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Abstract. Area-based measurements of snow water equivalent (SWE) are important for understanding earth system processes

such as glacier mass balance, winter hydrological storage in drainage basins and ground thermal regimes. Remote sensing

techniques are ideally suited for wide-scale area-based mapping with the most commonly used technique to measure SWE

being passive-microwave, which is limited to coarse spatial resolutions of 25 km or greater, and to areas without significant

topographic variation. Passive-microwave also has a negative bias for large SWE. Repeat-pass
:::::::
Another

::::::
method

::
is
::::::::::
repeat-pass5

synthetic aperture radar interferometry (InSAR)as an alternate technique
:
,
:::
that

:
allows measurement of SWE change at much

higher spatial resolution. However, it has not been widely adopted because: (1) the phase unwrapping problem has not been

robustly addressed, especially for interferograms with poor coherence and; (2) SWE change maps scaled directly from repeat-

pass interferograms are not an absolute measurement but contain unknown offsets for each contiguous coherent area. We

develop and test a novel method for repeat-pass InSAR based dry-snow SWE estimation that exploits the sensitivity of the10

dry-snow refraction-induced InSAR phase to topographic variations. The method robustly estimates absolute SWE change at

spatial resolutions of <1 km, without the need for phase unwrapping. We derive a quantitative signal model for this new SWE

change estimator and identify the relevant sources of bias. The method is demonstrated using both simulated SWE distribu-

tions and a 9-year RADARSAT-2
:::::::
(C-band,

:::::
5.405

:::::
GHz)

:
spotlight-mode dataset near Inuvik, NWT, Canada. SWE results are

compared to in situ snow survey measurements and estimates from ERA5 reanalysis. Our method performs well in high-relief15

areas and in areas with high SWE (>150 mm), thus providing complementary coverage to other passive- and active-microwave

:::::::::::::::
passive-microwave

:
based SWE estimationmethods. Further, our method has the advantage of requiring only a single wave-

length band and thus can utilize existing spaceborne synthetic aperture radar systems. In application, a first order analysis of

SWE trends within three drainage basins suggests that differences between basin-level accumulations are a function of major

landcover types, and that re-vegetation following a forest-tundra fire that occurred over 50 years ago continues to affect the20

spatial distribution of SWE accumulation in the study area.
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1 Introduction

Snow melt is one of the greatest sources of water in snow-affected areas
:::::::::::::::::
(Barnett et al., 2005), snow accumulation on glaciers

is critical to their mass balance and longevity
::::::::::::::::
(Zemp et al., 2009), and snow cover variation is a dominant control on ground

thermal regimes in cold regions
::::::::::::::::::::::::
(Mackay and MacKay, 1974), thus quantification of snowpack conditions is essential to under-

standing the role of snow on earth system processes. Snow water equivalent (SWE) is the amount of liquid-water in a vertical30

column of snow and is a key parameter of snowpack conditions.
:::
The

:::::
SWE

::
of

::
a

::::
snow

:::::
layer

::
is

::::
equal

:::
to

:::
the

::::::
product

::
of

:::
its

:::::
depth

:::
and

:::::
mean

:::::::
density. Traditionally, SWE variation over space and time is interpolated from sparse point-based measurements

::::::::::::::::::::
(Grünewald et al., 2010), which generally show significant spatial variation due to factors such as topography and vegetation

::::::::::::::::::::::::::::::::
(Anderton et al., 2004; Jost et al., 2007), and temporal bias if the acquisition of each set of points is distributed over a range of

dates (ideally
::::::::::::::::
(Smyth et al., 2020)

:
.
::::::
Ideally the SWE measurement is carried out over a short time span to limit within-set varia-35

tion due to changing meteorological conditions). Further bias may be introduced if different point-based methods are integrated

together to estimate SWE over large areas. To avoid biases arising from the interpolation of point-based measurements of typ-

ical snow packs, several remote sensing techniques have been developed for wide-scale, area-based determination of SWE.

With precipitation regimes changing globally under persistent climate change (Pachauri et al., 2015), remote sensing tech-

niques offer the potential to monitor hydrological conditions over vast areas of cold regions where point-based measurements40

are typically sparse, collected intermittently, and with a range of techniques.

Snow depth , used to infer SWE when integrated with snow density, has been determined using surface elevation models

developed using LiDAR as well as structure-from-motion (optical photogrammetry) systems, either by differential repeat-pass

measurement or comparison with a pre-existing snow-free reference elevation model (Deems et al., 2013; Nolan et al., 2015).

However, as these systems are presently only feasible on airborne platforms they have not yet been used for repeated, wide-45

scale SWE mapping, which is required to substantively improve hydrological monitoring. Alternatively, spaceborne systems

are designed for repeated wide-scale monitoring, and both passive- and active-microwave methods to determine SWE have

been demonstrated (Saberi et al., 2020; Lemmetyinen et al., 2018). However, despite the potential for spaceborne microwave

determination of SWE, there are key limitations inherent within each of the current approaches that affect the sensitivity and

uncertainty of the measurements and prevent adoption of the methods for wide-scale SWE monitoring.50

Passive-microwave SWE estimation is based on the measurement of the attenuation of Earth-emitted thermal microwave

radiation by an overlaying snowpack (Kunzi et al., 1982). It has been implemented on several spaceborne systems, generating

global SWE maps with a revisit frequency of up to daily (e.g., Takala et al., 2011). However, the passive-microwave method

has severe limitations (Takala et al., 2011). These are: (1) increased uncertainty for larger SWE (> 150 mm) due to attenuation

saturation; (2) dependence on snow properties such as grain-size distribution
::::::::
properties

::
of

:::::
snow

:::::::::::::
microstructure; (3) signal55

contamination from topographic variation, which restricts the method to low-relief regions; and (4) coarse spatial resolution;

e.g. >25 km in the case of Advanced Microwave Scanning Radiometer (AMSR)–E daily products.
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In contrast to passive systems, active-microwave SWE estimation methods are based on measuring radiation emitted from a

synthetic aperture radar (SAR) system that has returned after having interacted
:::::::::
interpreting

::::::::
variation

::
in

:::::::::::
backscattered

::::::::
radiation

::::::::
following

:::::::::
interaction with the snowpack. One method that promises high spatial resolution is dual-frequency active microwave60

estimation, which measures total SWE in a single pass of the SARa
::::::::

synthetic
::::::::
aperture

::::
radar

::::::
(SAR)

:
based on the difference

between the volume backscatter power returned by the snowpack by two radio-frequency bands (e.g. X-band versus Ku-band).

The dual-band requirement of this method currently limits it to ground-based and airborne implementations, although method-

capable spaceborne missions have been proposed (e.g., Rott et al., 2012; Derksen et al., 2019). Limitations of this method

include a dependence on grain-size distribution of the snow crystals
:::::
snow

::::::::::::
microstructure

:
and an applicability restriction to65

predominately dry-snow and vegetation-free areas (Oveisgharan et al., 2020).

Active-microwave based estimation of dry-snow SWE change can also be achieved through repeat-pass SAR interferometry

(InSAR) by exploiting the phase contribution that results from refraction in dry-snow (Guneriussen et al., 2001; Deeb et al.,

2011; Leinss et al., 2015). This method measures temporal SWE changes between repeat acquisitions rather than total SWE; the

latter must be inferred later through integrating the SWE change maps over time. Performance depends on sensing frequency:70

higher frequencies (e.g. X-band compared to C- or L-band) have better phase sensitivity to SWE change but are more prone

to temporal decorrelation and to interference from volume scattering. This method promises high spatial resolution but it is

constrained by the following requirements: (1) observability is limited to conditions in space and time with low decorrelation;

(2) a spatial reference with known SWE change since the InSAR phase carries an unknown offset; and (3) phase-unwrapping

to resolve 2π ambiguities, which occur in significant number for typical snowpacks (Rott et al., 2003; Leinss et al., 2015).75

Conditions for low decorrelation require the absence of significant
:::::::::::
Decorrelation

:::::::
increases

::::
with

:
liquid water content, spatially

inhomogeneous changes to the
:::::::
changes

::
in snow distribution, or strong volume scatteringeffects

:::
and

::::::
volume

::::::::
scattering. Partic-

ularly, due to the need and difficulty of phase unwrapping, the method has not yet been operationally adopted for wide-scale,

repeat monitoring of SWE despite being proposed and demonstrated over 20 years ago (Guneriussen et al., 2001).

::::::::::
Furthermore,

:::::::::::
polarimetric

::::::::::::::
refraction-based

:::::::
methods

:::::
have

::::
been

:::::::::
proposed

::
to

::::::
exploit

:::
the

:::::::::
structural

:::::::::
anisotropy

::
of

:::::
snow

:::
to80

::::::
provide

:::::::::
additional

::::::::::
information

:::::
about

:::::
SWE

::::::
change

::::::
within

:
a
:::::::::
snowpack

:::::::::::::::::::::
(Leinss et al., 2016, 2020)

:
,
:::::::
although

:::
in

:::
this

::::::
article

:::
we

::::
focus

:::
on

::::::::::::::::
single-polarimetric

:::::::
methods.

:

The Delta-K method for SWE estimation (Engen et al., 2004) is a variant of the InSAR method that differences the InSAR

dry-snow phase between two radar carrier frequency sub-bands. This approach has the benefits of not requiring a spatial phase

reference and eliminates the need for phase unwrapping, however, .
::::::::
However,

:
these are at the cost of a much-reduced sensitivity85

that requires substantial spatial smoothing to suppress the noise, which results in only coarse spatial resolution SWE estimates.

For example, Engen et al. (2004) report 100 mm SWE accuracy at 10 km resolution when applying the method to ERS-1

(C-band) data.

We hypothesize that it is possible to overcome some of the key limitations of repeat-pass InSAR for dry-snow SWE change

estimation, at the cost of only moderately reduced spatial resolution, by exploiting the sensitivity of the dry-snow refractive90

InSAR phase signal to topographic slope. Our objective is to develop a spatial analysis method for repeat-pass InSAR that

allows for unambiguous SWE change estimation directly from the wrapped InSAR phase without need for a spatial phase

3



reference and phase unwrapping, and that is insensitive to other InSAR phase components not correlated with topographic

slope at the scale of the output resolution (size of SWE estimation kernel). The
::::::::
window).

::::
Our

::::::
method

:::::::
exploits

:::
the

::::::::::
dependency

::
of

:::
the

::::::::
refractive

:::::
phase

:::::
delay

::::::
within

:::
the

:::::::::
snowpack

::::
with

::::::
respect

::
to

:::
the

:::::
local

::::::
terrain

:::::
slope.

::::
This

:
novel method is conceptually95

similar to established methods for estimating temporal changes of the layered tropospheric delay in repeat pass InSAR (e.g., Lin

et al., 2010), and offers the same benefits as the Delta-K method but with substantially better sensitivity and spatial resolution

for most terrains.

:::
The

::::::::
proposed

:::::::
method

:::
was

::::::
tested

::::
with

:
a
:::::::::
multi-year

:::::::::::::
RADARSAT-2

::::::
dataset

:::::::
situated

::
in

:::
the

:::::::
western

:::::
arctic

:::::
region

:::
of

:::::::
Canada.

:::
The

:::::
study

:::
site

::::
was

::::::
chosen

:::
for

::::
three

:::::::
primary

:::::::
reasons:

:::
(1)

::::::::
relatively

::::
long

::::
dry

::::
snow

:::::::
season;

:::
(2)

::::::::
moderate

::::::::::
topographic

::::::::
variation,100

:::
e.g.,

:::::
more

::::
than

:::
flat

:::::::::
prairie-like

:::::::::
conditions

:::
but

::::
less

::::
than

::
in

::
an

::::::
alpine

::::::
region;

:::
and

:::
(3)

::::::
dataset

::::::::::
availability

::::
since

:::
an

:::::::
archived

:::::
stack

::
of

:::
120

::::::::
Spotlight

::::::
images

::::
over

::
9

::::
years

::
is
:::::::::
somewhat

::::::
unusual

::::
and

::::::
allows

::
for

:::::::
detailed

::::::::
temporal

:::::::
analysis

::
of

::::::
results.

:

Our paper is organized as follows: first we describe the multi-year RADARSAT-2
::::
study

::::
site,

::::
SAR dataset and ancillary data

that we use to demonstrate and test the novel method. We then develop a quantitative model for the repeat-pass InSAR phase

resulting from dry-snow refraction that explicitly considers topographic slope variation. Subsequently, we introduce a spatial-105

correlation-based method for estimating SWE change from a repeat-pass interferogram, first from a locally unwrapped spatial

phase signal and then directly from the wrapped phase. We compare the expected performance and precision of our method

to that of the Delta-k method. We then examine sources of estimation error in our new approach and establish their relative

significance. Sources considered include the effects of (1) violated model assumptions; (2) other InSAR phase components

and; (3) digital elevation model (DEM) errors.
::::::
Delta-K

:::::::
method. Next, we show results from applying our novel SWE retrieval110

method to the full RADARSAT-2 InSAR dataset. We discuss these results in the context of
:::::::
compare

:::::
these

:::::
results

:::
to several in

situ SWE transect surveys located within the imaged footprint, as well as a mean
::
the

:
SWE temporal history estimated by the

ERA5 climate reanalysis model. We then present a first order assessment of the ∆SWE results in the context of landcover type,

fire history, andthree drainage basins with the study area
::::::
discuss

::::::
sources

:::
of

::::::::
estimation

:::::
error

::
in

:::
our

::::
new

::::::::
approach

:::
and

::::::::
establish

::::
their

::::::
relative

:::::::::::
significance.

:::::::
Sources

:::::::::
considered

:::::::
include

:::
the

::::::
effects

::
of

:::
(1)

:::::::
violated

::::::
model

:::::::::::
assumptions;

:::
(2)

::::
other

:::::::
InSAR

:::::
phase115

::::::::::
components

::::
and;

::
(3)

::::::
digital

::::::::
elevation

:::::
model

:::::::
(DEM)

:::::
errors. Finally, we present our conclusions with a focus on the feasibility

of our method for SWE change mapping in the context of existing methods.

2 Description of Dataset and Study Site
::::
Data

2.1
::::

SAR
::::::
Dataset

::::
and

::::::
Study

:::
Site

The InSAR dataset used for this study is a time series of 120 RADARSAT-2 Spotlight-A (RS2-SLA) descending-pass single-120

look complex (SLC) images spanning the period 2012-02-22 to 2021-01-29 at 24-day intervals; nearly continuously with only

a few time gaps (Table 1). The study area , situated in
::
is

::::::
situated

::
in

:::
the

:
Northwest Territories, Canada, at the eastern margin of

the Mackenzie Delta, about 120 km south of the Beaufort Sea coast, .
::
It
:
covers 238 km2 defined by the SAR imaging footprint

and it includes the town of Inuvik. The mean backscatter amplitude image for the dataset is shown in Fig. 1a.
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Table 1. Parameters for the RADARSAT-2 dataset used for this study.

Parameter Value

Mode Spotlight-A

Pass direction Descending

Scene center (Lat., Long.) 68.35° N, -133.65
:::::
133.65° E

::
W

Date range 2012-02-22 to 2021-01-29

Number of images 120

Repeat interval 24 days

Radar frequency 5.405 GHz

Range bandwidth 100.0 MHz

Incidence angle 49.1°

Pixel spacing (slant range × azimuth) 1.33 m × 0.41 m

Image samples (range × azimuth) 12230 × 27064

Image size (ground range × azimuth) 22 km × 11 km

Our proposed SWE change estimation method requires knowledge of the variation in topographic slope. To derive the slope,125

we used a 12 m spatial resolution TanDEM-X digital elevation model (DEM) provided by the German Aerospace Centre (DLR).

This DEM was derived from source images acquired between 2011-01-13 and 2014-08-08 including snow-season acquisitions

so some snow-related bias may affect the estimated elevations. Regarding DEM accuracy, our method described in Sect. ??
:::
3.1

depends on local slope variations and is therefore sensitive only to local relative rather than absolute DEM errors. Wessel et al.

(2018) report a root-mean-square-error (RMSE) of 1.8 m for TanDEM-X elevations over forested terrain. We also used this130

DEM for InSAR topographic phase correction and as an input for later snow transport modelling
:
,
::::::::
discussed

::
in

:
Sect.

:::
5.2. The

DEM shows that
::
the

:
Mackenzie Delta (near sea-level) in the eastern portion of the study area has little topographic variation,

but to the east of the delta’s margin, elevation increases to a maximum of approximately 200 m above mean sea level (Fig. 1b).

Several riparian zones drain this upland area towards the delta and create substantial local-scale topographic variation.

The study area is south of the treeline and ecologically is broadly categorized as subarctic boreal forest, however,
:
.
::::::::
However,135

according to the North American Land Change Monitoring System (NALCMS) 2015 dataset, a 30-metre resolution land

classification based on Landsat and RapidEye imagery using the methodology described by Latifovic et al. (2017), there is

significant variation in vegetation distribution and density
:::::::::::
classification within the study area (Fig. 1c). The upland area east of

the delta features forest, shrubland, and grassland, whereas the delta proper is predominantly forested, but is interspersed with

areas of shrubs and sedge wetlands (Burn and Kokelj, 2009). There are extensively
:::
6.5

::::
km2

::
of

:
developed lands in the study140

area that include the centrally located town of Inuvik, segments of the Inuvik-Tuktoyaktuk highway and the Dempster highway

that extend, respectively, northward and westward from the town site, and the Inuvik airport in the southeastern corner of the

study footprint.
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Needleleaf forest
Deciduous/mixed forest
Shrub
Grassland/barren

Wetland
Urban
Water

ALLUVIAL: Floodplains and deltas: silt, clay fine sand, minor gravel, course 
sand, and organic sediment; sediment in deltas may be more than 20 m thick; 
includes Aklavik Formation, which constitutes Mackenzie Delta
ALLUVIAL: Fans: silt, clay, fine sand, some coarse sand, gravel, generally more 
than 10 m thick
COLLUVIAL: clay, silt, sand, rubble (angular pebble- through boulder sized 
clasts); generally 0.5 to 3 m thick; materials derived from subaerial 
weathering; occurs as blankets and veneers on slopes
MORAINAL: Hummocky and rolling moraine; generally 4 to 10 m thick
MORAINAL : Blanket; variable thickness, but generally 2 to 5 m thick
Areas of topography known to have been severely modified by thermokarst; 
does not include areas of modern thermokarst lakes

A

C
B

E D

(a) Mean SAR Amplitude (b) TanDEM-X DEM

(d) Surficial Geology(c) Aggregated NALCMS 2015

Inuvik

Inuvik

Inuvik

Approximate delta/uplands 
margin

Figure 1. (a) Mean amplitude of all co-registered RS2-SLA images, ; (b) hill-shaded TanDEM-X DEM
::::
(DLR

:::::
2016) over

::
the SAR footprint

,
::::::
showing

::::::::::
approximate

:::::
margin

:::::::
between

::::::
lowland

::::
delta

::::
area

:::
and

:::
the

::::::
uplands

:::
east

::
of

:::
the

:::::
delta; (c) North America Land Change Monitoring

System (2015) classification map showing spatial variation of land cover and margin of 1968 wildfire (discussed in ??)
::::::
provided

::::::
jointly

::
by

::::::
Natural

::::::::
Resources

::::::
Canada,

:::::::
Comisión

:::::::
Nacional

:::
para

::
el
:::::::::::
Conocimiento

:
y
::::
Uso

::
de

::
la

:::::::::::
Biodiversidad,

:::::::
Comisión

:::::::
Nacional

:::::::
Forestal,

:::::::
Instituto

::::::
Nacional

:::
de

::::::::
Estadística

:
y
:::::::::

Geografía,
:::
and

:::
the

:::
U.S.

:::::::::
Geological

::::::
Survey,

::::
2015)

:::::::::
aggregated

:::
into

:::::
major

:::::::
landcover

::::::
classes;

:
(d) surficial geology

map of the area (Rampton, 1988).
::::
from

:::::::::::::
Rampton (1987)

:
©

:::
Her

:::::::
Majesty

:::
the

:::::
Queen

::
in

::::
Right

::
of
:::::::

Canada,
::
as

:::::::::
represented

::
by

:::
the

:::::::
Minister

::
of

:::::
Energy,

:::::
Mines

:::
and

::::::::
Resources

:::::::
Canada,

::::
1987.

:
Positions labelled A-E in panel (a) refer to the snow surveys described in Sect. 4.2

::
2.1.

The study area lies within the (spatially) continuous permafrost region (Heginbottom, 1995; Nguyen et al., 2009). Permafrost

is ground that remains at or below 0 °C for two or more years that is overlain by an active layer that thaws seasonally. The145

permafrost in the study area is commonly ice rich (Burn et al., 2009), and occurs within surficial deposits of several origins

that are predominantly unconsolidated (Fig. 1d). As a result of climate warming in the region, permafrost temperatures and

active layer thickness are increasing and producing ground surface settlement where there is net thaw of near-surface, ice-rich

permafrost (Kokelj et al., 2017; O’Neill et al., 2019).

As shown in Fig. 2, Inuvik normally receives some level of snowfall for all months of the year except July (ECCC, 2021a).150

The mean annual snowfall is 126 mmwater equivalent
::::
1586

::::
mm. For dry-snow conditions, temperatures must remain below

freezing; the daily maximum temperatures in Inuvik normally remain below zero for the months of October to April. At upland
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locations, dry snow in the area is redistributed by wind and large drifts develop in relation to topographic relief and shrub

growth; while in the delta proper, forest and shrub vegetation combine with the lack of relief to minimize wind effects on the

snow pack (Burn et al., 2009; Mackay and MacKay, 1974; Palmer, 2007; Morse et al., 2012).155

Figure 2. Normal monthly mean snowfall and daily maximum temperature for Inuvik for period of 1985 – 2010.

3 Spatial Variations of Repeat-pass InSAR Dry-snow Phase

2.1
:

In
::::
situ

:::::::::::::
Measurements

2.2 Origin of Dry-snow Phase

:
A
:::::::

number
:::
of

:::::::::
mid-to-late

::::::
winter

:::::
snow

:::::::
transect

:::::::
surveys

::::
were

::::::::
compiled

::
to
::::::::

facilitate
:::::::
method

:::::::::
validation

:::::
which

::
is

::::::::
described

:::
in

Sect.
::
4.

:::::
These

:::
are

::::::
plotted

::
in
::::

Fig.
::
3
:::
and

:::::::::::
summarized

::
in

:::::
Table

:
2
::::
and

::::
their

::::::::
positions

::::
A-E

:::
are

:::::::
labelled

::
in

::::
Fig.

:::
1a.

:::::
These

:::::::
surveys160

::::::
consist

:::
of:

::
1)

:::::
three

:::::::
transects

:::
at

::::
sites

::
A,

:::
B

:::
and

::
C
::::
that

:::
are

:::::::::::
immediately

:::::
north

::
of

:::::::
Inuvik,

::
all

::::::::
surveyed

:::
by

:::
the

:::::::
authors

:::
on

:::
the

::::
same

::::
day;

:::
(2)

:::
one

::::::::
transect,

::::::
located

::
at

:::
site

:::
D,

:::::::
provided

:::
by

:::
Tim

::::::
Ensom

::::::::
(Wilfred

::::::
Laurier

::::::::::
University)

::
in

:
a
::::
fully

:::::::::::
tree-covered

::::
area

:::::::
adjacent

::
to

:
a
:::::
small

:::::
creek;

::::
and

:::
(3)

:
a
:::::
series

::
of

::::
four

:::::::
transect

::::::::::::
measurements

:::::
made

::
at

:::
the

::::
same

::::::::
location,

:::
site

::
E,

:::
by

:::::::::::
GNWT-ENR

::
at

::::::::
two-week

:::::::
intervals

::
at

:
a
::::
site

::::
with

:::::
mixed

::::
trees

::::
and

:::::
shrubs

::::
that

::
is

:::::::
adjacent

::
to

:::
the

:::::
Inuvik

:::::::
Satellite

::::::
Station

:::::::
Facility.

::::
The

::::
Tim

::::::
Ensom

::::::
transect

::::
was

:::::::
surveyed

::::
with

::
a
:
6
:::
cm

:::::::
ESC-30

::::
snow

:::::::
sampler

::::
and

::
all

:::::
other

:::::::
transects

::::
were

::::::::
surveyed

::::
with

:
a
::
6

:::
cm

:::::
Metric

::::::
Prairie

:::::
snow165

:::::::
sampler.

3
:::::::
Method

3.1
::::::::::
Background

Guneriussen et al. (2001) first described the method of SAR interferometric repeat-pass SWE change estimation, which we

summarize as follows. In the case of a dry homogenous layer of snow over ground, a microwave radar signal will penetrate170
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Figure 3.

::
In

:::
situ

:::::::::::
measurements

::
of

::::
snow

::::
depth

:::
and

::::::
density

::
for

:::
the

::::
eight

:::::::
transects

:::
that

:::
are

:::::::::
summarized

::
in

::::
Table

::
2.

the snow layer, be scattered at the ground surface and then return through the snow layer. Surface and volume scattering occur

at the air-snow interface and within the snowpack respectively, but for sufficiently dry-snow, it can be expected that these

contributions will be much less that the primary ground-scattered return
::::::::::::::::
(Leinss et al., 2015). The dry-snow layer has a higher

:::
real

:
permittivity than air and therefore causes refraction at the air-snow interface, which corresponds to a reduction in the

propagation speed of the signal within the snowpack and a corresponding geometric path-length increaseas
:
.
::::
This

::
is shown in175

Fig. 4 . Compared to the snow free state, the
:::::
which

::::::
defines

:::
the

::::
local

:::
3D

::::::::
geometry

::::
and

::::::
depicts

::::
both

::::::::
snow-free

:::
and

:::::
snow

:::::::
covered

::::
cases

::::::
which

::::::
diverge

::
at

:::
the

:::::
point

:::::
where

:::
the

::::::::
wavefront

:::::::
reaches

:::
the

:::::
snow

::::::
surface.

::::
The

:::::::::
unwrapped

:
phase of the SAR signal ,

:::
due

::
to

:::
the

:::::::::
dry-snow

::::
layer

::::
(Φs)::

is
:::::
given

::
by

:

Φs(θ) =
4π

λ
Ds

(√
ε(ρ)− sin2θ− cosθ

)
, (1)

8



Table 2.
:::
List

::
of

::::::
transect

::::
snow

::::::
surveys

::::
used

:::
for

::
in

:::
situ

::::::::
comparison

::::
with

:::::::
SlopeVar

::::::
results.

 

Source Site 
Date 

(yyyy-mm-dd) 
Length 

(m) 

Sample  
size 
(n) 

Mean 
snow 
depth 
(mm) 

Mean 
relative 
snow 

density 

〈𝜉#$〉&/$( 
(radians· 

mm-1) 

Roughness 
std. dev.b 

(m) 

Authors 
of this 
paper 

A 2018-03-15 200 21 583 0.17 2.5 0.8 

B 2018-03-15 140 15 571 0.19 2.3 0.8 
C 2018-03-15 100 11 515 0.20 1.0 0.5 

Tim 
Ensom D 2018-04-22 124 20 489 0.22 12.8 5.9 

GNWT
-ENR E 

2017-02-01 

Not  
reported 

10 510 0.11 

5.9 3.7 
2017-02-15 10 696 0.14 

2017-03-01 10 691 0.13 

2017-03-16 10 690 0.17 
 aStandard deviation of ξ computed over local 500 m × 500 m estimation window. b Standard

deviation of elevation residuals after removing best-fit planar surface, computed over local 500 m

× 500 m estimation window.

:::
and

:
increases with both snow density ρ (defined dimensionless as the ratio of the gravimetric densities of snow and water)180

and snow layer thickness Ds (projected along the local slope surface normal direction
::::
slope

::::::
normal

::::::::
direction,

::::::::::
represented

:::
by

:::::::
direction

:::::
vector

:
n). Functional dependency on ρ is via the

:::
real

:::
part

::
of

:::
the

:::::::
relative dielectric permittivity ε, with other parameters

in Eq.(1) being the local incidence angle θ and the radar wavelength λ.
:::
Note

::::
that

::
θ

::
is

::::::
defined

::
as

:::
the

:::::
angle

::::::::
between

:
n

:::
and

:
-
:
l

:::::::
(reversed

:::::
SAR

::::::::::
line-of-sight

::::::::
direction

::::::
vector)

::::
and

::::::::
therefore

:::::::
depends

::
on

:::::
both

:::
the

:::::::::
magnitude

:::
and

::::::
aspect

::
of

:::
the

:::::
local

:::::
slope.

:::
As

::::
such,

::::
this

::::::::
geometry

:::
can

:::
be

::::::
defined

::::::::::
everywhere

::::::
within

:
a
:::::
SAR

:::::
scene

:::::
given

:::::
maps

::
of

:::::::
spatially

:::::::
varying

:
l
:
,
::::::::
expressed

::
in

:::
the

:::::
local185

:::::
(East,

:::::
North,

:::::::
vertical)

:::::::::
coordinate

::::::
system

::::
and

:::::
DEM

::::::
derived

:::::
slope

:::::::::
magnitude

:::
and

::::::
aspect

:::::
maps.

In the case of a stratified snowpack, Leinss et al. (2015) have shown that the phase contribution
::
Φs is well approximated by

a single layer with mean vertical density
:
ρ,

ρ≈ 1

Zs

Zs∫
0

ρ(z)dz =
S

Zs
, (2)

where S is the SWE of the snowpack with depth Zs (measured vertically). Noting
::::
Note

:
that Zs = Ds/cosα where α is the190

local topographic slope angle,
::::::
defined

::
as

:::
the

:::::
angle

:::::::
between

::
n

:::
and

::
z.
:
Eqs.(1) and (2) can be combined to provide the explicit

linear relation between dry-snow phase and SWE,

Φs(θ) = S
4π

λρ
cosα

(√
ε(ρ)− sin2θ− cosθ

)
. (3)
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Figure 4. Geometry of refracted ray through a dry snow layer over an inclined ground surface compared to the unrefracted (straight) ray

trajectory.
::
The

::::
inset

:::::
figure

:::::
shows

::
the

::::::
general

:::
3D

:::::::
geometry.

::
x,

:
y

::
and

:
z

:::
refer

::
to

:::
the

::::
local

::::
East,

::::
North

:::
and

::::::
vertical

::::::::
directions.

:
n

:::
and l

:::
refer

::
to

:::
the

:::
local

:::::
slope

:::::
normal

:::
and

::::
SAR

::::::::::
line-of-sight

:::::::
directions

:::::
which,

:::::::
together,

:::::
define

:::
the

::::
plane

:::::::
depicted

:
in
:::

the
:::
2D

:::::::
diagram.

The relation holds for the general case of repeat-pass interferometric dry-snow phase between any two dry-snow states by

replacing total SWE, S, with SWE change, ∆S, and interpreting ρ as the magnitude of the mean density
:
ρ of the removed or195

added snow layer. As such, ∆S can be either positive or negatively valued and ρ ≥ 0.

3.2 Dry-snow Phase Dependence on Local Topographic Slope

SAR images are formed by focusing complex-valued pulse returns obtained sequentially along a one-dimensional flight track

(e.g. satellite orbit segment in the case of spaceborne systems). Each image resolution cell is formed by coherently combining

signals received over a finite aperture. The phase contribution due to dry-snow refraction
::
Φs:depends on the local incidence200

angle, which varies along the aperture. The net effect on the focused image phase
::
Φs, however, is well approximated by con-

sidering only the Doppler centroid (i.e. beam center) incident angle at the target (Eppler and Rabus, 2021).

For a focused image, in a local spatial region with constant topographic slope where incidence angle is uniform (gradual

across-swath variations can be neglected) a horizontally
:::::::
spatially uniform snow layer results in a uniform phase

::
Φs. In contrast,

a local spatial region with topographic slope variations will generate dry-snow phase
::
Φs:variations corresponding to variations205
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in the local incidence angle and projection of the snow depth onto the slope normal.
:::
The

::::::
validity

:::
of

::::::::
assuming

:
a
:::::::
uniform

:::::
snow

::::
layer

:::::
under

:
a
:::::
local

:::::::
window

:::
and

::::::::
selecting

::
an

::::::::::
appropriate

:::::
spatial

:::::
scale

:::
are

::::::::
discussed

::
in

:
Sect.

::
5.2

::::
and Sect.

:::
5.1.

Figure 5 depicts the topographic modulation of dry-snow snow phase explicitly at foreslope, horizontal, and backslope

locations. The local incidence angle is less on the foreslope and becomes greater along the transition towards the backslope.

The dry-snow phase increases with incidence angle and therefore this effect causes the phase contribution to increase along the210

transition from foreslope to backslope.

D"_$ = Z"Z"
Z"

D"_'

n n
n

Foreslope Horizontal Backslope(a)

(b)

)' )$
)*

α'

n
n

n

,' ,$ ,*< <

α$=0 α*

D"_*

unrefracted ray:
snow refracted ray:

ground

snow

air

ground

air

Figure 5. Time evolution of dry-snow refraction geometry for different topographic slopes. (a) depicts a snow free hill divided into foreslope,

horizontal (i.e. hilltop) and backslope with a fixed incident radar direction and it shows that the local incidence angle increases from foreslope

to backslope. (b) depicts the same hill with the addition of a dry-snow layer and shows the corresponding refracted ray geometry. Refraction

:::
and

::::::::::
corresponding

::
ξ increases from foreslope to backslope. Also illustrated is a reduction of the slope-normal projected snow depth, Ds with

increasing slope angle, α, while vertical snow depth
::
Zs:

is constant.
::
A

::::::
uniform

::::
snow

::::
layer

::
is
:::::
shown

:::::
which

::
is

:::
one

::
of

:::
the

:::::::::
assumptions

::
of

:::
the

::::::::
estimation

:::::
method

::::::::
described

::
in

::::
Sect.

:::
3.1.

::::
Note

:::
that

:::::::
foreslope

:::
and

::::::::
backslope

:::::
angles

:::
(α1 :::

and
:::
α3)

:::
are

::
not

:::::::
assumed

::
to

::
be

:::::
equal.

::::
Also,

::::
note

:::
that

::
for

::::::::
illustration

::::
only,

:::
this

:::::
figure

::::::
depicts

::
the

::::::
special

:::
case

:::::
when

::
the

::::
SAR

::::::::::
line-of-sight

:::
and

::::
slope

:::::
normal

:::
are

:::::::
coplanar

:::
with

:::
the

::::::
vertical

:::::::
direction

::
but

:::
this

::
is

:::::::
generally

:::
not

:::
the

:::
case

:::
and

::
is

:::
not

:::::::
assumed.

The projection of the snow depth onto the slope normal scales with the cosine of the slope angle and is therefore greatest in

horizontal areas and less on both the foreslope and backslope. Considering Eq.(3), if the topographic variation within a SAR

scene is known, then the spatially variable sensitivity of the dry-snow phase
:::
Φs ::::::::

sensitivity
:
to a uniform SWE layer

::
(ξ)

:
can be

computed as,215

ξ
.
=
dΦs
dS

=
4π

λρ
cosα

(√
ε(ρ)− sin2 θ− cosθ

)
, (4)

where we assume that snow density, ρ , is known. A spatially varying change in dry-SWE during a time-interval spanned by

two SAR acquisitions will cause a corresponding spatially variable interferometric phase contribution
::
Φs, modulated by the

topographic sensitivity,

11



Φs = ξ∆S. (5)220

This effect is depicted in Fig. 6, which shows ξ computed over the RS2-SLA spatial footprint and a late snow-season

interferogram which shows spatial phase variations that are correlated with ξ.

(a) Dry-snow Phase Sensitivity

(b) Interferogram

rad mm-1

0.22 0.28

rad
- π π

Figure 6. (a) Dry-snow phase sensitivity, ξ, for the RS2-SLA geometry and assuming relative snow density, ρ = 0.3, (b) Topo-corrected 24-

day
::::::
wrapped

:
interferogram 20120317_20120410 showing spatial correlation with dry-snow phase sensitivity

:
ξ
:
in the upland areas (eastern

part of image footprint). The rectangular inset area corresponds to the example shown in Fig. 7.

4 Estimation Method

3.1 Estimating Absolute ∆SWE by Exploiting Topographic Variation

According to Eq.(5), if the absolute unwrapped dry-snow phase, Φs , can be recovered, then the spatially varying SWE change225

can be directly estimated at the same spatial resolution as the interferogram. However, this requires phase unwrapping which

can be difficult for snow covered interferograms both due to aliasing and local incoherence of the InSAR phase. Furthermore,
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although the unwrapped-phase
:::
even

::
if
:::
the

::::
total

::::::::::
unwrapped

:::::
phase

::::
(Φ) can be determined, the phase offset is unknown. One

or more reference targets with known SWE change (∆SWE) are required to estimate the offset. For these reasons, direct

estimation of ∆SWE from interferograms is not straightforward. However, we suggest that the effect of topographic modulation230

of dry-SWE phase
:::
Φs,:described in Sect. 3.2,

:
allows an absolute estimate without requiring phase unwrapping or knowing the

phase offset.

Consider a local estimation window, sufficiently large to contain some topographic slope variation.
:::
e.g.

::
1
:::
km

::
×

:
1
::::
km.

:
The

phase within this window consists of the superposition of the dry snow phase contribution
::
Φs:and other phase components

(e.g., due to decorrelation, surface displacement, imperfect topographic correction, soil moisture, or tropospheric delay). For235

the purposes of estimating dry-snow
::::::
∆SWE, we treat the other phase components as a single error phase term, Φe. Due to the

difficulty of phase unwrapping and offset estimation we assume that only the locally de-meaned superposition phase
:::
(Φ̃) is

available,

Φ̃ = Φ−〈Φ〉= Φs−〈Φs〉+ Φe−〈Φe〉 , (6)

where 〈·〉 denotes the mean over the window. Initially, for simplicity we assume also that phase variation within the window is240

limited to a 2π ambiguity interval so that (unwrapped) Φ̃ is easily obtained from the corresponding wrapped-phase, φ, within

the window,

Φ̃ = ∠
(〈
ejφ〉∗ ejφ

)
, (7)

where * denotes complex conjugation.

The unknown spatially variable SWE change within the window can then be described by245

∆S = 〈∆S〉+ ∆̃S, (8)

where ∆̃S corresponds to the zero-mean spatially variable component of the SWE change . The known topographic dry-snow

phase sensitivity
::::::::
horizontal

:::::
SWE

::::::
change

::::::::
variation.

:
ξ
:
can be similarly decomposed as

ξ = 〈ξ〉+ ξ̃., (9)

:::::
where

:
ξ̃
::
is
:::
the

::::::::
variation

::
in

::
ξ. Substituting Eqs.(8) and (9) into Eq.(5) and expanding yields250

Φs = 〈ξ〉〈∆S〉+ 〈ξ〉∆̃S+ 〈∆S〉 ξ̃+ ξ̃∆̃S. (10)

Substituting Eq.(10) into Eq.(6) and noting that
〈

∆̃S
〉

=
〈
ξ̃
〉

= 0 gives,

13



Φ̃ = 〈∆S〉 ξ̃+ 〈ξ〉∆̃S+ ξ̃∆̃S−
〈
ξ̃∆̃S

〉
+ Φe−〈Φe〉 . (11)

Assuming that the first term, 〈∆S〉 ξ̃, is the dominant component,
::
Φ̃

::::::::
correlates

::::
with

::
ξ̃
::::
with

:::
the

:::::::::::::
proportionality

::::::
〈∆S〉, we

introduce the following correlation-based estimator for 〈∆S〉,255

∆̂S :=

〈
ξ̃Φ̃
〉

〈
ξ̃

2
〉 = 〈∆S〉+ 1〈

ξ̃
2
〉 [〈ξ〉〈ξ̃∆̃S〉+

〈
ξ̃

2
∆̃S
〉

+
〈
ξ̃Φe

〉]
. (12)

This estimator correlates the observable de-meaned phase Φ̃ with the known topographic variation in dry-SWE phase

sensitivity ξ̃ . The estimator
:::
and

:
relies on the assumption that the horizontal SWE change distribution is uniform within

the window and that other interferometric phase
::
Φe:components are uncorrelated with ξ̃. The bias of ∆̂S with respect to 〈∆S〉

is given by260

E
(

∆̂S
)
−〈∆S〉=

1〈
ξ̃

2
〉 [〈ξ〉E(〈ξ̃∆̃S〉)+E

(〈
ξ̃

2
∆̃S
〉)

+E
(〈
ξ̃Φe

〉)]
, (13)

whereE(·) denotes the expectation. Therefore, ∆̂S is biased by horizontal SWE change variations,
:::
the

::::::::::
components

::
of ∆̃S , that

are systematically correlated with either ξ̃ or ξ̃
2
, and by other interferometric phase

::
Φe:components systematically correlated

with ξ̃. The significance of the different bias terms is examined in Sect. 5.2 and Sect. 5.3.

3.2 Wrapped-phase (‘SlopeVar’) Estimator265

The estimator defined in Eq.(12) requires the demeaned unwrapped-phase Φ̃ within the spatial window of consideration and we

have assumed so far that this can be obtained from the wrapped phase
:
φ
:
through Eq.(7) implicitly assuming phase variations

in the window are limited to a maximum of 2π. As shown by Just and Bamler (1994), decorrelation to any degree results in

a per-target phase distribution that is not bound by the ±π interval and so this condition is never strictly met. Except for high

coherence areas with limited short-scale phase variation, the phase within the window must either be unwrapped or an alternate270

::::::::
alternative

:
wrapped-phase version of the estimator is required.

Here we propose such an alternate
:::::::::
alternative estimator (which we denote the ‘SlopeVar’ estimator) that uses periodogram

optimization to iteratively estimate 〈∆S〉, using the set of wrapped phases
:
φ
:
under the window,

∆̂Sw = argmax
∆Sw

∣∣∣〈ej(φ−∆Swξ̃)
〉∣∣∣ . (14)

Considering Eq.(11) and the fact that ejφ = ejΦ, Eq.(14) can be expanded to show the components of φ,275
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∆̂Sw = argmax
∆Sw

∣∣∣〈ej(〈∆S〉ξ̃+〈ξ〉∆̃S+ξ̃∆̃S−〈ξ̃∆̃S〉+Φe−∆Swξ̃)
〉∣∣∣ . (15)

In the case where Φe = 0 and ∆̃S = 0, this yields an unbiased estimate, i.e., ∆̂Sw = 〈∆S〉, otherwise the 〈ξ〉∆̃S, ξ̃∆̃S and〈
ξ̃∆̃S

〉
terms in Eq.(15) will bias ∆̂Sw.

Figure 7 shows an example of the SlopeVar estimator being applied to a 1 km square (ground range × azimuth) window for

the inset area labelled in Fig. 6. The uncorrected phase is spatially correlated with ξ
::
Φ̃

:
is
::::::::::
moderately

::::::::
correlated

::::
with

::
ξ̃ over the280

window as seen by comparing Figs. 7a and 7b and by examining the 2D-histogram in Fig. 7d. Figure 7e shows the periodogram

with distinct peak at ∆SWE of 28 mm. Figure 7c shows the effect of removing the dry-snow phase
::
Φs:component assuming

constant ∆SWE of 28 mm under the window which results in a much more uniform phase although residual variations can still

be seen.

Frequency

0 Max

Correlation coefficient: 
R = 0.34

(a) (b) (c)

(d) (e)

Figure 7. Example of SlopeVar ∆SWE estimation over a 1 km × 1 km window corresponding to the inset area shown in Fig. 6 for

the 20120317_2010410
:::::::
20120410

:
interferogram. (a) SWE

::::::
variation

::
in

:::::::
dry-snow

:
phase sensitivityfactor, ξ; (b) and

:::::::
demeaned

:::::
phase

:
(c) :

uncorrected and ∆SWE-corrected interferometric
:::::::
demeaned

:
phase (using SlopeVar estimate, ∆̂Sw); (d) 2D-histogram of centered

::::::::
demeaned

phase vs. demeaned
::::::
variation

::
in

:
dry-snow phase sensitivity with line corresponding to the periodogram-based estimate, ∆̂Sw; and (e) peri-

odogram with peak corresponding to ∆̂Sw.

3.3 Estimator Implementation285

Regarding estimator implementation, input interferograms were generated by co-registering the set of RS2-SLA SLCs to a

common master SLC and computing sequential topographic phase corrected 3 × 12 (range pixels × azimuth pixels) multi-

looked interferograms using the GAMMA software package (GAMMA Remote Sensing AG, Switzerland). Multi-looking was
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performed to better match the sample spacing of the interferograms to that of the DEM derived ξ map. This improved estimator

computation run-time and was seen to have negligible effect on the resulting ∆SWE estimates. All interferograms were visually290

inspected and those with sparse coherence, typically those spanning the spring melt and early winter periods, were discarded

from further analysis.

For simplicity, we only processed sequential interferograms since these provide the best coherence during the dry-snow

season. However, for distributed scatterers which predominate in natural terrain, non-sequential
::::::::
additional

:::::::::::::
interferograms (e.g.

48-, 72-day, . . . ) interferograms .
:
.
::
.)
:
are known to provide additional information that can be recovered by

:::::
allow

:::
for

::::::::
reduction295

::
in

::
the

::::::::
variance

::
of

::::::::
estimated

::::::::
sequential

::::::
phases

:
using a phase-linking estimator (e.g., Guarnieri and Tebaldini, 2008). This could

be added to the pre-estimation InSAR processing to reduce estimation variance in the future, but was deemed unnecessary for

the current application
:
is
:::::::
because

::::
such

::::::::
scatterers

::::::
exhibit

:::::::
complex

::::::::
Gaussian

::::::::
scattering

:::::::
statistics

::::::
which

:::
are

::
not

:::::
fully

:::::::::::
characterized

::
by

:::
the

:::
set

::
of

::::::::
sequential

:::::::::::::
interferograms

:::::
alone.

We found the estimator to be sensitive to errors in ξ, especially those resulting from DEM errors and interpolation artifacts
::::
errors.300

High spatial-frequency errors in the ξ map tend to bias the estimated ∆SWE magnitude towards zero (discussed in Sect. 5.4).

We initially used the raw TanDEM-X DEM, which we cubic-resampled to the multi-looked SAR geometry, to compute the

slope and aspect angle maps required to compute ξ. The resulting ξ map contained high frequency artifacts from the cubic

interpolation as well as substantial errors due to blunders
:::::::
stitching

:::::::
artifacts in the raw DEM.

::
We

:::
did

:::
not

::::::::::
thoroughly

:::::::::
investigate

::
the

:::::
issue

::
of

::::
most

::::::::::
appropriate

::::::::::
interpolator

:::
and

::
so

::
it

::::
may

::
be

:::::::
possible

::
to

::::::
reduce

::::
these

:::::
errors

:::
by

:::::
using

:
a
:::::::
different

::::::::::
interpolator.

:
Esti-305

mator performance improved significantly after we (1) manually identified and masked local DEM blunders
:::::::
stitching

:::::::
artifacts

and interpolated over them; (2) smoothed the DEM using a 2D Gaussian filter with standard deviation of 3 DEM pixels (re-

sulting in approximately 90 m spatial resolution) to reduce high-frequency DEM errors; and (3) computed the slope angle

maps prior to resampling to the SAR geometry. Note that to compute ξ according to Eq.(4), we computed the real permittivity

:
ε of dry snow as ε(ρ) = 1 + 1.5995ρ+ 1.861ρ3, according to Leinss et al. (2015)

::::::::::::
Mätzler (1987) and for simplicity, assumed310

ρ= 0.3 for all estimates (discussed further in Sect. 5.1).

We then implemented the SlopeVar estimator described in Sect. 3.2. For each candidate value of ∆Sw, the periodogram

magnitude,
∣∣∣〈ej(φ−∆Swξ̃)

〉∣∣∣ can be computed efficiently using a 2D fast Fourier transform-based rectangular smooth filter

over the complex-valued interferogram, allowing for generation of spatially oversampled maps at the interferogram sample

spacing instead of the much coarser estimation window size. We evaluated the periodogram over the ∆SWE range of [-50 mm,315

80 mm] with an interval spacing of 2 mm. Peak locations for each spatial point were then refined by fitting a quadratic by least

squares using three points centered on the maximum value found over the search grid.

Solutions where the maximum was within 2 grid intervals from the edge of the search range were labeled as invalid.
::::
This

:::::::
provides

:
a
::::::
means

:::
for

::::::::
excluding

::::
poor

::::::
results

::::
from

::::
low

::::::::
coherence

:::::
areas

:::::
since

::
for

:::::
these

:::::
areas

:::
the

::::::::::
periodogram

:::::::
analysis

::::::::
typically

::::
does

:::
not

:::::
result

::
in

:
a
::::
peak

::::::
within

:::
the

::::::
search

:::::
range.

:::
We

:::::::::
considered

::::::
adding

:::
an

::::::::
additional

:::::::::
exclusion

::::::::
threshold

:::::
based

::
on

:::::::::
coherence320

::::::::
magnitude

:::
but

::::::
found

:
it
:::::::::::
unnecessary.

::::::::::
Water-body

::::
areas

:::::
were

:::
also

:::::::
labeled

::
as

::::::
invalid.

:

Figure 8a shows the resulting ∆SWE map after applying the estimator to all areas of the example interferogram depicted in

Fig. 6 using a 500 m square estimation window.
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Figure 8. Example of estimated ∆SWE and ∆SWE standard deviation due to uncorrelated phase components
::::::::
(described

::
in Sect.

:::
3.4)

:
for

the 20120317_20120410 scene pair (same interferogram as shown in Figs. 6 and 7) using a window size of 500 m × 500 m. (a) estimated

∆SWE using the SlopeVar estimator; (b) coherence of residual phase after estimated dry-snow phase correction; (c) standard deviation of

SWE sensitivity
:
ξ computed over the estimation window; and (d) Monte Carlo estimated standard deviation of estimated ∆SWE generated

with ensemble of 40 simulated interferograms
:
.
::::
Water

:::::
areas

::
are

::::::
greyed

::
out

::
in

::::
each

:::::
panel.

:::::
Points

:::
with

:::
no

::::::
solution

::
in

::
the

::::::
∆SWE

:::::
search

:::::
range

::
are

::::
also

:::::
greyed

:::
out

:
in
::::::

panels (see ??
:
a),

:::
(b)

:::
and

::
(c).

3.4
:::::

Monte
:::::
Carlo

::::::::::
Estimation

::
of

:::::::
∆SWE

::::::::::
Estimation

::::::::
Variance

:::
The

:::::::
amount

::
of

::::::::::::
decorrelation

:::
can

::::
vary

:::::::::::
significantly

::::
both

::::::::
spatially

::::::
within

::::
each

::::::::::::
interferogram

:::
and

::::::::::
temporally

:::::::::
depending

:::
on325

:::::::
changing

:::::::
surface

:::::::::
conditions

::::
and

::::::::::
pass-to-pass

:::::::::
variations

::
in

:::
the

:::::
SAR

:::::
orbit.

::
It

::
is

::::::::
therefore

::::::::
important

:::
to

:::::::
estimate

:::
the

:::::::
∆SWE

:::::::
variance

::::::::::
contribution

::
as

::
a

::::
space

::::
and

::::
time

::::::
varying

::::::::
quantity.

:::::::::
Specifying

:::
the

::::::
transfer

:::::::
function

::::::::
between

:::::
phase

::::
noise

::::
and

:::::
∆̂Sw :::::::

variance
::
is

:::::
made

::::::
difficult

:::
by

:::
the

:::
fact

::::
that

:::
the

::::::::::
distribution

::
of

:
ξ̃
::
is

::::::::
generally

::::::
unique

:::
for

::::
each

:::::::::
estimation

:::::::
window.

:::
We

:::::::
decided

::
to

:::::
apply

:::
the

::::::
Monte

:::::
Carlo

:::::::
approach

:::
by

:::::::::
simulating

:
a
::::::::::
sufficiently

::::
large

::::::::
ensemble

:::
of

:::::::::
zero-signal

::::::::
partially

:::::::::::
decorrelated

:::::::::::::
interferograms,

:::::::
applying

::::
the

::::::
∆SWE

:::::::::
estimation

:::
on

:::::
each

:::::::
instance

::::
and330

:::
then

::::::::::
computing

:::::::
statistics

::::
over

::::
the

::::::::
ensemble

::
of

:::::::::
estimates.

:::
We

:::::::::::
approximate

:::
the

:::::
phase

:::::
noise

::
as

::
a
:::::::
circular

:::::::
complex

:::::::::
stationary

::::
white

:::::::
process

::::
with

::::
zero

:::::
mean

:::::
phase

::
as

::::::::
described

:::
by

:::::::::::::::::::
Just and Bamler (1994)

:::
and

::::::
which

::
is

:::::::
uniquely

::::::::
specified

::
by

:::
the

:::::::::
coherence

:::::::::
magnitude,

::
γ.

:::
We

:::::::
estimate

::
γ
::
as

:::
the

::::::::
ensemble

:::::::::
coherence

::
of

:::
the

:::::::
residual

:::::
phase

::::
after

::::::::
removing

:::
Φs::::::::

estimated
:::::
using

:::::
∆̂Sw,

:

γ̂ =

∣∣∣∣〈ej(φ−∆̂Swξ̃
)〉∣∣∣∣ .

::::::::::::::::::

(16)

::::::
Figures

:::
8b,

:::
8c

:::
and

:::
8d

::::::::::
respectively

:::::
show

:::
the

:::::::
residual

:::::
phase

:::::::::
coherence

::::
map,

:::
the

::::::::
standard

::::::::
deviation

::
of

:
ξ
::::::

under
:::
the

:::::::
window335

:::
(i.e.

::::::::

〈
ξ̃

2
〉1/2

)
:::
and

:::
the

::::::::
resulting

:::::
Monte

:::::::::::
Carlo-based

::::
error

:::::::::
estimation

::
for

:::
the

:::::
same

:::::::::::
interferogram

:::::::
depicted

::
in
::::
Fig.

::
6.

:::::
Local

::::::
factors
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:::::::
affecting

:::
the

:::::
∆̂Sw :::::::

variance
:::::::
include:

::
(1)

:::
the

:::::::
residual

:::::::::
coherence

:::::::::
magnitude;

:::
(2)

:::
the

:::::::
diversity

:::
of

:
ξ
::::::
within

::
the

:::::::::
estimation

::::::::
window;

:::
and

:::
(3)

:::
the

::::::
spatial

::::::
support

:::::
under

:::
the

:::::::
window

::::::
(areas

:::::::
adjacent

::
to

:::::
water

::::::
bodies

::::
have

:
a
:::::::
smaller

::::::::
ensemble

::
of

:::::
valid

:::::
phase

:::::::
samples

:::
and

:::::
hence

:
a
::::::
larger

::::::::
variance).

3.5 Precision Comparison with Delta-K ∆SWE Estimator340

Our method has some similarity with the Delta-K method for estimating ∆SWE in that both methods exploit a diversity

in the InSAR dry-snow phase sensitivity so that absolute ∆SWE can be estimated without the need for phase unwrapping.

Furthermore, both methods operate over an estimation window, yielding results at a resolution lower than the single-look

resolution. In order to compare the two methods, we consider their relative precision estimated over a spatial window with N

multi-looked resolution-cells and assume Gaussian phase noise, which is reasonable when multi-looked interferograms with345

sufficient looks are used (i.e. > 10 as noted by Hagberg et al. (1995)). Note that for the Delta-K method, multi-looking of

sub-band interferograms prior to computing the band-difference phases has been suggested by Bamler and Eineder (2005) to

preserve the Gaussian phase noise assumption and shown by De Zan et al. (2015) to yield better precision than the alternative

of first computing the sub-band difference and then multi-looking.

The Delta-K method exploits the phase-sensitivity
:
ξ
:
diversity that exists between separate range-frequency sub-bands350

yielding dry-snow phase sensitivities of
:::::::::::
corresponding

::
to
:
ξ±∆ξ/2 where ξ is the sensitivity

:
in

::::
this

::::
case

::
is
:::
the

:::::
value

:
at

the central carrier frequency and ∆ξ =B(1− b)ξ where B ∈ [0,1] is the normalized range bandwidth of the SAR
:::::::::
normalized

::::
with

::::::
respect

::
to

::::::
carrier

::::::::
frequency

:
and b ∈ [0,1] is the sub-bandwidth fraction used. Assuming multi-looked phase-noise with

variance σ2
Φ, the mean sub-band interferometric phase will have variance of σ2

Φ/bN and therefore the Delta-K difference phase

will have variance σ2
Φ_DK = 2σ2

Φ/bN . Delta-K estimates ∆SWE according to ∆̂SDK = ΦDK/∆ξ and therefore the ∆SWE355

estimation standard deviation
:::::
∆̂SDK:::::::

standard
::::::::
deviation

::::::::
(σ∆S_DK)

:
is,

σ∆S_DK =

√
2

N

σΦ

B(1− b)b 1
2 ξ
. (17)

For the SlopeVar method, the estimation of ∆SWE corresponds to a linear regression over N samples and therefore, assum-

ing ξ̃ is Gaussian distributed under the estimation window with variance
〈
ξ̃

2
〉

,
::
the

:::::::::
estimation

:::::::
standard

::::::::
deviation

::::::::
(σ∆S_SV)

:::
is,

360

σ∆S_SV =
σΦ

√
N
〈
ξ̃

2
〉1/2

. (18)

The relative estimation precision ratio between the two methods is therefore given by,

σ∆S_DK

σ∆S_SV
=

√
2
〈
ξ̃

2
〉 1

2

B(1− b)b 1
2 〈ξ〉

, (19)
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where we have replaced ξ in Eq.(17) with the mean under the estimation window, 〈ξ〉. We use b= 1/3, which, neglecting

system noise, is the optimum value for minimizing σ∆S_DK and B = 0.0185 which is the normalized range bandwidth for365

the RADARSAT-2 Spotlight-A mode. Figure 9 shows the distribution of σ∆S_DK/σ∆S_SV computed for all 500 m square

estimation windows in the RS2-SLA study footprint, excluding water-bodies. The distribution has a median value of 3.8, and

is > 1 for 97.5% of the area, indicating that the SlopeVar estimator can be expected to provide substantially better ∆SWE

precision compared to delta-K
::::::
Delta-K

:
for the great majority of areas within the study footprint.

Figure 9. Histogram of the predicted ∆SWE estimation precision ratio between the Delta-K and SlopeVar methods (σ∆S_DK/σ∆S_SV) for all

500 m square estimation windows in the RS2-SLA study footprint. The vertical bar denotes the point of equal precision (i.e. σ∆S_DK/σ∆S_SV

= 1). This shows that the SlopeVar estimator provides substantially better precision for almost all areas within the study footprint.

4 Sources of Estimation Error
::::::
Results370

4.1 Snow Density Misspecification
:::::::
∆SWE

::::::::::
Estimation

:::::
Maps

Our proposed method relies on knowing ξ,
::
We

:::::::::
computed

::
95

:::::::
coherent

:::::::::
sequential

::::::::::::
interferograms

:::::
from

:::
the

::::::::
assembled

:::
set

::
of

::::
120

::::::::
RS2-SLA

:::::
SLCs

:::
and

:::::
these

::::
were

:::::
used

::::
with

:::
the

::::::::
SlopeVar

::::::::
estimator

::
to

:::::::
generate

:::::
∆̂Sw:::::

maps
:::::
using

::
an

:::::::::
estimation

:::::::
window

::
of

::::
500

::
m

:
×
::::
500

::
m

:::::::
(ground

:::::
range

:
×
::::::::
azimuth).

::::
This

::::::::::
corresponds

:::
to

::
46

:::::::::::
snow-season

::::::::::::
interferograms

::::
over

:::
two

::::::
partial

:::
and

:::::
eight

::::::::
complete

:::::::::::
snow-seasons

:::
and

:::
49

::::::::
non-snow

::::::::::::
interferograms

::::
over

::::
nine

:::::::::
snow-free

:::::::
seasons.

:::
The

::::::::
estimator

::::
was

:::
run

::
on

:
the linear scaling factor375

between
::::::::
snow-free

::::::
season

::::::::::::
interferograms

::
to

:::::
serve

::
as

::::::
control

:::::
cases

:::::
since

::::
these

:::
are

::::::
known

::
to

::::
have

::::
zero

::::::::
dry-snow

:
∆SWE

:::::
SWE.

::::::::::
Additionally,

:::
the

::::::
Monte

::::::::::
Carlo-based

::::::::
variance

:::::::
estimator

:::::::::
described

::
in Sect.

:::
3.4

:::
was

::::
run

::
on

:::
all

::::::::::::
interferograms.

::::::
Water

:::::
bodies

::::
and

::::
areas

::::
with

:::
no

::::
valid

::::::::
solution

::::
from

:::
the

:::::::::::
periodogram

:::::::::::
peak-finding

:::::::
analysis

::::
were

:::::::
labelled

::
as

::::::
invalid

::::
and

:::::::
masked

:::
out.

::::::
Figure

:::
10

:::::
shows

:::
an

:::::::
example

:::
set

::
of

::::
five

::::
such

:::::::
∆SWE

:::::
maps

::::
from

:::
the

::::::::::
2017-2018

::::::::::
snow-season

::::
(all

:::::::::::
snow-season

::::::
∆SWE

:::::
maps

:::::
from

:::
the

:::::::::
2012-2021

::::::
dataset

:::
are

:::::
shown

::
in
::::
Fig.

::::
S1).380

4.2
::::::::::

Comparison
::
of

:::::::
∆SWE

:::::::::
Estimates

::::
with

:::
In

::::
Situ

:::::::::::::
Measurements
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Figure 10.
:::::::
Dry-snow

::::::
season

:::::
∆SWE

:::::
maps

::::
from

::
the

:::::::::
2017-2018

::::::::::
snow-season,

:::::::
estimated

::::
with

::
the

:::::::
SlopeVar

::::::::
estimator.

:::::
Water

::::
areas

:::
and

:::::
points

:::
with

::
no

:::::::
solution

::
in

::
the

::::::
∆SWE

:::::
search

::::
range

:::
are

:::::
greyed

::::
out.

::::
Date

:::
pairs

:::
are

::::::::
formatted

::
as

::::::::::::::::::
yyyymmdd_yyyymmdd.

::
To

::::::::
compare

:::
the

::::::
results

::::
with

:::
the

::
in

::::
situ

::::::
transect

:::::::::::::
measurements

::::::::
presented

::
in

:
Sect.

:::
2.1,

:::
we

::::::::
generated

:::::
snow

::::::
season

::::::::::
cumulative

::::
SWE

:::::
maps

::
by

::::::::::
integrating

:::
the

::::::::
sequential

:::::
∆̂Sw:::::

maps
::::::
through

:::::
time;

:::::::
starting

::::
with

:::
the

:::
first

::::::::
dry-snow

::::::::::::
interferogram

::::::::
identified

:::
for

::::
each

::::
snow

:::::::
season.

:::
As

::::::::
discussed

::
in

:
Sect.

:::
3.3,

:::::
some

:::::
∆̂Sw :::::

values
::::

are
:::::::
labelled

::
as

::::::
invalid

:::
due

:::
to

::::
lack

::
of

:
a
:::::::
distinct

:::::::::::
periodogram

::::
peak.

:::
On

:::::::
average

:::::
these

::::::::::
correspond

::
to

:::::
about

::::
10%

:::
of

::::::::
non-water

::::::
spatial

:::::::
samples

::::
and

::::::::
therefore,

::
in
:::::

order
:::
to

:::::::
preserve

::::::::
temporal385

::::::::
continuity

:::
for

:::
the

::::::::::
integration,

::::
these

:::::
were

:::::::
replaced

::::
with

::::::
values

:::::::
obtained

::
by

:::::::::
smoothing

:::
all

::::
valid

::::::::
estimates

::::::
within

:
a
::
2
:::
km

::::::
square

:::::::
window.

:::
The

:::::::::
cumulative

:::::
SWE

:::::
maps

::
do

:::
not

::::::::
represent

::::::::
estimates

::
of

:::
true

:::::::
absolute

:::::
SWE

:::::::
because

::::
early

:::::::::::
snow-season

::::::::::::
interferograms

::
are

:::::::::
generally

:::
not

::::::::::
sufficiently

:::::::
coherent

::
to
:::::

allow
:::::::

∆SWE
:::::::::
estimation

::::
and

::::::::
therefore

:::::
some

::::::
amount

:::
of

::::::::::
accumulated

:::::
SWE

::
is
::::

not

::::::::
accounted

:::
for.

:::::::::
Therefore,

:::
for

:::
the

::::::::::
comparison,

:::
the

::
in

::::
situ

:::::::::::
measurements

::::::::::
correspond

::
to

::
an

::::::::::
upper-limit

::
for

:::
the

::::::::
expected

::::::::
SlopeVar

::::::::
estimated

::::
total

:::::
SWE

:::::
maps,

:::::::::
neglecting

:::
any

::::::
biases.

::::::::
However,

:::::
given

:::
the

::::
error

:::::::
sources

::::::::
described

::
in

:
Sect.

:
5,
::::::
actual

::::::::
estimates

::::
may390

::::::
exceed

:::
this

:::::::
expected

::::::::::
upper-limit.

:

:::
We

::::
also

::::::::
estimated

::::::::
variances

:::
for

::::
the

:::::::::
cumulative

:::::
SWE

:::::
maps

:::
by

::::::::
summing

:::
the

::::::
Monte

::::::
Carlo

::::::
derived

::::::::::
per-interval

::::::::
variance

::::::::
estimates,

::::::::
assuming

::::
they

:::
are

::::::::::
uncorrelated

:::::::
through

:::::
time.

:::
For

::::
each

:::::::
transect

::::::
dataset,

:::
all

:::::
SWE

::::::::::::
measurements

::::
were

::::::::
averaged

::
to

:::::::
generate

:
a
:::::
mean

:::::
value

:::
for

:::
the

::::
local

::::
area

::::
and

:::
the

::::::
sample

:::::::
standard

::::::::
deviation

:::
was

:::::
used

::
to

:::::::
compute

::
a

::::::::::::
corresponding

:::::::
standard

:::::
error.

::::
This

::::
was

::::
done

:::::::
because

:::
the

:::::::
transect

:::::::
lengths,

:::::
listed

::
in395

::::
Table

:::
2,

::::
were

::::
200

::
m

::
or

::::
less,

:::::
being

:::::
well

:::::
within

:::
the

::::
500

::
m

::::::::
SlopeVar

::::::::
estimator

:::::::
window

:::::
size.

:::
The

:::
in

:::
situ

::::::::::::
measurements

:::::
were

::::
each

:::::
made

::
on

::
a

::::::::
particular

::::
date,

:::::::
whereas

:::
the

:::::::
InSAR

:::::::::
cumulative

:::::
SWE

:::::
maps

:::
are

::::::::
produced

::
at

::::::
24-day

::::::::
intervals.

:::
The

::::::::::
cumulative

::::
SWE

:::::
maps

:::::::::
temporally

:::::::::
bracketing

:::::
each

::::::
transect

::::
date

:::::
were

::::::::
therefore

:::::::
sampled

::
at

:::
the

::::::
spatial

:::::
mean

:::::::
position

::
of

:::
the

:::::::
transect

::::
and
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:::
then

:::::::
linearly

::::::::::
interpolated

::
in

::::
time

:::
to

:::::::
generate

:
a
::::::::::
cumulative

::::
SWE

::::::::
estimate

:::
for

:::
that

:::::
point

::
in

:::::
space

:::
and

:::::
time.

::::::::
Likewise,

:::
the

:::::
error

:::::::
variance

::::
maps

:::::
were

::::
also

::::::::::
interpolated

:::
and

::::::::
converted

::
to

:::::::::::::::::
standard-deviations.400

:::::
Figure

:::
11

::::::
shows

:
a
:::::::::
scatterplot

::::::::::
comparison

:::
of

:::
the

::::::
InSAR

:::::::
derived

:::::::::
cumulative

:::::
SWE

::::::::
estimates

::::
and

:::
the

:::::::
transect

:::::
mean

:::::
SWE

::::::
values.

::::::
Vertical

::::
and

:::::::::
horizontal

::::
error

::::
bars

:::::::::
correspond

:::
to

:::
one

::::::::::::::::
standard-deviation

:::
and

::::
one

:::::::::::
standard-error

:::::::::::
respectively.

:::::
Seven

:::
of

::
the

:::::
eight

::::::::
transects

:::
are

:::::
within

::::
one

:::::::
standard

::::::::
deviation

::
of
::::

the
:::
1:1

::::
line,

:::
and

:::::::::::
demonstrate

::::
good

:::::::::
agreement

:::::::
between

:::
the

:::::::::
measured

:::
and

::::::::
estimated

::::::
values.

:::::::
Treating

:::
the

:::::::
transect

:::::
mean

::::::
values

::
as

::::
truth,

::::
and

:::::::::
neglecting

:::
the

::::::::::
unaccounted

:::::
early

:::::::::::
snow-season

:::::
SWE,

:::
the

:::::
RMSE

:::
for

:::
all

:::::::
transect

:::::::::::
comparisons

::
is

::::
14.8

::::
mm

:::
and

:::
the

::::
bias

::
is
::::
-6.6

::::
mm.

::
It
::
is

::::::::::
noteworthy

:::
that

::::
the

:::::::::::::
author-surveyed

::::::::
transects405

::::::::
(locations

:::
‘A’,

::::
‘B’,

::::
and

::::
‘C’)

:::::::::
correspond

::
to
:::::

areas
:::
of

:::
low

::::::::::
topographic

::::::::
variation

::
as

::::::::
indicated

:::
by

:::
the

::::
two

::::::::
rightmost

:::::::
columns

:::
of

::::
Table

::
2,
::::
and,

::
as
::::::
shown

::
in

::::
Fig.

:::
11,

::::::::
(locations

::::
‘A’,

::::
‘C’)

::::
have

:::::
larger

::::::::
predicted

::::
total

:::::
SWE

:::::::
standard

:::::::::
deviations

:::
(i.e.

::::
>25

:::::
mm).

::::
This

:
is
:::::::::
consistent

::::
with

:::
the

:::
fact

::::
that

:::::::::
estimation

:::::::
variance

::
is

:::::::
expected

::
to

:::::::
increase

::::
with

:::::::::
decreasing

::
ξ
::::::::
diversity.

Figure 11.
::::::::
Comparison

::
of
::::::::

SlopeVar
:::::::
estimator

:::::::::
cumulative

::::
SWE

::::
with

::
in

:::
situ

::::::::
snow-tube

:::::::
sampled

::::
SWE

::::::
transect

::::::::::::
measurements.

::::
Error

::::
bars

::::::::
correspond

::
to

:::
the

::::
snow

:::::::::::::::
season-accumulated

:::::
SWE

::::::
standard

::::::::
deviation

:::::::
(vertical)

:::
and

:::
the

::::::
transect

::::::::::
measurement

:::::::
standard

::::
error

::::::::::
(horizontal).

:::::
Labels

:::
A-E

:::::::::
correspond

::
to

::
the

:::::
survey

::::::::
locations,

:::::
shown

::
in

:::
Fig.

:::
1a.

4.3
::::::::::

Comparison
::
of

:::::::
∆SWE

:::::::::
Estimates

::::
with

:::::::::
Predicted

:::::::::
Temporal

:::::::
Change

:::
The

::::::::
estimator

::::::
results

::::
were

:::::::::
examined

:::::::::
temporally

::
by

:::::::::
comparing

:::
the

::::::
spatial

:::::
mean

::
of

::::
each

:::::
∆̂Sw:::::

map,
::::
after

::::::::
projection

:::
to

::::::
ground410

::::
range

:::::::::
geometry,

::::
with

:::
the

::::::::::::
corresponding

::::
SWE

:::::::
change

:::::::
predicted

:::
by

:::
the

::::::::
European

::::::
Centre

:::
for

:::::::::::::
Medium-Range

:::::::
Weather

::::::::
Forecasts

:::::::::
(ECMWF)

:::::
ERA5

:::::::::
reanalysis

:::::
model

:::::::::::::::::::
(Hersbach et al., 2020)

::::
over

:::
the

::::
same

::::
time

:::::::
interval.

::::
We

:::::
chose

:::::
ERA5

:::
for

::::::::::
comparison

:::::
based

::
on

:::::::::::::::::::
Mortimer et al. (2020)

:::
who

::::::
report

:::
that

::
it

::::::::
compares

:::::::::
favourably

::
to

::::::::::
independent

:::::
snow

::::::
course

::::
data,

:::
and

:::::
more

::
so

::::
than

::::::::
currently

:::::::
available

::::::
global

::::::
passive

:::::::::
microwave

::::::::
products

:::
do.

:::
The

:::::::
gridded

::::::
ERA5

:::::
results

:::::
were

:::::::
spatially

::::::::::
interpolated

::
to

:::
the

:::::::::
RS2-SLA

:::::
scene

:::::
center.

:::::
Note

::::
that

::
all

::::
but

:::
five

:::
of

:::
the

::::::::
analyzed

::::::::::::
interferograms

:::::
span

::::::
24-day

::::::::
intervals.

::::
The

:::::::::
additional

:::
five

::::::::
intervals

::::
each

:::::
span415
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::::::
48-days

::::
due

::
to

::::::
missed

::::
SAR

:::::::::::
acquisitions.

:::
For

:::
the

::::::::
temporal

::::::::::
comparison,

::::
each

:::
of

::::
these

::::
five

:::::::
intervals

::::
were

::::
split

::::
into

::::
two

::::::
24-day

:::::::
intervals

::::
with

::::
half

::
the

:::::
∆̂Sw:::::::::

arbitrarily
:::::::
assigned

::
to

::::
each

:::::::
interval.

:

:::::
Figure

::::
12a

::::::::
compares

:::
the

:::::::::
continuous

::::::
ERA5

::::::
24-day

:::::::
interval

::::::
∆SWE

::::::
history

:::::::::
time-series

:::::
with

:::
the

:::::::
SlopeVar

::::::::
estimator

:::::::
results.

:::::
Figure

::::
12b

:::::
shows

:::
the

:::::
same

::::
data

::
as

:
a
::::::::::
scatter-plot

::::::::::
comparison.

:::::
Both

::::
plots

:::
are

:::::::
labelled

::::::::
according

::
to

:::::::::::
time-of-year

::
as

::::
four

::::::
annual

::::::
quarters

:::
to

::::::::
highlight

:::::::
seasonal

::::::
effects.

::::::::
Treating

:::
the

:::::
ERA5

:::::::::
estimates

::
as

:::::
truth,

:::::
Table

:
3
::::::

shows
:::::
error

:::::::
statistics

:::::
(bias,

::::::
RMSE

::::
and420

:::::::::
correlation

:::::::::
coefficient)

::::
for

:
a
:::::::
number

::
of

::::::::
temporal

:::::::
subsets

:::
that

:::::::
include

:::
the

::::
four

::::::::
seasonal

:::::::
quarters,

:::
all

::::::::
intervals,

:::
the

::::::::
nominal

::::::::
dry-snow

:::::
period

:::::::::
(Oct-Mar),

::::
and

:::
the

:::
‘No

::::::
snow’

:::::::
intervals

:::
(all

:::::::
intervals

:::::
with

:::
zero

::::::
ERA5

:::::
SWE

::
at

::::
both

::::::
interval

::::::::::
endpoints).

(a)

(b)

Figure 12.
::::
Time

:::::
series

::
(a)

:::
and

::::::::
scatterplot

:::
(b)

::::::::::
comparisons

::
of

:::::::
SlopeVar

:::::::
estimator

:::
24

:::
day

::::::
interval

::::::
∆SWE

:::
with

:::::
ERA5

::::::::
reanalysis

::::::::
estimates.

:::::::
SlopeVar

:::::::
estimator

::::
point

::::::
symbols

:::
are

:::::::
separated

:::::::
according

::
to

:::::
season

::
to

:::::::
illustrate

::
the

:::::::
seasonal

:::::::::
dependence

::
of

::
the

:::
bias

:::::::::
(especially

::
the

::::::::
difference

::::::
between

:::::::
Oct-Dec

:::
and

::::::
Jan-Mar

:::::
points)

:::::::
apparent

::
in

:::
the

::::::::
scatterplot.

::::::::
Regarding

::::::::::::::
correspondence

::::
with

:::::::
ERA5,

:::
we

:::
are

::::::::
primarily

:::::::::
concerned

:::::
with

:::
the

::::::::
Oct-Dec

:
and the corresponding

:::::::
Jan-Mar

:::::::
estimates

:::::::
because

:::::
these

::::::::::
correspond

::
to

:::
the

:
dry-snow phase which ,

:::::
period

:::::
when

:::
the

::::::::
estimator

::
is
::::::::

expected
::
to
:::::::

provide
::::::
useful

::::::
results.

::::::
Figure

:::
15b

::::::
shows

::::
that

:::::
these

::
do

::::::
follow

:::
the

:::
1:1

::::::::::::::
correspondence

::::
line.

::::::::
However,

:::
the

::::::::
Oct-Dec

:::::
points

::::::
appear

:::
to

::::
have

::
a425

::::::::
significant

:::::::
positive

::::
bias

:::::::
whereas

:::
the

:::::::
Jan-Mar

::::::
points

::
do

::::
not.

::::
This

::
is

:::::::::
quantified

::
in

:::::
Table

::
3,

:::::
which

::::::
shows

::::
that,

::
in

:::::::::
aggregate,

:::
the

:::::::
Oct-Mar

::::
time

:::::
period

:::
has

::
a

:::::::::
correlation

::
of

::::
0.57

::::
with

::::::
respect

::
to

:::::
ERA5,

::::::
which

:
is
::::::::::
moderately

::::::
strong.

:::::
There

:
is
:::
an

:::
8.6

:::
mm

::::::::::
per-interval

::::::
∆SWE

::::
bias

::
for

:::::::
Oct-Dec

:::
but

::::
only

:::
1.7

::::
mm

:::
for

:::::::
Jan-Mar.

::::
This

::
is

::::::::
consistent

::::
with

:::
the

::::::::
expected

:::::
impact

::
of
:::::
early

:::::::::::
freeze-season

::::::
heave,

:::::
which

::
is

::::::::
discussed

::::::
further

::
in

:
Sect.

::::
5.3.2.

::::
The

:::::::
no-snow

::::::::
intervals

:::
are

::
of

::::::
interest

:::::::
because

::::
they

:::::
serve

::
as

::
a
::::::
control

:::
set

::::
with

::::::
known
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Table 3.
::::
SWE

::::
error

:::::::
statistics

::
for

:::::::
SlopeVar

::::::::
estimator

:::::::
compared

::
to

:::::
ERA5

::::::::
reanalysis

:::::::
estimates.

:::::
Subset

: ::::::
Sample

:::
Bias

:::::
RMSE

:::::::::
Correlation

:::
size

:::
(n)

::::
(mm)

: ::::
(mm)

: ::::::::
coefficient

::
(r)

:

::::::
Jan-Mar

::
29

::
1.7

: :::
6.1

:::
0.64

::::::
Apr-Jun

::
18

:::
11.5

:::
23.5

::::
-0.01

:

:::::
Jul-Sep

: ::
32

::
0.4

: :::
4.1

:::
0.44

::::::
Oct-Dec

::
21

::
8.6

: :::
9.9

:::
0.69

::
All

::
100

: ::
4.5

: :::
11.7

:::
0.56

::::::
Oct-Mar

::
50

::
4.6

: :::
7.9

:::
0.57

::
No

:::::
snowa

: ::
23

::
1.7

: :::
4.2

:
-

aAll intervals with zero ERA5 SWE at both interval endpoints.

:::
zero

:::::::
∆SWE.

::::::
These

::::
show

::
a

:::
bias

::
of

:::::
+1.7

:::
mm

::::::
which

:
is
::::::::
discussed

::::::
further

::
in
:
Sect.

:::::
5.3.2.

:::
The

::::::
RMSE

::
of

:::
the

::::::::
no-snow

::
set

::
is
:::
4.2

::::
mm430

:::::
which

:::::
serves

::
as

::
a
:::::::
measure

::
of

:::
the

:::::::::
estimation

:::::::::
uncertainty

:::
due

::
to
::::::
factors

:::::
other

::::
than

::::::
∆SWE

:::::::::::::
inhomogeneity.

:::
The

:::::::
Apr-Jun

::::::::
intervals

::
are

::::::::
included

:::
for

:::::::::::
completeness

::::
even

:::::::
though

::::
these

:::
are

:::
not

::::::::
expected

::
to

:::::
agree

:::::::
because

:::
this

:::::::::::
corresponds

::
to

:::
the

::::
snow

:::::
melt

::::::
period.

::::
This

:
is
:::::::::

especially
:::::::
apparent

:::
for

:::
the

::::
two

:::::::
intervals

::::
with

:::::
large

:::::::
negative

::::::
ERA5

::::::
∆SWE

::::::
values

::::::::::::
corresponding

::
to

::::::
periods

:::
of

::::::
intense

::::
snow

:::::
melt.

:::
The

::::::::
SlopeVar

::::::::
estimates

:::
for

:::::
these

::::::
periods

:::
are

::::::::
near-zero,

:::::
likely

:::::::
because

::::
only

:::::::::
snow-free

::::
areas

::::::
(snow

::::::
already

:::::::
melted)

::
are

::::::::
coherent

:::
and

:::::
hence

:::::::::
contribute

::
to

:::
the

::::::::
estimates

:::
and

::::::::
seasonal

:::::::::
active-layer

:::::
thaw

:::
has

:::
not

:::
yet

:::::::::::
commenced.435

4.4
::::::::::

Distribution
::
of

:::
the

:::::::::
Estimated

:::::::
∆SWE

::::::
Spatial

::::::::
variations

::
in

:::
the

::::
∆̂Sw:::::

maps
::
are

::::
due

::
to

:
a
::::::::::
combination

::
of

::::
true

::::::
∆SWE

::::::
spatial

::::::::
variations,

:::::::::
stochastic

::::
error

:::
due

::
to

:::::::::::
decorrelation

:::
and

:::::::
spatially

:::::::
variable

::::::
biases

::
as

::::::::
described

:::
in Sect.

:
5.

:::
An

:::::::::::
independent

::
set

:::
of

::::::
densely

::::::::
sampled

::::::
∆SWE

::::::::::::
measurements

::::
over

::::
our

::::
study

::::
area

:::::
does

:::
not

::::
exist

::::::
which

::::::::
precludes

:::::
direct

:::::::::
estimation

::
of

:::
the

::::::
errors.

:::::::
Instead,

:::
we

:::::::
compare

::::::::::
temporally

:::::::
averaged

::::::::
seasonal

::::::
subsets

::
of

:::
the

:::::
∆̂Sw:::::

maps
:::::
since

:::
we

:::::
expect

:::
the

::::
bias

::
to
::::::

differ
:::::::
between

:::::::
seasons.

:::::::
Figures

::::
13a,

:::
13c

::::
and

:::
13e

::::::
shows

:::
the

::::::::
temporal440

::::
mean

:::::::
∆SWE

:::::
maps

::
for

:::
the

:::::
early

:::::
snow

::::::
season

:::::::::
(Oct-Dec),

:::
late

:::::
snow

::::::
season

::::::::
(Jan-Mar)

::::
and

::
all

:::::::::
snow-free

::::::::
intervals.

:::::
These

:::::
show

:
a
::::::::
moderate

::::::
degree

::
of

:::::::
negative

:::::::::
correlation

::::::::
between

:::
the

:::::::
Oct-Dec

:::
and

:::::::::
snow-free

:::::
maps,

:::::::::
especially

::
in

:::
the

::::::
upland

::::
area

:::
east

:::
of

:::
the

:::::::::::
delta-margin.

:::
The

:::::::
Pearson

:::::::::
correlation

::::::::::
coefficients

:::::::
between

:::
the

::::
three

:::::
maps

::::
are:

:
{
:
R
::::::::::Oct-Dec/Jan-Mar::

=
::::
0.28;

::
R

:::::::::::Oct-Dec/Snow-free::
=

:::::
-0.52;

:
R
:::::::::::Jan-Mar/Snow-free::

=
::::::
-0.17}.

::::::
These

:::
are

::::::::
consistent

::::
with

::
a
::::::::
dominant

::::
bias

::::::::::
contribution

:::::
from

::::::
surface

:::::::
normal

:::::
heave

:::
and

::::::::::
subsidence

::::::::::
contributing

::
to

:::
the

:::::::
Oct-Dec

::::
and

::::::::
snow-free

:::::::
subsets

:::
but

::::
with

:::::::
opposite

:::::::
polarity.

::::
The

::::::
weaker

::::::::::
correlations

::::::::
between

::::
these

::::
and

:::
the445

:::::::
Jan-Mar

:::::
subset

:::::::
suggest

::
a

::::::
weaker

:::::::::::::
surface-normal

::::
bias

::::::::::
contribution

::::::
during

::::
this

:::::
period

::::::
which

::
is

:::::::::
consistent

::::
with

:::
the

::::::::
expected

:::::
annual

:::::
cycle

::
of

::::::::::
active-layer

:::::
heave

::::
and

:::::::::
subsidence

::::::::
discussed

::::::
further

::
in Sect.

::::
5.3.2.

:

::::::
Figures

::::
13b,

::::
13d

::::
and

:::
13f

:::::
show

::::
the

:::::::::
normalized

:::::::::::
distributions

:::
for

:::
all

:::::::
∆SWE

::::::::
estimates

::::::::::
partitioned

:::
by

::::::
season.

:::::
Since

::::
the

::::::::
snow-free

::::::::
intervals

::::
have

::::::
known

:::::::
∆SWE

:::
of

::::
zero,

::
a
::::::
global

::::::
RMSE

:::::
value

::::
can

:::
be

:::::::::
computed.

::::
This

::::::
value,

:::::::::
computed

::::
over

:::
all

::::::::
non-water

:::::
areas

:::
and

:::
all

:::::::::
snow-free

::::
maps

::
is
::::::

RMSE
::::::snow-free ::

=
::
21

:::::
mm.

:::
We

:::::
know

::::
from

:
Eqs.

:::
(13)

:::
and

::::
(30)

::::
that

::::
both

:::::::
additive

::::
and450
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Figure 13.
::
(a),

:::
(c)

:::
and

:::
(e):

:::::::::
Comparison

::
of

::::
mean

::::::
seasonal

::::::
∆SWE

:::::
maps,

::::::
showing

:::::
means

:::
for

::
the

::::
early

::::
snow

:::::
season

::::::::
(Oct-Dec),

:::
late

:::::
snow

:::::
season

:::::::
(Jan-Mar)

:::
and

:::
all

::::::::
snow-free

:::::
periods

::::::::
(temporal

::::::
subsets

:::::::
described

::
in
:::::

Table
:::
3).

::::
Water

:::::
areas

:::
are

:::::
greyed

:::
out.

::::
(b),

::
(d)

:::
and

:::
(f):

::::::::::::
Corresponding

::::::::
normalized

:::::::
seasonal

:::::::::
distributions

::
of

:::
all

::::
valid

::::::
∆SWE

:::::::
estimates.

::::::::::
Distributions

:::
for

::
the

::::::
subset

::
of

:::::::
estimates

::
for

::::
high

::
ξ

::::::
diversity

:::::
areas

::
are

::::
also

:::::
shown.

:::::::::::
multiplicative

::::
bias

:::::::::::
contributions

:::
are

:::::::::
modulated

::
by

:::
the

:::::
local

:
ξ
:::::::
variance

:::::::
inverse.

:::
We

::::::::
repeated

:::
the

::::::
RMSE

:::::::::
calculation

:::
for

:::
the

:::
top

:
ξ
:::::::
variance

:::::::
quartile

::
of

::::::
spatial

:::::::
samples

::::::::::::
(corresponding

:::
to

::::::::
threshold

::
of

:::::::

〈
ξ̃

2
〉1/2

::
>

:::
7.6

:::
rad

::::::
mm-1)

:::::::
resulting

::
in

::::::
RMSE

::::::snow-free :
=
:::
15

::::
mm,

:::::
which

::::::
shows

:::
that

:::
the

::::::
impact

:::
of

::::
bias

:::
can

::
be

:::::::
reduced

:::
by

:::::::::
restricting

:::
the

::::::::
estimator

::
to

:::::
areas

::::
with

::::::
greater

::
ξ

::::::::
diversity,

:::::
albeit

::::
with

:
a
::::
loss

::
of

:::::
spatial

:::::::::
coverage.

::::::::::
Normalized

::::::::::
distributions

:::
for

:::
this

::::::::
restricted

::::::
subset

:::
are

:::
also

::::::
shown

::
in

:::::
Figs.

::::
13b,

:::
13d

:::
and

::::
13f.

:

5
:::::::::
Discussion455

5.1
::::

Snow
:::::::
Density

::::::::::::::
Misspecification

:::
Our

::::::::
proposed

:::::::
method

:::::
relies

::
on

::::::::
knowing

::
ξ

::::::
which, as shown in Eq.(3), depends on snow density, ρ. Therefore ρ must either

be known a priori or an assumed value must be specified. Here we assess the effect of mis-specifying
::::::::::::
misspecifying ρ. Since

the method estimates ∆SWE from interferometric phase, the required density
:
ρ
:
corresponds to the snowpack change rather

than the actual bulk density
:
ρ of the snowpack, such as is the case for

:
.
:::
For

:::
the

::::
case

::
of

:
fresh snowfall on a dense late-season460

snowpack. The density ,
:::
the

::
ρ of the added layer will be less than the mean density

:
ρ before and after the change.

A misspecification of ρwill bias the resulting ∆SWE estimate. This effect can be quantified by parameterizing ξ with respect

to ρ so that Φs(ρ) = ξ(ρ)∆S. The fractional ∆SWE bias caused by specifying ρ
′

rather than the true value, ρ, is
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∆̂S−∆S

∆S
=

ξ(ρ)

ξ (ρ′)
− 1. (20)

This fractional bias is shown in Fig. 14a for true and assumed densities
:
ρ over the interval [0, 0.4

::
0.5] and it indicates that465

assumed densities
:
ρ
:
greater or less than the true density

:
ρ
:
result in a positive or negative bias, respectively. Figure 14a also

shows that the bias magnitude is <5% of the true SWE change for the considered density
:
ρ range.

(a) (b)

Figure 14. (a) Fractional ∆SWE estimation bias caused by misspecification of the snow density, (b) Apparent ∆SWE caused by a bulk

snowpack density change in the absence of actual SWE change, as a fraction of total actual SWE.

In the absence of any ∆SWE, snowpack evolution may result in a bulk density
:
ρ
:
change (e.g. due to settling) which will

cause a snow phase
::
Φs:contribution. This phase contribution will be spuriously attributed to a SWE change. Consider the case

of a snowpack with total SWE of S that undergoes a density
:
ρ change from initial ρ1 to final ρ2. According to Eq.(5), this will470

cause dry-snow phase
::
Φs:change,

Φs = S (ξ (ρ2)− ξ (ρ1)) . (21)

Assuming that the temporal mean density
:
ρ
:
of (ρ1 + ρ2)/2 is somehow known and used for estimation, the resulting ∆SWE

error, Se as a fraction of total SWE will be

Se
S

= 2
ξ (ρ2)− ξ (ρ1)

ξ (ρ1) + ξ (ρ2)
. (22)475

This fractional error is shown in Fig. 14b for initial and final densities
:
ρ
:
over the interval [0, 0.4

:::
0.5]. This shows that a density

:
ρ
:
increase or decrease will respectively cause a negative or positive ∆SWE error. Since snowpack evolution generally results

in densification, this effect will tend to negatively bias estimated ∆SWE. However, for the considered density
:
ρ range, the bias

is <5% of the total SWE.

For simplicity we assumed a fixed snow density
::::
value

:
of ρ = 0.3 for all ∆SWE estimates. This value is likely too large for480

the early snow-season in Inuvikand, according to Fig. 14a, likely contributes a small positive estimation bias of 1-3% to the
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results presented
:::::::
dry-snow

::::::
season

::
in

::::::
Inuvik.

::::
For

:::::::
example,

:::
the

:::::
mean

:::::
snow

::::::
density

::::::::
measured

::::::
across

::
all

:::::::
transects

:::::::::::
summarized

::
in

::::
Table

::
2
::
is

:
ρ
::

=
::::
0.17

::::
and

::::::::
according

::
to

:
Eq.

::::
(20),

::::
use

::
of

:::
the

:::::::
assumed

:::::
value

::::::
results

::
in

:
a
:::::
2.1%

::::
bias

:::::
which

::
is
:::::
small

:::::::::
compared

::
to

:::
the

::::
other

:::::
errors

::::::::
discussed

:
in Sect. ??. This

::
5.

::::
This

:::::
small bias could be mostly mitigated by assuming a more appropriate density

:
ρ

according to the location and time of year (e.g., Sturm and Wagner, 2010).485

::::::::
Regarding

::::
the

:::::
effect

::
of

:::::::
vertical

::::::
density

::::::::
layering,

::::
our

:::::
study

::::
area

::
is

:::::
prone

:::
to

::::
wind

::::
slab

:::::::::
formation

::::::
where

:::
the

::::
late

::::::
season

::::::::
snowpack

:::
can

::::::
consist

::
of

:::::
dense

::::
wind

::::
slab

:::::::::
overlaying

:
a
:::
low

:::::::
density

::::
hoar

::::
layer

::::::::::::::::::::::::::::::
(Rutter et al., 2019; King et al., 2018)

:
.
::::::::::
Considering

::
the

:::::::
extreme

::::
case

::
of

::::
near

::::
zero

::::::
density

::::
hoar

:::::::
overlain

::
by

::
ρ

:
=
:::
0.5

:::::
wind

::::
slab,

::::::::
assuming

:::::::
uniform

:
ρ
::
=

::
0.3

::::::
results

::
in

:
a
::::::
+2.5%

:::::::::
estimation

:::
bias

::::::
which

:
is
::::
still

:
a
:::::
small

:::::
error

::::::::
compared

::
to

:::
the

:::::
other

:::
bias

:::::::
sources

:::::::::
considered

::
in

:::
our

::::::::
analysis.

5.2 Violation of ∆SWE Horizontal Homogeneity Assumption490

Temporal changes in SWE can be caused by a number of different processes including deposition of new snow, redistribution

by wind, melt, and sublimation. Each of these processes is spatially modulated in natural terrain by the configuration of

topography and vegetation (Morse et al., 2012; Anderton et al., 2004; Palmer et al., 2012). Furthermore, vegetation distribution

is itself modulated by topography (Walker, 2000). For these reasons, spatial variation of ∆SWE over a particular time period

is likely to show some correlation with topography; either directly with elevation or with derived indices such as slope, aspect495

or measures of curvature.

As shown in Sect. 3.1, the estimation of ∆SWE within a spatial window through the correlation with the topographic

variation of dry-SWE phase sensitivity ξ̃ , is subject to bias when there are horizontal ∆SWE variations within the win-

dow that are correlated with either ξ̃ itself or with ξ̃
2
. To investigate the significance of this effect, we simulated the seasonal

evolution of spatially variable ∆SWE distributions due to variations in topography and vegetation using SnowModel (Liston500

and Elder, 2006), implemented as a Fortran software package that includes sub-models for metrological forcing conditions,

surface energy exchanges, snowpack evolution, and 3D wind transport. We simulated an evolving snowpack over several snow

seasons for two cases: (1) bare-earth case with no snow-holding vegetation to examine the impact of topographic variation

only; and (2) spatially variable vegetation heights (i.e. variable snow-holding capacity) to consider the additional influence of

vegetation. The spatially varying vegetation was modeled using the NALCMS 2015 land-classification data for our study area.505

We chose a study area and time period for the simulation that correspond to the spatial footprint and a similar time period

as the RS2-SLA dataset we used for the method demonstration described in Sect. ??
::
2.1. SnowModel also takes as input the

digital elevation model of the study area and one or more time series of meteorological driving data in the form of regularly

sampled temperature, wind and precipitation data. We ran the model using the same
::
12

::
m
:
TanDEM-X DEM used for InSAR

topographic phase correction and SWE change estimation, and meteorological forcing data .
:::::::::
Therefore,

:::
the

::::::
model

:::
did

::::
not510

:::::::
simulate

::::::::
variations

::
in

:::::
SWE

::
at

:::::
scales

::::
finer

::::::::
than12 m.

:::::
Note

:::
that

::::::
spatial

::::
SWE

:::::::::
variations

::::
finer

:::
that

:::
the

:::::::::
resolution

::
of

:::
the

:::::::::
SlopeVAR

::::
input

:::::
data,

:
ξ
::::

and
:::
φ,

:::
will

::::
not

::::
bias

:::
the

::::::::
estimates

:::
but

:::::::
instead

::::
will

:::::::::
contribute

::
to

:::::
phase

::::::::::::
decorrelation

:::
and

::::::::
therefore

::::::
affect

:::
the

::::::::
estimation

::::::::
variance,

::
as

::::::::
discussed

::
in
:
Sect.

:::
3.4.

:

::::::::::::
Meteorological

:::::::
forcing

::::
data

::::
was

:::::
input

:
from three locations: (1) Environment Canada (EC

:::
and

:::::::
Climate

:::::::
Change

:::::::
Canada

::::::
(ECCC) Inuvik Climate station [68.32◦ N, -133.53◦ E

::
W], adjacent to position ‘E’ in Fig. 1a

:::
and

::
6

:::
km

::::
from

:::
the

:::::
scene

::::::
center515
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(ECCC, 2021b); (2) EC
:::::
ECCC

:
Trail Valley Creek station [68.74◦ N, -133.50◦ E

::
W], 43 km north of the scene center; and (3) the

Government of Northwest Territories - Environment and Natural Resources (GNWT-ENR) Southern ITH station [68.54◦ N,

-133.77◦ E
::
W], 21 km north of the scene center (dataset provided directly from GNWT-ENR).

:::::::::
SnowModel

:::::::
weights

:::
the

::::::
station

:::::
inputs

::::::::
according

::
to

:::
an

::::::
inverse

:::::::
distance

::::::
squared

:::::::::
parameter

:::
and

::::::::
therefore

:::
the

::::::
Inuvik

::::::
Climate

:::::::
Station

::::::::
dominates

:::
the

::::::
model

:::::
input.

The model was run with default settings at a daily-step time interval with results output every 24-days corresponding to the520

imaged dates of the RS2-SLA dataset. The resulting absolute SWE maps, produced in the original DEM spatial reference were

resampled to the RS2-SLA range-Doppler geometry and sequentially differenced to produce 24-day ∆SWE maps.

These ∆SWE maps were then used along with the dry-snow phase sensitivity ξ map, computed from the DEM with a

nominal relative snow density
::::
value of ρ= 0.3, to determine the expected ∆SWE estimation

::::
∆̂Sw:

error according to the first

two terms in Eq.(13), i.e. those related to the spatial variation of ∆SWE, ∆̃S). The modelled ∆SWE error maps were computed525

with rectangular estimation windows with 500 m × 500 m ground footprint.

We analyzed our simulations for all 24-day intervals from 2011-07-17 to 2020-04-29 falling within the expected dry-snow

season, nominally chosen to be Oct. 1 to Mar 31 of each year based on the climate normals for Inuvik (see Fig. 2). The

results, summarized in Fig. 15, show the spatial distribution of the ∆SWE error averaged over all modelled time intervals and

histograms of all expected ∆SWE errors and the per-interval spatially averaged mean ∆SWE error.530

0 5 10 km

(a) (b) (c)

(d) (e) (f)

Bare ground:

NALCMS 2015 vegetation:

Figure 15. Results for ∆SWE simulation for the bare-ground (top row) and NALCMS 2015 vegetation distribution (bottom row) cases for

the RS2-SLA geometry over Inuvik for the period 2011-07-17 to 2020-04-29. Sequential 24-day ∆SWE were simulated for the dry-snow

season each year (nominally chosen to be Oct 1 to Mar 31 according to Fig. 2) resulting in a total of 60 24-day intervals being simulated. (a)

and (d) temporal mean of the expected ∆SWE error; (b) and (e) histogram of all expected errors (all spatial estimates over all time intervals);

(c) and (f) histogram of the spatial mean ∆SWE error for the set of intervals.
::::
Water

::::
areas

:::
are

:::::
greyed

:::
out.

For the bare earth case (Figs. 15a, 15b and 15c), a single outlier interval (2012-01-05 to 2012-01-29) was omitted from the

summary analysis because the errors for that interval were very large compared to all other intervals. This appears to be due

to a strong correlation of the simulated spatial ∆SWE distribution with ξ̃ for that 24-day interval which can occur when a
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strong wind-transport event directionally aligns with the horizontal projection of the SAR line-of-sight. Hence, the simulated

topography modulated scouring and deposition along the wind-direction axis can, by chance, align with the SAR geometry535

ground-range direction which results in a very large estimation bias. It may be possible to detect these events by analysis of

the wind history (e.g. thresholding of a suitable blown-snow index while also considering the wind direction with respect to

the SAR ground-range direction). We investigated this approach by computing the time varying blowing snow probability as

modelled by Li and Pomeroy (1997) which provides the probability that blowing snow conditions will occur as a function of

wind speed and temperature. We computed these at daily time-steps, assigned the mean wind-direction to each time step and540

then integrated these 2D vectors over the 24-day simulation intervals. The result is a directional cumulative blowing snow index

in units of hours (of blowing snow) and is shown in Fig. 16 for all simulated 24-day intervals. This shows that the SnowModel

outlier case is also an outlier with respect to the blowing snow index magnitude (and also when projected to the SAR look

direction axis) suggesting that wind-driven redistribution is responsible for the predicted large ∆SWE bias.

:::::::
Another

:::::::
potential

:::::::::
mitigation

:::
is

::
to

:::
use

:::::
SAR

:::::::
images

::::
from

::::
the

:::::::
opposite

:::::
pass

::::::::
direction.

::::
The

::::
bias

:::::
from

:::
the

::::::::::::
near-opposite545

::::::::
horizontal

::::::::
direction

::::::
should

:::::
have

:::
the

:::::::
opposite

::::
sign

::::
and

::::::::
therefore

:::
the

:::::::::
estimated

::::::
∆SWE

::::::
should

::::::
differ

::::::::::
significantly

::::::::
between

:::
pass

:::::::::
directions,

::::::::
allowing

:::
for

:::
the

:::::
effect

::
to

::
be

:::::::
detected

::::
and

::::::
perhaps

::::::::
mitigated

:::
by

::::::::
averaging

:::
the

::::::
results.

:

Figure 16. Directional cumulative blowing snow hours computed using ERA-5 surface parameters applied to the Li and Pomeroy (1997)

probability model for all simulated 24-day intervals. The 20120105_20120129 interval appears as an outlier with respect to the cumulative

magnitude. The SAR look direction axis is shown for comparison.

For the bare ground case, the temporal mean ∆SWE error map shows mean errors in the +/- 2 mm range with a spatial pattern

that is correlated with the topography
:::::
spatial

:::::::
features

:
(Fig. 15a) .

:::
that

:::
are

::::::::
generally

:::::::
aligned

::::
with

::::::::::
topographic

::::::::
variations

:::::
(Fig.

:::
1b).

:
The distribution of all ∆SWE errors (Fig. 15b), has a mean of just -0.2 mm which corresponds to a small negative overall550

estimation bias and an RMS value of 2.0 mm which corresponds to approximately 20% of the simulated mean per-interval
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∆SWE change
::::
value. The histograms of the per-interval spatially averaged errors (Fig. 15c) show that the majority of 24-day

intervals have a mean error near zero, suggesting that averaging estimates over wider areas reduces the bias effect introduced

by spatially variable ∆SWE distribution.

For the NALCMS 2015 vegetation case, the temporal mean ∆SWE error map (Fig. 15d) shows mean errors with magnitudes555

that are much larger than for the bare earth case (up to 100 mm in some areas) corresponding to areas with heterogenous

vegetation classifications (see Fig. 1c). The distribution of ∆SWE errors (Figs. 15e and 15f), has a mean and RMS value

of 4.3 mm and 39.6 mm which are very substantial. This suggests that spatially varying vegetation snow holding conditions

may substantially bias the ∆SWE estimates. However, it should be noted that results from real data, presented in Sect. ??
:
4,

do not show such large variations as would be expected by the error magnitudes in Figs. 15d, 15e and 15f. The reason could560

be that the simulation driven by the NALCMS vegetation classification significantly over-represents the effect of spatially

variable vegetation. Nevertheless, these results highlight the relative importance of vegetation as a source of method bias and

suggest that some form of mitigation may be required to yield useful estimates from the proposed method in areas with variable

vegetation snow-holding heights.

We compared the relative contributions
:::::
values

:
of the 〈ξ〉

〈
ξ̃∆̃S

〉
and

〈
ξ̃

2
∆̃S
〉

contributions to the ∆SWE error which565

showed that for all 24-day intervals, and both bare earth and NALCMS 2015 cases the RMS of the 〈ξ〉
〈
ξ̃∆̃S

〉
component

was much greater than that of the
〈
ξ̃

2
∆̃S
〉

component so that with respect to the influence of ∆̃S, the spatial correlation with

respect to ξ̃
2

can be neglected.

5.3 Correlated Phase Components

As shown in Eq.(12), additional phase components, other than dry-snow refractive phase
::
Φs, will contribute to ∆SWE estimation570

::::
∆̂Sw:

error according to their spatial correlation with the dry-snow phase sensitivity
:
ξ̃:
〈
ξ̃Φe

〉
/
〈
ξ̃

2
〉

. We distinguish between

(1) systematic spatial correlation between
:
ξ
:::
and

:
the dry-snow phase sensitivity and additional phase

::
Φe components that have

a topographic dependence and (2) spurious correlations with phase
::
Φe:components that are not systematically dependent on

topographydue to sampling statistics over the finite estimation window. In this section we consider the former by examining

several phase
::
Φe:components, their spatial characteristics with respect to topographic slope and their expected contribution to575

∆SWE estimation error. Uncorrelated phase components are discussed in ??
::::̂
∆Sw:::::

error.
:

::
Φe:::::::::::

components
:::
not

:::::::::::::
systematically

::::::::
correlated

:::::
with

::
ξ̃

::::
will

:::::::::
contribute

::
to

:::
the

:::::
∆̂Sw:::::

error
::::
due

::
to

:::::::::::::
finite-sampling

::::
over

::::
the

::::::::
estimation

::::::::
window.

:::::
These

::::::
include

:::::::::::
decorrelation

::::::
phase

::::
noise

::::
and

:::
the

:::::
non-ξ̃

::::::::
correlated

:::::
parts

::
of

:::::
other

:::::
phase

:::::::::::
components.

::
In

:::
the

:::
case

:::
of

::::
these

:::::::
spurious

:::::::::::
correlations,

:::
the

:::::::
resulting

:::::::::
estimation

::::
error

:::::::::
magnitude

:::
can

:::
be

:::::::
expected

::
to

::::::::
diminish

::::
with

:::::
larger

:::::::::
estimation

::::::
window

:::::
sizes

::::
and,

::
in

:::
the

:::::
global

::::::
sense,

:::
will

:::
not

::::::::::::
systematically

::::
bias

:::
the

::::::::
estimates

:::
but

::::::
instead

::::::::
contribute

:::
to

::
the

::::::::
variance.580

5.3.1 Atmospheric delay

The troposphere contributes substantial phase delay during SAR imaging (Hanssen, 2001). This delay can be decomposed into

a horizontal mean component and a horizontally variable component which we respectively denote as the ‘static ’ and ‘dynamic
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’
::::
static

::::
and

:::::::
dynamic

:
components. Temporal differences in the static component between image acquisitions results in a phase

::
Φe:component that is modulated by topography. Neglecting any height dependence of the delay over the height range within585

the estimation window, the phase
::::
static

:::::::::::
atmospheric

:::::
phase

::::::::::
contribution

::::
(Φsa)

:
can be modelled as a simple linear function (Lin

et al., 2010),

Φsa =
4π

λ
∆Kh+β, (23)

where ∆K is the linear transfer function coefficient corresponding to the volumetric mean delay difference between SAR

acquisitions, h is the topographic height and β is an offset constant which we set to zero without loss of generality since590

we consider only the correlation of Φsa with zero-mean ξ̃. Note that the horizontal variation of ∆K is gradual and therefore

∆K can be assumed constant within the estimation window. Therefore, the spatial variation of Φsa within the ∆SWE window

(assumed to be ≤ 1 km
::
as

::::::::
discussed

::
in Sect.

::
5.1) can be attributed solely to topographic height variation

:::::::
variation

::
in

:
h.

The dynamic component is driven by turbulent mixing and therefore its spatial power spectrum follows a power-law re-

lationship, which limits the amplitude at spatial scales below a few km (Hanssen, 2001). Therefore, for estimation windows595

<1 km, the dynamic component can reasonably be neglected. For larger estimation windows (not explicitly considered in this

paper), the influence of the dynamic component can be mitigated by spatial high-pass filtering both the InSAR phase as well

as ξ prior to ∆SWE estimation, similar to the method employed by Lin et al. (2010) for estimating ∆K from interferograms.

Figures 17a and 17d
:
b show the expected ∆SWE estimation

::::
∆̂Sw error for the case of ∆K = 10-5 (i.e. 10 mm km−1).

For this case the RMS error is 1.1 mmSWE. However, the distribution is centered around zero so that the mean error is only600

0.04 mmSWE. Therefore, spatial averaging of the estimates over a sufficient area will tend to mitigate the error due to static

atmospheric delay.

Regarding the temporal distribution of ∆K, given that it is a pairwise differential quantity, it has zero expectation on an

annualized time-scale. However, there is some seasonal dependence on tropospheric delay (Cong et al., 2012) and therefore

∆K, for sequential dry-snow season interferograms, should not be considered temporally random. For a particular spatial605

location, the errors may accumulate constructively over a snow season to yield a consistent, albeit small, bias effect for that

location. However, methods exist for the estimation of ∆K either by correlation with topographic height over estimation

windows corresponding to the full-scene or tens of kilometers (Lin et al., 2010; Bekaert et al., 2015), or from climate reanalysis

data (Cong et al., 2012). Therefore, interference by static atmospheric phase
:::
from

::::
Φsa is not considered a limiting factor for

the proposed method, since the effect can be largely mitigated.610

5.3.2 Surface displacement

Surface displacements may result from freezing that causes upward heave and thawing that causes downward subsidence, either

near the surface in soil layers that freeze and thaw seasonally or deeper in the case of permafrost aggradation or degradation in

periglacial regions. Surface displacements associated with freezing or thawing are predominantly in the direction of the local
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(a)

(c)

(e)

(b)

(d)

(f)

0 5 10 km

Figure 17. Expected contribution of topographically correlated phase components to ∆SWE estimation
::::
∆̂Sw:

error. (a) and (d
:
b) show the

error due to a static atmospheric volumetric delay error of ∆K = 10-5; (b
:
c) and (ed) show the error per 10 mm of surface heave over the

time interval
:
,
:::::::
discussed

::
in Sect.

::::
5.3.2; (c

:
e) and (f) show the error for reference solifluction case (Vsf = 37 mm y−1·tanα, corresponding to

surface velocity of 10 mm y-1 for a slope of α = 15◦, evaluated for a 24 day interval
:::::::::::::
dsf = 10 mm·tanα)

:
,
:::::::
discussed

::
in Sect.

:::
5.3.3.

:::::
Water

::::
areas

::
are

::::::
greyed

:::
out.

surface normal and therefore spatial variation of the InSAR phase signal induced by such displacement
::::
(Φhe)

:
is approximated615

by

Φhe =−4π

λ
dhh cosθ, (24)

where dh ::
dh is the displacement magnitude away from the reference surface, with positive and negative displacements respec-

tively corresponding to freezing (heave) and thawing (subsidence).

In equilibrium climate conditions, seasonal active-layer displacement tends to follow a pattern of heave in early- to mid-620

winter related to freeze-back to the top of permafrost, which is followed by static conditions until the springwhen air temperatures

rise above 0 °C. Then the active layer thaws continually
:::::::
gradually

:
throughout the summerwith gradual subsidence until the
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mean daily surface temperature remain below 0 °C again. Therefore, the dry-snow season can be divided into an initial pe-

riod of positively valued displacement followed by a static period. Longer-term positively or negatively valued displacement

may be superimposed onto this seasonal pattern due to changes in permafrost conditionssuch as ground ice loss (subsidence)625

due to climatic warming trends or surface disturbance that cause permafrost degradation, or ground ice gain (heave) due to

climatic cooling trends or changing surface conditions that cause permafrost aggradation. Annual displacement amplitudes for

seasonally frozen terrain typically occur in the range of 20 to 120 mm (Gruber, 2020), and are normally greater in fine-grained,

frost-susceptible soils .
:

:::::
Areas

::::
with

::::::
heavily

::::::
organic

:::
soil

:
(e.g., morainal deposits with a high silt content), and lesser in coarse-grained non frost-susceptible630

soils (e. g. , glaciofluvial deposits with a high sand content
:::::
peat),

:::
can

:::::
have

::::::::::
significantly

::::::
higher

:::::::
seasonal

::::::::::::
displacements.

:::
In

:::
the

::::::
vicinity

::
of

:::
the

:::::
study

:::::
area,

:::
we

::::
have

::::::::
observed

:::
that

:::::
these

:::::
occur

::
in

::::::::
localized

:::::
areas

::::::
without

:::::::::
significant

:::::::::::
topographic

::::::::
variation,

:::
i.e.

::::
areas

::::::
already

:::
not

::::
well

:::::
suited

:::
for

:::
the

:::::::
method

::::::
because

::
of

::::::
limited

::
ξ
::::::::
diversity.

:
It
::::
may

::
be

:::::::
possible

::
to
:::::::
exclude

:::::
these

::::
areas

:::
by

:::::::
masking

:::::
based

::
on

::::
local

::
ξ
:::::::
diversity

:::
or

:::::::
analysis

::
of

:::::::
summer

::::::::::::
interferograms

::::
(we

::::
have

::::::::
observed

:::
that

:::::
these

::::
areas

::::
tend

::
to
:::::
have

:::
low

::::::::
temporal

::::::::
coherence

:::
due

:::
to

::::
their

:::::::::
significant

:::::::::::
displacement

:::::
phase).635

To assess the significance of heave as an interfering factor we consider a reference case where dh= 10 mm over a 24-day

interval. Figures 17b and 17e
:
c
:::
and

::::
17d

:
show the expected ∆SWE estimation

::::̂
∆Sw:error for this reference case. The error is

always positively valued and corresponds to an approximately +9 mm ∆SWE bias over the 24-day estimation interval which is

very substantial.
:
,
::::::::::
considering

:::
that

:::
that

::::::
24-day

:::::::
∆SWE

:::::
values

:::
are

:::::::
typically

::::
<20

:::
mm

:::
for

:::
the

:::::
study

::::
area

:::
(see

::::
Fig.

:::
12).

:
Hence, there

is potential for displacement processes, if present, to significantly interfere with the proposed estimation method.
:::::::::
Regarding640

::::::
whether

:::
we

:::
can

:::::::
assume

:::
that

:::
dh :

is
::::::::
constant

::::
over

::
the

:::::::::
estimation

:::::::
window,

:::::::
surface

:::::::::
conditions

:::::::
affecting

:::::
heave

:::
can

::::::::
certainly

::::
vary

::
at

:::::
scales

::::::
shorter

::::
than

:::
the

:::
500

:::
m

:::::::
window

::::
size,

:::
e.g.

::
as

::::::::
observed

:::
by

:::::::::::::
Liu et al. (2012)

:
,
:::
and

::::
this

::::::
spatial

::::::::
variability

::::
will

:::::::::
contribute

::
to

::::::::
estimation

:::::
error

::
to

::::
some

::::::
degree

::::::::
although

:::
we

::::
have

:::
not

::::::::
attempted

::
to

::::::::
quantify

:::
this

:::::
effect.

:

::::::::
Regarding

::::
the

::::::
results

::::::::
presented

:::
in Sect.

:::
4.3,

:::
the

:::::::
∆SWE

:::
are

::::::::
expected

::
to

:::::
yield

::
a
:::::::
positive

::::
bias

:::::
until

:::::
freeze

:::::
back

::
of

::::
the

:::::::::
active-layer

:::::::::
completes.

:::::::::::
Considering

:::
the

::::::::
reference

::::
case

::::::::
presented

::::
here

:::::
where

:::
10

:::
mm

::
of

:::::
heave

::::::
results

::
in

::
a

::::
mean

:::::::
∆SWE

::::
bias

::
of645

:
9
::::
mm,

:::
the

:::::::
Oct-Dec

::::
bias

:::
can

::
be

:::::::::
explained

::
by

::::
(8.6

::::::::::
mm/0.9)(92

::::::
days/24

:::::
days)

::
=

::
37

::::
mm

::
of

::::
mean

:::::::
upward

:::::::::::
displacement

:::::::::
amplitude,

:::::
which

::
is

:
a
::::::::
plausible

:::::
value

::
for

:::
the

::::
area

::::::
during

::::::::::
active-layer

:::::
freeze

::::
back

:::::::::::::
(Gruber, 2020).

:

:::
The

::::
+1.7

::::
mm

::::
bias

:::
for

:::
the

::::::::
snow-free

:::::::
periods

::::::::
presented

::
in

:
Sect.

::
4.3

::
is
::::::::::
unexpected

:::::
since

:::
the

::::::::
snow-free

::::::
period

::
is

::::::::
expected

::
to

:::::::::
correspond

::
to

:::::::::
subsidence

:::
and

::::::::
therefore

::
a

:::::::
negative

:::
bias

::::
with

:::::::::
magnitude

::::::
similar

::
to

:::
but

::::
less

::::
than

:::::::
Oct-Dec

:::::::
because

::
the

::::::::::
subsidence

:
is
::::::::
expected

::
to

:::::
occur

::::
over

:
a
::::::
longer

:::::::::::
time-interval

::::
than

::
the

:::::::::
re-freeze.

::::
This

:::::::::::
disagreement

:::::::
suggests

:::::
other

:::::
factors

::::
that

:::
are

:::::::
difficult

::
to650

:::::::
separate

::::
from

:::
one

:::::::
another;

:::::::
perhaps

:::
the

::::
thaw

::
is
:::::::::::
directionally

::::::::::
asymmetric

::::
with

:::
the

:::::
heave

::::
(i.e.,

::::::::::
contribution

::::
from

:::::::::::
solifluction)

::
as

::::::::
described

::
in Sect.

:::::
5.3.3.

One mitigation approach is to limit use of the estimator spatially and temporally to correspond to known areas and periods

of low displacement activity. For example, temporal analysis of summer interferograms can be used to identify areas with

significant subsidence and these can be masked out during ∆SWE estimation under the assumption that thaw-period subsidence655

is spatially correlated with freeze-period heave. Of course, this is not possible for the case of widespread seasonal surface

displacement as is common in periglacial regions.
::::
Such

:::::
areas

:::
are

::::::::
relatively

::::::::
common

::::
(e.g.,

:::::::::::::::
Obu et al. (2019)

:::::
report

:::
that

:::::
22%
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::
of

:::
the

:::::::
exposed

::::
land

::::
area

::
of
::::::::

Northern
:::::::::::

Hemisphere
:::::::::
potentially

:::::::
contains

:::::::::::
permafrost).

::
It

::::
may

::::
also

::
be

::::::::
possible

::
to

:::::::
estimate

::::
and

::::::
correct

::
for

:::
the

:::::::::::
early-winter

:::::
heave

:::::::::
component

::
by

:::::::::
estimating

:::
the

::::::::::::::
thaw-subsidence

::::
from

:::::::::::::
summer-season

::::::::::::
interferograms

::::
and

::::
then

:::::::
applying

::
a
::::::
model

:::
for

:::
the

::::::
cyclical

:::::::::::
deformation.

:
660

5.3.3 Solifluction

We consider slow moving, gravity-driven surface soil flux, i.e., solifluction, as a potential interfering phase
::
Φe component since

it is correlated with topographic slope. We do not expect solifluction to be a significant bias source during the dry-snow season

but include it because it may affect snow-free interferograms analyzed for the purpose of method validation.

Solifluction is driven by cyclical surface displacement (diurnal or seasonal) coupled with sufficient topographic slope mag-665

nitude and environmental conditions that include vegetation type, soil moisture content, and soil grain-size distribution
::::::
surface

::::::::
conditions

:
(Matsuoka, 2001), and it is common in periglacial regions. The flow direction is principally in the local downslope

direction and therefore the resulting InSAR phase
::::
(Φsf):is approximated by

Φsf =
4π

λ
Vsf∆tdsf

::

(
·
:
l·d
:

)
, (25)

where Vsf is the surface velocity
::
dsf::

is
:::
the

:::::::::
downslope

::::::
surface

:::::::::::
displacement

:
magnitude due to solifluction, ∆t is the InSAR pair670

temporal baseline, and L̂ and D̂
::
and

::
l
:::
and

::
d are the unit magnitude SAR look

::::::::::
line-of-sight and downslope direction vectors.

Assuming homogenous soil conditions within the estimation window, spatial variation of Vsf ::::::
Spatial

::::::::
variation

::
of

:::
dsf can be

modelled as a function of topographic slope angle only. A commonly applied model is given by Matsuoka (2001) ,
::
dh::::

and
::
α

::::
only.

:::
An

:::::
upper

:::::
bound

:::
for

:::
dsf::::::::

suggested
:::
by

:::::::::::::::
Matsuoka (2001)

::
on

::
an

:::::::::
annualized

:::::
basis

:
is
:

Vsf = βsfdsf
::
≤ dh

:
tanα, (26)675

where βsf is a scaling factor, which we assume is constant over the window
:::::
which

::::::::
attributes

:::::::::
downslope

::::
soil

::::::
motion

::
to

:::
the

:::::
heave

::::::
process

:::
less

::::
any

::::::::
retrograde

::::::
motion

::::
due

::
to

:::
soil

::::::::
cohesion. In order to assess the significance of solifluction as an interfering factor

we consider a reference case where Vsf ::
dsf:= 10 mm y-1 for a slope of α = 15◦. This corresponds to βsf = 37 mm y-1. Figures

17c
::::::
·tanα.

:::::::
Figures

:::
17e

:
and 17f show the expected ∆SWE estimation

::::
∆̂Sw:error for this reference case. The error is always

positively valued and corresponds to a 2.2 mm SWE bias for a 24-day estimation interval.
::
0.6

::::
mm

::::
bias

:::
per

::
10

::::
mm

:::::
heave

::
on

:::
an680

::::::::
annualize

::::
basis

::::::
which

:
is
:::::::::::
significantly

:::
less

::::
than

::::
that

:::
due

:::::::
directly

::
to

:::::
heave

::::::::
discussed

::
in

:
Sect.

::::
5.3.2.

:

It is noteworthy that both the heave (upward normal-to-surface) and solifluction (downward tangential-to-surface) result in

positively valued biases. In the case of symmetric surface displacement (heave followed by equal magnitude subsidence along

surface normal – so called ‘retrograde’ motion) the net ∆SWE bias over the cyclical period (including snow-free thaw-season

interferograms) is zero. However in the more general case of heave followed by a combination of retrograde motion and685

solifluction, e.g. as demonstrated by Harris et al. (2008), the result is net positive ∆SWE bias.
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5.3.4 Soil Moisture

Near surface soil moisture conditions are a known contributor to the InSAR phase signal (Nolan et al., 2003) and these are likely

modulated by topographic slope both in terms of gravity-driven effects on near surface hydrology and the influence of slope

aspect on solar heating. As such, there may be some correlation with the dry-snow phase sensitivity
:
ξ
:
leading to estimation690

bias. As with solifluction, we do not expect soil moisture to significantly affect dry-snow interferograms but consider its effect

on snow-free interferograms used as method validation controls.

Although the correlation of soil moisture phase with topographic slope is difficult to model, it is possible to establish a

bound on its impact on the ∆SWE estimation
::::
∆̂Sw by considering that the soil moisture phase magnitude, Φsm is limited to

some maximum value, Φsm_max according to sensor wavelength and soil type (De Zan et al., 2014). Considering a case where695

ξ ∈ [ξmin, ξmax], the spatial distribution of Φsm producing maximum possible ∆SWE estimation
::::̂
∆Sw:bias is

Φsm = Φsm_max
ξ− ξmin

ξmax− ξmin
(27)

which corresponds to perfect correlation between Φsm and ξ. According to Eq.(12) this yields a ∆SWE bias limit ofΦsm_max/(ξmax−
ξmin). Considering our study case, ξ ∈ [0.22 rad mm−1, 0.28 rad mm−1] (see Fig. 6a) and assuming Φsm_max = 90°, which is

reasonable considering the model of De Zan et al. (2014) and the simulation results from Rabus et al. (2010), this corresponds to700

a bias magnitude limit of 1.3 mm SWE which is relatively small especially when considering that any actual spatial correlation

is likely much less than this ideal upper limit.

5.4 Uncorrelated Phase Components

Phase components not systematically correlated with ξ̃ will contribute to the ∆SWE estimation error due to finite-sampling over

the estimation window. These include decorrelation phase noise and the non-ξ̃ correlated parts of the components described705

previously in 5.3. In the case of these spurious correlations, the resulting estimation error magnitude can be expected to diminish

with larger estimation window sizes and, in the global sense, will not systematically bias the estimates but instead contribute

to the variance.

Decorrelation occurs in repeat-pass InSAR because of spatial differences in the imaging geometry, temporal changes in the

scattering environment including snow wetting/melt and system effects including thermal noise and SAR processing errors710

(Zebker and Villasenor, 1992). Furthermore, we expect some dependence of decorrelation on the true ∆SWE magnitude due

to variations in the refractive dry-snow phase at both the sub-resolution scale and at the sub-estimation window scale. The

contributions include those due to horizontal snow depth variations caused either by varying ground surface heights as described

by Rott et al. (2003) and especially in the early snow-season when short scale undulations ‘fill-in’, and spatial depth variations

due to snow surface structure at scales larger than the radar wavelength.715

The amount of decorrelation can vary significantly both spatially within each interferogram and temporally depending on

changing surface conditions and pass-to-pass variations in the SAR orbit. It is therefore important to estimate the ∆SWE

variance contribution as a space and time varying quantity.
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Specifying the transfer function between phase noise and ∆SWE estimation variance is made difficult by the fact that the

distribution of ξ̃ is generally unique for each estimation window. We decided to apply the Monte Carlo approach by simulating720

a sufficiently large ensemble of zero-signal partially decorrelated interferograms, applying the ∆SWE estimation on each

instance and then computing statistics over the ensemble of estimates. This requires knowledge of the space and time varying

uncorrelated phase error distribution. We approximate this as the distribution of a circular complex stationary white process

with zero mean phase as described by Just and Bamler (1994) and which is uniquely specified by the coherence magnitude,

γ. We estimate γ as the ensemble coherence of the residual phase after removing the dry-snow phase components using the725

∆SWE estimate,

γ̂ =
∣∣∣〈ej(φ−∆̂Sξ̃)

〉∣∣∣ .
As such, this approach can be used to estimate a unique ∆SWE estimation variance map for each source interferogram.

Figures 8b, 8c and 8d respectively show the residual phase coherence map, the standard deviation of SWE sensitivity under

the window (i.e.
〈
ξ̃

2
〉1/2

) and the resulting Monte Carlo-based error estimation for the same interferogram depicted in Fig.730

6. Local factors affecting the estimated ∆SWE variance include: (1) the residual coherence magnitude; (2) the diversity of ξ

within the estimation window; and (3) the spatial support under the window (areas adjacent to water bodies have a smaller

ensemble of valid phase samples and hence a larger variance).

5.4 DEM Error

Errors in the DEM used for analysis contribute to the ∆SWE estimation
::::
∆̂Sw:

error due to both residual topographic phase(
:
,735

as a component of total phase error, Φe):, and error in the DEM-derived phase-sensitivity, ξ̃ , used by the estimator.

The topographic phase error
:::::
(Φtopo)

:
scales linearly with both perpendicular orbit baseline, B⊥, and DEM error, ∆h,

Φtopo =
4π

λ

B⊥∆h

R sinθ
.

:
. Considering the Φe term in Eq.(13) and the fact that ∆h varies spatially, the resulting ∆SWE bias scales withB⊥E

(〈
ξ̃∆h

〉)
for a single interferogram and with E (B⊥)E

(〈
ξ̃∆h

〉)
with respect to all interferograms. We assume that E (B⊥) is zero740

for a sensor with a maintained orbit and therefore this effect is likely unbiased with respect to a temporal set of ∆SWE maps.

Furthermore, the effect can also be neglected if one assumes that that ∆h is uncorrelated with ξ̃, which may or may not be the

case depending on the DEM used.

Next, we consider the effect of errors in ξ̃ caused by DEM errors. The estimator defined in Eq.(12) can be better expressed

using the DEM deriveddry-snow phase sensitivity, ξ̃D = ξ̃+ ξ̃∆h, instead of true ξ̃ where ξ̃∆h is the error in ξ̃D. Furthermore,745

for simplicity we assume that homogenous dry-snow change is the dominant phase contribution such that Φ̃∼= 〈∆S〉 ξ̃
::
As

:
a
::::
first

::::
order

:::::::
analysis

::
of

::::
this

:::::
error,

::
we

:::::::
neglect

:::
the

::::::
second

::::
order

:::::
terms

::::::::
involving

::::
both

::::
ξ̃∆h::::

and
:::
the

:::
bias

:::::
terms

::
in

:
Eq.

::::
(12). Therefore,
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∆̂S =

〈
ξ̃DΦ̃

〉
〈
ξ̃

2

D

〉 ∼= 〈∆S〉


〈
ξ̃

2
〉

+
〈
ξ̃ξ̃∆h

〉
〈
ξ̃

2
〉

+
〈
ξ̃

2

∆h

〉
+ 2
〈
ξ̃ξ̃∆h

〉
 . (28)

If we assume that ξ̃∆h is uncorrelated with ξ̃,

∆̂S ∼= 〈∆S〉

1−

〈
ξ̃

2

∆h

〉
〈
ξ̃

2
〉

+
〈
ξ̃

2

∆h

〉
 . (29)750

which corresponds to a multiplicative bias towards lower amplitudes that is more pronounced in areas with low ξ diversity, i.

e. low
〈
ξ̃

2
〉

.
:::::::
variance. We have not attempted to quantify

〈
ξ̃

2

∆h

〉
for our TanDEM-X DEM derived ξ map but we made efforts

to reduce it by smoothing the DEM (see Sect. 3.3), noting that this approach has its limits since over-smoothing will tend to

increase
〈
ξ̃

2

∆h

〉
.

6 Results and Discussion755

5.1 ∆SWE Estimation Maps

We computed 95 coherent sequential interferograms from the assembled set of 120 RS2-SLA SLCs and these were used with

the SlopeVar estimator to generate ∆SWE estimation maps using an estimation window of 500 m × 500 m (ground range ×

azimuth). This corresponds to 46 snow-season interferograms over 2 partial and 8 complete snow-seasons and 49 non-snow

interferograms over 9 snow-free seasons. The estimator was run on the snow-free season interferograms to serve as control760

cases since these are known to have zero dry-snow ∆SWE. Additionally, the Monte Carlo-based variance estimator described

in
::::
Note

::::
that

:::::::::
smoothing

:::
the

:::::
DEM

:::
has

:::
the

::::::
benefit

::
of

::::::::
reducing

:::::::
potential

::::
bias

:::::::::
introduced

:::
by

::::
short

:::::
scale

::::::::
horizontal

::::::::::::
heterogeneity

::
in

:::
the

:::::::::
snow-pack

::::
(e.g.

:::::
those

:::::
noted

:::
by

:::::::::::::::::::::
Sturm and Benson (2004)

:
).

:::::::
Instead,

:::
the

:::::
effect

::
of

:::::
these

:::::::::
variations

:::
will

:::
be

::::::
limited

::
to

:::
an

:::::::
increase

::
in

:::
the

:::::::::::
uncorrelated

:::::
phase

::::::::::
components

::::::::
discussed

:::
in Sect. ?? was run on all interferograms. Water bodies and areas

with no valid solution from the periodogram peak-finding analysis were labelled as invalid and masked out. Figure 10 shows765

an example set of five such ∆SWE maps from the 2017-2018 snow-season (all snow-season ∆SWE maps from the 2012-2021

dataset are included in the Supplement).
:::
3.4.

Dry-snow season ∆SWE maps from the 2017-2018 snow-season, estimated with the SlopeVar estimator. Water areas and

points with no solution in the ∆SWE search range are greyed out. Date pairs are formatted as yyyymmdd_yyyymmdd.

5.1 Comparison of ∆SWE Estimates with In Situ Measurements770

In order to verify the ∆SWE estimates we compiled a number of mid-to-late winter snow transect surveys that are summarized

in and their positions A-E are labelled in Fig. 1a. These surveys are comprised by: 1) three transects at sites A, B and C that

are immediately north of Inuvik, all surveyed by the authors on the same day; (2) one transect, located at site D, provided by
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Tim Ensom (Wilfred Laurier University) in a fully tree-covered area adjacent to a small creek; and (3) a series of four transect

measurements made at the same location, site E, by GNWT-ENR at two-week intervals at a site with mixed trees and shrubs775

that is adjacent to the Inuvik Satellite Station Facility.

To compare with these absolute SWE measurements, we generated snow season cumulative SWE maps by integrating the

sequential SlopeVar estimated ∆SWE maps through time; starting with the first dry-snow interferogram identified for each

snow season. As discussed in 3.3, some ∆SWE estimates are labelled as invalid due to lack of a distinct periodogram peak. On

average these correspond to about
:::::::
Regarded

:::::::::::
requirements

:::
for

:::::
DEM

:::::::::
generation

:::::::::
frequency

::
to

:::::::::::
accommodate

::::::::
landform

::::::::
changes,780

:
at
::::

the
::::
scale

:::::::
applied

:::
for

:::
our

:::::
study

::::::
(DEM

::::::::
smoothed

:::
to

::::
90m

::::::::::
resolution),

:::::
DEM

:::::::::
generation

::::::::
frequency

::::
can

:::::
likely

:::
be

:
>
:

10 % of

non-water spatial samples and therefore, in order to preserve temporal continuity for the integration, these were replaced with

values obtained by smoothing all valid estimates within a 2 km square window. The cumulative SWE maps do not represent

estimates of true absolute SWE because early snow-season interferograms are generally not sufficiently coherent to allow

∆SWE estimation and therefore some amount of accumulated SWE is not accounted for. Therefore, for the comparison, the in785

situ measurements correspond to an upper-limit for the SlopeVar estimated total SWE maps.

We also estimated variances for the cumulative SWE maps by summing the Monte Carlo derived per-interval variance

estimates, assuming they are uncorrelated through time.

For each transect dataset, all SWE measurements were averaged to generate a mean value for the local area and the sample

standard deviation was used to compute a corresponding standard error. The in situ measurements were each made on a790

particular date, whereas the InSAR cumulative SWE maps are produced at 24-day intervals. The cumulative SWE maps

temporally bracketing each transect date were therefore sampled at the spatial mean position of the transect and then linearly

interpolated in time to generate a cumulative SWE estimate for that point in space and time. Likewise, the error variance maps

were also interpolated and converted to standard-deviations
:
y.

::::::::
However,

::
if
::::::::
applying

:::
the

::::::
method

:::::
using

:::::
more

:::::
finely

:::::
scaled

:::::
data,

:
a
::::
more

::::::
recent

:::::
DEM

::::
may

::
be

:::::::
required

:::::
since

::::::::
fine-scale

::::::::
landform

:::::::
changes

:::::
occur

::::
more

:::::::::
frequently.795

Figure 11 shows a scatterplot comparison of the InSAR derived cumulative SWE estimates and the transect mean SWE

values. Vertical and horizontal error bars correspond to one standard-deviation and one standard-error respectively. Seven of

the eight transects are within one standard deviation of the 1:1 line, and demonstrate good agreement between the measured

and estimated values. Treating the transect mean values as truth, and neglecting the unaccounted early snow-season SWE,

the RMSE for all transect comparisons is 15 mm. It is noteworthy that the author-surveyed transects (locations ‘A’, ‘B’, and800

‘C’) correspond to areas of low topographic variation as indicated by the rightmost column of Table 2, and, as shown in Fig.

11, (locations ‘A’, ‘C’) have larger predicted total SWE standard deviations (i.e.>25 mm). This is consistent with the fact that

estimation variance is expected to increase with decreasing ξ diversity.

List of transect snow surveys used for in situ comparison with SlopeVar results.

Comparison of SlopeVar estimator cumulative SWE with in situ snow-tube sampled SWE transect measurements. Error bars805

correspond to the snow season-accumulated SWE standard deviation (vertical) and the transect measurement standard error

(horizontal). Labels A-E correspond to the survey locations, shown in Fig. 1a.
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5.1 Comparison of ∆SWE Estimates with Predicted Temporal Change

The estimator results were examined temporally by comparing the spatial mean of each estimated ∆SWE map, after projection

to ground range geometry, with the corresponding SWE change predicted by the European Centre for Medium-Range Weather810

Forecasts (ECMWF)ERA5 reanalysis model (Hersbach et al., 2020) over the same time interval. We chose ERA5 for comparison

based on Mortimer et al. (2020) who report that it compares favourably to independent snow course data, and more so than

currently available global passive microwave products do. The gridded ERA5 results were spatially interpolated to the RS2-SLA

scene center. Note that all but five of the analyzed interferograms span 24-day intervals. The additional five intervals each span

48-days due to missed SAR acquisitions. For the temporal comparison, each of these five intervals were split into two 24-day815

intervals with half the estimated SWE change arbitrarily assigned to each interval.

Figure 12a compares the continuous ERA5 24-day interval ∆SWE history time-series with the SlopeVar estimator results.

Figure 12b shows the same data as a scatter-plot comparison. Both plots are labelled according to time-of-year as four annual

quarters to highlight seasonal effects. Treating the ERA5 estimates as truth, Table 3 shows error statistics (bias, RMSE and

correlation coefficient) for a number of temporal subsets that include the four seasonal quarters, all intervals, the nominal820

dry-snow period (Oct-Mar), and the ‘No snow’ intervals (all intervals with zero ERA5 SWE at both interval endpoints).

Time series (a) and scatterplot (b) comparisons of SlopeVar estimator 24 day interval ∆SWE with ERA5 reanalysis estimates.

SlopeVar estimator point symbols are separated according to season to illustrate the seasonal dependence of the bias (especially

difference between Oct-Dec and Jan-Mar points) apparent in the scatterplot.

SWE error statistics for SlopeVar estimator compared to ERA5 reanalysis estimates. Subset SampleBiasRMSECorrelationsize825

(n) (mm) (mm) coefficient (r) Jan-Mar 29 1.7 6.1 0.64 Apr-Jun 18 11.5 23.5 -0.01 Jul-Sep 32 0.4 4.1 0.44 Oct-Dec 21 8.6 9.9

0.69 All 100 4.5 11.7 0.56 Oct-Mar 50 4.6 7.9 0.57 No snowa 23 1.7 4.2 -

Regarding correspondence with ERA5, we are primarily concerned with the Oct-Dec and Jan-Mar estimates because these

correspond with the dry-snow period when the estimator is expected to provide useful results. Figure 15b shows that these do

follow the 1:1 correspondence line. However, the Oct-Dec points appear to have a significant positive bias whereas the Jan-Mar830

points do not. This is quantified in Table 3, which shows that, in aggregate, the Oct-Mar time period has a correlation of 0.57

with respect to ERA5, which is moderately strong. There is an 8.6 mm per-interval ∆SWE bias for Oct-Dec but only 1.7 mm

for Jan-Mar. This is consistent with the expected impact of early freeze-season heave, which, as shown in 5.3 is expected to

yield a positive bias until freeze back of the active-layer completes. Considering the result from Fig. 17e where 10 mm of heave

results in a mean ∆SWE bias of 9 mm, the Oct-Dec bias can be explained by (8.6 mm/0.9)(92 days/24 days) = 37 mm of mean835

upward displacement amplitude, which is a plausible value for the area during active-layer freeze back (Gruber, 2020).

The no-snow intervals are of interest because they serve as a control set with known zero ∆SWE. These show a bias of

+1.7 mm which is unexpected since the snow-free period is expected to correspond to subsidence and therefore a negative

bias with magnitude similar to but less than Oct-Dec because the subsidence is expected to occur over a longer time-interval

than the re-freeze. This disagreement suggests other factors that are difficult to separate from one another; perhaps the thaw is840
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directionally asymmetric with the heave (i.e., contribution from solifluction) as described in 5.3. The RMSE of the no-snow

set is 4.2 mm which serves as a measure of the estimation uncertainty due to factors other than SWE inhomogeneity.

The Apr-Jun intervals are included for completeness even though these are not expected to agree because this corresponds to

the snow melt period. This is especially apparent for the two intervals with large negative ERA5 ∆SWE values corresponding to

periods of intense snow melt. The SlopeVar estimates for these periods are near-zero, likely because only snow-free areas (snow845

already melted) are coherent and hence contribute to the estimates and seasonal active-layer thaw has not yet commenced.

5.1 Spatial Distribution of the Estimated ∆SWE

Spatial variations in the estimated ∆SWE maps are due to a combination of true ∆SWE spatial variations, stochastic error due

to decorrelation and spatially variable biases as described in ??. An independent set of densely sampled ∆SWE measurements

over our study area does not exist which precludes direct estimation of the errors. Instead, we compare temporally averaged850

seasonal subsets of the estimated ∆SWE maps since we expect the bias to differ between seasons. Figure 13 shows the temporal

mean ∆SWE maps for the early snow season (Oct-Dec), late snow season (Jan-Mar) and all snow-free intervals. These show

a moderate degree of negative correlation between the Oct-Dec and snow-free maps, especially in the upland area east of the

delta-margin. The Pearson correlation coefficients between the three maps are: {ROct-Dec/Jan-Mar = 0.28; ROct-Dec/Snow-free = -0.52;

RJan-Mar/Snow-free = -0.17}. These are consistent with a dominant bias contribution from surface normal heave and subsidence855

contributing to the Oct-Dec and snow-free subsets but with opposite polarity. The weaker correlations between these and the

Jan-Mar subset suggest a weaker surface-normal bias contribution during this period which is consistent with the expected

annual cycle of active-layer heave and subsidence.

Comparison of mean seasonal ∆SWE maps, showing means for the early snow season (Oct-Dec), late snow season (Jan-Mar)

and all snow-free periods (temporal subsets described in Table 3).860

Since the snow-free maps have known ∆SWE of zero, a global RMSE value can be computed. This value, computed

over all non-water areas and all snow-free maps is RMSEsnow-free = 21 mm. We know from (13)and (30) that both additive and

multiplicative bias contributions are modulated by the local ξ diversity inverse,
〈
ξ̃

2
〉−1

. We repeated the RMSE calculation for

the top ξ diversity quartile of spatial samples (corresponding to threshold of
〈
ξ̃

2
〉1/2

> 7.6 rad mm-1) resulting in RMSEsnow-free

= 15 mm which shows that the impact of bias can be reduced by restricting the estimator to areas with greater ξ diversity, albeit865

with a loss of spatial coverage.

5.1 Correcting for the Dry-Snow Phase Component

The main focus of this article is estimation of ∆SWE. However, for repeat-pass InSAR applications other than ∆SWE

estimation (e.g. surface deformation estimation), the dry-snow phase can be considered an interfering factor. In this case,

knowing the spatial ∆SWE distribution for a given interferogram allows for removal of the snow phase component according870

to (5). Furthermore, ∆SWE can, in principle, be estimated at scales finer than the SlopeVar estimation window size by (1) first

using SlopeVar to generate a coarse-scale estimate; (2) removing the dry-snow phase corresponding to this initial estimate; and
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then (3) attributing the remaining InSAR phase to additional (high-spatial frequency) ∆SWE which can then be estimated per

resolution cell according to (5) . We performed a preliminary investigation of this by scaling the estimated ∆SWE maps

by the dry-snow phase sensitivity map to generate spatial maps of estimated dry-snow phase and then demodulating the875

original interferograms. The result was, in general, a significant increase in observed spatial phase gradients and short-scale

phase artifacts, likely because of short-scale errors in the estimated ∆SWE maps. This approach therefore requires further

investigation because, in order to maintain spatial phase smoothness required for subsequent phase-unwrapping, the ∆SWE

maps likely require imposition of smoothness constraints.

5.1 Spatial Resolution
:::
and

::::::::::
Geographic

::::::::::
Suitability880

Regarding choice of estimator window size, larger windows improve precision by mitigating the effect of spatially random

noise. However, as discussed in Sect. ??
::
5.3, increasing window size does not necessarily mitigate deterministic bias contri-

butions. Therefore, in terms of the trade-off between estimator error and spatial resolution, there is an upper limit for which

increasing window size will significantly reduce the expected error. For our study dataset we empirically determined 500 m to

be best choice for the window size since larger windows did not yield significant reductions in the observed spatial variance of885

∆SWE estimates.

As discussed in Sect. ??
::
3.4, the precision of the SlopeVar estimator depends on both the coherence level and the spatial

diversity of the SWE sensitivity, summarize by
〈
ξ̃

2
〉1/2

::::
local

::
ξ
:::::::
variance. These factors are spatially variable and therefore in

order to generalize the achievable spatial resolution to other locations one needs to consider both the degree of topographic

slope variation and conditions affecting temporal coherence (e.g., vegetation). Within a single dataset, this heteroskedasticity890

of the estimator could be addressed by applying an adaptively-sized estimation window during the estimation to achieve

approximately uniform variance but variable spatial resolution, in other words, growing the window size to compensate in areas

of low ξ diversity. Another approach would be to simply mask out areas expected to have high variance based on coherence or

ξ diversity.

6 Landcover and Drainage Basin Analysis895

:::::
These

::::::::::::
considerations

:::::
affect

:::
the

::::::::::
geographic

:::::::::
suitability

::
of

:::
the

:::::::
method;

::
it
:::::::
requires

::::::::
dry-snow

::::::::::
conditions

:::
and

::
at

:::::
least

::::::::
moderate

::::::::::
topographic

::::::::
variation.

::::
Such

:::::::::
conditions

:::
are

:::::::
present,

::
at
:::::

least
:::
part

:::
of

:::
the

::::
time

::
in

:::::
many

::::::::::
geographic

:::::::
regions.

:::
The

:::::::
method

::
is

::::
less

::::::
suitable

::
in

:::::
areas

::::
with

:::::::
frequent

:::
wet

:::::
snow

:::::::::
conditions

::::
such

::
as

::::::
coastal

:::::
areas

:::
and

::
in
:::::::
regions

:::
that

:::
are

::::::
mostly

::::
flat,

::::
such

::
as

::::::
prairie.

:

A detailed interpretation of the SWE results is not within the scope of this paper, but to demonstrate the advance in

estimating SWE over large areas we presenta first order assessment of the ∆SWE results in the context of landcover type,900

fire history, and three drainage basins. To simplify the assessment, we created four major landcover classes by merging the

two NALCMS needleleaf forest classes into ‘needleleaf forest’, the broadleaf deciduous forest and mixed forest classes into

‘deciduous/mixed’, the two shrubland classes into ’shrubland’, and the four grassland or barren classes into ‘grassland/barren’

(Table ??). We disregard ’wetland’, ’urban’ and ’water’.
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5.1
:::::::::

Correcting
:::
for

:::
the

:::::::::
Dry-Snow

::::::
Phase

::::::::::
Component905

Major landcover class fraction for the entire study area and per drainage basin. Needleleaf Deciduous/ Shrubland Grassland/

Other forest mixed forest barrenStudy area 0.22 0.30 0.18 0.04 0.27 Basin 1 0.10 0.36 0.38 0.09 0.08 Basin 2 0.31 0.38 0.19 <

0.01 0.11 Basin 3 0.40 0.15 0.39 < 0.01 0.06

To examine the influence of major landcover classes on SWE, we compared their distributions of Oct.-Mar. mean 24-day

∆SWEvalues across all years (Fig. ??a), and the cumulative mean SWE history per major landcover class (Fig.??b). The910

medians of the distributions of Oct.-Mar. mean 24-day ∆SWE values across all years indicate that the windswept grassland/barren

unit has the lowest values (12.4 mm). Deciduous/mixed forest and shrub, are similar, 19.2 mm and 17.8 mm respectively,

whereas the needleleaf forest is somewhat lower at 16.4 mm. The history of curves for cumulative mean SWE per major

landcover class indicate that although cumulative SWE co-varies from year to year among the major landcover classes,

each year the grassland/barren area consistently has the lowest cumulative SWE than the other major landcover types. Of915

the remaining landcover types, deciduous/mixed forest often has the highest cumulative SWE at the end of the winter, with

needleleaf forest and shrub intermediate between the deciduous/mixed forest and grassland/barren.

(a) Distributions of Oct.-Mar. temporal mean 24-day ∆SWE according to major landcover class; (b) cumulative mean SWE

histories according to major landcover class; (c) Spatial extent of the three drainage basins analyzed and the 1968 wildfire; and

(d) cumulative mean SWE histories for the non-water areas with the three drainage basins.920

Using the SAGA Terrain Analysis tool (Conrad et al., 2015), we demarcated three drainage basins located within our scene

that have similar areas ranging between 22 km2 and about 35 km2 (Fig. ??c). Landcover class fractions per basin are shown

in Table ??. To compare landcover class areas between drainage basins, we averaged the SWE estimates over the non-water

areas (~89 to 95% total basin area) within each basin. Cumulative mean SWE curves (Fig. ??d) show that at the end of the

winter, Basin 3 typically has distinctly less SWE than Basins 1 and 2. Of the three basins, Basin 3 has the highest proportion925

of old-growth needleleaf forest, whereas Basin 1 and Basin 2 both have over double the fraction of deciduous/mixed forest.

Notably, the dense deciduous/mixed forest east of Inuvik developed following a major forest-tundra fire in 1968 (extent outlined

in Fig. 17c) that burned the widely spaced needleleaf forest (Mackay, 1995), resulting in dense growth of tall alder (Alnus

crispa) and willows (Salix spp.) and regrowth of partly-burned paper birch (Betula papyrifera).
:::
The

::::
main

:::::
focus

::
of

::::
this

:::::
article

::
is

::::::::
estimation

:::
of

:::::::
∆SWE.

::::::::
However,

:::
for

::::::::::
repeat-pass

::::::
InSAR

::::::::::
applications

:::::
other

::::
than

:::::::
∆SWE

:::::::::
estimation

::::
(e.g.

::::::
surface

:::::::::::
deformation930

:::::::::
estimation),

::::
Φs :::

can
:::
be

:::::::::
considered

:::
an

:::::::::
interfering

::::::
factor.

:::
In

:::
this

:::::
case,

::::::::
knowing

:::
the

::::::
spatial

:::::::
∆SWE

::::::::::
distribution

:::
for

::
a

:::::
given

:::::::::::
interferogram

::::::
allows

:::
for

:::::::
removal

:::
of

:::
Φs ::::::::

according
::
to
:

Eq.
:::
(5).

:::::::::::
Furthermore,

::::::
∆SWE

::::
can,

:::
in

::::::::
principle,

:::
be

::::::::
estimated

::
at

::::::
scales

::::
finer

::::
than

::
the

::::::::
SlopeVar

:::::::::
estimation

:::::::
window

:::
size

:::
by

:::
(1)

:::
first

:::::
using

::::::::
SlopeVar

::
to

:::::::
generate

:
a
::::::::::
coarse-scale

::::::::
estimate;

:::
(2)

::::::::
removing

:::
Φs

:::::::::::
corresponding

::
to
::::
this

:::::
initial

:::::::
estimate;

::::
and

::::
then

::
(3)

:::::::::
attributing

:::
the

::::::::
remaining

:::::
phase

::
to
:::::::::
additional

::::::::::
(high-spatial

:::::::::
frequency)

:::::::
∆SWE

:::::
which

:::
can

::::
then

::
be

::::::::
estimated

:::
per

:::::::::
resolution

:::
cell

::::::::
according

::
to

:
Eq.

:::
(5)

:
.
:::
We

::::::::
performed

::
a

:::::::::
preliminary

:::::::::::
investigation

::
of

:::
this

:::
by

::::::
scaling935

::
the

:::::
∆̂Sw:::::

maps
::
by

:::
the

::
ξ
::::
map

::
to

:::::::
generate

::::::
spatial

:::::
maps

::
of

::::::::
estimated

:::
Φs :::

and
::::
then

::::::::::::
demodulating

:::
the

::::::
original

:::::::::::::
interferograms.

:
The

1968 fire completely burned the forested portion of Basin 1, the forest in Basin 2 was partially burned, but the forest in Basin

3 was beyond the fire limit (Fig. 1c). The SWE data suggest that over half a century since the initial event,
::::
result

::::
was,

:::
in
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::::::
general,

::
a
:::::::::
significant

:::::::
increase

::
in

::::::::
observed

:::::
spatial

:::::
phase

::::::::
gradients

::::
and

:::::::::
short-scale

:::::
phase

:::::::
artifacts,

:::::
likely

:::::::
because

:::
of

:::::::::
short-scale

:::::
errors

::
in the forest-tundra fire near Inuvik is an important influence on variation in hydrological dynamics in the area, as it is940

on variation in ground thermal conditions (Palmer et al., 2012), via ecological succession and its influence on snow cover. The

mechanism is not investigated here, but may be related to net radiation and snow ablation in early spring due to the large influx

of solar radiation and differences in albedo between forest and non-forest areas (Rouse, 1984), as at this time of the year the tall

shrubs are covered almost completely by snow and the needleleaf trees stand above the snow cover (Palmer et al., 2012)
::::
∆̂Sw

:::::
maps.

::::
This

::::::::
approach

::::::::
therefore

:::::::
requires

::::::
further

::::::::::
investigation

::::::::
because,

::
in

:::::
order

::
to

::::::::
maintain

:::::
spatial

::::::
phase

:::::::::
smoothness

::::::::
required945

::
for

::::::::::
subsequent

:::::::::::::::
phase-unwrapping,

:::
the

:::::::
∆SWE

:::::
maps

:::::
likely

::::::
require

:::::::::
imposition

::
of

::::::::::
smoothness

:::::::::
constraints.

6 Conclusions

We have introduced a novel spatial analysis method‘SlopeVar’,
::::::::::
’SlopeVar’,

:
that estimates dry-SWE change from wrapped

repeat-pass interferograms by spatially correlating the InSAR phase to a DEM-derived,
::::::::::::::
slope-dependent dry-snow phase sen-

sitivity map over a suitably sized estimation window. The method does not require phase unwrapping or any spatial reference950

with known SWE change and therefore addresses some of the key challenges posed by InSAR-based SWE change estimation.

The method is subject to bias from factors that spatially correlate with the dry-snow phase sensitivity map. We investigated

the role of spatial SWE change inhomogeneity as a possible bias factor by simulating an evolving snow-pack with the

SnowModel snow transport model and found that surface morphology caused sufficient ∆SWE inhomogeneity to generate

modest (few mm of SWE) estimation errors whereas spatial variations in vegetation height (modelled using NALCMS 2015)955

induced much larger errors (tens of mm). This leads us to conclude that vegetation homogeneity should be controlled for

during estimation, e.g., by limiting the estimator to homogenous areas. We investigated the role of static atmospheric delay

and surface deformation as potential bias factors by correlation with the dry-snow phase sensitivity map. Similarly, we also

investigated solifluction and soil moisture phase, two bias sources expected to only affect snow-free interferograms used as

zero ∆SWE controls for method validation. We found that static atmospheric delay and soil moisture are likely not significant960

sources of bias and that both surface deformation and solifluction, if present, may lead to substantial estimation bias, generating

∆SWE errors at scales comparable to the deformation magnitude. We also considered the effect of DEM error and found that

DEM errors at scales smaller than the estimation window size lead to damping multiplicative ∆SWE bias and therefore DEM

filtering, pre-processing, or both should be performed to minimize this effect.

We tested our method using a 9-year stack of RADARSAT-2 Spotlight-A mode images over an area surrounding the town965

of Inuvik, Northwest Territories, Canada and corresponding TanDEM-X DEM for the area. We generated SlopeVar ∆SWE

maps from the dataset for both snow-covered and snow-free periods and compared these with a number of in situ SWE

transect measurements made over two winters and the results showed good agreement with an absolute SWE RMSE of 15 mm.

We compared our spatially averaged results with the ERA5 ∆SWE time-history and the results showed a moderately strong

correlation and 7.9 mm RMSE (per 24-day period) over the Oct-Mar period. Seasonal analysis revealed a substantial early970
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winter (Oct-Dec) bias (8.5 mm per 24-day period) that is largely absent in late winter (Jan-Mar) which we suspect is due to

seasonal active-layer heave.

We empirically determined that a 500 m estimation window size provides the best combination of error mitigation and spatial

resolution for our dataset. However, the achievable spatial resolution depends on both terrain factors affecting the coherence

and on the degree of slope variation, both of which are location dependent.975

:::
The

:::::::
method

:
is
:::::::

subject
::
to

::::
bias

::::
from

::::::
factors

:::
that

::::::::
spatially

:::::::
correlate

::::
with

:::
the

::::::::
dry-snow

:::::
phase

:::::::::
sensitivity

:::::
map.

:::
We

::::::::::
investigated

::
the

::::
role

::
of

::::::
spatial

:::::
SWE

::::::
change

:::::::::::::
inhomogeneity

::
as

::
a
:::::::
possible

::::
bias

:::::
factor

::::
and

:::::::::
determined

::::
that

:::::::::
vegetation

:::::::::::
homogeneity

::::::
should

::
be

:::::::::
controlled

:::
for

::::::
during

:::::::::
estimation,

::::
e.g.,

:::
by

:::::::
limiting

:::
the

::::::::
estimator

:::
to

:::::::::::
homogenous

:::::
areas.

:::
We

::::::::::
investigated

::::
the

:::
role

:::
of

:::::
static

::::::::::
atmospheric

:::::
delay

:::
and

::::::
surface

:::::::::::
deformation

::
as

:::::::
potential

::::
bias

::::::
factors

:::
and

::::
also

::::::::::
investigated

::::::::::
solifluction

:::
and

::::
soil

:::::::
moisture

::::::
phase,

:::
two

::::
bias

:::::::
sources

:::::::
expected

:::
to

::::
only

:::::
affect

:::::::::
snow-free

::::::::::::
interferograms

::::
used

:::
as

::::
zero

::::::
∆SWE

::::::::
controls

:::
for

::::::
method

:::::::::
validation.

::::
We980

:::::
found

:::
that

:::::
static

:::::::::::
atmospheric

:::::
delay,

::::
soil

:::::::
moisture

::::
and

::::::::::
solifluction

:::
are

:::::
likely

:::
not

:::::::::
significant

:::::::
sources

::
of

::::
bias

::::
and

:::
that

:::::::
surface

::::::::::
deformation

:::
due

::
to

::::::
heave,

::
if

::::::
present,

::::
may

::::
lead

::
to
:::::::::
substantial

:::::::::
estimation

:::::
bias.

:::
We

::::
also

:::::::::
considered

:::
the

:::::
effect

::
of

:::::
DEM

::::
error

::::
and

:::::
found

:::
that

:::::
DEM

:::::
errors

::::
lead

::
to

:::::::
damping

::::::::::::
multiplicative

::::::
∆SWE

::::
bias

:::
and

::::::::
therefore

:::::
DEM

:::::::
filtering,

:::::::::::::
pre-processing,

::
or

::::
both

::::::
should

::
be

:::::::::
performed

::
to

::::::::
minimize

:::
this

::::::
effect.

We compared the SlopeVar and Delta-K methods in terms of their relative achievable precision and found that, for our test985

area SlopeVar is typically about 4× more precise than Delta-K for a given estimation window size. Regarding the benefits of

the method compared to dual-frequency volume-scattering based estimation, our method is less suitable in areas with relatively

low topographic variation, although it may be possible to exploit even sparse areas of variation such as along waterways to

sparsely map SWE change in otherwise flat areas. In other areas
:
, the constraints are similar in that they both require dry-snow

conditions and there is opportunity for cross-validation in these areas. Our method has the advantage of only requiring a single990

band and is therefore feasible with existing spaceborne systems, especially L-band. In comparison to passive microwave-based

estimation, assuming dry-snow conditions, we expect the SlopeVar method to perform better in high-relief areas and to be

unbiased in areas with high total SWE (> 150 mm), which potentially offers complimentary coverage in alpine regions that

have previously been difficult areas to evaluate.

Finally, we applied the ∆SWE results to a first order analysis of accumulation trends by major landcover type and within995

three drainage basins within the study area and this showed differences between major landcover classes regarding their mean

∆SWE distributions and corresponding multi-year cumulative trends. Differences between basin-level accumulations suggest

that re-vegetation following a 1968 wildfire continues to affect the spatial distribution of SWE accumulation in the area.
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