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Abstract. Arctic sea ice is declining rapidly, but predictions of its future loss are made difficult by the large spread both in 

present-day and in future sea ice area and volume; hence, there is a need to better understand the drivers of model spread in 

sea ice state. Here we present a framework for understanding differences between modelled sea ice simulations based on 

attributing seasonal ice growth and melt differences. In the method presented, the net downward surface flux is treated as the 10 

principal driver of seasonal sea ice growth and melt. A system of simple models is used to estimate the pointwise effect of 

model differences in key Arctic climate variables on this surface flux, and hence on seasonal sea ice growth and melt. We 

compare three models with very different historical sea ice simulations: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. 

The largest driver of differences in ice growth / melt between these models is shown to be the ice area in summer (representing 

the surface albedo feedback) and the ice thickness distribution in winter (the thickness-growth feedback). Differences in snow 15 

and melt-pond cover during the early summer exert a smaller effect on the seasonal growth and melt, hence representing the 

drivers of model differences in both this and in the sea ice volume. In particular, the direct impacts on sea ice growth / melt of 

differing model parameterisations of snow area and of melt-ponds are shown to be small but non-negligible. 

1 Introduction 

Arctic sea ice has undergone dramatic changes in recent decades, with a decline of 0.88 x 106 km2 per decade in September 20 

extent observed from 1979-2020 according to the HadISST.2.2 dataset (Titchner and Rayner, 2014) and associated thinning 

in summer and winter (Lindsay and Schweiger, 2015). Associated with the decline in sea ice has been winter warming (e.g. 

Graham et al., 2017), earlier onset of melt over the ice (Markus et al., 2009), and later onset of freezing (Stammerjohn et al., 

2012). 

Sea ice is an important component of the climate system, due to its high albedo, its ability to insulate the atmosphere from 25 

oceanic heat during the winter, and its effects on ocean circulation. Hence the accurate modelling, and future prediction of sea 

ice are of primary importance for climate science. These issues are an important focus of the Coupled Model Intercomparison 

Project (CMIP), in which results from coupled models worldwide are collated, compared and evaluated in a series of ‘phases’ 

every few years.  
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In the most recent three phases of CMIP (CMIP3, CMIP5 and CMIP6), sea ice was evaluated in the present-day by Stroeve et 30 

al. (2007), Stroeve et al. (2012), Shu et al. (2015) and Notz et al. (2020) amongst others, finding substantial spread in ice extent 

and volume. All studies have found a tendency to underestimate speed of sea ice extent loss; this may be due to internal 

variability (e.g. Notz, 2015), although Rosenblum and Eisenman (2017) and Notz et al. (2020) found that speed of decline was 

also underestimated as a function of rate of global temperature change.  

There have been multiple attempts to understand the reasons behind the large spread in model sea ice simulation. Holland 35 

(2008) showed that model spread in Arctic sea ice volume during the historical period explained a large proportion of model 

spread in the rate of Arctic sea ice loss. Eisenman et al. (2007) and DeWeaver et al. (2008) linked differences in sea ice 

simulation in the CMIP3 ensemble to differences in atmospheric forcing using idealised models but disagreed on the exact 

relationship. Massonnet et al. (2012) evaluated a variety of metrics of sea ice state in CMIP5, finding a number of statistical 

relationships between present and future sea ice state, but did not examine the underlying drivers in detail. Boeke and Taylor 40 

(2016) evaluated Arctic surface radiation in the CMIP5 ensemble, showing upwelling SW to be strongly dependent on sea ice 

area, but did not examine causation in the opposite direction. Keen et al. (2021) compared mass budget terms across the CMIP6 

ensemble, identifying links between sea ice model parameters and the relative size of individual terms. In this study we aim to 

build on the strengths of these previous approaches, by combining evaluation of Arctic climate variables with simple physical 

relationships between these variables. 45 

The framework is based upon the induced surface flux (ISF) bias method of West et al. (2019), which is extended and enhanced 

to allow comparison of models to each other (as opposed to comparing models only to observations of the real world). The net 

downward surface flux is treated as the principal driver of the sea ice growth and melt. We use a system of simple models to 

understand the ways in which differences in individual model variables drive differences in the surface flux, and hence in the 

sea ice growth and melt. In particular, we use the framework to separate the effects of model differences in sea ice area and 50 

thickness on sea ice growth and melt (representing the two most important feedbacks of the sea ice state, the surface albedo 

feedback and thickness-growth feedback) from the effects of model differences in other Arctic climate variables (representing, 

in a sense, external forcing of the Arctic sea ice state). In this way, we can analyse how model differences in forcing variables 

drive differences in ice state, and ice growth and melt, as a coupled system.  

The framework is similar to that used by Holland and Landrum (2015) to quantify the contribution of changes in surface albedo 55 

and in downwelling SW to changes in net SW over 3 periods of the 21st century, but differs in two ways. Firstly, it quantifies 

the contribution of model processes to model biases, and inter-model differences, rather than to changes in time within model 

runs. Secondly, it is effectively a generalisation of this method, as it quantifies the contributions of model differences in a 

larger number of model variables. 

The study is set out in the following way. In Section 2, the models and reference datasets used for evaluation are described. In 60 

Section 3, the Arctic climate simulations of the models are compared, and evaluated with respect to observations. In Section 

4, the ISF framework is introduced and used to separate the effects of different surface albedo drivers on ice volume balance, 
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and the effects of the thickness-growth feedback during winter from other variables. In Section 5, we discuss how the results 

enable understanding of the sea ice state / sea ice growth and melt as a coupled system. In Section 6, conclusions are presented. 

2 Models and reference data 65 

2.1 Models 

In this paper we evaluate the UK CMIP6 models HadGEM3-GC3.1 (Williams et al., 2017) and UKESM1.0 (Sellar et al., 

2019), comparing them to the previous generation CMIP5 model HadGEM2-ES (Collins et al., 2011). All are fully coupled 

models with interactive sea ice components, and HadGEM2-ES and UKESM1.0 employ additional components to simulate 

terrestrial and oceanic ecosystems, and tropospheric chemistry (see Collins et al., 2011; Sellar et al., 2019).  70 

Within CMIP6 HadGEM3-GC3.1 was run at multiple resolutions: in this study, we evaluate the low-resolution configuration, 

HadGEM3-GC3.1-LL (Kuhlbrodt et al., 2018), for consistency with UKESM1.0 -LL which was run at low resolution only. In 

the LL configuration , the atmosphere model is integrated on the N96 grid, with a resolution of 1.25 degrees latitude and 1.07 

degrees longitude. The ocean and sea ice models are integrated on the ORCA1 grid, an irregular grid with a resolution of 

approximately 50km in the Arctic. HadGEM2-ES was run at only one resolution, with the atmosphere model also on the N96 75 

grid, and the ocean model on the HadGOM grid, a regular latitude-longitude grid with a resolution of one degree in polar 

regions. 

We briefly describe differences in the sea ice components of the models here (differences in the atmospheric and ocean 

components are described in more detail in Williams et al., 2018). Some features of the sea ice components are shared between 

all models. All employ a sub-grid-scale ice thickness distribution (Thorndike et al., 1975); elastic-viscous-plastic rheology 80 

(Hunke and Dukowicz, 1997) and incremental remapping (Lipscomb and Hunke, 2004). In addition, all models share a 

thermodynamic framework in which the surface energy balance over ice is calculated in the atmosphere model (West et al., 

2016).  

However, there are some fundamental differences between the sea ice component of HadGEM2-ES, and those of the CMIP6 

models. Firstly, in HadGEM2-ES the sea ice has no heat capacity and responds instantly to surface thermodynamic forcing 85 

(zero-layer framework, appendix to Semtner (1979)), with vertical conduction assumed to be uniform through the ice. In the 

CMIP6 models the sea ice is divided into 4 equally spaced layers, each with a heat capacity, with temperatures calculated 

according to surface forcing using a forwards-implicit scheme (multi-layer framework, Bitz and Lipscomb, 1999).  

Secondly, the radiative effect of melt-ponds is modelled explicitly in the two newer models, using the topographic scheme of 

Flocco et al. (2014). In this scheme, while melt-pond albedo is a fixed parameter, melt-pond fraction of ice is able to vary 90 

according to the total volume of meltwater, and the ice topography. In HadGEM2-ES the radiative effect of melt-ponds is 

modelled implicitly, by reducing albedo linearly (from 0.84 to 0.67 for snow; from 0.64 to 0.565 for bare ice) as surface 

temperature increases from -1 to 0°C.  

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



4 
 

Finally, the sea ice model of HadGEM2-ES runs on a regular latitude-longitude grid, with a polar island, while those of 

HadGEM3-GC3.1 and UKESM1.0 run on the extended ORCA1 grid, an irregular tri-polar grid with poles in Antarctica, Russia 95 

and Canada. 

2.2 Reference data 

The reference datasets used to evaluate HadGEM3-GC3.1 and UKESM1.0 in section 3 are identical to those used in West et 

al. (2019) for HadGEM2-ES. A full description of these datasets is given in the earlier study, but they are summarised here, 

together with some probable biases identified. 100 

For ice concentration, we use the NSIDC ‘Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive 

Microwave Data, Version 1’ (Cavalieri et al., 1996), as well as versions 1.2 and .2.2 of the Hadley Centre Ice and Sea Surface 

Temperature dataset (HadISST; Rayner et al., 2003 for HadISST1.2 and Titchner and Rayner, 2013 for HadISST.2.2). All 

datasets use satellite passive microwave imagery as their primary data source (SSMI), but the algorithm used to calculate sea 

ice area from microwave retrievals differs between the datasets. Uncertainty in ice area is known to be particularly high in the 105 

summer, as satellites cannot distinguish between meltponds and open water. 

For ice thickness, we use the Pan-Arctic Ocean-Ice Modeling and Assimilation System (PIOMAS; Schweiger et al., 2011), an 

ice-ocean model forced by NCEP atmospheric data that assimilates ice concentration from HadISST and NSIDC. PIOMAS 

has been evaluated with respect to satellite observations (Laxon et al., 2013; Wang et al., 2016) and found to compare quite 

well, though Wang et al. (2016) and found PIOMAS to underestimate winter ice thickness relative to ICESat by 0.31m over 110 

the Arctic Ocean from 2003-2008. We also use EnviSat radar altimetry observations from 1993-1999 (Laxon et al., 2003) and 

a regression analysis of submarine sonar observations from 1980-1999 (Rothrock et al., 2008). Because the latter two datasets 

are available only for restricted regions, they are used for model evaluation only and not for the ISF analysis. 

For surface radiation, we use three datasets: CERES-EBAF (Loeb et al., 2009) and ISCCP-FD (Zhang et al., 2004) satellite 

observations, obtained by the application of radiative transfer algorithms to reflected SW and upwelling LW retrievals, and 115 

the ERAI reanalysis dataset (Dee et al., 2011). Comparison of downwelling LW observations from these datasets to in-situ 

observations by Lindsay et al (1998) suggested a high bias in ISCCP-FD but no clear bias in CERES-EBAF or ERAI. By 

contrast Lindsay et al. (2014) found ERAI to overestimate downwelling LW in winter by 15 Wm-2 and underestimate 

downwelling SW in spring by 20 Wm-2, but with no clear biases in other seasons, and Christenssen et al. (2016) found CERES-

EBAF to underestimate downwelling LW radiation in winter by 10-15 Wm-2 relative to in-situ observations at Point Barrow, 120 

Alaska. 

Finally, for surface melt onset we use the NSIDC ‘Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS 

Brightness Temperatures’ dataset (Anderson and Drobot, 2012).  
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3 Evaluating the UK CMIP6 models 

In this section, we evaluate and compare the three models UKESM1.0-LL, HadGEM3-GC3.1-LL and HadGEM2-ES. We 125 

analyse first the sea ice state (ice area and volume), before proceeding to examine variables affecting the surface energy 

balance. 

3.1 Sea ice state 

Evaluation is performed for the 1980-1999 period, and for the Arctic Ocean region, defined in Figure 1b, unless otherwise 

stated. The evaluation is performed for the four historically-forced members of HadGEM3-GC3.1-LL and HadGEM2-ES, and 130 

the first six historically-forced members of UKESM1.0-LL. For energy fluxes the sign convention used is that downwards is 

positive. 

Total Northern Hemisphere sea ice extent is higher in both UKESM1.0-LL and HadGEM3-GC3.1-LL than in HadGEM2-ES, 

particularly during the summer (Figure 1a). HadGEM2-ES tended to underestimate Arctic sea ice extent from June-October 

with respect to HadISST1.2, HadISST.2 and NSIDC, whereas ice extent in HadGEM3-GC3.1-LL and UKESM1.0-LL mainly 135 

lies within observational spread. However, HadGEM3-GC3.1-LL and UKESM1.0-LL simulate the minimum of the annual 

cycle in extent to occur in August, whereas in reality it occurs in September. 

 

Figure 1. (a) 1980-1999 average sea ice extent for the whole Northern Hemisphere, for the evaluated models and reference datasets 
(HadISST1.2, HadISST.2 and NSIDC); (b) 1980-1999 average sea ice volume over the Arctic Ocean region shown in the subpanel, 140 
for the evaluated models and PIOMAS. For each model, ensemble mean (lines) and twice standard deviation (shading) is shown. 
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Sea ice thickness is greatest in UKESM1.0-LL (Figure 1b, annual mean Arctic Ocean region thickness 3.9m) and least in 

HadGEM2-ES (1.7m) throughout the year with HadGEM3-GC3.1-LL tending to lie between the two (2.8m). UKESM1.0-LL 

and HadGEM3-GC3.1-LL are biased high relative to the ice-ocean model PIOMAS (Figure 1b, annual mean thickness 1.9m), 

whereas HadGEM2-ES is biased low during the summer. We also evaluate the three models with respect to ERS satellite 145 

measurements from 1993-1999 and to the multiple regression of submarine data from 1980-1999 (not shown). In both cases 

UKESM1.0-LL and HadGEM3-GC3.1-LL are biased high and HadGEM2-ES is biased low year-round. However HadGEM3-

GC3.1-LL lies somewhat closer to observations, and HadGEM2-ES somewhat further, than is the case when PIOMAS is 

reference dataset, consistent with PIOMAS being biased low during winter (Section 2.2). For all three models, internal 

variability (shown as twice the ensemble standard deviation) is low compared to the inter-model differences and the model 150 

biases. 

The large differences in ice thickness between the models are associated also with differences in the amplitude of the seasonal 

cycle of ice thickness, hereafter referred to as ice growth / melt. Ice growth / melt is greatest in HadGEM2-ES (1980-1999 

Arctic Ocean mean 1.53m); it is lower in HadGEM3-GC3.1 (1.22m) and lower still in UKESM1.0-LL (1.03m). By 

comparison, PIOMAS annual ice growth / melt is similar to HadGEM3-GC3.1 at 1.15m. The correspondence between the 155 

model annual mean ice thicknesses and volume balances are broadly consistent with what would be expected from the ice 

thickness-growth feedback (Bitz and Roe, 2004): thicker ice tends to grow less in winter, because it conducts heat from the 

ocean to the atmosphere less efficiently. It is also consistent with the surface albedo feedback (Bitz, 2008): thinner ice warms 

more quickly in early spring, creating melt-ponds sooner, and supports the creation of more extensive open water areas, leading 

to greater absorption of shortwave (SW) radiation and greater ice melt. 160 

The ice growth / melt biases are associated with an energy balance bias. This could be associated with a bias in the surface 

energy balance, the oceanic heat convergence, or in ice divergence (or some combination of these). However, the ice 

divergence term is small, with indeterminate annual cycles, at 2.5, 4.0 and 5.1 Wm-2 in HadGEM2-ES, HadGEM3-GC3.1-LL 

and UKESM1.0-LL respectively. The oceanic heat convergence term is also small at 4.4 Wm-2, 3.8 Wm-2 and 3.9 Wm-2 

respectively. Monthly differences in these terms between models are too small to explain the differences in ice melt / growth 165 

seen: with ice density of 917kgm-3 and latent heat of fusion of 3.35 × 103 Jkg-1, a difference of 1Wm-2 is equivalent to only an 

additional .84cm of ice melt per month. Hence we focus on comparing the surface energy balance between the models. 

3.2 Surface radiation 

We now evaluate surface radiative fluxes in the three models (Figure 2). Downwelling SW is very similar in all three models 

year-round (Figure 2a). By contrast upwelling SW displays large differences from June-August (Figure 2b), with HadGEM2-170 

ES lowest in magnitude and UKESM1.0-LL highest. This is consistent with the ice melt/growth differences: lower upwelling 

SW in HadGEM2-ES causes a higher net SW flux (Figure 2c), and more overall sea ice melting. It is also consistent with the 

ice extent differences: the lower summer ice extent of HadGEM2-ES causes a lower surface albedo and hence lower SW 

reflection. However, in June the ice area differences are small, and insufficient to explain the upwelling SW differences. Hence 
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another parameter influencing surface albedo is likely to be responsible for the model differences in this month. We examine 175 

possible drivers shortly. 

 

 

Figure 2. (a) Downwelling SW, (b) upwelling SW, (c) net downwards SW, (d) downwelling LW, (e) upwelling LW, (f) 
net downwards LW, from 1980-1999 in HadGEM2-ES, HadGEM3-GC3.1-LL and UKESM1.0-LL, together with 180 
observational estimates from ISCCP-FD, ERAI and CERES, averaged over the Arctic Ocean region. For each model, 
ensemble mean (lines) and twice standard deviation (shading) is shown. 
 
Downwelling LW fluxes are similar from January-May in the three models (Figure 2d), but from June-July, and October-

November downwelling LW is much higher in HadGEM2-ES than in UKESM1.0-LL and HadGEM3-GC3.1-LL, indicating 185 

a colder, or clearer, atmosphere in these months in the newer models. Upwelling LW fluxes are higher in magnitude in 

HadGEM2-ES than in UKESM1.0-LL and HadGEM3-GC3.1-LL from September – February (Figure 2e), indicating a colder 

surface in the newer models. Net LW is higher in HadGEM2-ES from June-August, and lower from September – May, than 

in the newer models (Figure 2f), indicating that the upwelling LW differences dominate during the winter. The net LW 

differences are also consistent with the greater ice melting and ice freezing seen in HadGEM2-ES relative to the CMIP6 190 
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models. For both net LW during winter, and net SW during summer, model internal variability is small relative to the difference 

between HadGEM2-ES and the CMIP6 models. 

To summarise, the weaker summer ice melt of the CMIP6 models relative to HadGEM2-ES is driven by a smaller upwelling 

SW flux from June – August. This is likely caused by ice area differences in July and August (the surface albedo feedback), 

but in June other surface albedo drivers are responsible. The weaker winter ice growth of the CMIP6 models relative to 195 

HadGEM2-ES is driven by a smaller upwelling LW flux from October – April. This is likely caused by the ice thickness-

growth feedback: thicker ice in HadGEM3-GC3.1-LL and UKESM1.0-LL causing a colder surface temperature, and less heat 

loss to space, than is the case in HadGEM2-ES. 

3.3 Variables influencing surface albedo 

We now evaluate other model variables that affect surface albedo: snow fraction, and the presence and extent of melt-ponds. 200 

We concentrate on the month of June as it is in this month that the models display differences in upwelling SW radiation that 

cannot be explained by ice area differences alone. Firstly, we compare snow cover in the three models. In June, snow thickness 

is highest in UKESM1.0-LL and lowest in HadGEM2-ES (Figure 3a-c), with Arctic Ocean average snow thicknesses of 6cm, 

13cm and 18cm respectively. For each model, ensemble standard deviation snow thickness is mostly lower than 2cm, although 

in UKESM1.0-LL standard deviation approaches 5cm between Fram Strait and the North Pole (not shown).  205 
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Figure 3. 1980-1999 June averages of variables affecting surface albedo in HadGEM2-ES (left column), HadGEM3-
GC3.1-LL (middle column) and UKESM1.0-LL (right column). Showing (a-c) snow thickness, (d-f) parameterized 
snow area fraction, (g-i) fraction of month during which surface melting conditions were present, (j-l) melt-pond area 
fraction during times in which surface melting conditions were present. 210 
 
The models differ in how snow area is parameterized from snow thickness. HadGEM2-ES uses the formula 

𝑎௦௡௢௪ = 1 − 𝑒ି଴.ଶ௛ೞ೙೚ೢఘೞ೙೚ೢ    (1) 

While HadGEM3-GC3.1-LL and UKESM1.0-LL use the formula (from CICE) 

𝑎௦௡௢௪ =
௛ೞ೙೚ೢ

௛ೞ೙೚ೢି଴.଴ଶ
    (2) 215 

 

The effect of this is that the newer models simulate a lower fraction of snow for the same snow thickness value, with the 

difference greatest at a thickness of 4cm when the newer models simulate 26% less snow area (Figure S1). We can see the 

effect of this when we compare maps of June snow thickness in the three models (Figure 3a-c) with maps of June snow area 

estimated using the models’ respective formulations (Figure 3d-f). Despite the substantially higher snow thicknesses in 220 

HadGEM3-GC3.1-LL and UKESM1.0-LL, the increase in ice area in the newer models is muted. The effect of the new 

parameterization is to reduce the surface albedo difference caused by the thicker snow in UKESM1.0-LL and HadGEM3-

GC3.1-LL Despite this, the difference in snow area between HadGEM2-ES and the CMIP6 models (rising to 0.7 near the 

Bering Strait) is much larger than the ensemble standard deviations in snow area, which approach 0.15 near the Bering Strait 

in HadGEM2-ES but are otherwise under 0.05 (not shown).  225 

Next, we examine differences in melt-pond coverage between the models. As with the snow comparison, care is required as 

the explicit topographic melt-pond scheme of the CMIP6 models is more complex than the simple parameterization of 

HadGEM2-ES. We first compare the average date of melt onset between the three models: the first day, for each grid cell and 

year, for which the surface temperature exceeds a fixed threshold, chosen to be -1C. In this way we create a metric to compare 

surface melting tendencies in each model, independent of the melt pond scheme.  230 

Date of melt onset is earliest in HadGEM2-ES, at mid-to-late May in the Central Arctic, and latest in UKESM1.0-LL, in late 

June in the Central Arctic. By comparison, SSMI observations suggest melt onset occurred in mid-June, on average, in the 

Central Arctic for the period 1980-1999. Hence UKESM1.0-LL models melt onset to occur too late in the Central Arctic, but 

HadGEM2-ES is much too early (as identified by West et al., 2019). To demonstrate the effect of this on June surface albedo, 

the proportion of June for which melting conditions are present (𝑎௠௘௟௧) is plotted (Figure 3g-i): for HadGEM2-ES, 𝑎௠௘௟௧ is 235 

100% across most of the Arctic, but in HadGEM3-GC3.1-LL and UKESM1.0-LL 𝑎௠௘௟௧ approaches 70% and 50% respectively 

across the central Arctic. Ensemble standard deviation in 𝑎௠௘௟௧ is nowhere higher than 10% for any model (not shown).  

To assess the effect of melt-ponds on surface albedo, the melt-pond fraction where melting is taking place must also be 

compared. In this way the proximate effect of the different melt-pond schemes is captured. HadGEM2-ES effectively simulates 

a uniform, constant melt-pond fraction of 0.2 in the presence of surface melting, while UKESM1.0-LL and HadGEM3-GC3.1-240 

LL simulate variable melt-pond fraction depending on total meltwater and ice topography. Hence June melt-pond fractions are 
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higher in the CMIP6 models than HadGEM2-ES at lower latitudes, but much lower in the Central Arctic (Figure 3j-l). 

Ensemble standard deviation in the CMIP6 models is everywhere less than 4% (not shown).  Hence the explicit melt-pond 

scheme is contributing to a portion of the surface albedo differences in June, in addition to the different melt onset dates and 

snow thickness. 245 

 

4 Attributing differences in modelled ice melt/growth using an induced surface flux (ISF) difference framework 

The model evaluation presented in Section 3 prompts two questions. Firstly, by how much do the model differences in snow 

and meltpond variables affect the ice melt differences over the melting season? Secondly, does the thickness-growth feedback 

fully account for the differences in ice growth, given the opposing effect of the downwelling LW differences during the early 250 

winter? To address these questions we use a method similar to the ‘induced surface flux’ (ISF) framework described by West 

et al. (2019). This framework attempts to separate and quantify the drivers of differences in seasonal ice growth/melt.  

The ISF analysis works by approximating, at any point (𝒙, 𝑡) of model space and time, the total net surface flux as a function 

𝑔(𝑣௜ , 𝒙, 𝑡) of variables 𝑣௜ which are quasi-independent in the sense that while they affect surface flux instantaneously, they 

affect each other on finite timescales. (For example, two such variables could be downwelling SW radiation and ice 255 

concentration, as in Holland and Landrum, 2015). In this way the rate at which surface flux depends upon a model variable 𝑣௜ 

at point (𝒙, 𝑡) can be estimated as 𝜕𝑔 𝜕𝑣௜⁄ . Given two model estimates of 𝑣௜ at point (𝒙, 𝑡), 𝑣௜
ெை஽ா௅ଵ(𝒙, 𝑡) and 𝑣௜

ெை஽ா (𝒙, 𝑡), 

we can characterise the induced surface flux difference between the models due to variable 𝑣௜ at (𝒙, 𝑡) as 

൫𝑣௜,௫,௧
ெை஽ா − 𝑣௜,௫,௧

ெை஽ா ൯ ൬
డ௚

డ௩೔

ெை஽ா௅
+

డ௚

డ௩೔

ெை஽ா
൰ /2 (3) 

The ISF differences obtained can be averaged over large regions of time and space to determine the large-scale effects of 260 

specific model biases on surface flux, and hence ice volume balance. In particular, due to the quasi-independence of the 

variables, the ISF differences for each variable represent separate effects, and the sum of the individual ISF differences should 

approach the true surface flux difference, which is thereby divided into components, each representing the effect of a model 

variable. 

We briefly describe how the effects of different model variables on surface flux are quantified (West et al., 2019 gives a 265 

complete description). Firstly, the division of the upwelling SW difference into components is demonstrated. Net downwelling 

SW radiation can be expressed as 

𝐹ௌௐି௡௘௧ = 𝐹ௌௐିௗ௢௪௡ − 𝐹ௌௐି௨௣ 

= 𝐹ௌௐିௗ௢௪௡൫1 − 𝛼௦௙௖൯    (4) 

where 𝛼௦௙௖  is surface albedo, 𝐹ௌௐିௗ௢  is downwelling SW radiation and 𝐹ௌௐି௨  is upwelling SW radiation. 𝛼௦௙௖  can be 270 

further expressed as 
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𝛼௦௙௖ = ∑ 𝑎௜𝛼௜௜      (5) 

where i varies over all surface types present in a grid cell, 𝑎௜ is the fractional area of surface type i and 𝛼௜ is the surface albedo 

of surface type i.  

We can use this equation to approximate net SW flux in each model (due to nonlinearities in taking temporal means, the exact 275 

model net SW flux will not be reproduced). Over ocean, there are four surface types: open water, melt-pond, snow and bare 

ice, the albedos of all of which are model parameters. The open water fraction is in all models equal to 1 − 𝑎௜௖௘ , while the 

fraction of ice covered by snow is parameterised as in (1) (HadGEM2-ES) or (2) (HadGEM3-GC3.1-LL and UKESM1.0-LL). 

For UKESM1.0-LL and HadGEM3-GC3.1-LL melt-pond area fraction is a model diagnostic, but for HadGEM2-ES they are 

implicit in the parameterization, which assigns an aggregate ‘melting surface albedo’ to any grid cell judged to be undergoing 280 

surface melting. Relative to the HadGEM3-GC3.1-LL melt-pond albedo parameter, this means that melting grid cells in 

HadGEM2-ES have a uniform, constant melt-pond fraction of 0.23 (when snow is present) or 0.18 (when snow is not present). 

For any model, month and grid cell, in addition to approximating the net SW flux, we can then characterise the dependence of 

the net SW flux on any model variable or parameter by taking the derivative of equation (4) with respect to that parameter. For 

example, net SW varies with ice concentration by 𝐹ௌௐିௗ௢௪௡(𝛼௢௖௘௔௡ − 𝛼௜௖௘). We illustrate what this means by considering the 285 

month of August 1980 for a grid cell in the Canadian Basin. 𝐹ௌௐିௗ௢௪௡  is 133 Wm-2 and 145 Wm-2 for UKESM1.0-LL and 

HadGEM2-ES respectively, giving a model mean of 139 Wm-2; 𝛼௢௖௘ − 𝛼௜௖௘  is -0.56 at the same point, meaning that net SW 

varies with ice concentration by -78 Wm-2. As ice concentration for this point in the two models are 0.95 and 0.83 respectively, 

the net SW difference induced by ice concentration is -9.0 Wm-2. 

The variable 𝑎௠௘௟௧ defined in Section 3, the tendency of a grid point to be undergoing surface melting, also usefully emerges 290 

as an independent variable in this framework, with  

డிೄೈష೙೐

డ௔೘೐೗೟
= 𝐹ௌௐିௗ௢௪௡𝑎௠௘௟௧௣௢௡ௗ൫𝛼௠௘௟௧௣௢௡ௗ − 𝛼௜௖௘ି௦௡௢௪൯ (6) 

Hence we can assign a component of the surface flux difference to that induced by difference in the tendency of the model 

atmosphere to induce surface melting, as well as a component due to difference in melt-pond fraction when melting occurs. In 

a proximate sense, the effect of the structural model differences can be separated from the effect of the model climate 295 

differences. 

In general therefore, given a model difference in a variable at any point in model space and time, we multiply that difference 

by the model mean dependence of net SW on that variable, to obtain an estimate of the surface flux difference induced by the 

difference in that variable. In this way, the model differences in upwelling SW can be decomposed into contributions from 

different model parameters, and the contributions can be averaged in time and space to determine the large-scale effects of 300 

differences in each variable.  
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We demonstrate this by showing how components of induced surface flux difference evolve through the summer when 

comparing the models in turn. As daily data is available for only the first ensemble member of HadGEM2-ES, the evolution 

is demonstrated using only first historical ensemble members for each model. As the ensemble spread in the driving model 

variables is small relative to the model differences (demonstrated in Section 3.3), this is likely to give a similar result to using 305 

the ensemble means. 

When comparing UKESM1.0-LL with HadGEM2-ES (Figure 4a), the total ISF difference is negative throughout the summer, 

consistent with the weaker ice melt and reduced net SW radiation in UKESM1.0-LL. In April, the total ISF difference is 

weakly negative, but it falls steeply through May to reach values of over -30 Wm-2 in mid-June, rising very slowly thereafter. 

Consistent with the evaluation in Section 3, ice area difference does not become the dominant contribution to the total ISF 310 

difference until early July, with significant contributions occurring both from surface melt onset occurrence (peaking at the 

beginning of June, at -15 Wm-2) and from snow area (peaking in mid-to-late June, at -18 Wm-2). The melt-pond scheme 

contributes only a small negative ISF difference, because large negative differences in the Central Arctic are mostly 

outweighed by large positive differences near the coasts. The difference in snow parameterization, as expected, contributes a 

positive ISF difference, rising to a maximum of 8 Wm-2 in early June. The downwelling SW term contributes a negative 315 

difference in May, becoming a positive difference in June, but this is counteracted by the downwelling LW term which is 

shown for comparison. These terms likely represent the response of modelled cloud cover to the weaker ice melt of 

UKESM1.0-LL, and collectively contribute little surface flux difference. 

Examining the ISF terms over the melt season as a whole (Figure 4b) we see that the ice area term contributes about two-thirds 

of the total ISF difference (18.6 Wm-2 of 27.2 Wm-2), with the snow area and melt onset terms contributing -3.2 Wm-2 and -320 

2.4 Wm-2 respectively. The value of using daily data is demonstrated: the snow area and melt onset terms appear very small 

over the season as a whole, but the daily data shows that they play a vital role in the early part of the season, and help generate 

the ice area differences that contribute the major part of the surface flux differences. The downwelling radiative differences 

collectively contribute -4.9 Wm-2, but the effect is much more uniform over the melting season than that of the snow area and 

melt onset terms. 325 

When HadGEM3-GC3.1-LL is compared to HadGEM2-ES (not shown) the picture is qualitatively similar but the ISF terms 

are smaller in magnitude, consistent with the rate of ice melt being more similar in these two models. The total ISF difference 

is smaller still when UKESM1.0-LL is compared to HadGEM3-GC3.1-LL (Figure 4c), but in this case it is the snow thickness 

difference that appears to drive most of the ISF difference over the melt season as a whole (Figure 4d), with the ice area 

difference contributing very little to the surface flux differences. The other notable difference with this comparison is that the 330 

effect of the downwelling radiative differences is also more concentrated in the early part of the melt season. 
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Figure 4. Illustration of drivers of summer melting differences, using the ISF framework. Shown are ISF differences 
between (a,b) UKESM1.0-LL and HadGEM2-ES; (c,d)  UKESM1.0-LL and HadGEM3-GC3.1-LL, apportioned by 
downwelling SW, ice area, snow thickness, surface melt onset, direct impact of snow fraction parameterization, and 335 
direct impact of the UKESM1.0 melt-pond scheme. Showing April – September daily evolution (left column) and melt 
season mean (right column, 16th May – 15th September). For each comparison, only the first ensemble member is shown, 
as daily data is not available for other members of HadGEM2-ES. 

Secondly, we describe how the thickness-growth feedback can be separated from the atmospheric radiative components. This 

is done using a single-column model after Thorndike (1992), discussed more extensively in West et al. (2019). As in the 340 
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models, each grid cell is divided into five sea ice categories, plus a ‘zero’ category for open water. For each category, we 

assume a uniform conductive flux through the ice (no sensible heat storage) and flux continuity at the surface. Hence  

𝐹௖௢௡ௗ(𝒙, 𝑡, 𝑐𝑎𝑡) =
்ೞೠೝ೑ೌ೎೐(𝒙,௧,௖௔௧)ି்್ೌೞ೐

ோ೔೎೐(𝒙,௧,௖௔௧)
 (7) 

where 𝑐𝑎𝑡 represents the category number (ranging from 0 to 5), 𝐹௖௢௡ௗ is conductive flux through the ice, 𝑇௕௔௦௘  is ice base 

temperature, 𝑇௦௨௥௙௔௖௘ ice surface temperature. 𝑅௜௖௘ denotes the thermal insulance of the ice-snow column, defined as 345 

𝑅௜௖௘ =
௛೔೎೐(𝒙,௧,௖௔௧)

௞೔೎೐
+

௛ೞ೙೚ೢ(𝒙,௧,௖௔௧)

௞ೞ೙೚ೢ
  (8) 

where ℎ௜௖௘  and ℎ௦௡௢௪  are category ice and snow thickness respectively, and 𝑘௜௖௘  and 𝑘௦௡௢௪  are fresh ice and snow 

conductivity. The latter are parameterized as 2.03 and 0.30 Wm-1K-1 respectively, similar to the values used in HadGEM2-ES, 

HadGEM3-GC3.1-LL and UKESM1.0-LL. 

By flux continuity, 𝐹௖௢௡ௗ = 𝐹௦௙௖ , where 𝐹௦௙௖  is the downwards surface energy flux, linearised as 𝐹௦௨௥௙௔௖௘(𝒙, 𝑡, 𝑐𝑎𝑡) =350 

𝐹௔௧௠௢௦ି௜௖௘(𝒙, 𝑡) + 𝐵௨௣𝑇௦௨௥௙௔௖௘(𝒙, 𝑡, 𝑐𝑎𝑡).  Eliminating 𝑇௦௨௥௙௔௖௘ and rearranging gives  

𝐹௦௨௥௙௔௖௘ =
ிೌ೟೘೚ೞష೔೎೐ା஻ೠ೛்್ೌೞ೐

ଵା஻ೠ೛ோ೔೎೐
        (9) 

Summing over categories gives 

𝐹௦௨௥௙௔௖௘ = (1 − ∑ 𝑎௜௖௘
ହ
௖௔௧ୀଵ )𝐹௔௧௠௢௦ି௢௖௘௔ + 𝐹௔௧௠௢௦ି௜௖௘ ∑

௔೔೎೐

ଵା஻ೠ೛ோ೔೎೐

ହ
௖௔௧ୀଵ  (10) 

In this equation 𝐹௔௧௠௢௦ି௜௖௘ represents the part of the atmosphere-ice energy flux that is independent of the surface temperature, 355 

or the components that do not vary instantly when surface temperature is varied. After West et al. (2019) we identify 𝐹௔௧௠௢௦ି௜௖௘ 

with the sum of the net SW flux, the downwelling LW flux, and the turbulent fluxes.  

Using equation (10) we can separate the ice thickness-growth feedback from the different atmospheric forcing parameters at 

any point in model space and time. For a given model, at a point (x,t), the dependence of net surface flux on any component 

of 𝐹௔௧௠௢௦ି௜௖௘ under freezing conditions is ∑
௔೔೎೐

ଵା஻ೠ೛ோ೔೎೐

ହ
௖௔௧ୀଵ , the ‘ice thickness scale factor’, which tends to ∑ 𝑎௜௖௘

ହ
௖௔௧ୀଵ  in the 360 

limit of thin ice and 0 in the limit of thick ice. In this way, given a model difference in downwelling LW of -50 Wm-2 (for 

example), we multiply this by the model mean ice thickness scale factor to estimate the difference in net surface flux induced. 

Under thicker ice conditions, a given difference in atmospheric forcing will tend to induce a smaller difference in net surface 

flux, and hence a smaller difference in ice growth.  

Given full information about the modelled ice thickness distribution, we can also use equation (10) to diagnose the effect of 365 

the thickness-growth feedback itself. At each model point (x,t) this effect is represented by the sum over all categories of the 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



16 
 

effects of differences in category ice area and thickness. For each category, the rate of dependence of surface flux on category 

ice area is 1 ൫1 + 𝐵௨௣𝑅௜௖௘൯⁄ , while the rate of dependence on category ice thickness is −𝐵௨௣𝑎௜ି௖௔௧ ቀ𝑘௜൫1 + 𝐵௨௣𝑅௜௖௘൯ቁ
ଶ

ൗ . 

Hence we can calculate surface flux difference induced by differences in atmospheric forcing (𝐹௔௧௠௢௦), snow thickness, and 

in the ice thickness distribution, at each point in model space and time, and average these over the Arctic Ocean region and 370 

the period 1980-1999 to understand the effect of the evolving differences over the ice freezing season (Figure 5). For all three 

pairs of models, the effect of the ice thickness distribution (represented by the sum of the individual category terms) greatly 

outweighs the effects of differential atmospheric forcing, and of differences in snow cover. For example, when comparing 

UKESM1.0-LL to HadGEM2-ES (Figure 5a) the total ice thickness-induced surface flux difference achieves a maximum of 

15 Wm-2 in November, representing a weaker upwards surface flux, and hence reduced ice growth, in UKESM1.0-LL. 𝐹௔௧௠௢௦ 375 

contributes significant differences only at the beginning of the freezing season, being -9.4 Wm-2 in September but near-zero 

from December onwards, while snow differences contribute a maximum of -0.3 Wm-2 surface flux difference, in January.  

Ice thickness distribution-induced differences dominate also when HadGEM3-GC3.1-LL is compared to HadGEM2-ES (not 

shown) and also when UKESM1.0-LL is compared to HadGEM3-GC3.1-LL (Figure 5c), but in this last case differences in 

the thicker categories contribute much more towards the total. Unlike for the summer analysis, the required data exists for all 380 

model ensemble members, and ensemble standard deviation is seen to be small compared to the ensemble mean ISF 

differences. Hence the model differences in ice thickness distribution contribute to a systematic difference in seasonal ice 

growth and melt between models. 
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Figure 5. Illustration of drivers of winter freezing differences, using the ISF framework. Shown are ISF freezing season 385 
differences due to atmospheric forcing, snow thickness and ice thickness for (a,b) UKESM1.0-LL relative to 
HadGEM2-ES; (c,d) UKESM1.0-LL relative to HadGEM3-GC3.1-LL. Showing September – May monthly evolution 
(left column) and freezing season mean (right column, October – April). For a) and c), the bars denote ensemble mean 
and standard deviation. 

These two approaches can be combined to provide a complete breakdown of the drivers of surface flux differences between 390 

pairs of models (Figure 6). We illustrate this with the UKESM1.0-LL – HadGEM2-ES comparison, performed using monthly 

means year-round as daily data is not available for the ice thickness distribution. The total ISF difference is negative May – 

September and positive from October – April. This indicates that model differences tend to drive a lower net down surface 

flux in the summer in UKESM1.0-LL (less ice melt) and a higher net down surface flux in the winter (less ice growth).  

In summer, the ice area differences account for most of the negative ISF difference except in June. In this month, the ice area 395 

difference contributes only -13.2 Wm-2 of the total -29.2 Wm-2. The remaining negative ISF difference is accounted for by 

snow area albedo effect (-7.8 Wm-2), surface melt onset (-4.5Wm-2), and meltpond parameterization (-2.6Wm-2), with an 

opposing effect from the snow area parameterization (4.4 Wm-2). In addition, there are opposing contributions from the 

downwelling SW (6.8 Wm-2) and downwelling LW (-9.8 Wm-2) terms which largely cancel out.  

In winter, the ice thickness distribution contributes almost the entire positive ISF difference, except in October and November, 400 

when there is a substantial negative term from the downwelling LW (-5.0 Wm-2, comparing to 12.4 Wm-2 from the ice thickness 

distribution over these two months).  

Viewing the year as a whole, the ice growth/melt differences are almost all driven by differences in the ice state (area and 

volume) itself, with other drivers being important mainly during the early summer. The implications of this are discussed in 

Section 5 below. The other model comparisons are qualitatively similar (not shown): only when comparing UKESM1.0-LL to 405 

HadGEM3-GC3.1-LL in the melting season does a variable other than ice area or volume dominate the total ISF (snow 

thickness albedo effect). The ice area ISF difference in the melting season can be identified with the surface albedo feedback; 

the ice thickness ISF difference in the freezing season the thickness-growth feedback. 

Finally we note that the total ISF difference is qualitatively consistent with the difference in net radiation between the models, 

and also with the difference in ice growth/melt, shown in Figure 6 for comparison. This gives confidence that the ISF 410 

framework is producing meaningful results. For example, from October – April the surface flux differences imply 58cm less 

ice growth in UKESM1.0-LL than in HadGEM2-ES; from May – September, they imply 75cm less ice melt. This compares 

to a total growth/melt difference of 50cm. The difference in summer melt is likely overestimated in the ISF framework because 

some of the ISF differences occur over regions of already-melted ice, where they would affect the heating of the surface ocean 

layer, rather than the ice volume balance. This is consistent with the biggest difference between the total ISF and the ice 415 

growth/melt being in August, and the net radiation difference being closer to the total ISF than to the ice growth/melt in July 

and August. 
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Figure 6. ISF differences compared between pairs of models over the year as a whole, for UKESM1.0-LL relative to 
HadGEM2-ES. Averages are taken over the 1980-1999 period, and the Arctic Ocean region. The grey lines show, for 420 
comparison, the total net radiation difference and the ice growth/melt difference. All values are plotted in Wm-2 (left 
axis) while the right axis shows the equivalent monthly ice growth/melt difference in cm, assuming ice density of 917 
kgm-3 and latent heat of fusion 3.35 × 105 Jkg-1. 

 

5 Discussion 425 

In this section, we discuss the extent to which the ISF framework is able to explain the differences between the sea ice states 

of UKESM1.0-LL, HadGEM3-GC3.1-LL and HadGEM2-ES.  

The ISF framework shows that for the assessed models, the differences in seasonal ice growth/melt between models are driven 

almost entirely by differences in ice area and thickness. In a proximate sense however, the ice area and thickness – collectively 

representing the ice volume – are driven by the seasonal ice growth/melt in turn. Because of this it is helpful to consider the 430 
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ice volume, and the seasonal ice growth/melt, as a simple coupled system, with points of equilibrium where seasonal ice growth 

and melt are equal. Given an initial equilibrium, changes to an external variable such as downwelling radiation, or snow cover, 

lead to an initial change in annual growth and/or melt. This in turn induces a change in the ice volume (i.e. in the ice area or 

thickness), inducing a further change in the growth or melt via the effect of the surface albedo feedback, and/or thickness-

growth feedback, on the surface flux. The chain of causality continues until ice growth and melt are once again in balance, and 435 

a new equilibrium is reached. 

Therefore the ISF differences not due to ice area and thickness show the proximate causes of the differences in the whole ice 

volume – seasonal ice growth/melt coupled system. For example, comparing UKESM1.0-LL and HadGEM2-ES, when the ice 

thickness and area contributions are excluded the largest remaining ISF differences are from the variables affecting surface 

albedo in early summer: surface melt onset, melt pond parameterisation, snow thickness and snow parameterisation 440 

(contributions from downwelling SW and LW radiation largely cancel each other out). Collectively, they account for far less 

ISF difference than the ice area term. Yet they likely account for a major part of the difference between the ice volume – 

seasonal ice growth/melt systems of UKESM1.0-LL and HadGEM2-ES, because the ice area and ice volume differences can 

be traced to the initial reduced ice melting they trigger. 

More generally, the ‘external’ variables – such as downwelling radiation, snow cover and surface melt – set the parameters of 445 

the ice volume - seasonal ice melt/growth coupled system. In effect, they determine the climate in which the sea ice will find 

an equilibrium volume, with ice melt and growth equal. This can be visualised by calculating ice melt and ice growth curves, 

as a function of annual mean ice thickness, with the simple model used in Section 4 (Figure 7), forced with the Arctic Ocean 

average surface radiative fluxes from each model. For each model, and for the real world, the external variables determine the 

relationship between ice thickness, and ice growth and melt: an equilibrium ice thickness lies where the two curves meet.  450 
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Figure 7. An illustration of idealised ice thickness-ice growth (blue line) and ice thickness-ice melt (red line) 
relationships in the evaluated models and in observations, as produced by the ISF parameterisation. The graph 
demonstrates how the ice growth and ice melt curves determine equilibrium ice thickness in each model climate. 

This conceptual picture accurately reproduces the qualitative differences between each model, and the model biases. All three 455 

models share similar ice growth curves, biased high relative to the real world: this reflects the similar low downwelling LW 

biases. The differences between models are caused by the ice melt curves. For example, the equilibrium ice thickness of 
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HadGEM2-ES is much lower than that of UKESM1.0-LL because this is the only way to achieve the greater ice growth 

required to balance the ice melt differences.  

The impact of external drivers on the sea ice varies greatly by time of year, because of this interplay between ice thickness and 460 

ice growth/melt. On the one hand, the effect of surface flux biases during the freezing season is diminished by the thickness-

growth feedback, particularly early in the season. Differences created are reduced as the freezing season proceeds, because 

thin ice grows more quickly than thick ice. On the other hand, the effect of surface flux biases during the melting season is 

enhanced by the surface albedo feedback, particularly early in the season. Differences created increase as the season progresses, 

as thinner, warmer, less extensive ice has a lower albedo than thicker, colder, more extensive ice. Hence small differences in 465 

forcing can have a large effect in the late spring and early summer, whereas small differences during the freezing season will 

tend to only have a small impact. This is consistent with the prediction of DeWeaver et al. (2008) that that sea ice state is more 

sensitive to surface forcing during the ice melt season than during the ice freezing season. 

A particularly useful aspect of the ISF analysis is that the direct effect of model parameterisation changes can be quantified, 

namely the change to an explicit melt-pond scheme and the change of snow area parameterisation. In each case, the impact on 470 

the surface flux, although small compared to the melt onset and snow thickness terms (let alone the ice area term), is not 

negligible, and because the impact is felt in the early summer likely has a significant impact on the sea ice state. This offers a 

useful perspective on the importance of sea ice model improvements versus model forcing. The effect of such model 

improvements may be small, but could still have significant effects, particularly if the effects are concentrated in the crucial 

late-spring to early-summer time of the year. 475 

6 Conclusions 

The models HadGEM2-ES, HadGEM3-GC3.1-LL and UKESM1.0-LL have been compared using a systematic framework 

(the ISF, or induced surface flux framework) to quantify the impact of differences in individual model variables on differences 

in modelled sea ice and growth. Of the three models, UKESM1.0-LL displays the highest annual mean ice thickness and 

September ice area, and the least annual ice growth/melt, while HadGEM2-ES displays the lowest annual mean ice thickness, 480 

and the most annual ice growth/melt. These are consistent with differences in surface fluxes, with UKESM1.0-LL (HadGEM2-

ES) displaying the lowest (highest) net SW flux during the summer and the highest or least negative (lowest or most negative) 

net LW flux during the winter. The ISF framework shows that the major part of the difference in surface flux between each 

pair of models is caused by differences in the ice state itself, via the surface albedo feedback in the summer and the thickness-

growth feedback in the winter. In this way, it demonstrates how closely coupled the seasonal ice growth/melt is to the ice 485 

volume.  

The remainder of the surface flux differences can mostly be attributed to variables influencing surface albedo in June. The 

snow thickness and melt onset terms, in particular, drive a higher surface albedo, and hence a lower surface flux, in both 

CMIP6 models relative to HadGEM2-ES, and in UKESM1.0-LL relative to HadGEM3-GC3.1-LL. These represent the 
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proximate causes of model differences in the ice volume – seasonal ice melt/growth coupled system. Small differences in 490 

surface flux at this time of year are magnified by the surface albedo feedback into much larger differences in ice melt later in 

the season, as represented by the ice area ISF term. 

The ISF framework focuses attention on model processes most likely to be implicated in driving inter-model spread, helping 

inform future model development. For the models examined in this study for example, small differences in the surface energy 

budget in the early summer appear to lead to very large differences in the sea ice state. Differences in snow area and melt onset 495 

in particular are implicated. This underlines that these are likely to be particularly important variables to model correctly in 

order to reduce sea ice state errors. 

The framework also allows the proximate effect of some specific model improvements on seasonal ice growth/melt to be 

measured directly. The effect of the explicit melt-pond scheme and new snow parameterization of the CMIP6 models on the 

sea ice volume balance, relative to other model drivers, is shown to be small but non-negligible, precisely because their greatest 500 

effect on the surface flux occurs in the early summer, when small differences in ice melt can lead to much greater differences 

later in the season. 
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https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ under the model labels HadGEM3-GC31-LL and UKESM1-0-LL. Data 
for HadGEM2-ES can be downloaded from the CMIP5 archive at https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/. 

Author contribution 510 

The ISF framework was designed and carried out for the case study models, along with the model evaluation and comparison 

in Section 3, by Alex West. The paper was written in its final form by Alex West with assistance and advice from Ed Blockley 

and Mat Collins. 

Competing interests 

The authors declare that they have no conflict of interest. 515 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



24 
 

Acknowledgements 

This work was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra, and the European 

Union’s Horizon 2020 Research & Innovation programme through grant agreement No. 727862 APPLICATE. MC was 

supported by NE/S004645/1. 

References 520 

Anderson, M., Bliss, A. and Drobot, S. Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS Brightness 

Temperatures, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive 

Center. doi: http://dx.doi.org/10.5067/22NFZL42RMUO, 2001, updated 2012 [accessed October 2015]  

Bitz, C. M. and Roe, G. H., A Mechanism for the High Rate of Sea Ice Thinning in the Arctic Ocean, J. Clim., 17, 18, 3623–

3632, doi: https://doi.org/10.1175/1520-0442(2004)017, 2004 525 

Bitz, C. M., Some Aspects of Uncertainty in Predicting Sea Ice Thinning, in Arctic Sea Ice Decline: Observations, 

Projections, Mechanisms, and Implications (eds E. T. DeWeaver, C. M. Bitz and L.-B. Tremblay), American Geophysical 

Union, Washington, D.C.. doi: 10.1029/180GM06, 2008 

Boeke, R. C. and Taylor, P. C., Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res. Atmos., 

121, 8525-8548, doi:10.1002/2016JD025099, 2016 530 

Bitz, C. and Lipscomb, W. H., An energy‐conserving thermodynamic model of sea ice, J. Geophys. Res. (Oceans), 104, C7, 

15669-15677. doi: 10.1029/1999JC900100, 1999 

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, Sea Ice Concentrations from Nimbus-7 SMMR and DMSP 

SSM/I-SSMIS Passive Microwave Data, Version 1. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow 

and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/8GQ8LZQVL0VL, 1996, updated 535 

yearly [accessed 2016] 

Christensen, M. W., Behrangi, A., L’ecuyer, T. S., Wood, N. B., Lebsock, M. D. and Stephens, G. L.: Arctic Observation 

and Reanalysis Integrated System, A New Data Product for Validation and Climate Study, B. Am. Meteorol. Soc., 97, 6, 

907–916, doi: https://doi.org/10.1175/BAMS-D-14-00273.1, 2016 

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, D., Joshi, M., 540 

Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A. and Woodward, S., 

Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev., 4, 1051-1075. doi:10.5194/gmd-

4-1051-2011, 2011 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



25 
 

Dee, D. P, Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, 

G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Belsol, C., Dragani, R., Fuentes, M., 545 

Geer, A., J.,  Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., 

McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. 

and Vitart, F. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly 

Journal of the RMS 137:553:597. doi: 10.1002/qj.828, 2011 

DeWeaver, E. T., Hunke, E. C. and Holland, M. M., Sensitivity of Arctic Sea Ice Thickness to Intermodel Variations in the 550 

Surface Energy Budget. AGU Geophysical Monograph 180: Arctic Sea Ice Decline: Observations, Projections, Mechanisms 

and Implications, 77-91. doi: 10.1029/180GM07, 2008 

Eisenman, I., Untersteiner, N., and Wettlaufer, J. S., On the reliability of simulated Arctic sea ice in global climate models, 

Geophys. Res. Lett., 34, L10501, doi:10.1029/2007GL029914, 2007 

Flocco, D., Feltham, D. L., Bailey, E., and Schroeder, D., The refreezing of melt ponds on Arctic sea ice, J. Geophys. Res. 555 

Oceans, 120, 647– 659, doi:10.1002/2014JC010140, 2015 

Graham, R. M., Cohen, L., Petty, A. A., Boisvert, L. N., Rinke, A., Hudson, S. R., Nicolaus, M., and Granskog, M. A., 

Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974– 6983, 

doi:10.1002/2017GL073395, 2017 

Hibler, W. D. (III): A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr. 9, 4, 815–846, doi: 10.1175/1520-560 

0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979 

Holland, M.M., Serreze, M.C. & Stroeve, J. (2010), The sea ice mass budget of the Arctic and its future change as simulated 

by coupled climate models. Clim Dyn, 34, 185–200. doi: https://doi.org/10.1007/s00382-008-0493-4, 2010 

Holland, M., & Landrum, L., Factors affecting projected Arctic surface shortwave heating and albedo change in coupled 

climate models. Philosophical Transactions Of The Royal Society. Series A, Mathematical, Physical & Engineering 565 

Sciences, 373, 20 pp. doi:10.1098/rsta.2014.0162, 2015 

Laxon, S., Peacock, N. and Smith, D., High interannual variability of sea ice thickness in the Arctic region. Nature, 425, 

947-950, doi:10.1038/nature02050, 2003 

Lindsay, R. W.: Temporal variability of the energy balance of thick Arctic pack ice, J. Clim., 11, 313– 333, 1998 

Lindsay, R., Wensnahan, M., Schweiger, A. and Zhang, J.: Evaluation of Seven Difference Atmospheric Reanalysis 570 

Products in the Arctic, J. Clim., 27, 2588-2606, oi: 10.1175/JCLI-D-13-00014.1, 2013 

Lindsay, R. and Schweiger, A., Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. 

The Cryosphere, 9, 269-283. doi: 10.5194/tc-9-269-2015, 2015 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



26 
 

Liu, J., J. A. Curry, Rossow, W. B., Key, J. R. and Wang, X.: Comparison of surface radiative flux data sets over the Arctic 

Ocean. J. Geophys. Res.: Oceans, 110, C2, doi: 10.1029/2004JC002381, 2005 575 

Lipscomb, W. H. and Hunke, E. C., Modelling sea ice transport using incremental remapping, Mon. Weather Review, 132, 6, 

1341-1354, doi: 10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2, 2004 

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Louis Smith, G., Keyes, D. F., Kato, S., Manalo-Smith, N. and Wong, T., 

Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget. J Cli, 22, 3, 748–766. doi: 

10.1175/2008JCLI2637.1, 2009 580 

Markus, T., Stroeve, J. C. and Miller, J., Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, J. 

Geophys. Res. (Oceans), 114, C12. doi: 10.1029/2009JC005436, 2009 

Notz, D., How well must climate models agree with observations? Philos T Roy Soc A, 373, 2052. doi: 

10.1098/rsta.2014.0164, 2015 

Pithan, F., Medeiros, B. & Mauritsen, T., Mixed-phase clouds cause climate model biases in Arctic wintertime temperature 585 

inversions. Clim Dyn 43, 289–303, doi; https://doi.org/10.1007/s00382-013-1964-9, 2014 

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C. and Kaplan, A., 

Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J 

Geophys Res 108:4407. doi:10.1029/2002JD002670, 2003 

Rothrock, D. A., Percival, D. B. and Wensnahan, M., The decline in arctic sea ice thickness: Separating the spatial, annual, 590 

and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113, C05003. doi: 

10.1029/2007JC004252, 2008 

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. 

Geophys. Res., 116, C00D06, doi:10.1029/2011JC007084, 2011 

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., et al..: UKESM1: Description and evaluation of 595 

the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 11, 4513– 4558. 

https://doi.org/10.1029/2019MS001739, 2019 

Semtner, A. J.: A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. J. Phys. 

Oceanogr., 6, 3, 379–389. doi: 10.1175/1520-0485, 1976 

Shu, Q., Song, Z. and Qiao, F., Assessment of sea ice simulation in the CMIP5 models. The Cryosphere, 9, 399–409. doi: 600 

10.5194/tc-9-399-2015, 2015 

Stammerjohn, S., Massom, R., Rind, D. and Martinson, D., Regions of rapid sea ice change: An inter‐hemispheric seasonal 

comparison, Geophys. Res. Lett., 39, 6. doi: 10.1029/2012GL050874, 2012 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.



27 
 

Stramler, K., Del Genio, A. D. and Rossow, W. B., Synoptically Driven Arctic Winter States. J. Clim., 24, 1747–1762. doi: 

10.1175/2010JCLI3817.1, 2011 605 

Stroeve, J. C., Holland, M. M., Meier, W. M., Scambos, T. and Serreze, M. C., Arctic sea ice decline: Faster than forecast, 

Geophys. Res. Lett.. 34, 9, doi: 10.1029/2007GL029703, 2007 

Stroeve, J. C., Kattsov, V, Barrett, A., Serreze, M., Pavlova, T., Holland, M. M. and Meier, W. N., Trends in Arctic sea ice 

extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, doi: 10.1029/2012GL052676, 2012a 

Thorndike, A. S., Rothrock, D. A., Maykut, G. A. and Colony, R.: The thickness distribution of sea ice, J. Geophys. Res., 80, 610 

33, 4501-4513, doi: 10.1029/JC080i033p04501, 1975 

Thorndike, A. S.: A toy model linking atmospheric thermal radiation and sea ice growth, J. Geophys. Res., 97 (C6), 9401– 

9410, doi:10.1029/92JC00695, 1992 

Titchner, H. A., and N. A. Rayner, The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. 

Sea ice concentrations, J. Geophys. Res. Atmos., 119, 2864-2889, doi: 10.1002/2013JD020316., 2014 615 

West, A. E., McLaren, A. J., Hewitt, H. T., and Best, M. J.: The location of the thermodynamic atmosphere–ice interface in 

fully coupled models – a case study using JULES and CICE, Geosci. Model Dev., 9, 1125–1141, 

https://doi.org/10.5194/gmd-9-1125-2016, 2016 

West, A., Collins, M., Blockley, E., Ridley, J., and Bodas-Salcedo, A., Induced surface fluxes: a new framework for 

attributing Arctic sea ice volume balance biases to specific model errors, The Cryosphere, 13, 2001–2022, 620 

https://doi.org/10.5194/tc-13-2001-2019, 2019 

Williams, K. D., Copsey, D., Blockley, E. W., Bodas‐Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. 

T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. 

J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., 

Woollings, T., & Xavier, P. K., The Met Office Global Coupled model 3.0 and 3.1 (GC3 & GC3.1) configurations. Journal 625 

of Advances in Modeling Earth Systems, 10, 357–380. https://doi.org/10.1002/2017MS001115, 2017 

Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V. and Mishchenko, M. I., Calculation of radiative fluxes from the surface to 

the top of the atmosphere based on ISCCP and other data sets: Refinements to the radiative transfer model and the input data, 

J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457, 2004 

 630 

https://doi.org/10.5194/tc-2021-351
Preprint. Discussion started: 22 November 2021
c© Author(s) 2021. CC BY 4.0 License.


