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Abstract. Widespread existing geological records from above the modern ice-sheet surface and outboard of the current ice 

margin show that the Antarctic Ice Sheet (AIS) was much more extensive at the Last Glacial Maximum (~20 ka) than at 

present. However, whether it was ever smaller than present during the last few millennia, and (if so) by how much, is known 

only for a few locations because direct evidence lies within or beneath the ice sheet, which is challenging to access. Here, we 

describe how retreat and readvance (henceforth “readvance”) of AIS grounding lines during the Holocene could be detected 20 

and quantified using subglacial bedrock, subglacial sediments, marine sediment cores, relative sea-level (RSL) records, radar 

data, and ice cores. Of these, only subglacial bedrock and subglacial sediments can provide direct evidence for readvance. 

Marine archives are of limited utility because readvance commonly covers evidence of earlier retreat. Nevertheless, 

stratigraphic transitions documenting change in environment may provide support for direct evidence from subglacial 

records, as can the presence of transgressions in RSL records. With independent age control, past changes in ice structure 25 

and flow patterns revealed by radar can be used to infer ice volume changes commensurate with readvance. Since ice cores 

capture changes in surface mass balance, elevation, and changes in atmospheric and oceanic circulation that are known to 

drive grounding-line migration, they also have potential for identifying readvance. A multidisciplinary approach is likely to 

provide the strongest evidence for or against a smaller-than-present AIS in the Holocene. 

 30 

Short Summary. Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than 

present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on 

geological and glaciological records and suggest ways in which future studies could detect such changes. Determining 

timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future 

climate warming-induced changes. 35 

1 Introduction 

Improving our understanding of the glacial history of the Antarctic Ice Sheet (AIS) during the Holocene (11.7 ka to present) 

is essential for determining the likely ice-sheet response to future ocean and atmospheric warming. The Holocene provides a 

wide range of climatic variation with which to examine interglacial ice-sheet behaviour under conditions similar to, or 

warmer than, present (Hall, 2009). Holocene retreat and readvance of AIS grounding lines is theoretically predicted by 40 

relative sea-level reconstructions and suggested by some geological and glaciological observations. Here we consider how 

Holocene retreat and readvance could be detected and quantified using observations from geological and glaciological 

archives, illustrated in Fig. 1. Deglaciation from a much more extensive Last Glacial Maximum (LGM) ice-sheet 
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configuration is recognised from widespread geological evidence located above the modern ice-sheet surface and outboard 

of the present ice margin. However, whether or not the AIS grounding line was ever situated inboard of its present position 45 

during the Holocene, and (if so) by how much, is known only for a few locations. Evidence for a smaller-than-present ice 

sheet which then readvanced − a concept which we refer to hereafter as “readvance” − is difficult to find, as it lies 

underneath or within the relatively inaccessible modern ice sheet. Precise dating of both subglacial and englacial records is 

also challenging because dateable material is frequently lacking, and geomorphic context is hard to acquire. Although some 

such evidence has been obtained (e.g., Venturelli et al., 2020), it is extremely limited, and interpretations are sometimes 50 

contradictory. For example, there is no agreed-upon explanation for the glaciological processes and environmental forcing 

leading to readvance (Kingslake et al., 2018; Neuhaus et al., 2021). Furthermore, the maximum extent of Holocene retreat 

has not yet been determined. In summary, the vastly greater weight of geological data from areas outside the present ice-

sheet margin has led to a commonly accepted, but biased, paradigm that the AIS is now the smallest it has been since the 

LGM. 55 

 

Figure 1: A recipe for reconstructing grounding-line retreat and readvance during the Holocene. This schematic illustrates 

geological and glaciological archives that may be used for paleoglaciological reconstructions. These are discussed in the paper as follows: 

englacial observations (Sect. 3.3.1), exposure age arrays (Sect. 3.1.1), subglacial bedrock cores (Sect. 3.2.2), ice cores (Sect. 3.3.2), 

relative sea-level records (Sect. 3.1.3), marine sediment cores (Sect. 3.1.2), submarine geomorphic features (Sect. 3.1.2), subglacial 60 
sediments (Sect. 3.2.1).  

 

Geological observations of readvance help ascertain the boundary conditions that enable expansion from a smaller-than-

present configuration and provide data with which ice-sheet models can be validated and thereby improved (e.g., Golledge et 

al., 2013; Lowry et al., 2019; Albrecht et al., 2020 a,b; Johnson et al., 2021). We outline the current evidence for Holocene 65 

readvance, describe the types of direct and circumstantial geological evidence that could theoretically be used to reconstruct 
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its timing and magnitude, and suggest some approaches for future investigations. We also discuss the analytical and 

logistical challenges of obtaining different types of records. 

2 The principle of Holocene readvance behaviour 

In principle, Holocene readvance is expected to have occurred at least locally in Antarctica because of the interaction 70 

between global eustatic sea-level (ESL) change and glacio-isostatic rebound. More than 100 m of ESL rise between 19‒7 ka, 

resulting from the disappearance of Northern Hemisphere ice sheets (Lambeck et al., 2014), may have forced Antarctic 

grounding-line retreat and consequent ice-sheet thinning (e.g., Clark et al., 2002; Gomez et al., 2020). This is recorded by 

numerous geological data indicating ice margin retreat across the Antarctic continental shelf and thinning at inland sites after 

15‒12 ka (RAISED consortium, 2014). By 6 ka, Northern Hemisphere ice sheets had fully disappeared, and ESL rise was 75 

essentially complete (Argus et al., 2014; Peltier et al., 2015). However, geological evidence indicates that post-LGM 

thinning of the AIS continued until at least this time in many locations, and beyond in some (refer to Fig. 2 and 

accompanying discussion in Sect. 3.1.1). Because the timescale for viscous relaxation is on the order of thousands of years, 

glacio-isostatic uplift of the underlying continent in response to this post-LGM thinning continued well after 6 ka. Thus, 

most sites in Antarctica transitioned from experiencing relative sea-level (RSL) rise in the early Holocene to RSL fall in the 80 

mid Holocene (cf. figure 3, Whitehouse at al., 2012). As sea-level forcing of grounding-line positions is likely an important 

control on Antarctic ice extent (Gomez et al., 2010), it follows that the ice sheet should have reached its minimum 

configuration sometime in the mid to late Holocene and subsequently expanded to its current extent. Holocene readvance has 

been simulated by a few ice-sheet models in response to external forcing during the last glacial cycle (e.g., Kingslake et al., 

2018; Pollard and DeConto, 2012), but it is by no means ubiquitous in all models. Furthermore, those models are often 85 

poorly constrained by sparse geological observations and data-model mismatches are common (e.g., Johnson et al., 2021; 

Nichols, 2020; Spector et al., 2019; Jones et al., 2021), which decreases confidence in their ability to reliably simulate past 

ice-sheet change. 

3 Is it possible to detect Holocene retreat and readvance using glacial-geological evidence? 

Glacial-geological records of past ice-sheet fluctuations can be categorised as either direct or circumstantial. Direct evidence 90 

can provide conclusive proof of a particular configuration or hypothesis, whereas circumstantial evidence implies, or is not 

inconsistent with, a particular configuration, but is not direct proof of it. Multiple lines of direct and/or circumstantial 

evidence can strengthen conclusions about the timing and magnitude of ice-sheet retreat. 

In the following sections, we describe a range of glacial and geological records that have the potential to provide direct or 

circumstantial evidence for retreat of the Antarctic grounding line upstream of its present position during the past few 95 

millennia. These records are situated either below or within the modern ice sheet, or in currently exposed areas. A variety of 

approaches can be used to access these records, but there are considerable logistical challenges, as explained below. 

3.1 Evidence currently above or adjacent to ice 

3.1.1 Evidence of a time gap in which readvance could have occurred 

At numerous locations around Antarctica, cosmic-ray exposure dating of glacially transported erratic cobbles and ice-100 

scoured bedrock surfaces has provided Holocene constraints on the timing of deglaciation. Specifically, exposure age data 

from currently ice-free areas record past ice thickness changes upstream of the grounding line. Retreat of the grounding line 

would be accompanied by dynamic thinning upstream, assuming reasonable limits on surface mass balance changes. 
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Therefore, evidence of rapid thinning at sites near and upstream of present grounding lines provides evidence for past 

grounding-line retreat. The premise of exposure dating is that cosmic-ray interactions with rocks and minerals exposed at 105 

Earth’s surface induce nuclear reactions that give rise to rare nuclides not produced by other natural processes. However, 

shielding of the surface by more than approximately 10 m of ice (or an equivalent mass thickness of anything else) stops 

nearly all of the cosmic-ray flux and prevents nuclide production. Erosion beneath ice sheets commonly generates fresh rock 

surfaces that have not been exposed to the cosmic-ray flux, so the concentration of cosmic-ray produced nuclides, expressed 

as an “exposure age,” in a rock surface uncovered by retreat records the time when that retreat exposed the surface (Dunai, 110 

2010). Thus, exposure age records of LGM-to-present deglaciation comprise arrays of ages, measured in either bedrock or 

glacially transported clasts collected at a range of elevations from a single nunatak, in which exposure age systematically 

increases with elevation (e.g., Stone et al., 2003; Fig. 2). Exposure age data collected from above the modern ice surface 

cannot provide direct evidence that the ice at that site was ever thinner than present. However, they can prove that the ice 

was not thinner at a particular time: for example, exposure ages of 4 ka above the present ice surface would exclude any 115 

scenario that called for thinner-than-present ice at 4 ka. 

 

Many exposure age data sets from Antarctica can thus be used to determine whether or not Holocene readvance could have 

occurred in certain regions. As shown in Fig. 2, some exposure age arrays include multiple late Holocene ages from above 

the present ice surface, and a thinning history inferred from these arrays intersects the modern ice surface at approximately 120 

the present time (see sites 26 and 27 in Fig. 2). Late Holocene thinning below present, and subsequent thickening, could not 

have occurred at these sites. On the other hand, many exposure age arrays intersect the present ice surface in the middle 

Holocene, typically in the range 2‒6 ka, and do not include any younger exposure ages. At these sites, late Holocene 

readvance could have occurred. In fact, readvance would appear probable at these sites because the only alternative 

explanation for these data is zero change in ice thickness during the late Holocene. Whilst possible, zero late Holocene 125 

change seems unlikely given that continued dynamic adjustment of ice thickness to RSL change was presumably occurring 

during this period. 

 

A survey of existing exposure age data from Antarctica shows that occurrences of these two scenarios are not geographically 

patterned (Fig. 2). Sites where exposure age data permit Holocene readvance are common in the Weddell and Amundsen Sea 130 

embayments. In contrast, datasets from the inner Ross Sea embayment uniformly preclude readvance, whilst datasets in the 

outer Ross Sea coast (northern Victoria Land; sites 20‒25 in Fig. 2) permit it. For the East Antarctic coast, there are very few 

data and only one location (site 19 in Fig. 2, in the Lambert Glacier region) with an extensive enough data set to be 

unambiguously classified for this purpose. Although there are many sites elsewhere in East Antarctica where Holocene 

exposure ages have been determined (white circles in Fig. 2), the majority of these sites have only one or two ages, or are 135 

located adjacent to sea level where readvance could not be detected. Overall, existing exposure age data are (i) consistent 

with the hypothesis that late Holocene readvance took place in the Weddell and Amundsen Sea embayments and at outer 

Ross Sea sites, (ii) not obviously consistent with the hypothesis that readvance took place in the inner Ross Sea, and (iii) 

provide minimal information for East Antarctica. 

 140 
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Figure 2: Evidence from Holocene exposure age data collected from various locations in Antarctica that do or do not permit ice 

surface lowering below the present elevation during the late Holocene. The figure was generated from the ICE-D:ANTARCTICA 

database (http://antarctica.ice-d.org). There are many sites (230) which have at least one Holocene exposure age (small white circles). This 

figure shows only a subset of those sites or groups of sites that have more than four Holocene data which together display a reasonably 145 
coherent thinning history. Sites where the lowest data are at or near sea level are also excluded because thinning below sea level is 

unfeasible and could not be recorded by exposure age data anyway. The sites are classified by whether they do (squares, grey axes) or do 

not (circles, white axes) have a late Holocene gap where readvance could have occurred. 

 

3.1.2 Evidence for past grounding-line position from the marine record 150 

As an ice sheet advances across the continental shelf, it typically overrides and obliterates geomorphological evidence of 

prior retreat, such as grounding zone wedges or mega scale glacial lineations (e.g., Greenwood et al., 2021), and leaves 

depositional evidence of readvance, such as sedimentary transitions (e.g., Smith et al., 2019) and cross-cutting landforms 

(e.g., Greenwood et al., 2018). In a few locations, palaeo ice stream retreat and readvance did not entirely remove prior 

grounding zone deposition, but rather built composite grounding zone wedges that represent two separate periods of 155 

deposition [e.g., in the Ross Sea; (Greenwood et al., 2018); Weddell Sea; (Arndt et al., 2017)]. In most situations, however, 
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geomorphic features alone are insufficient for reconstructing retreat and subsequent readvance. We thus consider a range of 

depositional transitions in marine sediment cores that would be consistent with readvance. The clearest evidence would be a 

transition from a subglacial diamicton facies, overlain by diatom-bearing or diatomaceous mud (indicative of open-marine 

sedimentation), back to diamicton (Fig. 3a). At present, there are no published examples of such stratigraphic evidence 160 

indicating that this degree of change occurred during the Holocene. A form of evidence more likely to be found, yet not 

necessarily diagnostic, would be a stratigraphic transition from subglacial (diamicton) to ice proximal (stratified diamicton) 

or sub-ice-shelf facies (mud) back to subglacial (Fig. 3a). Reconstructions of past ice-shelf collapse [e.g., Ross Ice Shelf 

(Yokoyama et al., 2016); Prince Gustav Ice Shelf (Pudsey et al., 2001); George VI Ice Shelf (Bentley et al., 2005; Smith et 

al., 2007); Larsen C Ice Shelf (Smith et al., 2021)] may also be useful for inferring changes in grounding-line position 165 

inboard of the collapse site. In summary, although these marine records alone cannot prove that Holocene readvance 

occurred, they can be used to support direct evidence provided by terrestrial archives. 

 

 
 170 

Figure 3: Facies changes in marine sediments that would be consistent with readvance. (a) Illustration of sediment logs recording an 

interval of reduced glacier extent (T2) between more advanced glacier positions (T1 and T3) for sub-glacial, glacio-proximal and glacio-

distal settings; (b) Example of sediment transition from a sub-glacial/grounding-line-proximal to proglacial/sub-ice-shelf setting. 
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3.1.3 Evidence for transgressions in relative sea-level records 175 

Holocene readvance would theoretically result in ice mass changes detectable in sea-level records. Slowing rates of change 

or even transgressions in RSL records proximal to glaciated areas are commonly interpreted as ice mass gain where 

significant eustatic sea-level rise is absent (e.g., Motyka, 2003; Mann and Streveler, 2008; Simms et al., 2012; Farquharson 

et al., 2018). RSL records from around the AIS could afford evidence of glacial readvance if the expansion were of a 

magnitude sufficient to cause measurable crustal depression, or at least a noticeable slowing of rebound rates. Antarctic RSL 180 

records have been reconstructed by dating beach deposits that were elevated above sea level by rebound using a variety of 

methods. These include radiocarbon dating of organic material (e.g., shells, bones, seal fur) buried in beach ridges (e.g., Hall 

and Denton, 1999; Baroni and Hall, 2004), optically stimulated luminescence (OSL) dating of beach cobbles (e.g., Simms et 

al., 2012), and radiocarbon dating the marine-lacustrine transitions in isolation basins (e.g., Verleyen et al., 2005; Watcham 

et al., 2011). 185 

 

 
 
Figure 4: Two patterns of RSL change in Antarctica. (a) Many curves show a typical exponential shape, as represented by the curve 

from Terra Nova Bay, Ross Sea region [Baroni and Hall (2004), recalculated with marine reservoir correction of Hall et al. (2010), 190 
updated for Marine20 calibration dataset)]. (b) A more complex pattern as represented by the South Shetland Islands. This curve is thought 

to show evidence of at least one (~6.5‒7 ka) and possibly two (dashed line) transgressions, linked to glacier advance (e.g., Hall, 2010; 

Watcham et al., 2011; Simms et al., 2012). Redrawn from curves of Hall (2010), Simms et al. (2011), and Watcham et al. (2011), with 

ages recalculated with Marine20. Circles denote radiocarbon samples from raised beaches (Hall, 2010 and references therein), squares are 

OSL dates of beach cobbles (Simms et al., 2011), and triangles are dates of the marine-freshwater transitions in isolation basins 195 
(Mäusbacher et al., 1989; Martinez-Macchiavello et al., 1996; Watcham et al., 2011). 
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Concerted effort over the past two decades from several regions of Antarctica (e.g., Baroni and Hall, 2004; Roberts et al., 

2011; Simkins et al., 2013; Verleyen et al., 2017) has resulted in a more complete understanding of Holocene Antarctic RSL 

change. Most existing Antarctic records show simple RSL fall from 8 ka to present (e.g., Zwartz et al., 1998; Baroni and 200 

Hall, 2004; Bentley et al., 2005; Braddock et al., in review) and thus lack evidence for subsidence related to significant late 

Holocene ice growth. A notable exception in the South Shetland Islands (Fig. 4) provides evidence of one or more 

transgressions linked to ice expansions, most recently in the late Holocene (John and Sugden, 1971; Hall, 2010; Watcham et 

al., 2011; Simms et al., 2012). These transgressions are expressed in the records as changes in rate (and direction) of RSL 

change. 205 

 

The occurrence of raised beaches proximal to extant ice masses can afford further evidence of Holocene readvance. 

Numerous locations [e.g., Ross Sea (Baroni and Orombelli, 1991; Hall and Denton, 2002; Baroni and Hall, 2004); South 

Shetland Islands (John and Sugden, 1971; Hall, 2010); Antarctic Peninsula (Simms et al., 2021)] show flights of raised 

beaches that extend up to, and presumably beneath, present-day glaciers. These observations imply an extended period of 210 

reduced ice extent in the Holocene, permitting beach formation, subsequently followed by a late Holocene readvance. 

Further exploration and dating of such beach deposits could support the hypothesis of late Holocene readvance. 

 

3.2 Evidence currently under ice 

3.2.1 Subglacial sediments 215 

Where the AIS is grounded below sea level, the grounding line serves not only as the boundary between the ice sheet and ice 

shelf, but also separates the isolated subglacial environment from the atmospherically connected marine environment. 

Radiocarbon (14C) is produced in Earth’s atmosphere and oxidised to 14C-bearing carbon dioxide (14CO2), which can enter 

the ocean system via photosynthesis (organic pathways) or air-sea exchange (inorganic pathways). The Antarctic subglacial 

environment, in contrast to the surrounding marine environment, is separated from the atmosphere by hundreds-to-thousands 220 

of metres of ice, cutting its microbial biosphere off from incorporating 14CO2. Grounding-line retreat enables an incursion of 

ocean waters over subglacial sediments, leaving behind 14C as a marker of the timing and extent of grounding-line retreat. 

The discovery of 14C in bulk organic matter from the subglacial environment paired with an ice-sheet model was used by 

Kingslake et al. (2018) to imply that grounding-line retreat and readvance occurred in the Ross Sea embayment during the 

Holocene. However, 14C in bulk organic matter, which is not diagnostically linked to a single source in the way that a fossil 225 

would be, is ambiguous. This is because subglacial sediment contains both 14C-bearing organic carbon and glacially eroded 

fossil carbon (e.g., Sackett, 1986; Andrews et al., 1999). As such, preparatory techniques capable of separating 14C from the 

remaining fossil (>50,000 year old) carbon are needed to unambiguously use 14C in sub-ice sediments to provide 

chronological constraints on Holocene readvance. Venturelli et al. (2020) demonstrated that the Ramped PyrOx method 

(Rosenheim et al., 2008) was sufficient for thermal separation of sub-ice organic matter, enabling the use of 14C to determine 230 

the precise timing of the last marine incursion. Further work using subglacial sediments is thus likely to provide a geological 

constraint on the magnitude of grounding retreat prior to Holocene readvance (Venturelli, 2021). 

3.2.2 Subglacial bedrock 

Exposure age data from below the ice sheet could prove the hypothesis that the AIS was smaller in the Holocene than today: 

if the ice sheet was thinner in the past, rock surfaces would exist that are now covered by enough ice to completely block the 235 

cosmic-ray flux, but were exposed to the cosmic-ray flux when the ice was thinner. A significant concentration of a cosmic-

ray produced nuclide in a rock sample collected from beneath the ice sheet would be direct, unambiguous evidence that the 

ice sheet was thinner in the past. It would not strictly require surface exposure of bedrock, because the cosmic-ray flux can 

https://doi.org/10.5194/tc-2021-360
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

penetrate some thickness of ice, but it would require that the surface be covered by no more than about 10 m of ice or snow 

for hundreds to thousands of years. A similar argument applies for luminescence-based tools [e.g., OSL and infrared 240 

stimulated luminescence (IRSL)] that involve measuring the amount of trapped charge in minerals accumulated when 

exposed to naturally occurring environmental radiation. Exposure to sunlight (“bleaching”) releases trapped charge, and 

charge builds up slowly after exposure ends, so the method can detect recent exposure of mineral grains to sunlight (Aitken, 

1998). OSL or IRSL evidence of bleaching in subglacial bedrock would require exposure of the rock surface to sunlight 

either directly or through a very thin (<1 m) layer of clean ice or snow. 245 

 

Thus, the basic concept of subglacial bedrock exposure dating via either cosmogenic-nuclide or luminescence measurements 

is quite simple: cosmogenic-nuclide concentrations above background levels or a bleaching signal in subglacial bedrock 

require thinner ice in the past. However, there are several challenges to implementing it. Firstly, accessing the bedrock below 

the ice surface requires drilling a hole through the ice and into the underlying bedrock. A few past ice drilling projects 250 

recovered subglacial rock or sediment as a byproduct of ice core drilling, for example, at GISP2 in 1992 (Gow and Meese, 

1996) and Taylor Dome in 1993 (Steig et al., 2000). In recent years several drill systems have been developed for the 

specific purpose of subglacial bedrock recovery that are lighter, more mobile, and more effective at collecting rock core than 

ice core drills (Kuhl et al., 2021; Boeckmann et al., 2021; Goodge and Severinghaus, 2016). These drills have now 

successfully collected bedrock cores at several locations in Antarctica, including the Ohio Range in the Transantarctic 255 

Mountains (Boeckmann et al., 2021), Mt. Murphy at the Amundsen Sea coast (Boeckmann et al., 2021; Fig. 5), and the Pirrit 

Hills in central West Antarctica (Kuhl et al., 2021). Although the relatively small diameter (typically 2‒5 cm) of rock cores 

that can be collected by drilling imposes limits on sample size, subglacial bedrock recovery and exposure dating in frozen-

bed conditions characteristic of polar ice sheets is now routinely feasible. 

 260 

 
Figure 5: An example of subglacial bedrock drilling in Antarctica. (a) Photograph showing an attempt to collect subglacial bedrock 

samples for OSL and cosmogenic 14C measurements to determine whether a late Holocene thinning-thickening cycle took place at Mt 

Murphy, between the Thwaites and Pope Glaciers in West Antarctica. (b) Plot showing profile along the ridge at Mt Murphy. Red circles 

denote position of surface and subglacial bedrock samples. The lowermost bedrock samples on the exposed ridge above the present ice 265 
surface have exposure ages of 4 ka (Johnson et al., 2020), leaving a late Holocene time gap during which the ice at this location could have 

been thinner. Drilling to collect subglacial bedrock samples took place in the 2019-20 Antarctic field season. 

 

A second challenge lies in interpreting the cosmogenic-nuclide or luminescence measurements. Although detecting 

subglacial exposure would always be unambiguous evidence of thinner ice in the past, not detecting subglacial exposure in a 270 

subglacial bedrock sample could mean either that the ice was never thinner, or that the ice was thinner in the past and the 

previously exposed surface was subsequently removed by erosion. For OSL and IRSL, regrowth of trapped charge following 
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burial of a previously bleached surface will gradually remove evidence of surface exposure even without erosion of the 

surface, typically on a timescale of hundreds of thousands of years. Radioactive decay would have a similar effect for 

relatively short-lived cosmogenic nuclides, but, since other simultaneously produced nuclides are longer-lived or stable, 275 

decay could not remove all evidence of cosmic-ray exposure acquired before the Holocene. Subglacial erosion, on the other 

hand, could remove both types of evidence, but can often be excluded by glaciological observations and/or modeling that 

explore whether or not a site could have hosted ice above the freezing point and be capable of enabling significant erosion. 

 

Finally, although the presence of bleaching of an OSL signal or significant cosmogenic-nuclide concentrations in subglacial 280 

bedrock are clear evidence that ice was thinner in the past, it is not always possible to determine the timing of that thinning 

event. For OSL data, bleaching events that are relatively recent compared to the time required for regrowth of trapped charge 

can typically be unambiguously dated. For cosmogenic-nuclide data, if independent evidence indicates that the sample 

experienced only a single period of exposure and a single period of burial, the durations of both can be uniquely inferred 

from measurements of two nuclides with different half-lives (“burial dating”; see Dunai, 2010). On the other hand, in the 285 

general case where (i) neither subaerial nor subglacial erosion was significant, (ii) bedrock surfaces experienced repeated 

periods of exposure and ice cover during glacial-interglacial cycles, and (iii) independent evidence for the number of 

exposure events is lacking, multiple-nuclide data typically limit the range of possible exposure-burial scenarios without 

implying a unique solution. In this paper, however, we are focusing on the very specific case of late Holocene thinning and 

thickening at sites that are known to have been covered by ice between some time prior to the LGM and the mid to late 290 

Holocene. Identifying late Holocene exposure in this situation is relatively simple with measurements of cosmogenic 14C, 

which is produced in quartz by cosmic-ray interactions and has a half-life of 5730 years. Thus, 14C produced in any 

hypothetical surface exposure prior to the LGM would now be effectively undetectable due to radioactive decay. Although 

longer-lived nuclides, such as 10Be (which has a half-life of 1.39 Myr), detected in subglacial bedrock could have been 

produced either in the late Holocene or during many previous Pleistocene interglaciations, 14C could only have been 295 

produced in the late Holocene. Significant 14C concentrations above background would therefore be unambiguous evidence 

for late Holocene thinning. Thus, strategies for detecting late Holocene retreat and readvance via subglacial bedrock 

recovery drilling focus on OSL and cosmogenic 14C measurements. 

3.3 Evidence within ice 

3.3.1 Changes in ice structure observed with radar 300 

Ground-penetrating radar and radio echo sounding data (collectively referred to as “radar”) acquired during the past four 

decades in Antarctica provide a vast record of glacier structure and past ice-sheet change reaching back decades to hundreds 

of thousands of years (e.g., Ashmore et al., 2020; Schroeder et al., 2019; Kehrl et al., 2018; Winter et al., 2019). Radar can 

reveal evidence of fluctuations in ice thickness and flow patterns with high spatial resolution (e.g., Campbell et al., 2013; 

Conway et al., 1999; Siegert et al., 2013), making it particularly useful for determining regions across the AIS that 305 

experienced ice volume changes. The technique therefore has the potential to provide indirect evidence for readvance. In 

addition, it is feasible to collect tens to hundreds of kilometres of radar data in a single field season and potentially provide 

records of ice volume changes over larger spatial extents than other geological or glaciological techniques. 

 

Stratigraphic unconformities within an ice sheet may form as a result of internal processes due to changes in ice behaviour or 310 

external drivers caused by changes in the ocean (e.g., Holland et al., 2020), atmosphere (e.g., Scambos et al., 2000), and 

solid earth dynamics (e.g., Larour et al., 2019). This could include, for example, retreat and subsequent readvance of the 

grounding line driven by warm ocean water, or spatial and temporal changes in atmospheric deposition. However, although 

radar stratigraphy may identify the spatial extent of past changes in ice volume, determining the timing of such events is 
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challenging. Nevertheless, constraining a relative age of past readvance events can be achieved by comparing results from 315 

observations of stratigraphy in radar datasets with other methods such as exposure age dating, ice cores (Winter et al., 2016, 

2019; Bodart et al., 2021), and climate or ice-history models. For example, Winter et al. (2019) matched distinct horizons to 

dated ice cores to place absolute ages on englacial stratigraphy. Absolute ages on distinct horizons observed in radar profiles 

provide further constraints on the timing of observed unconformities in local radar profiles, such as changes in the blue ice 

area of Patriot Hills, West Antarctica (Winter et al., 2016; Fig. 6). Modelling of wind patterns and location of blue ice areas 320 

may in turn allow interpretations of the radar data to reveal changes in ice-sheet elevation (Mills et al., 2019). 

 

 
 

Figure 6: Ground-penetrating radar (GPR) showing an example of changes in internal isochrones within the ice sheet that formed 325 
as a result of changes in accumulation, ablation and ice flow around nunataks. (a) An elevation-corrected snowmobile-towed 200 

MHz ground-penetrating radar profile from the margins of the blue ice area adjacent to Patriot Hills, Horseshoe Valley, West Antarctica 

(see map inset for general location; the data are also shown in figure 3 of Winter et al., 2016). (b) The same radar profile with coloured 

overlays, numbered 1−3, to show (1: purple) no structure is visible since the GPR direct wave hides the top 1 m of isochrones, (2: orange) 

recent snow accumulation at edge of blue ice area, and (3: yellow) buried blue ice to the left of the image, with accumulation of snow over 330 
the blue ice to the right. Black lines highlight prominent internal reflectors within the snow accumulation layers. Prograding (P) and 

convergent (C) isochrone sequences are indicated with arrows. “UC” indicates a stratigraphic unconformity where shallowly-dipping 

internal reflectors are overlain by near-horizontal firn; this represents the former blue ice surface, where ablation has removed the glacier 

ice. Following ablation, snow has been deposited on top of the exposed blue ice area as the ice unit flowed down valley away from the 

present exposed blue ice ablation area. The image highlights the complexity of interpreting radar data in marginal areas, but also 335 
demonstrates that radar can hold a temporal record of changes in ice sheet elevation, flow patterns, accumulation and ablation. 

 

Simple englacial stratigraphy is common in regions with slow-moving ice such as the centre of ice sheets or at ice divides. In 

contrast, complex englacial stratigraphy can occur in regions of fast flowing ice as a result of enhanced ice velocity leading 

to unconformable internal ice stratigraphy, and by processes which represent a change in ice-sheet volume (e.g., Siegert et 340 

al., 2013; Bingham et al., 2015), as would occur during readvance. The degree of continuity of surface conformable layers 

provides a qualitative, and in some cases a quantitative, measure of previous deformation or alteration. For example, Siegert 

et al. (2013) used radar from the Weddell Sea sector of Antarctica to show that slow-flowing ice resting on top of a 

topographic high experienced a period of fast-flowing ice velocities sometime between 0.4 and 4 ka. 

 345 

Radar can uncover the timing and spatial extent of ice mass changes by providing a link between independent methods, such 

as cosmogenic dating and ice core sampling. Past studies have used radar successfully to target drilling sites for ice cores 

(e.g., Campbell et al., 2013) and more recently, subglacial rock cores collected at Pirrit Hills and Ohio Range (Spector et al., 
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2018), and Mount Murphy, each located in West Antarctica (see Sect. 2.2.2). As radar methods are now used to target 

subglacial bedrock sites for sampling efforts, these same techniques can be used concurrently to select ice core drilling 350 

locations at points of interest (e.g., previous surface or volcanic ash layers identified in radar profiles) and to provide 

independent ages for these observations. The simplest scenarios are perhaps at ice divides where asymmetrical Raymond 

arches may suggest down-glacier dynamical changes in which radar stratigraphy can provide direct evidence of glacier 

change during Holocene readvance (e.g., Raymond, 1983; Nereson et al., 2000; Vaughan et al., 1999; Conway et al., 1999). 

There are other scenarios that could result in unconformities within radar profiles. For example, significant thinning followed 355 

by readvance and ice thickening might produce an unconformity visible within radar stratigraphy. This event would be 

observed as surface conformable stratigraphy overlaying buckled or disturbed stratigraphy, or it may include older ice that is 

topographically confined, under readvanced ice (see archive “a” in Fig. 1). 

 

In summary, radar has (thus far) been under-utilised for obtaining indirect evidence of readvance. It can be used both for 360 

detecting ice-sheet changes associated with readvance and, when radar is coupled with methods that provide independent age 

constraints (such as ice cores and exposure age dating of bedrock), the timing of readvance. The lateral margins of West 

Antarctica are particularly suitable for radar studies that seek to detect readvance because ice-volume changes resulting in 

grounding-line retreat and ice-sheet thinning there are likely to be revealed in radar profiles from sites where temporal 

constraints from ice core and exposure dating studies can also be obtained. 365 

3.3.2 Ice cores 

The geochemical composition of ice, together with the gas trapped in the bubbles within it, has the potential to capture 

changes in ice-sheet surface mass balance, elevation, and atmospheric and oceanic circulation (such as wind strength and sea 

surface temperature) that are known both to drive ice-sheet retreat and readvance, and be influenced by it. Ice cores therefore 

provide an alternative source of information about grounding line behaviour, but, as yet, they have not been utilised for 370 

studies of Holocene readvance. 

 

There are several potential approaches for extracting this information from ice cores. A well-established method for 

reconstructing past surface temperatures uses the relationship between stable water isotopes and temperature (e.g. Jouzel et 

al., 1997). A number of mechanisms, including changes in ice-sheet elevation during ice-sheet readvance (or retreat), will 375 

alter this isotope-temperature relationship. The offset between ice core-derived temperature changes and estimates from 

isotope-enabled general circulation models can be largely reconciled when changes in ice-sheet elevation are taken into 

account (Werner et al., 2018; Buizert et al., 2021). Therefore, it may be possible to detect evidence that would be consistent 

with Holocene readvance from the isotope-temperature relationship within ice cores. Another promising approach for 

reconstructing changes in elevation arises from the total air content in ice cores. The volume of air encapsulated in bubbles 380 

as they become isolated is dependent on air pressure and temperature when the bubbles are formed (Martinerie et al., 1992). 

Hence, the total air content extracted from ice cores is sensitive to changes in ice-sheet elevation. Total air content has been 

used to reconstruct the LGM elevation anomaly relative to the present, indicating a 420 m offset between East and West 

Antarctica (Buizert et al., 2021). When used in conjunction with stable water isotopes, the derived elevation changes since 

the LGM indicate a thickening in West Antarctica (+300 m at WAIS divide; Fig. 7) and thinning in East Antarctica (-120 m 385 

at Dome C; Fig. 7). Despite the promise of this approach, resolution and detection may limit its use, with some studies 

suggesting that elevation changes of less than 150−250 m will be below detection (Martinerie et al., 1992). 

 

Since mass balance of the AIS is dependent on both mass gain (from snow accumulation) and mass loss (melt, sublimation, 

calving), surface mass balance (SMB) may also reflect changes in ice-sheet volume and elevation changes (Davis et al., 390 
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2005) that would be expected during retreat and readvance. For example, periods of low snow accumulation during the late 

Holocene have been linked to the Little Ice Age (Bertler et al., 2011; Simms et al., 2021). Currently, only seven ice cores – 

five from East Antarctica and two from West Antarctica, all from the ice-sheet interior – capture changes in snow 

accumulation for the full Holocene (Buizert et al., 2021). The large-scale pattern of SMB decline during the late Holocene is 

observed at all those sites, with the largest decline in West Antarctica starting at 2.5 ka (Fudge et al., 2016). 395 

 
Figure 7: Map of Antarctica showing location of existing and potential ice core sites from which Holocene ice has been, or could 

be, obtained. Deep ice core sites from where Holocene ice has already been collected are represented by blue dots, and suitable locations 

for future sampling of Holocene ice near grounding zones − ice rises and ridges − are highlighted as white areas (locations from Matsuoka 

et al., 2015). The Reference Elevation Model of Antarctica hillshade base is from Howat et al. (2019). 400 

 

Topographic changes associated with ice-sheet retreat and readvance alter the atmospheric circulation around, and over, the 

ice sheet. This can influence the direction or pathways of air masses reaching an ice core site. Changes in atmospheric 

circulation can be detected in ice core stable water isotope (e.g., Stenni et al., 2017) and snow accumulation records (e.g., 

Thomas et al., 2015, 2017; Medley and Thomas, 2019). They also impact the deposition in ice of chemical species such as 405 

sea salts (e.g., Dixon et al., 2004) and insoluble particulate matter such as dust and diatoms (Koffman et al., 2014; Allen et 

al., 2020; Tetzner et al., 2021). Identifying the origin(s) of the dust and diatoms can indicate air mass pathways as well as the 

subaerial/surface conditions at the source. The prevalence of open marine and sea ice diatoms at coastal ice rises (Tetzner et 

al., 2021) would also vary with ice-sheet configuration (i.e., retreated vs advanced). Evidence of circulation changes derived 

from these imprints can therefore be used to infer fluctuations in ice-sheet grounding-line positions. 410 

 

Ice core research has so far been largely focused on retrieving records from ice divides in the interior of the ice sheet (Fig. 7) 

because these sites offer ice-sheet stability (e.g., minimal flow) and low snow accumulation that are suitable for obtaining 
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long climate records. However, lower elevation coastal sites, such as coastal ice rises or sub-Antarctic islands at the edge of 

the ice sheet (Fig. 7), offer greater sensitivity in capturing Holocene changes in coastal climate and ice-sheet processes (e.g., 415 

Thomas et al., 2021), including elevation change and ice-sheet readvance (Matsuoka et al., 2015; Neff, 2020). There are, 

however, very few published records from low elevation sites, with fewer than 20 Antarctic ice core sites from locations 

below 1500 m elevation (Thomas et al., 2017; Stenni et al., 2017) and none from regions currently experiencing rapid 

change, such as the Amundsen Sea coast. One reason is that drilling infrastructure expands significantly when collecting 

such “intermediate depth” ice cores, due to the need for drilling fluid, larger drill equipment, brittle ice precautions (e.g., 420 

Neff, 2014), and peripherals needed to handle ice cores on the surface (e.g., Souney et al., 2021). Recovering a complete 

Holocene ice core from low elevation coastal sites is therefore logistically expensive. 

 

Despite the promise of low elevation sites and coastal domes for detecting Holocene retreat and readvance, there are 

limitations: (i) The high snow accumulation at coastal sites reduces the number of years that the record contains, (ii) the high 425 

concentration of marine aerosols can make dating, particularly the use of volcanic tie-points, challenging (e.g., Winstrup et 

al., 2019; Moser et al., 2021), (iii) low elevation sites can be susceptible to surface melting (Moser et al., 2021; Thomas et 

al., 2021), which may compromise the preservation of ice core proxies (Moser et al., 2021), and (iv) complex orography at 

the ice-sheet margin may limit sites to capturing regional, rather than large-scale, changes in ice-sheet dynamics. These 

challenges could be addressed in future by collecting multiple cores across a region, utilising a suite of ice core proxies, and 430 

prioritising insoluble materials that are less susceptible to melt. 

4 Summary 

There are several complementary approaches that can be used in Antarctica to obtain geological and glaciological records for 

determining whether, where, and when grounding-line readvance occurred during the Holocene. Of the archives described 

here, subglacial bedrock and subglacial sediment can provide direct evidence that the AIS was smaller than present during 435 

the Holocene, whereas others (marine sediments, radar, records of RSL change, ice cores) have the potential to provide 

circumstantial evidence consistent with, but not direct proof of, such a hypothesis. The latter situation is notably the case 

where mechanisms other than retreat and readvance would produce similar features in the records. Such evidence is, 

nevertheless, useful for corroborating the direct evidence obtained from subglacial sediments and bedrock. 

 440 

Based on our interpretation of existing datasets, many parts of West Antarctica appear particularly promising for detecting 

Holocene readvance. The presence of late Holocene gaps in exposure age data arrays in the Weddell Sea and Amundsen Sea 

embayments, and the outer Ross Sea, point to these as locations where Holocene readvance is likely to have occurred. 

Recent studies in the Ross Sea embayment have confirmed that Holocene readvance can be detected (Kingslake et al., 2018), 

and, furthermore, suggest that its timing can be constrained using direct measurements (Venturelli et al., 2020) and models 445 

(Neuhaus et al., 2021). In both the Ross Sea and Weddell Sea, geomorphic evidence of compound grounding zone wedges 

provides supporting marine evidence that readvance occurred in both regions (Greenwood et al., 2018; Arndt et al., 2017). 

However, there is apparent inconsistency between subglacial 14C data that provide direct evidence for Holocene grounding 

line retreat and readvance in the central Ross Sea embayment and exposure age data above the modern ice surface that 

provide equally direct evidence that Holocene ice sheet thinning and thickening occurred at the embayment margins. 450 

Although these lines of evidence could perhaps be reconciled by processes such as, for example, asynchronous forcing of 

grounding line position or ice thickness, this requires further investigation. In contrast with the Weddell, Amundsen and 

Ross Sea embayments, there are currently insufficient existing exposure age data or suitable ice cores from most of the East 

Antarctic coast with which to determine if readvance occurred there or to identify suitable areas for future investigation. That 

https://doi.org/10.5194/tc-2021-360
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

region is therefore critical for further research if we are to gain a continent-wide picture of late Holocene ice-sheet extent. 455 

Finally, low elevation coastal ice rises offer greater sensitivity than interior sites for detecting Holocene grounding-line 

changes using ice cores, but very few cores from such sites have yet been collected anywhere in Antarctica. 

 

Future research in this area faces considerable logistical challenges because much of the potential evidence for Holocene 

readvance lies within or beneath the AIS, which is hard to access. Nevertheless, significant progress has been made in the 460 

past few years, with successful subglacial bedrock and sediment drilling campaigns undertaken in West Antarctica (Kamb, 

2001; Tulaczyk et al., 2014; Boechmann et al., 2021, Priscu et al., 2021). Dating Holocene archives anywhere in Antarctica, 

particularly those from the past few millennia, is especially difficult due to the low concentrations of accumulated nuclides 

in bedrock and very small amounts of dateable carbon in subglacial organic material. Furthermore, bringing together 

glaciological and geological records that have variable resolutions and degrees of uncertainty is not straightforward. 465 

Notwithstanding the challenges, determining whether, where, and when the ice sheet grounding line was significantly 

inboard of its present location during the past few millennia is critical to gaining a mechanistic understanding for readvance 

behaviour. Obtaining (more) geological records from areas where Holocene deglacial history is currently unknown, or where 

records are sparse, is essential for this. Further research should focus on improving age constraints and assimilating data 

from the various direct and indirect archives described here. Research combining multidisciplinary approaches is likely to 470 

provide the strongest evidence for or against a smaller-than-present AIS in the Holocene. Only once we understand where 

readvance occurred and determine its extent can we really begin to understand the mechanisms that drove it. 
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