

1 **Modelling Glacier Evolution in Bhutanese Himalaya during the 2 Little Ice Age**

3 Weilin Yang¹, Yingkui Li², Gengnian Liu¹, Wencho Chu³

4 ¹College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

5 ²Department of Geography, University of Tennessee, Knoxville, TN 37996, USA.

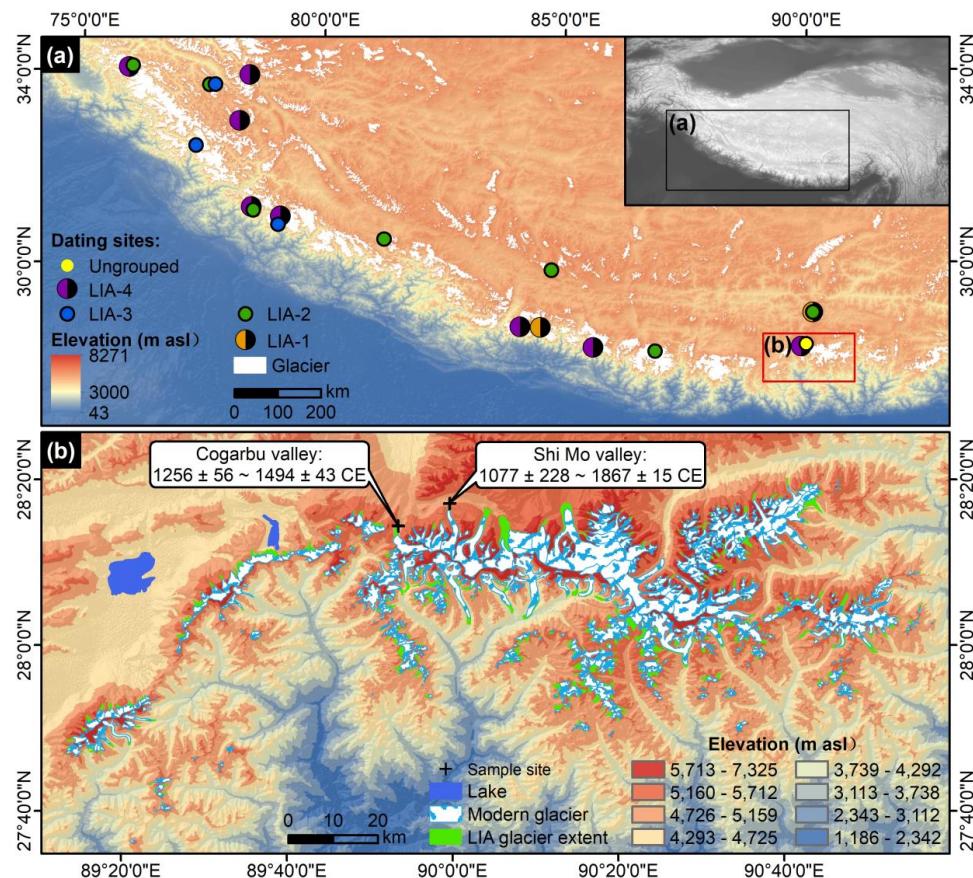
6 ³Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global
7 Change Studies, Tsinghua University, Beijing 100084, China.

8 *Correspondence to:* Wencho Chu (peterchuwencho@foxmail.com)

9 **Abstract.** Mountain glaciers provide a window into past climate change and landscape evolution, but the pattern of glacier
10 evolution at centennial or suborbital timescale remains elusive, especially in monsoonal Himalayas. We simulated the glacier
11 evolution in Bhutanese Himalaya, a typical monsoon influenced region, during the Little Ice Age (LIA), using the Open Global
12 Glacier Model and six paleo-climate datasets. Compared with the mapped glacial landforms, the model can capture the
13 glacier length changes, especially for the experiment driven by the GISS climate dataset, but overestimates the changes in
14 glacier area. Simulation results reveal four glacial substages at 1270s-1400s, 1470s-1520s, 1700s-1710s, and 1820s-1900s in
15 the study area. From further analysis, a negative correlation between the number of the substages and glacier length was found,
16 which suggests that the number and occurrence of glacial substages are regulated by the heterogeneous responses of glaciers
17 to climate change. In addition, the changes in summer temperature dominated the glacier evolution in this region during the
18 LIA.

19 **1 Introduction**

20 Mountain glaciers over high Himalayas provide a critical window to explore the linkage between climatic, tectonic,
21 and glacial systems (Oerlemans et al., 1998; Owen et al., 2009; Dorch et al., 2013; Owen & Dorch, 2014; Saha et al., 2018).
22 Many scientists have investigated the glacial history for Himalayas at orbital-scale, indicating that a general trend of glacier
23 advances is related to overall summer temperature, forced by orbitally-controlled insolation (Murari et al., 2014; Yan et al.,
24 2018, 2020, 2021). However, latest observations with finer temporal resolution have revealed that the evolution of some
25 glaciers in monsoonal Himalayas has suborbital-scale fluctuations, which has aroused more and more interest on exploring the
26 mechanisms behind (Solomina et al., 2015; Peng et al., 2020).


27 The Little Ice Age (LIA; from 1300 to 1850 CE; Grove, 2013; Qureshi et al., 2021) is the latest cooling event during the
28 Holocene, during which most mountain glaciers advanced, forming abundant well-preserved and distinctive geomorphic
29 landforms (Murari et al., 2014; Qiao & Yi, 2017; Peng et al., 2019, 2020). Previous studies have reconstructed the timing and
30 extent of glacier evolution during the LIA based on field investigation, geomorphological mapping, and cosmogenic nuclide

31 dating (Owen & Dortch, 2014 and references therein; Zhang et al., 2018a, 2018b; Carrivick et al., 2019; Qureshi et al., 2021).
32 However, dating glacial landform is challenging due to the post glacial degradation and the large uncertainties in the dating
33 methods (Heyman et al., 2011; Fu et al., 2013). In addition, the reconstructions using individual glaciers or a small number of
34 glaciers may be not representative for the regional average (Carrivick et al., 2019). It is therefore still unclear on how many
35 substages exist during the LIA and how to separate the contribution of precipitation and temperature on glacier evolution.

36 Numerical glacial modelling is a powerful way to study glacier evolution on centennial timescale (Parkes & Goosse, 2020)
37 and quantify the response of glaciers to climate change (Eis et al., 2019). The modelling approach can largely alleviate the
38 limitations of field-based methods in exploring response of glaciers to climate change on the regional scale and provides an
39 opportunity to understand the pattern of glacier change during the LIA. The model simulation can be cross validated using
40 multiple observational records. However, evaluating the simulation results is still challenging due to the scarcity of the direct
41 observational record for glacier changes during the LIA (Goosse et al., 2018).

42 The ongoing debate about the pattern of glacier evolution during the LIA is, in part, resulted from an imperfect
43 understanding on how to cross validate observation with simulation, what the contribution of individual glacier to regional
44 glacier evolution is, and how climate change drives glacier evolution (Goosse et al., 2018; Carrivick et al., 2019; Peng et al.,
45 2019, 2020). Based on previous works, this study improves the understanding of the pattern of LIA glacier changes in
46 Bhutanese Himalaya (BH; Fig. 1), a typical monsoon-influenced area, using the Open Global Glacier Model (OGGM). We
47 systematically simulated the glacier changes during the LIA based on the climate data from six different general circulation
48 models (GCMs). The simulated changes in glacier length, area and equilibrium altitude (ELA) are validated by
49 geomorphological maps and previous studies. The pattern of regional glacial evolution is compared with ^{10}Be glacial
50 chronologies across the monsoon influenced Himalayas. The dominant climatic factors of the regional glacial evolution are
51 explored through a series of sensitivity experiments.

52

53 **Figure 1. (a) The distribution of the ¹⁰Be surface exposure dating sites in monsoonal Himalayas. The ¹⁰Be surface exposure ages are**

54 recalculated using CRONUS Earth V3 online calculator (Balco et al., 2008; <http://hess.ess.washington.edu/math/>) and the moraine

55 ages are determined based on the criterion in Peng et al. (2019) (see Text S1, Table S1 and Fig. S1 for details). (b) Mapped 408 glaciers

56 during the LIA and the contemporary periods. The ages of the LIA moraines in BH are from Peng et al. (2019, 2020).

57 2 Methods

58 2.1 The Open Global Glacier Model

59 The OGGM is a 2D ice-flow model, to simulate past and future mass-balance, volume, and geometry of glaciers

60 (Maussion et al., 2019). Studies indicated that a good performance of this model in simulating alpine glaciers (Farinotti et al.,

61 2017; Pelto et al., 2020) and reproducing the millennial trend of glacial evolution in mountainous regions (Goosse et al., 2018;

62 Parkes & Goosse, 2020).

63 The OGGM couples a surface mass balance (SMB) scheme with a dynamic core. The dynamic core is based on the

64 shallow-ice approximation (SIA), computing the depth-integrated ice flux of each cross-section along multiple connected

65 flowlines that are diagnosed from a pre-process algorithm. The spatial resolution (dx ; m) of the target grid is scale dependent,

66 determined by the size of the glacier ($dx = 14S^{\frac{1}{2}} + 10$, with S representing the glacier area in km^2) and a predefined minimum (10

67 m) and maximum (200 m) values, respectively (Bahr et al., 2014). The ice accumulation is estimated by a solid precipitation
68 scheme to separate the total precipitation into rain and snow based on monthly air temperature. In this scheme, the amount of
69 solid precipitation is computed as a fraction of the total precipitation. Specially, precipitation is entirely solid if $T_i \leq T_{Solid}$
70 (default setting is 0 °C), entirely liquid if $T_i \geq T_{Liquid}$ (defaults to 2 °C) or divided into solid and liquid parts based on a linear
71 relationship with those two temperature values. The ablation is estimated using a positive degree-day (PDD) scheme (Eq. 1).
72 Melting occurs if monthly temperature ($T_i(z)$) is above T_{melt} , which is equal to -1 °C.

73
$$m_i(z) = p_f P_i^{solid}(z) - \mu^* \cdot \max(T_i(z) + \beta \cdot T_{melt}, 0) + \varepsilon, \quad (1)$$

74 where $m_i(z)$ is the monthly SMB at elevation z of month i . $P_i^{solid}(z)$ is the monthly solid precipitation, and p_f is a general
75 precipitation correction factor (default setting is 2.5). β is the temperature bias (defaults to 0 °C) and a residual bias term (ε) is
76 added as a tuning parameter to represent the collective effects of non-climate factors. Different from the conventional PDD
77 schemes embedded in other ice sheet models, such as Parallel Ice Sheet Model (Bueler & Brown, 2009; Winkelmann et al.,
78 2011), SICOPOLIS (Greve, 1997a, 1997b) or CISM (Lipscomb et al., 2019), that assume ε and μ^* as constant values, these
79 parameters vary with glacier in OGGM to better capture the changes of individual glaciers.

80 **2.2 Climate forcing and experimental design**

81 The temperature and precipitation datasets from six different GCMs (BCC-CSM, CCSM4, CESM, GISS, IPSL, MPI)
82 were used as climate forcing to drive OGGM. These data are available in the Past Model Intercomparison Project (PMIP3)
83 and the Coupled Model Intercomparison Project (CMIP5) protocols (Schmidt et al., 2011; Tayloret al., 2012; PAGES 2k-
84 PMIP3 group, 2015) – with details listed in Goosse et al. (2018) and Table S2. The climate data cannot be directly used in
85 glacial model due to the systematical bias in the climate datasets produced by different GCMs. A calibration algorithm is
86 adopted by OGGM to correct the GCMs climate data series by taking the anomalies between GCMs and the CRU TS 4.01
87 mean climate from 1961 to 1990 (Parkes et al., 2020).

88 To better estimate the long-term glacier evolution for each GCM forcing, the spin-up procedures and parameter tuning
89 are required to initiate the model, because the model is sensitive to the initial condition (Eis et al., 2019). A 600-year spin-up
90 is conducted using annual climate data selected randomly from a 51-year window of 875-925 CE from the corresponding GCM
91 prior to the long-term integrations. The tunable parameter, β , in Equation S1 is set as -1°C based on a set of sensitivity tests in
92 which we adjust β from -1 to 1 °C with an increment of 1 °C. We found that simulation results of the first ~250 years are
93 sensitive to β that larger β will lead to smaller glacier initial state, but such sensitivity rapidly diminishes in the long-term
94 simulation. Thus, the only criterion for we to tune β is to ensure the LIA start time close to the ^{10}Be chronologies in BH. After
95 spin-up, the simulations are conducted during the period of 900-2000 CE for all glacial evolution experiments. Because the
96 simulation of the first 100 years (900-1000 CE) is influenced by the choice of initial conditions, we limit our analyses to the

97 simulations in 1000-2000 CE to examine the glacier response to climate trends (Goosse et al., 2018; Parkes, et al., 2020).
98 We also test the sensitivity of glaciers to temperature and precipitation through control experiments. We apply a ‘constant
99 climate scenario’, use the CRU datasets as the climate forcing, and run the simulation until reaching equilibrium (piControl).
100 The window size is set to 51-year and centered on t^* , the year for which the surface mass balance (SMB) scheme best
101 reproduces the observed SMB. We set ε to 0 in Eq. 1, in order to maintain the contemporary glacier geometry under the
102 contemporary climate condition. Then, keeping the same precipitation, stepwise changes (at 0.1 °C) in annual temperature
103 from -1 to 1 °C are uniformly added to the CRU datasets to test the sensitivity of temperature on glacier evolution. The similar
104 analysis is conducted to test the sensitivity of precipitation by keeping the same temperature record and adjusting precipitation
105 from -20 to 20 % with an increment of 2 %. In addition, we did similar control experiments to explore the sensitivity of
106 temperature and precipitation in different seasons.

107 **2.3 Establishing Regional Chronology and Mapping LIA Glacier**

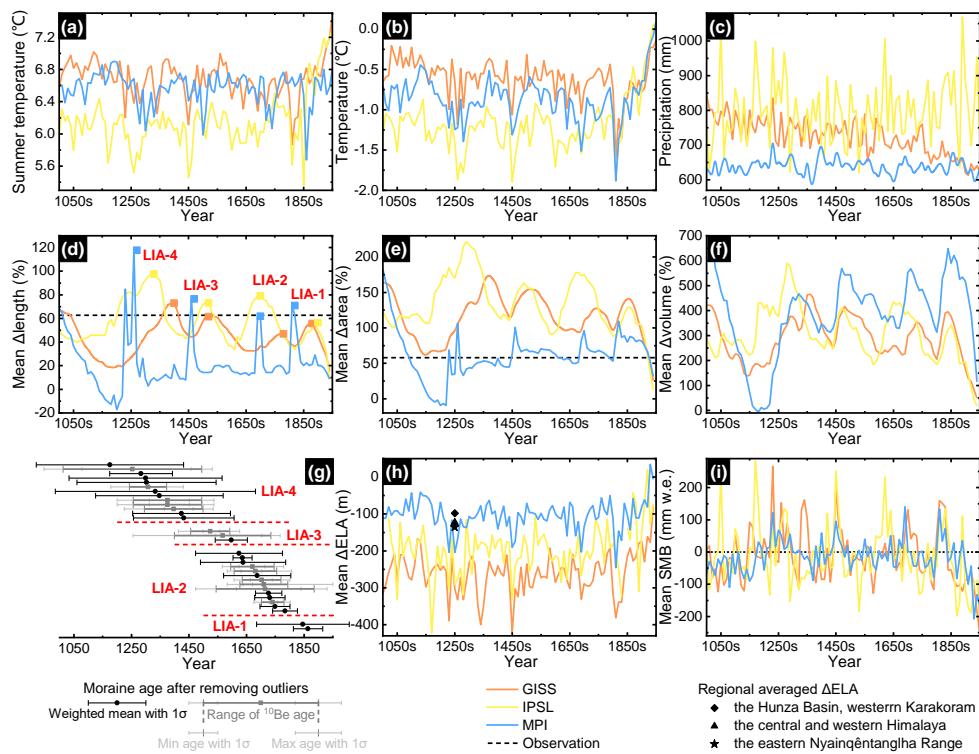
108 The simulated timing and extent of glacial advances are validated with the ^{10}Be surface exposure ages of the LIA moraines
109 and the mapping of LIA glaciers over BH. Previous studies have dated some well-preserved moraine sequences to represent
110 the time of regional glacial advances during the LIA. Five ^{10}Be ages from moraine M1 of Cogarbu valley and seven ^{10}Be ages
111 from moraine M1 of Shi Mo valley were chosen to determine the regional glaciation chronology establishing in BH (Fig. 1b
112 and Fig. S1). We also chose 126 ^{10}Be surface exposure ages across the monsoonal Himalayas for regional chronological
113 comparison (Table S1). The criteria of ^{10}Be surface exposure ages and moraine ages recalculated are shown in Text S1.

114 Based on regional glacial chronology and the evidence of sediment-landform assemblages (Chandler et al., 2019), we
115 map the lateral and terminal moraines in BH to represent the maximum extent of glaciers during the LIA. The LIA moraines
116 are usually well-preserved with sharp crests, distributed several hundred meters to a few kilometers away from the termini of
117 modern glaciers, and damming a lake in front of modern glaciers (Zhang et al., 2018b; Qureshi et al., 2021). We use the world
118 imagery ESRI (http://goto.arcgisonline.com/maps/World_Imagery) and Google Earth high-resolution imagery to delineate the
119 outlines of LIA glaciers based on the LIA moraines. We also downloaded their corresponding contemporary glaciers from
120 Randolph Glacier Inventory V6 datasets (RGI; RGI Consortium, 2017). The area and length of contemporary glaciers are
121 provided in RGI datasets. We calculated the area and the length (using the length of the main flowline) of the LIA glaciers in
122 ArcGIS.

123 **3 The pattern of glacier changes during the LIA**

124 We simulated the continuous response of glaciers to climate change in BH during the LIA using OGGM. Large deviations
125 exist among the simulations using the BCC-CSM, CCSM4, and CESM climate datasets in comparison with the observations
126 (Fig. S2). The simulation based on the CESM climate forcing dataset showed the BH was always ice free during the last

127 millennium due to high temperature, inconsistent with the fact that glaciers still exist in this area even now. For the BCC-CSM
128 and CCSM4 climate datasets, we found an extraordinary rising in temperature after the 1850s, leading to an unreasonably
129 retreat of glaciers so that the modern glacier extent was far less than observations. These three simulations excessively
130 overestimated the amplitude of glacier changes. Thus, we removed these simulations from the discussion and only focused on
131 the pattern of glacier changes during the LIA based on the simulations of the GISS, IPSL, and MPI experiments.


132 Similar to previous studies (Goosse et al., 2018; Parkes & Goosse, 2020), we used the glacier length to analyze glacier
133 evolution and evaluate the climate model performance. Four substages (glacial advances) are identified in the GISS, IPSL, and
134 MPI experiments (marked as LIA-4 to LIA-1 from old to young). Fig. 2 and Table S3 illustrate their occurrences, and changes
135 in glacier length, area, and volume.

136 The simulations for the GISS experiment indicate that the most extensive valley and piedmont glaciers occurred during
137 the early LIA (LIA-4), around 1400s. The total glacier length, area, and volume during LIA-4 were 72.9 %, 175.0 %, and
138 465.7 % larger than the present, respectively. The second most extensive glacial advance occurred during LIA-3 (about 1520s),
139 following by LIA-1 (about 1880s). The smallest glacial advance (LIA-2) occurred about 1700s with the glacier length, area,
140 volume changes of 37.9 %, 127.8 %, and 354.7 %, respectively.

141 Similar to the GISS experiment, the maximum changes in glacier length (about 97.6 %), area (about 221.9 %), volume
142 (589.7 %) occurred during LIA-4 for the IPSL experiment. However, the occurrence of LIA-4 in the IPSL experiment (1330s)
143 was older than that in the GISS experiment (about 1400s). The second most extensive glacial advance occurred during LIA-2
144 (about 1710s) for the climate forcing of IPSL dataset, different from the results of the GISS experiment. The minimum glacial
145 advance occurred during LIA-1 (about 1900s) with the glacier length of 56.4 % longer and the glacier area and volume of
146 128.9 % and 342.2 % larger than the present, respectively.

147 These four substages (LIA-4 to LIA-1) occurred at about 1270s, 1470s, 1700s, and 1820s in the MPI experiment,
148 respectively. Focused on the glacier length changes, the most extensive glacial advances occurred during LIA-4 with a glacier
149 length of 117.7 % longer than the present, following by LIA-3, LIA-1, and LIA-2 with 76.6 %, 70.9 %, and 61.7 % longer in
150 glacier length than the present, respectively.

151

152
 153 **Figure 2.** Interannual (a) summer temperature, (b) temperature, and (c) precipitation changes from 1000s to 1950s averaged over
 154 Bhutanese Himalaya. Glacier (d) length, (e) area, (f) volume, (h) ELA, and (i) SMB changes during LIA across the studied area,
 155 modelled by OGGM using three separate GCM products (GISS, IPSL, and MPI). Each glacier in the OGGM runs has its length,
 156 area, volume, and ELA changes normalized relative to the corresponding averaged parameters during 1950s in the run output.
 157 Besides, the recalculated moraine ages across the monsoon-influenced Himalaya are also shown (g). The regional averaged Δ ELAs
 158 are illustrated in Fig. 2h.

159 **4 Discussions**

160 **4.1 The Comparison between Simulations and Observations**

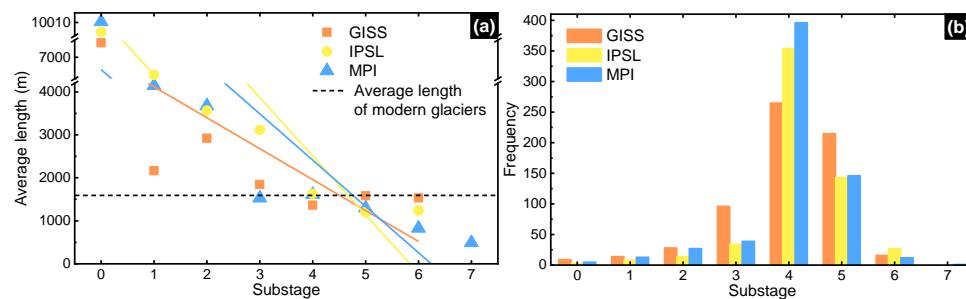
161 We validated the simulation results using mapped LIA glaciers. The regional average length of 408 mapped LIA glaciers
 162 is about 62.7 % longer than the present glaciers along the flowlines, similar to the simulation results of the GISS experiment
 163 (72.9 %). Simulations with IPSL (97.6 %) and MPI (117.7 %) datasets overestimated the length change of LIA glaciers. A
 164 possible explanation for the overestimation of the IPSL and MPI experiments is that the larger amplitude of temperature
 165 reduction causes the sharply increasing of positive SMB, leading to the intensively glacier advance during the glacial period.

166 All of three experiments overestimate the area of LIA glaciers in comparison with the mapped moraines and the studies
 167 from nearby area. The mapped total LIA glacier area is about 57.9 % larger than the present value, which is significantly
 168 smaller than the simulated 175.0 % for the GISS experiment, 221.9 % for the IPSL experiment, and 109.6 % for the MPI
 169 experiment. At the regional scale, the total glacier area has increased about 45.3 % during LIA in the central and western

170 Himalayas relative to that in 2015 (Qiao & Yi, 2017), and 81.2 % during LIA in the Gangdise Mountains relative to that in
171 2010 (Zhang et al., 2018b) based on the glacial geomorphological maps. The overestimated of the area change of LIA glaciers
172 is likely caused by two reasons: 1) OGGM is a flowline-based model and the model-derived flowline becomes less valid when
173 glaciers expended to large and complex glaciers (Maussion et al., 2019); and 2) when tributary glaciers merge into a main
174 glacier, OGGM calculates the areas of the tributary and main glaciers repeatedly, overestimating the glacier area (Goosse et
175 al., 2018). The simulated glacier volume further amplified the differences with the overestimated glacier areas as the volume
176 equals to the product of the area and the thickness.

177 Compared with previous investigations, the model simulates the Δ ELA quite well for the MPI experiment but
178 overestimates the Δ ELA for GISS and IPSL experiments (Fig. 2h; Loibl et al., 2014; Qiao & Yi, 2017; Qureshi et al., 2021).
179 ELA is the elevation where accumulation equals ablation for a certain glacier (Eq. 1; Benn & Lehmkuhl, 2000; Heyman, 2014).
180 The larger positive SMB makes the glacier advanced and the ELA dropped. Thus, the amplitude of Δ ELA is determined by
181 the amplitude of SMB. It seems that the GISS and IPSL climate datasets caused dramatic changes in SMB and higher ELA.

182 Above all, different climate datasets have different performances for different parameters. The GISS climate dataset
183 performs better for the glacier length change, but the MPI better for the ELA change.


184 **4.2 Why exists four LIA substages in BH?**

185 Although large uncertainties exist in cosmogenic nuclide surface exposure dating, it is still one of main methods to
186 constrain the glacial chronology. Many studies have been conducted in dating the LIA moraines in or nearby our simulation
187 region (Fig. 2g and Table S1). However, the dating results vary with glaciers. For example, only one moraine was dated in
188 Cogarbu valley (1256 ± 56 - 1494 ± 43 CE; Fig. S1; Peng et al., 2019), but two substages were constrained in Lato valley,
189 Lahul Himalaya (Saha et al., 2018), Langtang Khola valley, Nepal Himalaya (Barnard et al., 2006), and Gongotri Ganga valley,
190 Garhwal Himalaya (Barnard et al., 2004). Liu et al. (2017) have found at least three LIA moraines in Lhagoi Kangri Range,
191 Karola Pass. Murari et al. (2014) and Zhang et al. (2018a) have identified at least four LIA moraines in Bhillangana and
192 Dudhganga valleys, Garwal Himalaya, and Lopu Kangri Area, central Gangdise Mountains, respectively. The difference in
193 LIA substages has been explained by the different climate conditions in these areas (Owen & Dortch, 2014; Murari et al., 2014;
194 Saha et al., 2019).

195 We argue that the difference in LIA substages is caused by the sensitivity of different glaciers rather than the regional
196 climate conditions. We found a negative correlation between the number of LIA substages and the length of glaciers in BH
197 (the correlation coefficients are -0.21, -0.32, and -0.33 for the GISS, IPSL, and MPI experiments, respectively; Fig. 3a and Fig.
198 3b), indicating that smaller glaciers are more sensitive to climate change compared to larger glaciers (Xu et al., 2011). As
199 illustrated by the frequency of the number of LIA substages of each glacier (Fig. 3b), about 42.1 % of glaciers for the GISS
200 experiment, 60.8 % of glaciers for the IPSL experiment, and 62.0 % of glacier for the MPI experiment have four LIA substages.

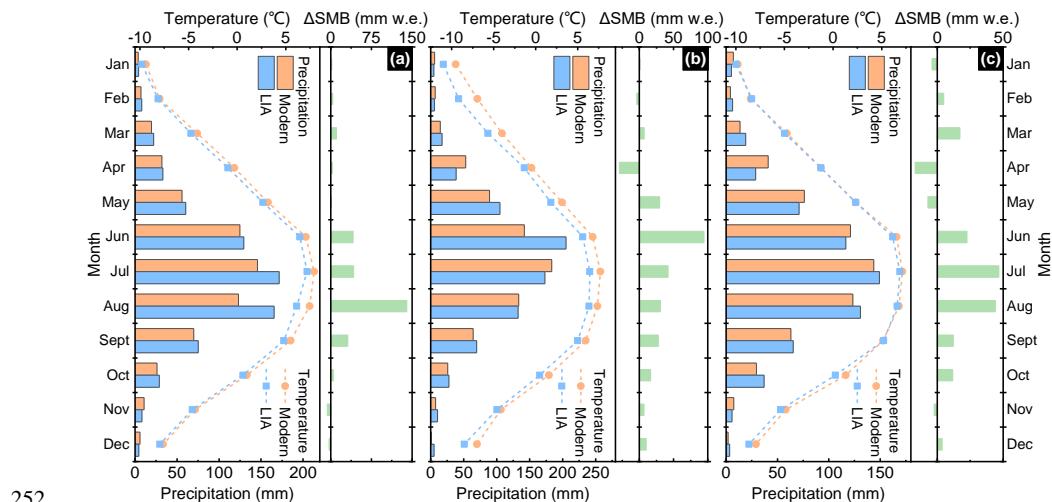
201 Except for the simulation results of the GISS experiment (1364 m), the average length of the glaciers with four LIA substage
202 was about 1628 and 1613 m for the IPSL and MPI experiments, respectively, consistent with the regional average length of
203 modern glaciers (1596 m; Fig. 3a).
204

205
206 **Figure 3. (a) The relationship between the number of substages and the average glacier length of each substage. (b) The frequency**
207 **distribution chart shows the number of the LIA substages of each glacier.**

208 The number of preserved substages is influenced by the extent of glacial advance in each substage. If the extent of glacial
209 advance is larger during the later substage, the early glacial landforms would be destroyed by glacial advance, causing the lack
210 of earlier substages (Li et al., 2011; Fu et al., 2013). For example, we expect that most moraines will be found during LIA-4,
211 LIA-3, and LIA-1 in the field investigation if the climate follows the GISS and MPI experiments scenario, but lack of the
212 moraines during LIA-2 because of its limited extent of glacier advance than LIA-1. In contrast, most of moraines should be
213 dated to LIA-4, LIA-2, and LIA-1 under the IPSL experiment scenario. Most available ^{10}Be ages concentrated in LIA-4 and
214 LIA-2 (13 and 14 moraines were dated to LIA-4 and LIA-2, respectively; Fig. 2g), indicating that the IPSL experiment captured
215 glacial fluctuations during the LIA (Fig. 2d).

216 A small number of moraines were dated to LIA-3, such as the moraine m_{bd2} and moraine m_{bk2} in Garhwal Himalaya
217 (Murari et al., 2014) and moraine m_{A2c} in Lato valley (Saha, et al., 2018), indicating that not all glaciers advanced to their
218 second longest length during LIA-2 (the IPSL experiment; Fig. 2d). Our simulations also support this observation. As
219 illustrated in Fig. S4, about 49.0 % of glaciers occurred during LIA-2 and 25.5 % of glaciers occurred during LIA-3. If the
220 dated moraine belongs to these 25.5 % glaciers, the glacier advance would be found. Similarly, not all glaciers advanced to
221 their longest length during the early LIA (LIA-4). For the IPSL experiment, about 98.1 % of glaciers have the longest length
222 during LIA-4, but it is more complex for the simulation results driven by the GISS and MPI climate datasets (Fig. S4). For the
223 MPI experiment, about 80.4 % glaciers advanced most extensively during LIA-4, but there were still about 12.9 % of glaciers
224 have the maximum glacier length change after 1800s (Fig. S5). For the GISS experiment, these two numbers were 47.2 % and
225 29.3 % (Fig. S3). If we chose the glaciers which reached their most extensive glacial advance after 1800s, the glacial landforms
226 before 1800s would be destroyed.

227 In summary, the regional glacial evolution is a collective effect of individual glacier changes. Four substages during LIA


228 at the regional scale does not guarantee that each individual glacier has four substages. Instead, it only represents the
229 characteristics of most typical glaciers that accounted for the vast majority of the total glaciers. This can explain why there
230 exists four substages in regional scale in the simulation but is hard captured in the previous studies that only focus on one
231 individual glacier, which helps us to deeply understand the relationship between regional glacial evolution and the individual
232 glacier response to climate change.

233 **4.3 Climate-forcing Mechanisms**

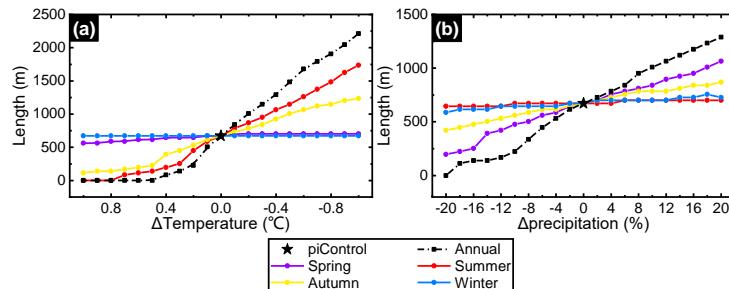
234 Positive or negative SMB determines whether a glacier advances or retreats, and the amplitude of glacier change is
235 directly influenced by the amplitude of SMB change and the duration of the positive or negative SMB (Marzeion et al., 2012;
236 Maussion et al., 2019; Fig. 2i). Previous studies indicated that the change of SMB is determined by the temperature and
237 precipitation change according to the PDD scheme and the climatic proxy comparison (Eq. 1; Fig. 2a-2c; Marzeion et al., 2012;
238 Maussion et al., 2019; Peng et al., 2019, 2020; Parkes, et al., 2020). Our study revealed that the summer temperature plays a
239 dominant role in controlling glacier changes at suborbital-scale.

240 Figure 4 illustrates the average monthly temperature, precipitation and Δ SMB for the GISS, IPSL, and MPI experiments
241 during LIA and at present. For these three experiments, the magnitudes of SMB changes in summer are about 224, 167, and
242 113 mm w.e., accounting for 82.6 %, 71.8 %, and 85.2 % to the annual Δ SMB, respectively, indicating that the summer climate
243 condition dominants the change of annual SMB. Although the increasing summer precipitation are about 70.3, 51.9, and 8.5
244 mm, accounting for 83.9 %, 76.7 %, and 130.2 % for the annual precipitation, precipitation is mainly categorized as liquid in
245 the model due to that the average summer temperature was about 6.6 °C during LIA, larger than 2 °C (Eq. 1). Thus, glacier
246 accumulation is less during the summer. On the other hand, the summer temperature decreased about -0.9, -1.2, and -0.3 °C
247 for these three experiments, respectively. The reduced summer temperature decreased the cumulative positive temperature,
248 resulting in the reduction in summer ablation (Eq. 1). The SMB is determined by both the ablation and the accumulation (Peng
249 et al., 2020). Although the accumulation did not change too much in summer, the low summer temperature reduces the ablation,
250 resulting in an increase in the SMB of glaciers.

251

252
 253 **Figure 4.** The average monthly temperature, precipitation, and ΔSMB during LIA (from LIA-4 to LIA-1) and modern (1950s) of (a)
 254 GISS, (b) IPSL, and (c) MPI.

255 We also conducted the sensitivity analysis to examine the influence of seasonal temperature or precipitation on glacier
 256 change (Fig. 5). Glaciers shrink gradually in response to increasing annual temperature from 0.1 to 0.4 °C and disappear after
 257 the annual temperature is larger than 0.5 °C or after summer temperature larger than 0.8 °C. The regional averaged glacier
 258 length increases linearly when the annual temperature decreases from 0.1 to 1.0 °C, with an average rate of 1600 m/°C.
 259 Applying the same simulation strategy, the change rates of glacier length due to the temperature decreasing in spring, summer,
 260 autumn, and winter are estimated as 82, 1008, 602, and 0 m/°C, respectively, account for 5 %, 63 %, 38 %, and 0 % of the
 261 annual change. These results confirm that the temperature changes in summer and autumn seasons explain >90 % variance of
 262 the changes in glacier length.


263 When forced by an increase of present-day annual precipitation of 2 % to 20 % with keeping temperature fixed, the model,
 264 predicts an increase of the glacier length by 31 m per % precipitation increase. For seasonal precipitation changes from 102 to
 265 120 % of present-day values, the changes in glacier length are higher in spring (18 m/%) and autumn (12 m/%), followed by
 266 winter (5 m/%) and summer (2 m/%). Therefore, the precipitation increases in the spring and autumn have more influences on
 267 glacier changes.

268 Based on the seasonal temperature changes (Fig. 4) for the GISS, IPSL, and MPI experiments and the glacier length
 269 change sensitivity to temperature mentioned above, the glacier length increased about 187.1 %, 267.5 %, 91.0 % longer than
 270 the present (672 m), respectively. Similarly, the glacier length increased about 35.2 %, 37.2 %, 1.2 % for the GISS, IPSL, and
 271 MPI experiments, respectively. Compared with the glacier length change caused by seasonal temperature and precipitation
 272 change, we argue that the change in temperature, especially summer temperature, is the dominant forcing factor for glacier
 273 changes during the LIA. In contrast, the impact of precipitation change is limited. In addition, the amplitude of glacier length
 274 change is larger for the steady-state simulation than that for the continuous simulation because the glacial response to climate

275 change always takes thousands of years, or even longer, during which the climate has become warm.

276

277

278 **Figure 5. Sensitivity of glacier length to annual or seasonal (a) temperature and (b) precipitation perturbations.**

279 **5 Conclusions**

280 We simulated the glacial evolution across BH over the past millennium using the coupled mass-balance and ice flow
281 model, OGGM. Compared with the geomorphological maps and ^{10}Be exposure ages, OGGM broadly captures the amplitude
282 of glacier length changes, especially for the GISS climate datasets. The ELA changes driven by MPI climate dataset are
283 consistent with the regional averaged ΔELA nearby BH, but the model overestimates ΔELA for GISS and IPSL experiments.
284 In addition, OGGM overestimates glacier extent in a factor of >2 due to the limitation of the model.

285 Four LIA substages were identified at about 1270s-1400s, 1470s-1520s, 1700s-1710s, and 1820s-1900s (from LIA-4 to
286 LIA-1) based on the simulations. The IPSL dataset is better to reconstruct the pattern of glacier changes in BH. The most and
287 second extensive glacial advances occurred during LIA-4 and LIA-2 for the IPSL experiment, consistent with regional glacial
288 chronological and geomorphic evidence. The number of the substages for individual glacier has a negative correlation with
289 glacier length, and the amplitude of length change for each glacier is also varying from different features of glaciers. The
290 regional pattern of glacier changes represented the characteristics of most glaciers.

291 The glacier advances are dominated by the reduction of summer ablation. Specifically, glaciers were more sensitive to the
292 changes in the summer and autumn temperature or the spring and autumn precipitation in BH.

293 Although limitations still exist in the simulations, such as the application of OGGM on glacier area and volume changes,
294 this study presented the first simulation of sub-millennium glacial evolutions during LIA in BH using the OGGM. We also
295 found a testable relationship between seasonal climate change and glacier expansion. Our findings provide important insights
296 into the climate forcing mechanism on glacier change at centennial timescale. The evaluation of the effects of different climate
297 datasets on glacier change helps choose the suitable climate dataset for predicting the changes of glacier and water sources in
298 response to future climate change.

299 **Code and data availability.** Code to run OGGM v1.2 is available at <https://doi.org/10.5281/zenodo.2580277> (Maussion et
300 al., 2019).

301 **Author contributions.** Study concept devised by CW. YW performed the model runs and analysis, and wrote the original

302 draft. LY and LG reviewed and revised the paper.

303 **Competing interests.** The authors declare that they have no conflicting interests.

304 **Acknowledgments.** This work was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP; grant
305 no. 2019QZKK0205) and the National Natural Science Foundation (NSFC; grant no. 41771005, 41371082).

306 **References**

307 Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling of glaciers. *Rev. Geophys.*, 53, 95–140,
308 <https://doi.org/10.1002/2014RG000470>, 2015.

309 Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J.: A complete and easily accessible means of calculating surface exposure
310 ages or erosion rates from ^{10}Be and ^{26}Al measurements, *Quat. Geochronol.*, 3, 174–195,
311 <https://doi.org/10.1016/j.quageo.2007.12.001>, 2008.

312 Barnard, P.L., Owen, L.A., Finkel, R.C., and Asahi, K.: Landscape response to deglaciation in a high relief, monsoon-
313 influenced alpine environment, Langtang Himal, Nepal, *Quaternary. Sci. Rev.*, 25, 2162–2176,
314 <https://doi.org/10.1016/j.quascirev.2006.02.002>, 2006.

315 Barnard, P.L., Owen, L.A., Sharma, M.C., and Finkel, R.C.: Late Quaternary (Holocene) landscape evolution of a monsoon-
316 influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal, *Geomorphology*, 61, 91–110,
317 <https://doi.org/10.1016/j.geomorph.2003.12.002>, 2004.

318 Benn, D.I., and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments, *Quatern.*
319 *Int.*, 65/66, 15–29, [https://doi.org/10.1016/S1040-6182\(99\)00034-8](https://doi.org/10.1016/S1040-6182(99)00034-8), 2000.

320 Bueler, E., and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermo mechanically coupled ice sheet model,
321 *J. Geophys. Res-Earth.*, 114, F03008, <https://doi.org/10.1029/2008JF001179>, 2009.

322 Carrivick, J.L., Boston, C.M., King, W., James, W.H., Quincey, D.J., Smith, M.W., Grimes, M., and Evans, J.: Accelerated
323 volume loss in glacier ablation zones of NE Greenland, Little Ice Age to present, *Geophys. Res. Lett.*, 46, 1476–1484,
324 <https://doi.org/10.1029/2018GL081383>, 2019.

325 Chandler, B.M.P., Boston, C.M., and Lukas, S.: A spatially-restricted Younger Dryas plateau icefield in the Gaick, Scotland:
326 Reconstruction and palaeoclimatic implications, *Quaternary. Sci. Rev.*, 211, 107–135,
327 <https://doi.org/10.1016/j.quascirev.2019.03.019>, 2019.

328 Dortch, J.M., Owen, L.A., and Caffee, M.W.: Timing and climatic drivers for glaciation across semi-arid western Himalayan-
329 Tibetan orogen, *Quaternary. Sci. Rev.*, 78, 188–208, <http://dx.doi.org/10.1016/j.quascirev.2013.07.025>, 2013.

330 Eis, J., Maussion, F., and Marzeion, B.: Initialization of a global glacier model based on present-day glacier geometry and past
331 climate information: an ensemble approach, *The Cryosphere*, 13, 3317–3335, <https://doi.org/10.5194/tc-13-3317-2019>, 2019.

332 Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Füst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M.,
333 Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann,

- 334 A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson,
335 B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helffricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R.,
336 Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX,
337 the Ice Thickness Models Intercomparison eXperiment, *The Cryosphere*, 11, 949–970, <https://doi.org/10.5194/tc-11-949-2017>,
338 2017.
- 339 Fu, P., Stroeven, A.P., Harbor, J.M., Hättestrand, C., Heyman, J., Caffee, M.W., and Zhou, P.: Paleoglaciation of Shaluli Shan,
340 southeastern Tibetan Plateau, *Quaternary Sci. Rev.*, 64, 121–135, <http://dx.doi.org/10.1016/j.quascirev.2012.12.009>, 2013.
- 341 Goosse, H., Barriat, P-Y., Dalaïden, Q., Klein, F., Marzeion, B., Maussion, F., Pelucchi, P., and Vlug, A.: Testing the
342 consistency between changes in simulated climate and Alpine glacier length over the past millennium, *Clim. Past.*, 14, 1119–
343 1133, <https://doi.org/10.5194/cp-14-1119-2018>, 2018.
- 344 Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets. *Philos. T.R. Soc. A.*, 355(1726), 921–974,
345 [https://doi.org/10.1175/1520-0442\(1997\)010<0901:AOAPTD>2.0.CO;2](https://doi.org/10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2), 1997a.
- 346 Greve, R.: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-
347 state and transient climate scenarios, *J. Climate.*, 10(5), 901–918, <https://doi.org/10.1088/rsta.1997.0050>, 1997b.
- 348 Grove, J.M.: *Little Ice Age*, 2 ed, Routledge, 2013.
- 349 Heyman, J.: Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression
350 estimates, *Quaternary Sci. Rev.*, 91, 30–41, <http://dx.doi.org/10.1016/j.quascirev.2014.03.018>, 2014.
- 351 Heyman, J., Stroeven, A.P., Harbor, J.M., and Caffee, M.W.: Too young or too old: Evaluating cosmogenic exposure dating
352 based on an analysis of compiled boulder exposure ages, *Earth. Planet. Sc. Lett.*, 302, 71–80,
353 <https://doi.org/10.1016/j.epsl.2010.11.040>, 2011.
- 354 Li, Y., Liu, G., Kong, P., Harbor, J., Chen, Y., and Caffee, M.: Cosmogenic nuclide constraints on glacial chronology in the
355 source area of the Urumqi River, Tian Shan, China, *J. Quaternary. Sci.*, 26(3), 297–304, <https://doi.org/10.1002/jqs.1454>, 2011.
- 356 Lipscomb, W.H., Price, S.F., Hoffman, M.J., Leguy, G.R., Bennett, A.R., Bradley, S.L., Evans, K.J., Fyke, J.G., Kennedy, J.H.,
357 Perego, M., Ranken, D.M., Sacks, W.J., Salinger, A.G., Vargo, L.J., and Worley, P.J.: Description and evaluating of the
358 Community Ice Sheet Model (CISM) v2.1, *Geosci. Model. Dev.*, 12, 387–424, <https://doi.org/10.5194/gmd-12-387-2019>, 2019.
- 359 Loibl, D., Lehmkuhl, F., and Grießinger, J.: Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier
360 mapping and equilibrium line altitude calculation, *Geomorphology*, 214, 22–39,
361 <http://dx.doi.org/10.1016/j.geomorph.2014.03.018>, 2014.
- 362 Liu, J., Yi, C., Li, Y., Bi, W., Zhang, Q., and Hu, G.: Glacial fluctuations around the Karola Pass, eastern Lhagri Kangri Range,
363 since the Last Glacial Maximum, *J. Quaternary. Sci.*, 32(4), 516–527, <https://doi.org/10.1002/jqs.2946>, 2017.
- 364 Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, *The
365 Cryosphere*, 6, 1295–1322, <https://doi.org/10.5194/tc-6-1295-2012>, 2012.

- 366 Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle,
367 F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1,
368 *Geosci. Model Dev.*, 12, 909–931, <https://doi.org/10.5194/gmd-12-909-2019>, 2019.
- 369 Murari, M.K., Owen, L.A., Dorch, J.M., Caffee, M.W., Dietsch, C., Fuchs, M., Haneberg, W.C., Sharma, M.C., and Townsend-
370 Small, A.: Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen,
371 *Quaternary Science Review*, 88, 159-182, <http://dx.doi.org/10.1016/j.quascirev.2014.01.013>, 2014.
- 372 Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, Ph., Jóhannesson, T., Knap, W.H., Schmeits, M., Stroeven, A.P., van
373 de Wal, R.S.W., and Zuo, Z.: Modelling the response of glaciers to climate warming, *Climate Dynamics*, 14, 267-274,
374 <https://doi.org/10.1007/s003820050222>, 1998.
- 375 Owen, L.A.: Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet, *Quaternary. Sci. Rev.*, 28, 2150-
376 2164, <https://doi.org/10.1016/j.quascirev.2008.10.020>, 2009.
- 377 Owen, L.A., and Dorch, J.M.: Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen, *Quaternary. Sci.*
378 *Rev.*, 88, 14-54, <http://dx.doi.org/10.1016/j.quascirev.2013.11.016>, 2014.
- 379 PAGES 2k-PMIP3 group.: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional
380 temperature reconstructions over the past millennium, *Clim. Past.*, 11, 1673-1699, <https://doi.org/10.5194/cp-11-1673-2015>,
381 2015.
- 382 Parkes, D., and Goosse, H.: Modelling regional glacier length changes over the last millennium using the Open Global Glacier
383 Model, *The Cryosphere*, 14, 3135-3153, <https://doi.org/10.5194/tc-14-3135-2020>, 2020.
- 384 Pelto, B.M., Maussion, F., Menounos, B., Radić, V and Zeuner, M.: Bias-corrected estimates of glacier thickness in the
385 Columbia River Basin, Canada, *J. Glaciol.*, 66(260), 1051-1063, <https://doi.org/10.1017/jog.2020.75>, 2020.
- 386 Peng, X., Chen Y., Liu, G., Liu, B., Li, Y., Liu, Q., Han, Y., Yang, W., and Cui, Z.: Late Quaternary glaciations in the Cogarbu
387 valley, Bhutanese Himalaya, *J. Quaternary. Sci.*, 34(1), 40-50, <http://dx.doi.org/10.1002/jqs.3079>, 2019.
- 388 Peng, X., Chen, Y., Li, Y., Liu, B., Liu, Q., Yang, W., Liu, G.: Late Holocene glacier fluctuations in the Bhutanese Himalaya,
389 *Global. Planet. Change.*, 187, 103137, <https://doi.org/10.1016/j.gloplacha.2020.103137>, 2020.
- 390 Qiao, B., and Yi, C.: Reconstruction of Little Ice Age glacier area and equilibrium line attitudes in the central and western
391 Himalaya, *Quatern. Int.*, 444, 65-75, <http://dx.doi.org/10.1016/j.quaint.2016.11.049>, 2017.
- 392 Qureshi, M.A., Li, Y., Yi, C., and Xu, X.: Glacial changes in the Hunza Basin, western Karakoram, since the Little Ice Age,
393 *Palaeogeogr. Palaeocl.*, 562, 110086, <https://doi.org/10.1016/j.palaeo.2020.110086>, 2021.
- 394 RGI Consortium.: Randolph Glacier Inventory (RGI)-A Dataset of Global Glacier Outlines: Version 6.0,
395 <https://doi.org/10.7265/N5-RGI-60>, 2017.
- 396 Saha, S., Owen, L.A., Orr, E.N., and Caffee, M.W.: High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan
397 orogen, *Quaternary. Sci. Rev.*, 220, 372-400, <https://doi.org/10.1016/j.quascirev.2019.07.021>, 2019.

- 398 Saha, S., Owen, L.A., Orr, E.N., & Caffee, M.W.: Timing and nature of Holocene glacier advances at the northwestern end of
399 the Himalayan-Tibetan orogen, *Quaternary. Sci. Rev.*, 187, 177-202, <https://doi.org/10.1016/j.quascirev.2018.03.009>, 2018.
- 400 Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova,
401 N.A., Muscheler, R., Otto-Bliesner, B.L., Pongratz, J., Shindell, D.T., Solanki, S.K., Steinhilber, F., and Vieira, L.E.A.: Climate
402 forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), *Geosci. Model. Dev.*, 4, 33-45,
403 <https://doi.org/10.5194/gmd-4-33-2011>, 2011.
- 404 Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., Owen, L.A., Wanner,
405 H., Wiles, G.C., and Young, N.E.: Holocene glacier fluctuations, *Quaternary. Sci. Rev.*, 111, 9-34,
406 <http://dx.doi.org/10.1016/j.quascirev.2014.11.018>, 2015.
- 407 Taylor, K., Stouffer, R., and Meehl, G.: An Overview of CMIP5 and the Experiment Design, *B. Am. Meteorol. Soc.*, 93, 485-
408 498, <https://doi.org/10.1175/BAMS-D-11-00094.1>, 2012.
- 409 Winkelmann, R., Martin, M.A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel
410 Ice Sheet Model (PISM-PIK) – Part 1: Model description, *The Cryosphere*, 5, 715-726, <https://doi.org/10.5194/tc-5-715-2011>,
411 2011.
- 412 Xu, X., Pan, B., Hu, E., Li, Y., and Liang, Y.: Responses of two branches of Glacier No. 1 to climate change from 1993 to
413 2005, Tianshan, China, *Quatern. Int.*, 236, 143-150, <https://doi.org/10.1016/j.quaint.2010.06.013>, 2010.
- 414 Yan, Q., Owen, L. A., Wang, H., and Zhang, Z.: Climate constraints on glaciation over High-Mountain Asia during the last
415 glacial maximum, *Geophys. Res. Lett.*, 45, 9024-9033, <https://doi.org/10.1029/2018GL079168>, 2018.
- 416 Yan, Q., Owen, L. A., Zhang, Z., Wang, H., Wei, T., Jiang, N., and Zhang, R.: Divergent evolution of glaciation across High-
417 Mountain Asia during the last four glacial-interglacial cycles, *Geophys. Res. Lett.*, 48, e2021GL092411,
418 <https://doi.org/10.1029/2021GL092411>, 2021.
- 419 Yan, Q., Owen, L.A., Zhang, Z., Jiang, N., and Zhang, R.: Deciphering the evolution and forcing mechanisms of glaciation
420 over the Himalayan-Tibetan orogen during the past 20,000 years, *Earth. Planet. Sc. Lett.*, 541, 116295,
421 <https://doi.org/10.1016/j.epsl.2020.116295>, 2020.
- 422 Zhang, Q., Yi, C., Dong, G., Fu, P., Wang, N., and Capolongo, D.: Quaternary glaciations in the Lopu Kangri area, central
423 Gangdise Mountains, southern Tibetan Plateau, *Quaternary. Sci. Rev.*, 201, 470-482,
424 <https://doi.org/10.1016/j.quascirev.2018.10.027>, 2018a.
- 425 Zhang, Q., Yi, C., Fu, P., Wu, Y., Liu, J., and Wang, N.: Glacier change in the Gangdise Mountains, southern Tibet, since the
426 Little Ice Age, *Geomorphology*, 306, 51-63, <https://doi.org/10.1016/j.geomorph.2018.01.002>, 2018b.