator
16 (ATS v1.2) to evaluate the effects of these choices on permafrost hydrological outputs, including
17 both integrated and pointwise quantities. Simulations were conducted under different climate
18 conditions and soil properties from three different sites in both column- and hillslope-scale
19 configurations. Results showed that amongst the three physical assumptions, soil cryosuction is
20 the most crucial yet commonly ignored process. Neglecting cryosuction, on average, can cause 10%
21 $\sim 20\%$ error in predicting evaporation, 50% $\sim 60\%$ error in discharge, 10% $\sim 30\%$ error in thaw
22 depth, and 10% $\sim 30\%$ error in soil temperature at 1 m beneath surface. The prediction error for
23 subsurface temperature and water saturation is more obvious at hillslope scales due to the presence
24 of lateral flux. By comparison, using equal ice-liquid density has a minor impact on most
25 hydrological metrics of interest, but significantly affects soil water saturation with an averaged 5%
26 $\sim 15\%$ error. Neglecting advective heat transport presents the least error, 5% or even much lower,
27 in most metrics of interest for a large-scale Arctic tundra system without apparent influence caused
28 by localized groundwater flow, and can decrease the simulation time at hillslope scales by 40% \sim
29 80%. By challenging these commonly made assumptions, this work provides permafrost

30 hydrology scientists important context for understanding the underlying physical processes,
31 including allowing modelers to better choose the appropriate process representation for a given
32 modeling experiment.

33

34 **Copyright Statement.** This manuscript has been authored by UT- Battelle, LLC under Contract
35 No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government
36 retains and the publisher, by accepting the article for publication, acknowledges that the United
37 States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish, or
38 reproduce the published form of this manuscript, or allow others to do so, for United States
39 Government purposes. The Department of Energy will provide public access to these results of
40 federally sponsored research in accordance with the DOE Public Access Plan
41 (<http://energy.gov/downloads/doe-public-access-plan>).

42 1 Introduction

43 Permafrost describes a state of ground which stays frozen continuously over multiple years, which
44 may cover an entire region (e.g., Arctic tundra) or occur in isolation (e.g., alpine top). From the
45 perspective of scope, permafrost occupies approximately 23.9% (22.79 million km²) of the
46 exposed land area of the northern hemisphere (Zhang et al., 2008), as well as alpine regions and
47 Antarctica in the southern hemisphere. Permafrost areas store a vast amount of organic carbon, of
48 which most is stored in perennially frozen soils (Hugelius et al., 2014). If the organic carbon is
49 exposed due to permafrost thaw, it is likely to decay with microbial activity, releasing greenhouse
50 gas to the atmosphere and exacerbating global warming. In Arctic tundra, permafrost also plays
51 an important role in maintaining water, habitat of wildlife, landscape, and infrastructure (Berteaux
52 et al., 2017; Dearborn et al., 2021; Hjort et al., 2018; Sugimoto et al., 2002). Permafrost
53 degradation may cause significant damage to the local ecosystem, reshape the surface and
54 subsurface hydrology, and eventually influence the global biosphere (Cheng and Wu, 2007;
55 Jorgenson et al., 2001; Tesi et al., 2016; Walvoord and Kurylyk, 2016). Therefore, the occurrent
56 and potential impacts motivate the development of computational models with the goal of better
57 understanding the thermal and hydrological processes in permafrost regions, and consequently to
58 predict permafrost thaw more accurately.

59 Simulating soil freezing and thaw processes is a challenging task that incorporates mass and energy

60 transfer among atmosphere, snowpack, land surface (perhaps with free water), and a variably
61 saturated subsurface. Several hydrological models with different complexity and applicable scales
62 have been developed to investigate the complicated interactions. Reviews of permafrost models
63 based on empirical and physical representations using analytical and numerical solutions can be
64 found in (Bui et al., 2020; Dall’Amico et al., 2011; Grenier et al., 2018; Jan et al., 2020; Kurylyk
65 et al., 2014; Kurylyk and Watanabe, 2013; Riseborough et al., 2008). Process-rich models which
66 aim to predict permafrost change through direct simulation of mass and energy transport, such as
67 the Advanced Terrestrial Simulator (ATS; Painter et al., 2016), GEOTop (Endrizzi et al., 2014),
68 CryoGrid 3 (Westermann et al., 2016), PFLOTRAN-ICE (Karra et al., 2014), and SUTRA-ICE
69 (McKenzie et al., 2007), have been demonstrated to describe thermal permafrost hydrology under
70 various climate conditions. Nominally, representing more physical process complexity should
71 improve predictions of permafrost change, but the degree to which each process affects metrics of
72 permafrost hydrology is highly uncertain and likely differs by scale. Philosophically, models
73 provide a useful tool precisely because they allow counterfactual experiments where processes are
74 simplified to understand the relative importance of that process; thus, challenging assumptions
75 about process simplifications are a significant part of both general process understanding,
76 benefiting the permafrost hydrology community writ large, and model representations, benefiting
77 the community of model developers and users.

78 Even in the most process-rich models of permafrost change, three such physical simplifications
79 are often made: representing water at constant density (thereby neglecting the expansion of ice
80 relative to liquid water), neglecting cryosuction of water in unsaturated, partially frozen soils, and
81 neglecting advective heat transport.

82 First, because of the lower density of ice than liquid water, freezing water must expand the volume
83 of the porous media, push liquid water into nearby volume, or otherwise expand the volume
84 occupied by that water. As most of the current set of models operate under the assumption of a
85 rigid solid matrix and thus the absence of mechanical equations describing matrix deformation or
86 frost heave, including this expansion typically results in large pressures that must be offset by grain
87 compressibility or another mechanism. Therefore, the densities of ice and liquid water are
88 frequently assumed equal (e.g., Dall’Amico et al., 2011; Devoie and Craig, 2020; Weismüller et
89 al., 2011). It is uncertain whether this simplification affects predictions of permafrost change and
90 thermal hydrology.

91 Second, cryosuction describes the redistribution of water in partially frozen, unsaturated soils
92 caused by increased matric suction. At the interface of ice and liquid water, negative pressures
93 result in the migration of liquid water toward the freezing front and the subsequent increase of ice
94 content. Several approaches representing cryosuction in models are used (Dall'Amico et al., 2011;
95 Noh et al., 2012; Painter and Karra, 2014; Stuurop et al., 2021), either in an empirical form or
96 physically derived from the generalized Clapeyron equation. Other process-rich models have
97 ignored cryosuction entirely (McKenzie et al., 2007; Viterbo et al., 1999). Dall'Amico et al. (2011),
98 Painter (2011) and Painter and Karra (2014) evaluated their respective Clapeyron equation based
99 cryosuction models in soil column freezing simulations and presented a good match between
100 simulations and laboratory experiments in total water content (liquid and ice). Recently, Stuurop
101 et al. (2021) applied an empirical expression, a physics-based expression, and no cryosuction in
102 simulating soil column freezing process. They compared the simulated results with observations
103 from laboratory experiments. This comparison demonstrated minor differences between empirical
104 and Clapeyron-based cryosuction expressions, but the simulation without cryosuction cannot
105 predict the distribution of total water content in a laboratory-scale soil column. To our knowledge,
106 there is still no literature showing the effect of cryosuction on plot-scale permafrost predictions.
107 Third, heat transport in process-rich models is described using an energy conservation equation,
108 mainly including heat conduction, latent heat exchange, and heat advection. From a continuum-
109 scale perspective, conductive heat transport is expressed in the form of a diffusive term based
110 on Fourier's law. Latent heat exchange accompanies phase change which alters the system enthalpy.
111 Advective heat transport describes the energy exchange caused by the flow of liquid water driven
112 by a hydraulic gradient (i.e., forced convection), which is expressed through an advective term in
113 energy balance equations. Additionally, other mechanisms that control heat transport, such as
114 water vapor movement, thermal dispersion, etc., are neglected by nearly all models of permafrost
115 and are not considered here. Several studies have demonstrated the importance of advective heat
116 transport in permafrost hydrology through field observation analysis or modeling comparison.
117 Such situations where advective heat transport makes important contributions roughly fall into
118 three categories. The first centers on the development of taliks beneath lakes, ponds, topographic
119 depressions, or other discontinuous permafrost effects (e.g., Dagenais et al., 2020; Liu et al., 2022;
120 Lue thi et al., 2017; McKenzie and Voss, 2013; Rowland et al., 2011). The second focuses on
121 microtopographic features that focus significant amount of water through small areas. This

122 includes both low-center ice wedge polygons associated with the formation of thermokarst ponds
123 (e.g., Abolt et al., 2020; Harp et al., 2021) and thermo-erosion gullies (e.g., Fortier et al., 2007;
124 Godin et al., 2014). In these cases, large, focused flows across small spatial scales allow advective
125 heat transport to dominate. The last category includes those studying the construction and
126 maintenance of infrastructure influenced by groundwater flow (e.g., Chen et al., 2020). Thus, these
127 studies focus on either location-specific or scale-limited problems. As McKenzie and Voss (2013)
128 stated, whether heat advection outweighs heat conduction depends on soil permeability,
129 topography, and groundwater availability. Relative to these special cases at small scales, we are
130 more interested in to what extent advective heat transport associated with liquid water flow
131 contributes to permafrost hydrologic change in a hillslope-scale or larger Arctic system. The Arctic
132 systems, discussed hereinafter in this paper, refer to those with negligible influence caused by
133 localized groundwater flow features as the three categories mentioned above.

134 To clarify the significant differences in model representations of permafrost, we investigate the
135 influence of including or not including these processes on permafrost change at plot-to-hillslope
136 scales. For ice density, we compare simulations with and without differences in ice density relative
137 to water density; for cryosuction, we compare simulations using a Clapyron equation-based
138 expression and excluding the cryosuction effect; and for heat transport, we compare simulations
139 including or neglecting advective heat transport. All comparisons are carried out across a range of
140 Arctic climate conditions and soil properties from three different sites. Both 1D soil-column-scale
141 and 2D hillslope-scale models are considered, in which varying hillslope geometries (i.e.,
142 convergent/divergent hillslope) and aspects (i.e., north/south) are included. The aim of this study
143 is to provide better understanding of physical processes to permafrost hydrologists in general; and
144 to offer some concrete insights to the model users and developers working on the process-rich
145 models with similar theories and equation basis.

146 2 Theory

147 The Advanced Terrestrial Simulator (ATS v1.2) (Coon et al., 2020) configured in permafrost mode
148 (Jan et al., 2018, 2020; Painter et al., 2016) was used to implement all numerical experiments in
149 this study. ATS is a process-rich code developed for simulating integrated surface and subsurface
150 hydrological processes, specifically capable of permafrost applications. It has been shown to
151 successfully compare to observations of seasonal soil freezing and thaw processes at different

152 scales. This includes 1D models of vertical energy transport typical of large-scale flatter regions
153 (Atchley et al., 2015), and 2D models admitting lateral flow and transport in Arctic fens (Sjöberg
154 et al., 2016), and polygonal ground (Jan et al., 2020).

155 The permafrost configuration of ATS comprises coupled water flow and energy transfer within
156 variably saturated soils and at land surfaces, a surface energy balance model describing thermal
157 processes in snow, and a snow distribution module for surface microtopography (Painter et al.,
158 2016). The subsurface system solves a three-phase (liquid, ice, gas), two-component (water vapor,
159 air) Richards-type mass balance equation with Darcy's law and an advection-conduction energy
160 balance equation. The surface system includes an overland flow model with diffusion wave
161 approximation, and an energy balance equation with an introduced temperature-dependent factor
162 describing the effect of surface water freezing. The subsurface system and surface system are
163 coupled through the continuity of pressure, temperature, and the corresponding fluxes by
164 incorporating the surface equations as boundary conditions of the subsurface equations (Coon et
165 al., 2020). The evolution of a snowpack and its effect on the surface energy balance is described
166 using an energy balance approach based on a subgrid model concept that includes all major heat
167 fluxes at the land surface. For a more detailed description of the permafrost configuration and
168 implementation in ATS, as well as key mathematical equations, the reader is referred to Painter et
169 al. (2016). Changes in this “most complex” model of permafrost hydrology are enabled by the
170 Arcos multiphysics library leveraged in ATS; this allows the precise model physics to be specified
171 and configured at runtime through the use of a dependency graph describing swappable
172 components in the model physics (Coon et al., 2016).

173 **2.1 Ice density**

174 The density of ice (kg/m^3) is represented as a Taylor series expansion in both temperature and
175 pressure:

$$176 \rho_i = [a + (b + c\Delta T) \times \Delta T] \times (1 + \alpha\Delta p) \quad (1)$$

177 and the density of liquid water (kg/m^3) is represented as:

$$178 \rho_l = [a + (b + (c + d\Delta T) \times \Delta T) \times \Delta T] \times (1 + \alpha\Delta p) \quad (2)$$

179 where $\Delta T = T - 273.15$, $\Delta p = p_l - 1\text{e}5$, T and p_l are temperature (K) and liquid pressure (>101325
180 Pa), respectively; and a, b, c, d, α are constant coefficients, listed in Table 1. Under conditions of
181 equal density, we assume $\rho_i = \rho_l$.

Table 1 Coefficients in density of ice and liquid

	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	α
ρ_i	916.724	-0.147143	-2.38e-4	–	1.0e-10
ρ_l	999.915	0.0416516	-1.01e-2	2.06e-4	5.0e-10

183 2.2 Cryosuction

184 Several models are available in the literature describing the relationship between unfrozen water
 185 content and temperature or matric suction (e.g., Ren et al., 2017; Stuurop et al., 2021), which is
 186 also termed the soil freezing characteristic curve. These models are either associated with
 187 temperature empirically or related to the soil water retention curve through the Clapeyron equation.
 188 The latter approach normally incorporates the soil cryosuction process, while the former does not.
 189 Painter and Karra (2014) proposed a constitutive model which relates the soil unfrozen water
 190 content with the van Genuchten model (van Genuchten, 1980) based on the Clapeyron equation:

$$191 s_l = \begin{cases} S_*(-\beta\rho_l L_f \vartheta), \vartheta < \vartheta_f \\ S_*(p_g - p_l), \vartheta \geq \vartheta_f \end{cases}, \quad \vartheta = \frac{T(K)-273.15}{273.15}, \quad \vartheta_f = -\frac{\psi_*(1-s_g)}{\beta L_f \rho_l} \quad (3)$$

$$s_i = 1 - s_l / S_*(p_g - p_l)$$

192 where s_n is the saturation of n -phase and the subscripts $n = l, i, g$ are liquid, ice, and gas phases,
 193 respectively; β is a coefficient; L_f is the heat fusion of ice; p_n ($n = l, g$) is the pressure of n -phase;
 194 S_* is the Van Genuchten model. This physically derived formulation can describe the change of
 195 matric suction in the frozen zone due to the change of ice content, and thus has the capacity to
 196 represent cryosuction.

197 Alternatively, the unfrozen water content can be also expressed as a single-variable function
 198 dependent on sub-freezing temperature for a given soil, ignoring the effect of cryosuction, such as
 199 the following (McKenzie et al., 2007):

$$200 s_l = s_r + (s_{sat} - s_r) \exp \left[- \left(\frac{T(K)-273.15}{\omega} \right)^2 \right] \quad (4)$$

$$s_i = S_*(p_g - p_l) - s_l$$

201 where s_r, s_{sat} are saturations of liquid water at residual and saturated conditions, respectively; ω is
 202 a constant coefficient. In this case, the van Genuchten model was used to determine the total water
 203 content, including liquid water and ice.

204 2.3 Advection heat transport

205 The energy conservation equation of the subsurface system is given by:

206
$$\frac{\partial}{\partial t} [\phi \sum_{n=l,i,g} (\rho_n s_n u_n) + (1 - \phi) c_{v,soil} T] + \underbrace{\nabla \cdot (\rho_l h_l \mathbf{V}_l)}_{\text{advective heat}} - \underbrace{\nabla \cdot (\kappa_e \nabla T)}_{\text{conductive heat}} = Q_E \quad (5)$$

207 where ϕ is porosity; u_n is the specific internal energy of phase ($n \in \{l, i, g\}$); $c_{v,soil}$ ($\text{J m}^{-3} \text{K}^{-1}$) is
 208 the volumetric heat capacity of the soil grains. The second and third terms represent the advective
 209 and conductive heat transport in the subsurface, in which h_l (J/mol) is the specific enthalpy of
 210 liquid; \mathbf{V}_l (m/s) is the velocity vector of liquid water determined by Darcy's law; and κ_e (W m^{-1}
 211 K^{-1}) is the effective thermal conductivity of the bulk material including soil, air, liquid water, and
 212 ice. Q_E is the sum of all thermal energy sources (W/m^3).

213 Similarly, the energy balance equation of the surface system is:

214
$$\frac{\partial}{\partial t} \{[\chi \rho_l u_l + (1 - \chi) \rho_i u_i] \delta_w\} + \underbrace{\nabla \cdot (h_l \chi \rho_l \delta_w \mathbf{U}_w)}_{\text{advective heat}} - \underbrace{\nabla \cdot \{[\chi \kappa_l + (1 - \chi) \kappa_i] \delta_w \nabla T\}}_{\text{conductive heat}} = Q_{\text{net}} \quad (6)$$

215 in which χ is the unfrozen fraction of surface determined by surface temperature; δ_w is ponded
 216 depth (m); \mathbf{U}_w (m/s) is the velocity vector of liquid water on the surface determined by the
 217 diffusion-wave approximated St. Venant equations (Gottardi and Venutelli, 1993) and Manning
 218 equation (Wasantha Lal, 1998); κ_n ($\text{W m}^{-1} \text{K}^{-1}$) is the thermal conductivity of n -phase ($n = l, i$);
 219 Q_{net} (W/m^3) is the net thermal energy into and out of ground surface, including that from solar
 220 radiation, rain and snow melt, water loss by evaporation and to the subsurface, and conductive and
 221 advected heat transport to/from the subsurface. The second and third terms represent the (lateral)
 222 advective and conductive heat transport that occur across the land surface.

223 3 Methods

224 To evaluate the impact of representation of ice density, cryosuction, and advective heat transport
 225 in permafrost modeling under different climate conditions and soil properties, we selected three
 226 sites for their variance in climactic condition: Utqiagvik (Barrow Environmental Observatory,
 227 71.3225°N , 156.6231°W), the headwaters of the Sagavanirktok (Sag) River (68.251°N , 149.092°
 228 W), and the Teller Road Mile Marker 27 site on the Seward Peninsula (64.73°N , 165.95°W) in
 229 Alaska. The simulated hydrological outputs for each site are compared in both column and
 230 hillslope scenarios. Column scenarios represent expansive flat regions typical of the Arctic coastal
 231 plains dominated by vertical infiltration and heat transport, and hillslope scenarios are
 232 representative of the headwater, hilly terrain typical of the more inland permafrost.
 233 In hillslope scenarios, hillslopes with northern and southern aspects are considered to investigate
 234 physics representation comparisons under the same climate and soil condition (i.e., at a given site)

235 but different solar radiation incidence. Furthermore, hillslopes with both convergent and divergent
236 geometries are included to compare the sensitivity of simulated discharge on process
237 representation. These scenarios can incorporate many types of Arctic systems at the described plot-
238 to-regional scales, but explicitly ignore the effects of microtopography or other local-scale
239 focusing mechanisms such as water tracts or thermo-erosion gullies. The objective is to reach a
240 conclusion on the influence of the three physics representations that can be widely applicable in
241 many Arctic systems.

242 **3.1 Field data description**

243 For each site, data used in each simulation comprises meteorological forcing datasets for the period
244 2011-2020, averaged wind speed, and soil properties.

245 Meteorological forcing datasets are taken from the Daymet version 4 dataset (Thornton et al., 2020),
246 which provides observation-based, daily averaged weather variables through statistical modeling
247 techniques at 1 km spatial resolution (Thornton et al., 2021). Variables that are used in simulations
248 include daily average air temperature (calculated as the mean of Daymet's daily minimum and
249 maximum values), relative humidity (calculated from air temperature and Daymet's vapor
250 pressure), incoming shortwave radiation (W/m^2) (calculated as a product of Daymet's daylit
251 incoming radiation and daylength), and total precipitation (m/s), which is split into snow and rain
252 based upon the air temperature. Figure 1 illustrates the precipitation of rain, snow, and air
253 temperature at the three sites from 2011 to 2020, where the points represent the corresponding
254 averaged values per year. In terms of the forcing conditions, the annual rainfall of the Sag and
255 Teller sites range between 20 and 40 mm/d over the ten years, more than twice the rainfall typical
256 of the Barrow site. In addition, Sag has a significantly larger amount of snow every year that is
257 over double that at the Teller site and almost five times larger compared to the Barrow site. For
258 the air temperature, Sag and Barrow are similar and colder than Teller by 7-8 degrees. In general,
259 the Barrow site is dry and cold, the Sag site is wet and cold, and the Teller site is wet and warm.

260
261 **Figure 1 Precipitation and air temperature of site Barrow, Sag, and Teller from year 2011 to 2020**

262 In addition to the time series of forcing data from Daymet, we used an average wind speed for
263 each site. For Barrow and Teller, the average wind speed was estimated from the measurement
264 taken by the Next-Generation Ecosystem Experiments (NGEE) Arctic project. At Barrow, the
265 measurement was taken at area A (71.2815° N, 156.6108° W) at the height of 1.3 meters above
266 surface (Hinzman et al., 2014). At Teller, the measurement at 3.8 m above the surface of a lower
267 level of the watershed (Busey et al., 2017) was used. For Sag, the average wind speed was
268 estimated based on the measurement at the Toolik Lake field site (near to Sag River) at the height
269 of 3.1 m above surface, which is accessible through the National Ecological Observatory Network
270 (NEON, 2021).

271 The soil properties of Barrow, Sag, and Teller, including porosity, permeability, Van Genuchten
272 parameters, and thermal conductivity parameters, were chosen from previous modeling studies at
273 these sites (Atchley et al., 2015; Jafarov et al., 2018; O'Connor et al., 2020), see (Table 2). Roughly,
274 the soil profile of each site is composed of two materials: the top organic-rich layer comprising
275 mosses, peats, and other organic rich soils measuring approximately 10-30 cm thick, and the
276 principal mineral soil. There is minor difference in thermal conductivity parameters among the
277 three sites, and soil permeability is also at the same order of magnitude. The soil-water
278 characteristic curve (SWCC) of the principal mineral soil of Barrow, Sag, and Teller, shown in
279 Figure 2, indicates that the soil properties at Barrow and Teller are relatively similar, while Sag
280 differs from the other two with a relatively flat SWCC.

281
282 **Figure 2 Soil-water characteristic curve (SWCC) of soil in Barrow, Sag, and Teller**

283 Usually, at the hillslope scale, the thickness of organic layers of a watershed varies from the toe-
284 slope, through a steeper mid-hill, up to the flat top. Typically, thicker organic layers may exist at
285 the top and bottom compared to the mid-hillslope. The low thermal conductivity of organic layers
286 can impede the heat transport between the air and the underlying mineral soil, resulting in varying
287 thaw depth (or permafrost table depth) along a hillslope, which has been observed at Teller (Jafarov
288 et al., 2018). In this paper, hillslope meshes were constructed following this observation so that
289 the organic layers are thicker at the top and bottom of a hillslope, as described in the next section.

290 **3.2 Mesh design and material properties**

291 The comparison of different physics representations was conducted in both column and hillslope
292 scenarios.

293 The column model was designed as a one-dimensional, 50 m deep domain. The column domain
294 was discretized into 78 cells with gradually increasing cell thickness, starting from 2 cm at the soil
295 surface to 2 m at the bottom of the domain. We assigned different material properties to the cells
296 to represent different soil layers. A column domain is divided into three layers, and the thickness
297 of each layer was designed differently among the three sites according to geological observations
298 (Jan et al., 2020; O'Connor et al., 2020; NGEE-Arctic). Specifically, from top to bottom, the three
299 layers of the Barrow soil column are 2 cm-thick moss, 8 cm-thick peat, and mineral; for Teller, the
300 soil column consists of a 4 cm moss layer, a 22 cm peat layer, and mineral; and the three layers of
301 the Sag soil column are acrotelm, catotelm, with thickness of 10 cm and 14 cm, respectively, and
302 the remainder mineral. The soil properties of each layer at three sites are listed in Table 2.

Table 2 Soil properties of three soil layers of all sites used in this paper

Site	Barrow			Sag			Teller		
Layers	moss	peat	mineral	acrotelm	catotelm	mineral	moss	peat	mineral
Porosity	0.9	0.876	0.596	0.878	0.796	0.457	0.9	0.55	0.45
Permeability (m ²)	1.7e-11	9.38e-12	6e-13	2.64e-10	9.63e-12	3.98e-13	5e-11	5e-12	2e-13
VG α (Pa ⁻¹)	2.3e-3	9.5e-4	3.3e-4	7.93e-4	1.75e-4	8.06e-5	2.35e-3	2.93e-4	5.45e-4
VG n	1.38	1.44	1.33	1.405	1.566	1.571	1.38	1.269	1.236
Residual saturation	0.056	0.388	0.334	0.0073	0.0662	0.	0.1	0.	0.1
Thermal conductivity, unfrozen (Wm ⁻¹ K ⁻¹)	0.446	0.427	0.788	0.519	0.630	1.309	0.57	0.67	1
Thermal conductivity, dry (Wm ⁻¹ K ⁻¹)	0.024	0.025	0.104	0.066	0.086	0.265	0.07	0.07	0.29

305 In the hillslope scenario, we designed the mesh based on observations at Teller to represent a
 306 generalized, varying-thickness low Arctic hillslope. A hillslope mesh was created first by
 307 generating a pseudo-2D surface mesh with 50 cells and then extruding the 2D mesh downward by
 308 50 m. The pseudo-2D surface was designed in a trapezoidal shape with a single, variable-width
 309 cell in the cross-slope direction to represent convergent/divergent hillslopes, the short and long
 310 sides of which are 200 m and 800 m, respectively (see Figure 3). Vertically, from surface
 311 downward, the grid size distribution was the same as the column mesh for each site. The domain
 312 is also composed of three layers, same as the column, while the numbers of cells representing each
 313 soil layer (i.e., soil layer thickness) are different along the hillslope. The thickness distribution of
 314 the first two layers of each site is shown in Table 3. The third layer of a hillslope for all sites is the
 315 principal mineral soil. Additionally, hillslope meshes with different aspects (i.e., north-facing,
 316 south-facing) were also created.

317
318 **Figure 3 Schematic domain mesh and soil layer partition: (a) example of a convergent hillslope domain, (b)**
319 **column domain.**

320 **Table 3 Thickness distribution of the organic layers along hillslope for each site**

Site	Horizontal x range (m)	Barrow layer thickness (cm)	Sag layer thickness (cm)	Teller layer thickness (cm)
Layer 1 Moss/Acrotelm	0 ~ 200	2	14	8
	300 ~ 700	2	6	4
	800 ~ 1000	2	14	8
Layer 2 Peat/Catotelm	0 ~ 200	12	18	22
	300 ~ 700	6	8	22
	800 ~ 1000	12	18	22

321 **3.3 Model setup**

322 To study how the representations of the three physical processes (i.e., ice expansion represented
323 by density, cryosuction, and advective heat transport) affect simulated hydrological outputs at
324 different scales and hillslope topography features, and under various forcing and soil conditions,
325 62 model simulations were conducted, summarized in Table 4. To examine the validity of the
326 assumption of equal density between ice and liquid water, we included cryosuction and advective
327 heat transport in models. To investigate the role of cryosuction in permafrost modeling, we used
328 different density, while neglecting advective heat transport to decrease the computation cost. Note
329 that neglecting advective heat transport in these runs can reduce the effect of cryosuction on
330 simulation predictions, as cryosuction moves water which would itself advect energy. To compare
331 the difference between neglecting and including heat advection, we used different density
332 expressions for ice and liquid, and included cryosuction. Particularly, in order to understand the

333 impact of advective heat transport on permafrost processes when soil is at its wettest, we designed
 334 two extreme cases under the warm, wet conditions of the Teller site in which soil evaporation was
 335 artificially reduced. These runs were designed to maximize water flux and therefore maximize the
 336 potential for advective heat transport to affect predictions.

337 **Table 4 Ensemble of models designed in this study**

To compare	Site	Scale	Geometry	Aspect	Remark
		column	—	—	
• $\rho_i \neq \rho_l$, Eq. (1)	Barrow		convergent	north	• heat advection
	Sag			south	
• $\rho_i = \rho_l$, Eq. (2)	Teller	hillslope	divergent	north	• cryosuction
				south	
		column	—	—	
• Include heat advection	Barrow		convergent	north	• $\rho_i \neq \rho_l$
	Sag			south	
• Neglect heat advection	Teller	hillslope	divergent	north	• cryosuction
				south	
Extreme case, Teller		hillslope	convergent	north	• reduced evaporation
		column	—	—	
• Include cryosuction	Barrow		convergent	north	• $\rho_i \neq \rho_l$
	Sag			south	
• Neglect cryosuction	Teller	hillslope	divergent	north	• no heat advection
				south	

338
 339 Prior to simulating all cases, two steps of initialization are carried out for each site. First, a column
 340 model initially above freezing temperature with a given water table depth was frozen by setting
 341 the bottom temperature at a constant value of -10 °C until a steady-state frozen soil column is
 342 formed. The initial water table depth is chosen to ensure that the frozen column's water table, after
 343 accounting for expansion of ice, is just below the soil surface. The pressure and temperature
 344 profiles of the frozen column were used as the initial conditions of the second step initialization.
 345 Before proceeding, the observed forcing data (period of 2011-2020) was averaged across the years
 346 to form a one-year, "typical" forcing year, which was then repeated 10 times. Using this typical
 347 forcing data and the solutions of the first step, we solved the column model in a transient solution,
 348 calculating an annual cyclic steady state. The final pressure and temperature profile of the column
 349 at the end of the 10-year simulation was then assigned to each column of the hillslope mesh as the
 350 initial condition in the formal simulations listed in Table 4. The temperature at the bottom was
 351 constant at -10 °C.

352 **3.4 Evaluation metrics**

353 To fully assess the effect of representation of ice density, advective heat transport, and cryosuction
 354 in permafrost hydrology modeling, we used the root mean squared error (RMSE) and normalized
 355 Nash–Sutcliffe efficiency (NNSE) as performance metrics. RMSE has the same dimension as the
 356 corresponding variables, which can be used to evaluate the average absolute deviation from a
 357 benchmark, defined by:

$$358 \quad \text{RMSE} = \sqrt{\frac{\sum_{t=1}^N (x_t - y_t)^2}{N}} \quad (7)$$

359 where x_t and y_t are the two modeled datasets to compare from the initial time point ($t = 1$) to the
 360 end ($t = N$).

361 NNSE is a normalized dimensionless metric describing the relative relationship between an
 362 estimation and a reference, which is oftentimes used for evaluating hydrological models:

$$363 \quad \text{NNSE} = 1 / \left(1 + \frac{\sum_{t=1}^N (x_t - y_t)^2}{\sum_{t=1}^N (x_t - \bar{x})^2} \right) \quad (8)$$

364 where the modeled results x_t (obtained without physics simplification) are considered as the
 365 benchmark, and \bar{x} is the mean value of the benchmark. A NNSE approaching 1 indicates perfect
 366 correspondence between two groups of values in comparison.

367 In addition, we also used the normalized mean absolute error (MAE) to quantify the percentage
 368 change of results obtained with simplified physics relative to full physical representations (see
 369 Section 4.4):

$$370 \quad \text{Normalized MAE} = \frac{\sqrt{\sum_{t=1}^N |x_t - y_t| / N}}{\text{normalizing reference}} \times 100\% \quad (9)$$

371 Two normalizing references were selected considering different modeled metrics of interest. For
 372 instance, in terms of temperature and saturation which fluctuate between two non-zero values, the
 373 annually averaged variation range was chosen as the reference:

$$374 \quad \text{Normalizing reference} = \frac{\sum_{\text{year}=1}^{\text{num of years}} (\text{maximum} - \text{minimum})}{\text{number of years}}$$

375 For a modeled metric with zero as the smallest value, such as evaporation, discharge, and thaw
 376 depth, the corresponding average value was selected as the reference.

377 4 Results

378 This section compares simulated outputs over the period of 2011-2020 for the three physical
 379 processes under different simulating conditions. We focus on the impact on integrated metrics,
 380 such as evaporation, discharge, averaged thaw depth, and depth-dependent metrics, such as

381 temperature, and total water saturation (ice and liquid). For hillslope models, we chose five surface
382 locations according to the slope geometry to collect simulated data, which were then averaged to
383 obtain a single outcome for each metric of interest.

384 **4.1 Ice density**

385 To evaluate the representation of ice density on permafrost process simulation, we compared
386 evaporation, discharge, thaw depth, and total water saturation between simulations using equal and
387 different ice density expressions. Figure 4 and Figure 5 show an example of the comparison under
388 conditions of Sag at column and hillslope scales, respectively. Results are compared in both time
389 series and correlation.

390 Generally, at both column and hillslope scales, assuming equal density between ice and liquid has
391 minor impacts on evaporation, discharge, and thaw depth over the 10-year simulation, except at a
392 few deviated points as shown in the correlation figures. According to column-based models, the
393 RMSEs of evaporation, discharge, and thaw depth are 0.101 mm/d, 0.001 m³/d, and 1.648 cm,
394 respectively, one order of magnitude smaller than the values of the corresponding metrics. At the
395 hillslope scale (see Figure 5) the south-facing divergent hillslope is selected to show modeling
396 comparison on evaporation and thaw depth, in that they are potentially mostly affected when a
397 hillslope has a south orientation and divergent geometry. Likewise, the north-facing convergent
398 hillslope is chosen to compare discharge and water saturation from simulations with different
399 density expressions. Even then, RMSEs of the three metrics are 0.064 mm/d, 111.073 m³/d, and
400 0.825 cm, respectively, two orders of magnitude smaller than the values of the corresponding
401 metrics at the hillslope scale. Besides, NNSEs of the three metrics output from both column and
402 hillslope simulation are over 0.9, approaching 1 especially at the hillslope scale. Therefore, all
403 indicate good performance of equal ice-liquid density assumption in predicting integrated metrics
404 and thaw depth. By comparison, the estimation of water saturation is relatively more affected by
405 the density assumption during cold seasons within a year, as shown by Figure 4 (d) and Figure 5
406 (d). This is reasonable in that when water mainly exists in the form of ice, equal ice-liquid density
407 assumption will overestimate the water content.

408
409
410
411

Figure 4 Comparison of column simulations between different and equal ice-liquid density under conditions of Sag, in (a) evaporation, (b) discharge, (c) thaw depth, and (d) water saturation at 5 cm beneath surface from year 2011 to 2020.

412
413 **Figure 5 Comparison of hillslope simulations between using different and equal ice-liquid density under**
414 **conditions of Sag, in (a) evaporation, (b) discharge, (c) thaw depth, and (d) water saturation at 5 cm beneath**
415 **surface from year 2011 to 2020.**

416 4.2 Cryosuction

417 To evaluate the effect of cryosuction on permafrost process predictions, we compared evaporation,
418 discharge, thaw depth, total water saturation, and temperature obtained through simulations
419 including and neglecting cryosuction. Figure 6 through Figure 8 illustrate column-scale
420 comparisons of these metrics under conditions at the three sites (Barrow, Sag, and Teller). Figure
421 6 presents the effect of excluding cryosuction on evaporation and discharge. The RMSE of
422 evaporation from the three sites ranges between 0.25 mm/d and 0.35 mm/d, still one order of
423 magnitude smaller than the common evaporation rate. Evaporation NNSEs of the three sites are

424 around 0.9. For discharge, RMSEs are also one order of magnitude smaller than the average,
 425 whereas NNSEs fall between 0.6 and 0.9. Generally, cryosuction plays a more important role in
 426 predicting discharge compared to evaporation, especially under warm and wet climate conditions,
 427 such as Teller.

428

429
430
431

Figure 6 Comparison of column simulations between including and neglecting cryosuction under conditions of Barrow, Sag, and Teller, in (a) evaporation, (b) discharge.

432 Figure 7 shows the effect of cryosuction on column-scale simulated thaw depth and total water
433 saturation at 5 cm beneath the surface. Overall, neglecting cryosuction tends to underestimate the
434 deepest thaw depth. As already mentioned, cryosuction, in essence, increases soil suction to attract
435 more liquid water moving towards the frozen front during soil freezing. Thus, the real active layer
436 formed due to the existence of cryosuction should be thicker than the cases in which cryosuction
437 is assumed unimportant. RMSEs of thaw depth in Figure 7 range from 3 cm to 8 cm. Though still
438 one order of magnitude smaller than the average annual thaw depth, the estimation error due to
439 neglecting cryosuction is most obvious in summer, especially at areas with cold temperature like
440 Barrow. By comparison, at Teller, where the largest thaw depth is over double that of Barrow and
441 Sag due to its higher temperature, soil cryosuction does not essentially affect thaw depth compared
442 to the other two sites. Similarly, for the total water saturation, at Barrow, the effect of cryosuction
443 is more clearly observed, not only during cold seasons as observed for density representation
444 (section 4.1), but also in summers. The reason why Barrow is more sensitive to the cryosuction
445 process on predicting thaw depth and water content is determined by both soil properties and
446 climate conditions. The soil at Barrow has larger suction and is able to hold more water (see Figure
447 2), providing the possibility for cryosuction to make contributions. Moreover, the principal
448 difference between cryosuction and non-cryosuction representations is presented when the
449 temperature is below the freezing point (see Eq.(3) and Eq.(4)). Compared to Sag and Teller,
450 Barrow has lower annual average temperature (see Figure 1), making the effect of cryosuction
451 more pronounced.

452

453

454 **Figure 7 Comparison of column simulations between including and neglecting cryosuction under conditions**
 455 **of Barrow, Sag, and Teller, in (a) thaw depth, (b) water saturation at 5 cm beneath surface.**

456 Finally, we also compared soil temperature obtained from models with or without cryosuction in
 457 Figure 8. Surface temperature is little affected by cryosuction, except at the Sag site, where the

458 surface temperature is overestimated during winter. At 1 m depth, soil temperature of Barrow is
 459 slightly changed in summer due to neglecting cryosuction. At both Sag and Teller, the fluctuation
 460 range of temperature at 1 m beneath land surface is underestimated if the cryosuction effect is not
 461 considered, especially at Sag, NNSE decreases to approximately 0.6. The reason that causes Sag
 462 and Teller are more sensitive to the effect of cryosuction on temperature is associated with the
 463 larger water amount in the two sites. During freezing, soil freezes from ground surface downward
 464 and from the bottom of active layer upward, forming a liquid zone in between where the
 465 temperature approximates freezing point due to phase change (Figure S3.1(a) in the
 466 Supplement shows an example of the column model under the Sag River condition at the 300th day
 467 of one year). Thus, this liquid zone isolates the upper permafrost from the soil surface temperature
 468 variations due to the weakened conductive heat transport along the soil depth. Additionally, the
 469 released latent heat in this liquid zone may retard soil freezing, which also tends to reduce thermal
 470 conduction. However, cryosuction can speed up freezing and promote the attenuation of the liquid
 471 zone (see S3.1(a) and (b) in Supplement. Figure S3.1(b) shows the ice saturation at the same time
 472 with Figure S3.1(a), when the soil column still has large non-frozen area), and thus decrease the
 473 impact of the liquid zone. Hence, the influence of cryosuction is more significant with more soil
 474 water.

475
 476 **Figure 8 Comparison of column simulations between including and neglecting cryosuction under conditions**
 477 **of Barrow, Sag, and Teller, in (a) surface temperature, (b) temperature at 1 m beneath surface.**

478 Therefore, from Figure 6 to Figure 8, neglecting the cryosuction effect in column-scale simulations

479 has less impact on integrated hydrological metrics, but will cause significant difference when
480 estimating thaw depth and location-specific metrics. The difference among these metrics varies
481 under different climate conditions. Integrated metrics, such as evaporation and discharge, are
482 affected more under warm and wet conditions (Teller); thaw depth and water saturation are
483 affected more under cold and low-rainfall conditions (Barrow); and soil temperature tends to be
484 affected more under cold and high precipitation (rain and snow) conditions (Sag).

485 Neglecting soil cryosuction has a similar impact on hydrological outputs in hillslope scale models.
486 Figure 9 shows the comparison of the metrics of interest discussed above under the Sag climate.
487 Evaporation, thaw depth, and temperature are presented based on south-facing divergent hillslope
488 models, while discharge and water saturation are from hillslope models with north-facing
489 convergent geometry. In general, neglecting soil cryosuction has a smaller effect on integrated
490 metrics (evaporation and discharge) compared with other pointwise metrics. Though thaw depth
491 presents a high NNSE of approximately 0.94, and low RMSE of about 4.5 cm compared to the
492 average, indicating a good match between models considered and excluded cryosuction, the
493 estimation error during summer may reach as high as 10 cm, particularly from 2011 to 2017, as
494 shown in Figure 9 (c). Obvious errors in water saturation and temperature, similar with column-
495 scale models, occur almost annually with respect to extrema during winter and summer. Overall,
496 compared to column-scale models, differences in evaporation, discharge, thaw depth, and surface
497 temperature due to neglecting cryosuction are relatively reduced at the hillslope scale if comparing
498 NNSEs (Table 5). Localized subsurface metrics, such as water saturation and 1m-depth soil
499 temperature, show increased errors from column to hillslope scale models, which is primarily
500 caused by lateral flux exchange captured by hillslope modeling.

501

502

503

504

505

Figure 9 Comparison of hillslope simulations between including and neglecting cryosuction under conditions of Sag, in (a) evaporation, (b) discharge, (c) thaw depth, (d) water saturation at 5 cm beneath surface, (e) surface temperature, (f) temperature at 1 m beneath surface.

Table 5 NNSE of outputs from column and hillslope models under conditions of Sag
shown in Figure 6 through Figure 9

Scale	Evaporation (mm/d)	Discharge (m ³ /d)	Thaw depth (cm)	5cm-depth water saturation (-)	Surface temperature (K)	1m-depth temperature (K)
Column	0.936	0.631	0.904	0.926	0.864	0.613
Hillslope	0.973	0.846	0.934	0.686	0.900	0.597

508 **4.3 Advectional heat transport**

509 This section evaluates the performance of advective heat transport in modeling permafrost process.
 510 As above, we investigated the influence of neglecting heat advection on evaporation, discharge,
 511 thaw depth, total water saturation, and temperature. Overall, after comparing all hydrological
 512 outputs from models with different heat transport representations, heat advection is proved
 513 insignificant in an Arctic system where the influence of localized groundwater flow can be
 514 neglected. Comparisons based on column-scale and hillslope-scale models are not shown here (see
 515 Supplement); instead, the extreme case under conditions of Teller is presented (Figure 10). Teller
 516 is abundant in rainfall over the period of 2011-2020 (Figure 1). In the extreme case, evaporation
 517 was reduced artificially to almost a quarter of the original value (see Figure 6 (a) at Teller and
 518 Figure 10 (a)) for the purpose of increasing water flow rates. For instance, discharge has
 519 quadrupled after adjusting evaporation by comparing Figure 10 (b) and Figure 6 (b) at Teller. This
 520 specific scenario is chosen to maximize the potential effect of advective heat transport in a
 521 hillslope-scale Arctic system. Figure 10 illustrates comparisons on all outputs mentioned above
 522 from hillslope models without heat advection and with full thermal representation. Apparently, all
 523 RMSEs are extremely small, at least two orders of magnitude lower than the corresponding metric
 524 average. Almost all NNSEs are approximately one, even for thaw depth, localized water saturation,
 525 and temperature. Under the assumption of large-scale Arctic systems ignoring the influence by
 526 localized groundwater flow features (e.g., ponds, gullies, etc.), the liquid water flux determines the
 527 advective heat transport in the subsurface. However, the flow velocity on average is quite low
 528 within the shallow active layer with limited thickness (see Figure S4.1 in Supplement). This result
 529 in that the advective heat transport only makes contributions within the top shallow layers, and the
 530 relatively larger advective heat flux is lower than the conductive heat flux over one order of
 531 magnitude (see Figure S4.2 in Supplement). Therefore, for such large-scale Arctic systems where
 532 localized groundwater flow makes less contributions, it is reasonable to neglect advective heat
 533 transport.

534
535 **Figure 10 Comparison of hillslope simulations between including and neglecting advective heat transport**
536 **under extreme conditions of Teller, in (a) evaporation, (b) discharge, (c) thaw depth, (d) water saturation at 5**
537 **cm beneath surface, (e) surface temperature, (f) temperature at 1 m beneath surface**

538 4.4 Comprehensive comparison

539 In the above three sections, we discussed time-series simulation comparisons. This section will
540 analyze the effect of equal ice-liquid density, neglecting cryosuction, and neglecting heat
541 advection on permafrost modeling outputs from holistic, average perspectives.

542 First, we extracted NNSEs of all the metrics of interest obtained from all comparing models for
543 qualitative analysis. Table 6 shows an example based on column-scale models under conditions of
544 three different sites. Red numbers highlight the obviously reduced NNSEs of one or two processes
545 among the three for each metric. Overall, neglecting advective heat transport has the least influence
546 on model outputs. Equal ice-liquid density primarily affects saturation and has less effect on other
547 metrics. Excluding soil cryosuction makes the greatest impact on almost all metrics, especially in
548 a relatively wet environment. Among these metrics, evaporation and surface temperature are less
549 affected by the three physical process representations, while location-based water saturation is
550 most affected.

551 **Table 6 A summary of NNSEs of metrics of interest obtained through column model comparison**

Metrics	Barrow			Sag			Teller		
	Heat	Ice	Cryosuction	Heat	Ice	Cryosuction	Heat	Ice	Cryosuction

	advection	density		advection	density		advection	density
Evaporation	0.997	0.994	0.899	0.993	0.992	0.937	0.999	0.996
Discharge	0.924	0.628	0.862	0.996	0.938	0.631	0.985	0.987
Thaw depth	0.997	0.996	0.852	0.991	0.979	0.904	0.997	0.989
5cm-depth s_w	0.996	0.934	0.785	0.992	0.726	0.926	0.998	0.562
40cm-depth s_w	0.993	0.022	0.213	0.995	0.062	0.311	0.999	0.281
Surface T	1.000	1.000	0.987	0.999	0.999	0.864	1.000	1.000
1m-depth T	1.000	1.000	0.921	1.000	1.000	0.613	1.000	0.999

552 * s_w and T in Table 6 are water saturation and temperature, respectively.

553 Furthermore, to quantitatively compare across the physical processes, we calculated the mean
 554 absolute error (MAE) for each metric of interest over the simulation period of 2011-2020. For
 555 evaporation, discharge, and thaw depth, the MAEs are normalized by the corresponding metric
 556 average (numbers in Figure 11 (a)); for water saturation and temperature, the MAEs are normalized
 557 by their average annual fluctuation range (numbers in Figure 11 (b)). All normalized MAEs are
 558 presented in percentage, displayed in Figure 11 according to column- and hillslope-scale (e.g.,
 559 south-facing convergent hillslope) models under three different climate conditions. Hillslope-scale
 560 model output under conditions of Barrow is not shown in that flat land occupies a majority of the
 561 area. A larger normalized MAE percentage indicates greater impact on the metric resulted from a
 562 physical process.

563 From the perspective of 10-year average, in general, each physical process of Arctic systems
 564 discussed in this paper presents a similar impact on metrics between column and hillslope scales.
 565 Under climate and soil conditions of three different sites, neglecting cryosuction in permafrost
 566 modeling leads to the greatest influence on hydrological prediction amongst the three physical
 567 assumptions. As seen in Figure 11 (a), it will result in 10% ~ 20% deviation in evaporation, 50%
 568 ~ 60% in discharge, and 10% ~ 30% in thaw depth. Evaporation is the least affected among the
 569 three metrics. Discharge is more affected in regions with abundant rainfall (Teller), while in
 570 regions with less precipitation, evaporation and thaw depth are relatively affected (Barrow). By
 571 comparison, assuming equal ice-liquid density and neglecting advective heat transport may only
 572 cause 10% and 5% or even much lower error, respectively, in reference to the annual average of a
 573 metric. Specially in Barrow, models utilizing the same ice and liquid densities and ignoring
 574 advective heat transport seem to make an obvious impact on discharge, whereas this also results
 575 from its extremely low discharge (Figure 6 (b)).

576 Figure 11 (b) illustrates the normalized MAEs of water saturation at 5 cm beneath surface, as well
 577 as temperature at surface and 1 m depth. The assumption of equal ice-liquid density primarily

578 affects the estimation of the water saturation profiles, which can lead to about 5% ~ 15% error
 579 relative to the annual change range, and the error percentage tends to slightly decrease when
 580 applying hillslope-scale models due to the inclusion of lateral flow. Apart from this, neglecting
 581 soil cryosuction still makes the largest impact. Surface temperature is the least affected metric
 582 among all these model outputs even if cryosuction is not included in modeling. However, at 1 m
 583 depth, error can increase to 10% ~ 30% by simulation without cryosuction representation.

(a) Metrics from column and hillslope models

(b) Metrics from column and hillslope models

585
 586 Figure 11 Percentage errors for each metric caused by physics simplifications at column and hillslope scales.

587 The percentage error refers to the averaged error of a metric over the period of 2011-2020 normalized by a
588 certain reference value obtained from full-physics model. Metrics include (a) evaporation, discharge, and
589 thaw depth; (b) water saturation, and temperatures. Numbers in figures are the corresponding reference
590 values for each metric: (a) 10-year average obtained from full-physics model; (b) 10-year averaged annual
591 fluctuation range obtained from full-physics model.

592 5 Conclusion

593 The premise of this study is, by starting from general mass and energy transport equations and
594 simplifying the process representations, we can use a process-rich model to understand the relative
595 importance of given process simplifications in describing permafrost hydrology. This process
596 sensitivity analysis, performed at the scale of field sites as opposed to previous studies at smaller
597 scales such as lab experiments, provides improved understanding in the processes governing
598 permafrost hydrology at this scale. As the simplifications considered here largely span the
599 equations considered in a class of process-rich models, this process sensitivity analysis is relevant
600 to model developers across a range of codes.

601 Simplification of Arctic process representation is an essential consideration when developing
602 process-rich models for thermal permafrost hydrology. The following three subsurface process
603 simplifications are commonly applied for many Arctic tundra models: (i) ice is prescribed the same
604 density as liquid water; (ii) the effect of soil cryosuction is neglected; (iii) advective heat transport
605 is neglected. Here we investigated the influence of these simplified representations on modeling
606 field-scale permafrost hydrology in set of simplified geometries commonly used in the permafrost
607 hydrology literature with the Advanced Terrestrial Simulator (ATS v1.2). We note that these
608 conclusions are specific to conditions similar to these geometries, and should not be applied in
609 cases where focusing flow mechanisms may dominate.

610 To do this, we conducted an ensemble of simulations to evaluate the impact of the above three
611 process simplifications on field-scale predictions. The ensemble of simulations consisted of 62
612 numerical experiments considering various conditions, including different climate conditions and
613 soil properties at three sites of Alaska, and different model scale conceptualizations. For evaluation,
614 we compared integrated metrics (evaporation, discharge), averaged thaw depth, and pointwise
615 metrics (temperature, total water saturation), which are of general interest, among different models
616 to access the deviation of applying a simplified modeling assumption. The main conclusions, under
617 the assumed conditions in this study, are summarized as follows:

618 1) Excluding soil cryosuction can cause significant bias on estimation of most hydrological

metrics at field-scale permafrost simulations. In particular, under the assumed conditions, the average deviation in evaporation, discharge, and thaw depth may reach 10% ~ 20%, 50% ~ 60%, and 10% ~ 30%, respectively, relative to the corresponding annual average values. The prediction error for discharge may grow if rainfall rates increase. In the case of pointwise metrics, the error in temperature increases from a small amount at the surface up to 10% ~ 30% at 1 m beneath surface. The prediction of subsurface temperature and water saturation is especially affected when considering hillslope scale models. Therefore, soil cryosuction should be included when modeling permafrost change.

- 2) Assuming equal ice-liquid density will not result in especially large deviations when predicting most of the hydrological metrics, particularly at hillslope scales given all cases in this study. It primarily affects the prediction of the soil water saturation profile and can cause 5% ~ 15% error relative to the annual saturation fluctuation range. This difference may have consequences for the carbon cycle with regards to the production of methane versus carbon dioxide. Assigning liquid water density for ice may reduce computational time to a small extent in ATS, dependent on simulating conditions and spatial and temporal scales.
- 3) For a large-scale Arctic tundra system with limited localized groundwater flow features (e.g., taliks, thermo-erosion gullies, etc.), the prediction error in most metrics of interest after neglecting advective heat transport is less than 5%, or even much lower. In the case of ATS, the simulation time cost for hillslope-scale models can decrease by 40% to 80% under conditions in this study. Ignoring heat advection in the absence of local, flow-focusing mechanisms, such as thermo-erosion gullies, seems a reasonable decision.

Through the comparison of permafrost hydrological outputs obtained from ensemble model setups targeted at the field scale, we confirm the importance and necessity of including soil cryosuction in predicting permafrost changes, and validate the application of equal ice-liquid density and neglecting advective heat transport for an Arctic system where localized groundwater flow is not a dominant feature. The latter two may also ease computational cost dependent upon simulation conditions. We expect that this study can contribute to the development of permafrost hydrology models, as well as better selection of physical process representations for modelers, and better understanding of permafrost physics for the community.

649 **Appendix**

650 The following results may provide some information about computation cost for ATS users. In
651 addition to the influence of process representations on permafrost hydrology metrics of general
652 interest, we also investigated how much the simplified processes can affect the runtime of a model
653 at the hillslope scale.

654 First, using the 10-year simulation with real ice density as references, the percentage change of
655 time consumed after applying equal ice-liquid density was calculated and displayed in Figure A1.
656 Overall, under the equal density assumption, it may take less time (positive values in figure), but
657 no more than 25% and on average lower than 10%. However, the computation time may also
658 increase (negative values in figure) under wet conditions, such as at Sag and Teller. Thus, given a
659 long-period modeling of large-scale permafrost system, there is no consistent conclusion on
660 whether equal ice-liquid density can ease computational cost. It depends on both the weather
661 conditions and soil properties.

662
663 **Figure A1. The relative runtime change in percentage due to the assumption of equal ice-liquid density**
664 **compared to that with the real ice density representation for all hillslope scale models.**

665 Second, section 4.2 has demonstrated that neglecting cryosuction will make a great impact on
666 hydrological estimations. As a significant physical process of permafrost, cryosuction should be
667 implemented in numerical models even if additional computation effort is potentially required.
668 However, based on the hillslope models we conducted, including cryosuction does not necessarily
669 raise computational cost, which also depends on specific soil properties and conditions. The cases
670 that consume more time after considering cryosuction effect just increase the time by 10% ~ 30%,
671 and less than 20% on average (see Figure A2).

672

673 **Figure A2.** The relative runtime change in percentage after neglecting cryosuction compared to the cases with
674 cryosuction for all hillslope scale models.

675 Third, in terms of heat advection, ATS uses the Algebraic Multigrid method as preconditioner for
676 solving, which has a relatively deficient performance in dealing with hyperbolic equations. Thus,
677 incorporating advective heat transport will aggravate computational cost, particularly in case of
678 both large spatial and temporal scales. Figure A3 shows the relative percentage reduction in
679 computational time for 10-year simulations after excluding heat advection in both surface and
680 subsurface thermal flux. It drops by 70% ~ 80% under wet conditions (e.g., Sag and Teller) and
681 40% ~ 60% under dry conditions (e.g., Barrow). Hence, neglecting advective heat transport
682 considerably improves the performance of large spatial-temporal permafrost hydrology
683 simulations.

684

685 **Figure A3.** The relative runtime change in percentage due to the neglect of advective heat transport for all
686 hillslope scale models.

687 Code availability

688 Advanced Terrestrial Simulator (ATS) is an open-source code for solving ecosystem-based,
689 integrated, distributed hydrology, and available at <https://github.com/amanzi/ats>. Simulations were

690 conducted using version 1.2 (Coon et al., 2021).

691 **Data availability**

692 Data sources of wind speed are cited in the text. The raw forcing data acquired from Daymet, the
693 processed forcing data used for simulation, and simulation output data are available through
694 https://github.com/gaobhub/data_for_paper_model_comparison.

695 **Author contributions**

696 Bo Gao did some revision of the code to add options for process representations, designed
697 numerical experiments and setup models, did data analysis and interpretation, drafted and revised
698 the article. Ethan T. Coon implemented the code in which the study was done, conceptualized the
699 study, helped debug the runs, and helped draft and revise the article.

700 **Competing interests**

701 The authors declare that they have no conflict of interest.

702 **Acknowledgement**

703 Both authors are supported by the U.S. Department of Energy, Office of Science, Biological and
704 Environmental Research program under the InteRFACE project. This research used resources of
705 the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory,
706 which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
707 DE-AC05-00OR22725.

708 **References**

709 Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.: Feedbacks Between
710 Surface Deformation and Permafrost Degradation in Ice Wedge Polygons, Arctic Coastal Plain,
711 Alaska, *J. Geophys. Res. Earth Surf.*, 125, e2019JF005349, <https://doi.org/10.1029/2019JF005349>,
712 2020.

713 Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and
714 Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost
715 dynamics with ATS (v0.83), *Geosci. Model Dev.*, 8, 2701–2722, <https://doi.org/10.5194/gmd-8->

716 2701-2015, 2015.

717 Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F., Lévesque, E., and Yoccoz, N.: Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times, *Arct. Sci.*, 3, 65–90, <https://doi.org/10.1139/as-2016-0023>, 2017.

720 Bui, M. T., Lu, J., and Nie, L.: A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region, *Geosciences*, 10, 401, <https://doi.org/10.3390/geosciences10100401>, 2020.

723 Busey, B., Bolton, B., Wilson, C., and Cohen, L.: Surface Meteorology at Teller Site Stations, Seward Peninsula, Alaska, Ongoing from 2016, 2017.

725 Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat advection on the thermal regime of roads built on permafrost, *Hydrol. Process.*, 34, 1647–1664, <https://doi.org/10.1002/hyp.13688>, 2020.

728 Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, *J. Geophys. Res. Earth Surf.*, 112, <https://doi.org/10.1029/2006JF000631>, 2007.

731 Coon, E. T., David Moulton, J., and Painter, S. L.: Managing complexity in simulations of land surface and near-surface processes, *Environ. Model. Softw.*, 78, 134–149, <https://doi.org/10.1016/j.envsoft.2015.12.017>, 2016.

734 Coon, E. T., Moulton, J. D., Kikinzon, E., Berndt, M., Manzini, G., Garimella, R., Lipnikov, K., and Painter, S. L.: Coupling surface flow and subsurface flow in complex soil structures using mimetic finite differences, *Adv. Water Resour.*, 144, 103701, <https://doi.org/10.1016/j.advwatres.2020.103701>, 2020.

738 Dagenais, S., Molson, J., Lemieux, J.-M., Fortier, R., and Therrien, R.: Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada), *Hydrogeol. J.*, 28, 887–904, <https://doi.org/10.1007/s10040-020-02111-3>, 2020.

741 Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, *The Cryosphere*, 5, 469–484, <https://doi.org/10.5194/tc-5-469-2011>, 2011.

744 Dearborn, K. D., Wallace, C. A., Patankar, R., and Baltzer, J. L.: Permafrost thaw in boreal peatlands is rapidly altering forest community composition, *J. Ecol.*, 109, 1452–1467, <https://doi.org/10.1111/1365-2745.13569>, 2021.

747 Devoie, É. G. and Craig, J. R.: A Semianalytical Interface Model of Soil Freeze/Thaw and Permafrost Evolution, *Water Resour. Res.*, 56, e2020WR027638, <https://doi.org/10.1029/2020WR027638>, 2020.

750 Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOTop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover

752 and terrain effects, *Geosci. Model Dev.*, 7, 2831–2857, <https://doi.org/10.5194/gmd-7-2831-2014>,
753 2014.

754 Fortier, D., Allard, M., and Shur, Y.: Observation of rapid drainage system development by
755 thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago, *Permafro. Periglac.*
756 *Process.*, 18, 229–243, <https://doi.org/10.1002/ppp.595>, 2007.

757 Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullyling on hydrologic flow
758 networks, discharge and soil loss, *Environ. Res. Lett.*, 9, 105010, <https://doi.org/10.1088/1748-9326/9/10/105010>, 2014.

760 Gottardi, G. and Venutelli, M.: A control-volume finite-element model for two-dimensional
761 overland flow, *Adv. Water Resour.*, 16, 277–284, [https://doi.org/10.1016/0309-1708\(93\)90019-C](https://doi.org/10.1016/0309-1708(93)90019-C),
762 1993.

763 Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N., Costard, F., Ferry, M.,
764 Frampton, A., Frederick, J., Gonçalvès, J., Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie,
765 J., Molson, J., Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N., Rühaak, W.,
766 Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand, P., and Voss, C.: Groundwater flow and
767 heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for
768 2D test cases, *Adv. Water Resour.*, 114, 196–218, <https://doi.org/10.1016/j.advwatres.2018.02.001>,
769 2018.

770 Harp, D. R., Zlotnik, V., Abolt, C. J., Busey, B., Avendaño, S. T., Newman, B. D., Atchley, A. L.,
771 Jafarov, E., Wilson, C. J., and Bennett, K. E.: New insights into the drainage of inundated ice-
772 wedge polygons using fundamental hydrologic principles, *The Cryosphere*, 15, 4005–4029,
773 <https://doi.org/10.5194/tc-15-4005-2021>, 2021.

774 Hinzman, L., Busey, B., Cable, W., and Romanovsky, V.: Surface Meteorology, Utqiagvik
775 (Barrow), Alaska, Area A, B, C and D, Ongoing from 2012, 2014.

776 Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E.,
777 Etzelmüller, B., and Luoto, M.: Degrading permafrost puts Arctic infrastructure at risk by mid-
778 century, *Nat. Commun.*, 9, 5147, <https://doi.org/10.1038/s41467-018-07557-4>, 2018.

779 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. a. G., Ping, C.-L., Schirrmeyer,
780 L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill,
781 P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
782 quantified uncertainty ranges and identified data gaps, *Biogeosciences*, 11, 6573–6593,
783 <https://doi.org/10.5194/bg-11-6573-2014>, 2014.

784 Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L., Atchley, A. L., and
785 Romanovsky, V. E.: Modeling the role of preferential snow accumulation in through talik
786 development and hillslope groundwater flow in a transitional permafrost landscape, *Environ. Res.*
787 *Lett.*, 13, 105006, <https://doi.org/10.1088/1748-9326/aadd30>, 2018.

788 Jan, A., Coon, E. T., Painter, S. L., Garamella, R., and Moulton, J. D.: An intermediate-scale model
789 for thermal hydrology in low-relief permafrost-affected landscapes, *Comput. Geosci.*, 22, 163–

790 177, <https://doi.org/10.1007/s10596-017-9679-3>, 2018.

791 Jan, A., Coon, E. T., and Painter, S. L.: Evaluating integrated surface/subsurface permafrost
792 thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site,
793 *Geosci. Model Dev.*, 13, 2259–2276, <https://doi.org/10.5194/gmd-13-2259-2020>, 2020.

794 Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.: Permafrost Degradation and
795 Ecological Changes Associated with a Warming Climate in Central Alaska, *Clim. Change*, 48,
796 551–579, <https://doi.org/10.1023/A:1005667424292>, 2001.

797 Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface
798 hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), *The Cryosphere*, 8, 1935–1950,
799 <https://doi.org/10.5194/tc-8-1935-2014>, 2014.

800 Kurylyk, B. L. and Watanabe, K.: The mathematical representation of freezing and thawing
801 processes in variably-saturated, non-deformable soils, *Adv. Water Resour.*, 60, 160–177,
802 <https://doi.org/10.1016/j.advwatres.2013.07.016>, 2013.

803 Kurylyk, B. L., MacQuarrie, K. T. B., and McKenzie, J. M.: Climate change impacts on
804 groundwater and soil temperatures in cold and temperate regions: Implications, mathematical
805 theory, and emerging simulation tools, *Earth-Sci. Rev.*, 138, 313–334,
806 <https://doi.org/10.1016/j.earscirev.2014.06.006>, 2014.

807 Liu, W., Fortier, R., Molson, J., and Lemieux, J.-M.: Three-Dimensional Numerical Modeling of
808 Cryo-Hydrogeological Processes in a River-Talik System in a Continuous Permafrost
809 Environment, *Water Resour. Res.*, 58, e2021WR031630, <https://doi.org/10.1029/2021WR031630>,
810 2022.

811 Luethi, R., Phillips, M., and Lehning, M.: Estimating Non-Conductive Heat Flow Leading to Intra-
812 Permafrost Talik Formation at the Ritigraben Rock Glacier (Western Swiss Alps), *Permafrost
813 Periglac. Process.*, 28, 183–194, <https://doi.org/10.1002/ppp.1911>, 2017.

814 McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested groundwater-flow system, *Hydrogeol.
815 J.*, 21, 299–316, <https://doi.org/10.1007/s10040-012-0942-3>, 2013.

816 McKenzie, J. M., Voss, C. I., and Siegel, D. I.: Groundwater flow with energy transport and water–
817 ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs,
818 *Adv. Water Resour.*, 30, 966–983, <https://doi.org/10.1016/j.advwatres.2006.08.008>, 2007.

819 NEON (National Ecological Observatory Network): 2D wind speed and direction
820 (DP1.00001.001): RELEASE-2021, 2021.

821 Noh, J.-H., Lee, S.-R., and Park, H.: Prediction of cryo-SWCC during freezing based on pore-size
822 distribution, *Int. J. Geomech.*, 12, 428–438, [https://doi.org/10.1061/\(ASCE\)GM.1943-5622.0000134](https://doi.org/10.1061/(ASCE)GM.1943-
823 5622.0000134), 2012.

824 O'Connor, M. T., Cardenas, M. B., Ferencz, S. B., Wu, Y., Neilson, B. T., Chen, J., and Kling, G.
825 W.: Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils,

826 Geophys. Res. Lett., 47, e2020GL087646, <https://doi.org/10.1029/2020GL087646>, 2020.

827 Painter, S. L.: Three-phase numerical model of water migration in partially frozen geological
828 media: model formulation, validation, and applications, Comput. Geosci., 15, 69–85,
829 <https://doi.org/10.1007/s10596-010-9197-z>, 2011.

830 Painter, S. L. and Karra, S.: Constitutive Model for Unfrozen Water Content in Subfreezing
831 Unsaturated Soils, Vadose Zone J., 13, v3j2013.04.0071, <https://doi.org/10.2136/vzj2013.04.0071>,
832 2014.

833 Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R., Moulton, J. D., Svyatskiy,
834 D., and Wilson, C. J.: Integrated surface/subsurface permafrost thermal hydrology: Model
835 formulation and proof-of-concept simulations: integrated permafrost thermal hydrology, Water
836 Resour. Res., 52, 6062–6077, <https://doi.org/10.1002/2015WR018427>, 2016.

837 Ren, J., Vanapalli, S., and Han, Z.: Soil freezing process and different expressions for the soil-
838 freezing characteristic curve, Sci. Cold Arid Reg., 9, 221–228,
839 <https://doi.org/10.3724/SP.J.1226.2017.00221>, 2017.

840 Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and Marchenko, S.: Recent
841 advances in permafrost modelling, Permafro. Periglac. Process., 19, 137–156,
842 <https://doi.org/10.1002/ppp.615>, 2008.

843 Rowland, J. C., Travis, B. J., and Wilson, C. J.: The role of advective heat transport in talik
844 development beneath lakes and ponds in discontinuous permafrost, Geophys. Res. Lett., 38,
845 <https://doi.org/10.1029/2011GL048497>, 2011.

846 Sjöberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., and
847 Lyon, S. W.: Thermal effects of groundwater flow through subarctic fens: A case study based on
848 field observations and numerical modeling, Water Resour. Res., 52, 1591–1606,
849 <https://doi.org/10.1002/2015WR017571>, 2016.

850 Stuurop, J. C., van der Zee, S. E. A. T. M., Voss, C. I., and French, H. K.: Simulating water and
851 heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-
852 empirical and physically-based approach, Adv. Water Resour., 149, 103846,
853 <https://doi.org/10.1016/j.advwatres.2021.103846>, 2021.

854 Sugimoto, A., Yanagisawa, N., Naito, D., Fujita, N., and Maximov, T. C.: Importance of
855 permafrost as a source of water for plants in east Siberian taiga, Ecol. Res., 17, 493–503,
856 <https://doi.org/10.1046/j.1440-1703.2002.00506.x>, 2002.

857 Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E., Hill, P., Andersson, A.,
858 Kirchner, N., Noormets, R., Dudarev, O., Semiletov, I., and Gustafsson, Ö.: Massive
859 remobilization of permafrost carbon during post-glacial warming, Nat. Commun., 7, 13653,
860 <https://doi.org/10.1038/ncomms13653>, 2016.

861 Thornton, M. M., Wei, Y., Thornton, P. E., Shrestha, R., Kao, S., and Wilson, B. E.: Daymet:
862 Station-Level Inputs and Cross-Validation Result for North America, Version 4, 2020.

863 Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily
864 weather data for North America with comprehensive uncertainty quantification, *Sci. Data*, 8, 190,
865 <https://doi.org/10.1038/s41597-021-00973-0>, 2021.

866 Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of
867 Unsaturated Soils, *Soil Sci. Soc. Am. J.*, 44, 892–898,
868 <https://doi.org/10.2136/sssaj1980.03615995004400050002x>, 1980.

869 Viterbo, P., Beljaars, A., Mahfouf, J.-F., and Teixeira, J.: The representation of soil moisture
870 freezing and its impact on the stable boundary layer, *Q. J. R. Meteorol. Soc.*, 125, 2401–2426,
871 <https://doi.org/10.1002/qj.49712555904>, 1999.

872 Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing Permafrost—A Review,
873 *Vadose Zone J.*, 15, <https://doi.org/10.2136/vzj2016.01.0010>, 2016.

874 Wasantha Lal, A. M.: Weighted Implicit Finite-Volume Model for Overland Flow, *J. Hydraul.
875 Eng.*, 124, 941–950, [https://doi.org/10.1061/\(ASCE\)0733-9429\(1998\)124:9\(941\)](https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(941)), 1998.

876 Weismüller, J., Wollschläger, U., Boike, J., Pan, X., Yu, Q., and Roth, K.: Modeling the thermal
877 dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan
878 Plateau, *The Cryosphere*, 5, 741–757, <https://doi.org/10.5194/tc-5-741-2011>, 2011.

879 Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner,
880 G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-
881 surface model CryoGrid 3, *Geosci. Model Dev.*, 9, 523–546, <https://doi.org/10.5194/gmd-9-523-2016>, 2016.

883 Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.: Statistics and
884 characteristics of permafrost and ground-ice distribution in the Northern Hemisphere, *Polar Geogr.*,
885 31, 47–68, <https://doi.org/10.1080/10889370802175895>, 2008.

886