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Abstract. Antarctic mass loss is the largest contributor to uncertainties in sea level projections on centennial timescales. In this

study the contribution of Antarctica’s ice discharge to future sea level changes is computed with ocean thermal forcing from

14 earth system models and linear response functions from 16 ice sheet models for three greenhouse gas emission scenarios.

Different than in previous studies, basal melt was calibrated on observed Antarctic ice discharge rather than on basal melt

itself with an iterative approach. For each model combination, a linear and quadratic melt dependency were calibrated both5

regionally (in five Antarctic sectors) and at the continental scale. Projections using all model combinations show that the

variation in basal melt computation methods affect the projected sea level more than the scenario variations (SSP1-2.6 to

SSP5-8.5). After calibration, a high number of model pairs still underestimated ice discharge in hindcasts over 1979-2017.

Therefore top 10% best-performing model combinations were selected for each method. A comparison between these model

selections shows that the quadratic melt parameterisation with Antarctic-wide calibration performs best in reproducing past ice10

discharge. We conclude that calibration of basal melt on past ice discharge combined with model selection makes projections

of Antarctic ice discharge (more) consistent with observations over the past four decades. Moreover, calibration of basal melt

on past ice discharge results in lower basal melt sensitivities and thus lower projections of Antarctica’s sea level contribution

than estimates of previous multi-model studies.

1 Introduction15

Sea level rise poses an increasing threat to densely populated coasts and deltas worldwide (Hinkel et al., 2014). Even if the 1.5

degree target of the Paris Agreement is met, global mean sea level will rise several meters in the longer term (Clark et al., 2016;

Fox-Kemper et al., 2021). At present, a global acceleration of sea level rise is visible in satellite measurements and the sea level

is already rising more than twice as fast as the average rate over the twentieth century (Nerem et al., 2018; Dangendorf et al.,

2019).20

Mass loss from land ice is currently accelerating and is now (over the period 2006–2018) the largest contributor to the

global mean sea level rise (Fox-Kemper et al., 2021). Antarctic ice sheet mass loss has tripled over the last decade (Shepherd

et al., 2018), which can be mainly attributed to increased ice discharge in the Amundsen Sea (Rignot et al., 2019). Models

and geological data indicate that the Antarctic ice sheet will cause most of the sea level rise in the long term (Bamber et al.,
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2019). Moreover, melt of land ice is the largest contributor to uncertainties on centennial timescales (Palmer et al., 2020; van de25

Wal et al., 2019). The degree of acceleration of future sea level changes is mainly determined by dynamic processes on the

Antarctic ice sheet. The underlying processes are 1) increased melt from below by warmer ocean water (basal melt) and 2)

increased calving (iceberg formation) triggered by basal melt and/or surface melt (Rignot and Jacobs, 2002; Pritchard et al.,

2012; Liu et al., 2015; van den Broeke, 2005). It is important to gain a better understanding of the many uncertainties about the

Antarctic contribution to sea level rise that exist and to reduce these uncertainties when possible to support adaptation planning30

(Haasnoot et al., 2020). Uncertainties associated with the Antarctic contribution to sea level rise even appear to be increasing.

Using similar methodologies, the estimated Antarctic contribution in Levermann et al. (2020) shows increased uncertainty

compared to its previous study (Levermann et al., 2014) and expert judgment assessments of Bamber et al. (2019) give higher

uncertainties than before (Bamber and Aspinall, 2013). To address this issue our study aims to gain more insight in the Antarctic

contribution to and uncertainties in future sea level changes and provides directions for reducing these uncertainties.35

Future projections of Antarctic mass loss are often based on modelling studies. Most earth system models (ESMs) do not

have interactive ice sheet modules, because ice sheet models are particularly sensitive to small changes in the climate and

often assume unrealistic geometries if they have to be balanced with the data from ESMs. This means that changes in the mass

loss of an ice sheet are not (properly) predicted by ESMs and that ice sheets in coupled ice sheet-ESMs show undesirable

and unrealistic trends. The proper functioning of ice sheet models in an earth system model is a worldwide effort for which40

no effective solution can be expected in the short term. Therefore, ice sheet models are often used as a standalone unit and

balanced with observations. In this setup the forcing of ice sheet models is provided by ESMs.

Over the last decade, ice sheet modelling has advanced from single model studies to model intercomparison projects (MIPs).

In these projects, earth system modelling and ice sheet modelling are combined to make projections of land ice. The Ice Sheet

MIP (ISMIP) (Nowicki et al., 2016) and Linear Antarctic Response MIP (LARMIP) (Levermann et al., 2020) are currently45

used as a basis for projections of the Antarctic land ice evolution (Fox-Kemper et al., 2021). ISMIP6 (Seroussi et al., 2020)

provides process-based projections of the sea level contribution of the Antarctic ice sheet based on a variety of ice sheet models

that are forced by atmosphere and ocean output from CMIP5 ESMs. ISMIP6 made a selection of six ESMs based on two main

criteria. The first criterion is based on their performance in reproducing current climate (atmosphere and ocean) near Antarctica.

The second criterion ensures that the ESM selection includes a diversity of warming rates over the 21st century so that the50

uncertainty-range in projections is captured (Barthel et al., 2020; Nowicki et al., 2020). One risk of the second criterion is that

models with a relatively bad performance over the historical period in terms of trends could have been chosen. Bias metrics

for the selection included criteria on the mean state of the ocean and atmosphere, but did not include trends. In ISMIP6 basal

melt was chosen to depend quadratically on thermal forcing (Favier et al., 2019) and is calibrated on basal melt observations in

two regions (mean Antarctic ice sheet and the Pine Island Glacier grounding line) (Jourdain et al., 2020). LARMIP-2 focuses55

on ice sheet mass loss due to ice shelf basal melt (Levermann et al., 2014, 2020). In that study the temperature melt-relation is

parameterised with a linear dependency on thermal forcing. ISMIP6 and LARMIP-2 have thirteen ice sheet models in common

and are primarily based on the CMIP5 models and scenarios (RCPs) as forcing. Edwards et al. (2021) estimated probability
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distributions for projections under the new SSP scenarios based on CMIP6 ESMs, by using statistical emulation of the ISMIP6

ice sheet models.60

Our study follows LARMIP-2 to account for the sensitivity of ice sheet models to climate change by using linear response

functions (RF) of ice sheet models. The LARMIP-2 RFs were obtained by prescribing for five regions an immediate change

in basal melt of the ice sheet and simulating the resulting increase in ice sheet discharge with the ice sheet model. In this way

a relationship between basal melt and mass loss is obtained for each region. Another relationship between thermal forcing

and basal melt is used to compute basal melt from ocean temperatures. These relationships, together with a time-dependent65

warming, then lead to a time-dependent mass loss of the ice sheet. This method was applied by Levermann et al. (2014, 2020)

to a number of ice sheet models. In those studies, CMIP5 models were used to diagnose the relationship between global surface

air temperature (GSAT) and ocean temperature changes around Antarctica, and GSAT was used as a driver of the method. The

current study improves this step by using subsurface ocean temperature as driver (Lambert et al., 2021). In addition to the

linear melt dependency as in the Levermann et al. (2020) study, a more advanced quadratic basal melt parameterisation is70

applied since observation-based evidence suggests a nonlinear relationship between melting and ocean temperature (Jenkins

et al., 2018). The basal melt parameterisations are calibrated on observation-based estimates of ice discharge (Rignot et al.,

2019), rather than on basal melt as is done in ISMIP6. As calibration target the mass loss estimates of Rignot et al. (2019) were

chosen over Shepherd et al. (2018) for two reasons. The first reason is that Rignot et al. does not include surface mass balance

processes which makes the data directly comparable with our results. The second reason is that the Rignot et al. record starts75

earlier which allows us to look into mass loss acceleration during a longer period. Two different calibrations are applied: at the

regional and continental scale. Using different warming scenarios and RFs for a variety of models, we arrive at an estimate of

the future mass loss of Antarctica that is consistent with observed mass loss over the past four decades.

2 Methodology

In this study the contribution of Antarctica’s ice discharge to sea level changes is computed with state-of-the-art ESMs from80

Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. 2016) and linear response functions from the Linear

Antarctic Response MIP (LARMIP-2; Levermann et al. 2020) ice sheet models.

The basic procedure of this study follows that of Levermann et al. (2020) with a number of modifications as explained

below and illustrated in Fig. 1. Earth system models from CMIP6 are used as a basis for the computations, guaranteeing

implementation of state-of-the-art models in the analysis and projections. Ocean temperatures are directly taken from the85

CMIP6 models, instead of estimating them from scaling coefficients and global mean air temperature. For the representation

of basal melt our method employs a linear as well as a quadratic melt relation with thermal forcing (TF ), i.e. the difference

between the in situ temperature of sea water (To) and the in situ freezing-melting point temperature (Tf ):

TF = To−Tf . (1)

Finally, the parameterisations are calibrated on regional or Antarctic-wide observed ice discharge from Rignot et al. (2019).90

This calibration step is a key difference with the Levermann et al. studies.
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Figure 1. Flow diagram of procedure. Observational constraints are indicated in orange, main computations of the Levermann et al. method

in green (including model experiments by the modelling groups), calibration methods in yellow, bias-adjustment in grey and (intermediate)

output data in blue. The continuous lines represent direct pathways while the dashed lines refer to iterative processes or optional choices

during calibration.

2.1 Ocean forcing

The ocean forcing consists of annual mean simulated subsurface ocean temperatures by CMIP6 ESMs. The ocean temperatures

are taken from the historical experiment (1850-2014) and the Shared Socioeconomic Pathways (SSP) SSP1-2.6, SSP2-4.5 and

SSP5-8.5 (2015-2100). Only models that have data available at the Earth System Grid Federation (ESGF) data server for the95

historical experiment and all three SSP scenarios (at the time of study) are considered. In addition, models should provide

data for the full period (1850-2100) without any data gaps since the computation of the delayed ice sheet response requires a

continuous time series. Table 1 summarises which models have been taken into account.
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Table 1. CMIP6 models that have been evaluated. For each region the subsurface ocean temperature bias (in K) compared to the GREP

reanalysis is indicated over the period 1993-2018, including years 2015-2018 for the SSP2-4.5 scenario. The ‘drift correction’ column

indicates whether the piControl experiment was used for model drift correction or the historical experiment.

CMIP6 model EAIS Weddell Amundsen Ross Peninsula Drift correction

ACCESS-CM2 -0.33 -0.11 -1.05 -1.26 0.09 historical

CAMS-CSM1-0 0.24 -0.05 0.22 -0.94 0.39 piControl

CAS-ESM2-0 1.43 0.79 0.20 -0.18 2.18 historical

CMCC-ESM2 0.31 -0.23 0.51 -0.10 0.58 piControl

CanESM5 -0.55 -0.43 -0.07 -0.80 -0.21 piControl

EC-Earth3 0.06 -0.57 1.17 0.71 -0.33 historical

EC-Earth3-Veg -0.10 -0.58 0.84 0.44 -0.34 piControl

GFDL-ESM4 0.05 -0.38 0.45 -1.00 0.20 piControl

INM-CM4-8 -0.37 0.32 -0.66 -0.17 0.19 piControl

INM-CM5-0 -0.74 -0.24 -1.16 -1.11 -0.16 piControl

MIROC6 0.81 0.55 1.58 1.40 0.29 historical

MPI-ESM1-2-LR -0.31 0.03 0.08 -0.59 -0.41 piControl

MRI-ESM2-0 -0.12 -0.10 -0.12 -0.31 0.32 historical

NorESM2-MM -0.92 -0.45 -0.71 -0.84 -0.74 piControl

Mean -0.04 -0.10 0.09 -0.34 0.15 -

Std 0.59 0.40 0.78 0.74 0.67 -

Table 2. Mean ice shelf depth (in m) for the five sectors in Fig. 2.

Sector Depth (m)

EAIS 369

Weddell 420

Amundsen 305

Ross 312

Peninsula 420

Ocean temperatures are averaged over five oceanic sectors: the East Antarctic Ice Sheet (EAIS), Ross, Amundsen, Weddell

and Peninsula sector (Fig. 2), and averaged vertically over a range of 100 m, centered around the depth of the ice shelf base100

(Table 2). Different from Levermann et al. (2020), the Peninsula sector is defined as a separate ocean sector rather than using

the same ocean sector coordinates as the Amundsen sector.
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Figure 2. Ocean sector definition.

The time series are corrected for model drift by removing the long term trend diagnosed by the linear trend in the pre-

industral control (piControl) experiment (Fig. 3). For models that did not provide suitable data for the piControl experiment,

the model drift is estimated from the historical experiment with a variable detrending period starting in 1850 and ending105

between 1900 and 1950. The smallest absolute trend within this period is considered model drift and removed from the time

series. In this way we assure that (multi-)decadal variability has minimal influence on the trend magnitude. For the quadratic

melt parameterisaton, the resulting temperatures are bias-adjusted with global ocean reanalyses called the Global Reanalysis

Ensemble Product (GREP). GREP can be obtained from the Copernicus Marine Server at 1 degree horizontal resolution over

the period during which altimetry data observations are available (1993-2018). It is constructed by postprocessing of four110

reanalyses: GLORYS2V4 from Mercator Ocean (France), ORAS5 from ECMWF, FOAM/GloSea5 from Met Office (UK),

and C-GLORS05 from CMCC (Italy). Although the ocean temperature bias has no clear relation with projected temperature

trends in ESMs (Little and Urban, 2016), it affects the magnitude of basal melt in the quadratic parameterisation. Therefore,

before computing the basal melt the ocean temperatures are bias-corrected. It should be noted, however, that the reanalysis

data may also be biased due to a paucity of assimilated data and the absence of ice shelves in the physical ocean models.115

Averaged over all CMIP6 models the subsurface temperature of the CMIP6 multi-model mean is cold-biased for the EAIS,

Weddell and Ross sectors over the 1993-2018 period. For the Amundsen and Peninsula sectors the mean simulated temperature

is warm-biased (Table 1). For all regions, the sign of the bias differs between individual models. The ensemble mean bias over

the 1993-2018 time period is removed from the modelled ocean temperatures over the entire historical and future period to

obtain the bias-adjusted ocean temperatures (Fig. 3).120
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Figure 3. Annual mean subsurface ocean temperature time series smoothed by a five-year running average filter for the model drift- and

bias-adjusted (green) CMIP6 multi-model mean and the GREP ensemble mean (orange). For CMIP6 models, the historical experiment

(1850-2014) is combined with SSP2-4.5 (2015-2018) for this visualisation. Note that the tick distances of the vertical axis are the same for

all regions, but the ranges are different.

2.2 Basal melt parameterisation

Warming of ocean water above the freezing point temperature in ice shelf cavities induces basal melt of the corresponding ice

shelves. CMIP6 models, however, typically do not represent ice shelf cavities and the related thermal and dynamical properties.

Coastal ocean temperatures should therefore be translated into these cavities. This can be done by using a parameterisation that

relates the far-field (coastal) ocean temperature to basal melt. Most of the simple basal melt parameterisations assume a relation125

with thermal forcing. Our method employs a linear and quadratic melt relation with thermal forcing (Table 3). The quadratic

relation was suggested to outperform a linear relation (Favier et al., 2019), but we will apply both so that we can compare our

results with the linear relation used in Levermann et al. (2020). The linear relation is defined as:

m= γ

(
ρswcpo
ρiLi

)
TF, (2)

It assumes a constant heat exchange, independent on the local stratification and circulation. The quadratic relation is defined130

as:

m= γ

(
ρswcpo
ρiLi

)2

TF |TF |. (3)

where m is the basal melt and γ is the calibration parameter. The quadratic relation assumes that the heat exchange scales with

the buoyancy-driven cavity circulation and that this scales linearly with the large-scale temperature gradient. The values of the

physical constants ρsw, cpo, ρi and Li are given in Table 4. The freezing-melting point temperature Tf underneath ice shelves135
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Table 3. Abbreviations for basal melt parameterisation and calibration methods. Two different basal melt parameterisation methods were

employed: linear and quadratic. Each parameterisation has been calibrated Antarctic wide and regionally. Unbounded means that γ has zero

as lower limit and no upper limit for at least 95% of the ESM-RF combinations. Bounded means that the Levermann et al. (2020) bounds are

applied on the linear parameterisation (both upper and lower bounds).

Abbreviation Parameterisation Calibration bounds Calibration region

QUR Quadratic Unbounded Regional

QUA Quadratic Unbounded Antarctic

LUR Linear Unbounded Regional

LUA Linear Unbounded Antarctic

LBR Linear Bounded Regional

LBA Linear Bounded Antarctic

is computed from the ocean salinity So and the depth of the ice shelf base zb:

Tf = λ1So +λ2 +λ3zb. (4)

See Table 4 for the values of the physical constants. Favier et al. take To and Tf either as local or nonlocal values, where

nonlocal is the product of local and nonlocal (averaged over the entire ice draft of a given sector) thermal forcing. In the current

study, a purely nonlocal forcing is applied, similar to DeConto and Pollard (2016) and Levermann et al. (2020). The values of140

To are computed as averages over the five (far-field) oceanic sectors, around the depth of the ice shelf base (see Table 2). Since

most CMIP6 models do not resolve cavities, the far-field ocean temperature is taken. The underlying assumption is that the

ocean temperature remains constant while it is advected into the cavity. Also note that the ocean sectors are somewhat wider

than the continental shelf, consistent with Levermann et al. (2020). The advantage of a wider region is that it allows for more

assimilated observations in the reanalysis product that is used for the bias adjustment of ocean temperature (the continental145

shelf region is only sparsely sampled). Furthermore, the resolution of most CMIP6 models is not high enough to resolve the

ocean circulation on the continental shelf, including the Antarctic Slope Current (Thompson et al., 2018). The computation of

Tf is based on a constant salinity value for each oceanic sector, which is computed from the far-field salinity climatology of

the reanalysis data. The resulting values of Tf are approximately -1.6 ◦C in each sector.

Note that the melt is positive if the ocean temperature exceeds the freezing-melting point temperature and negative (i.e. water150

is refreezing) otherwise. The change in basal melt anomaly is defined as the difference in basal melt between time t and the

baseline time period, 1850-1930. This period was chosen since it is long enough to reduce the impact of natural variability on

the baseline but short enough so that it doesn’t include the trends due to anthropogenic forcing.

Basal melt anomalies in linear parameterisations do not depend on the mean temperature, only on the anomaly. In contrast,

basal melt computed from the quadratic parameterisation depend on the mean temperature as well. As a consequence, biases155

in ocean temperature will influence the estimated magnitude of basal melt changes. Ocean temperatures were therefore bias-
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Table 4. Physical constants.

parameter symbol value unit

ice density ρi 917 kg m-3

sea water density ρsw 1028 kg m-3

specific heat capacity of ocean mixed layer cpo 3947 J kg-1 K -1

latent heat of fusion of ice Li 3.34 × 105 J kg-1

heat exchange velocity γ calibrated m s-1

liquidus slope λ1 -0.0575 ◦C PSU−1

liquidus intercept λ2 0.0832 ◦C

liquidus pressure coefficient λ3 7.59 × 10−4 ◦C m−1

adjusted with the ocean reanalysis data. The basal melt parameterisation can be calibrated with the heat exchange velocity γ.

It should be noted that γ has a different order of magnitude in the linear and quadratic parameterisation and is not directly

comparable.

2.3 Sea level contribution and calibration160

Linear response functions (RFs) from LARMIP-2 will be used to compute the cumulative sea level contribution ∆S (in meters)

due to a change in basal melt for each of the five sectors:

∆S(t) =

t∫

0

dτ ∆m(τ) ·RF (t− τ). (5)

LARMIP-2 provides RFs of 16 ice sheet models. Combined with the 14 ESMs (Table 1), this results in 224 ESM-RF combi-

nations for the projections. The resulting sea level contributions are calibrated on observation-based ice discharge. For each165

individual sector and the total Antarctic, we have derived the observed ice discharge from Rignot et al. (2019) data. Then the

root-mean-square error (RMSE) between the observed and modelled cumulative ice discharge for each ESM-RF combination

is determined over a wide range of γ values. The RMSE is computed over the full time series to constrain models on the cu-

mulative sea level change as well as the acceleration. For all calibrations, γ should be equal or greater than zero, since negative

values would imply that temperatures above the melting point lead to ice growth, which is deemed not physically possible. The170

γ value giving the lowest RMSE for each ESM-RF pair provides the calibrated γ (Fig. 5).

The linear basal melt parameterisation has been calibrated in two ways: with bounded and unbounded γ values (Table 3).

For the ‘unbounded’ calibrations, the upper bound of the γ range is determined by the requirement that at least 95% of all

ESM-RF combinations should have the best fit within the γ range; they have no upper bound. This means that for at most 5%

of the ESM-RF pairs there is an upper bound. This resulted in a γ range of 0.0-6.0 m yr−1 for the quadratic parameterisation175

and 0.0-0.1 m yr−1 for the linear parameterisation. In order to compare our results to Levermann et al. (2020), we also applied
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Figure 4. Projections of annual mean subsurface ocean temperature for SSP1-2.6, SSP2-4.5 and SSP5-8.5 including all evaluated CMIP6

models (Table 1). The shaded regions indicate one associated intermodel standard deviation. Note that the tick distances of the vertical axis

are the same for all regions, but the ranges are different.

a bounded calibration. For the bounded calibration, the basal melt sensitivity (i.e. γ
(
ρswcpo

ρiLf

)
) should be in the empirically

based range determined by Levermann et al. (2020): 7-16 m yr−1 K−1. The bounded calibration is only applied to the linear

parameterisation.

The calibration is applied regionally and Antarctic-wide (Table 3). For each ESM-RF pair, the γ parameter with the best180

fit (lowest RMSE) is selected for each of the five sectors in an iterative approach (Fig. 1). For the regional calibration the

summed Antarctic response is the sum of the regionally calibrated contributions with five basin-specific γ values. In addition,

the calibration is performed with the same γ value in each region, resulting in Antarctic-wide calibrated γ values.

3 Results

3.1 Basal melt computation and calibration185

Basal melt is computed from subsurface ocean temperature time series (Fig. 1). The temperature time series are shown in

Figures 3 and 4 for the historical and future period, respectively. Over the 21st century, all regions show a median warming but

the magnitude varies between individual regions and becomes scenario dependent around year 2050 (Fig. 4).

The basal melt parameterisations are calibrated by fitting the sea level response of each ESM-RF pair on the Rignot ice

discharge time series over the full 1979-2017 period. This exercise shows that the median γ parameter value resulting in the190

lowest RMSE varies between individual regions (Fig. 5). For the Ross and Weddell regions, a relatively low γ gives a better fit

with Rignot data, while for the Amundsen and Peninsula regions a higher γ improves the calibration. The EAIS and Antarctic-
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wide calibration give intermediate γ values. The relative magnitudes of the γ values are consistent with the sensitivity to ocean

warming of the respective regions as described in Dinniman et al. (2016). For regions with a non-zero contribution to sea level

over the observational period, the percentage of greater-than-zero calibrated γ values indicates the percentage of ESM-RF195

pairs that could be calibrated. For each calibration region, the percentage of ESM-RF pairs with greater-than-zero calibrated γ

values (> 0 m yr−1) are therefore indicated in Fig. 5. These percentages show that for most calibration regions, the quadratic

parameterisation has a higher percentage of positive values than the linear parameterisation. The boxplots only represent the

ESM-RF pairs with positive γ values as indicated by the percentages on top. These percentages show that for the Weddell,

Ross and Peninsula sectors less than half of the ESM-RF pairs have greater-than-zero γ values. The calibrated γ values are200

used in the hindcasts and projections of Antarctic ice discharge.

For the linear parameterisation, we made a comparison between our positive γ values (calibrated on ice discharge) and the γ

values used in LARMIP-2 (Levermann et al., 2020) (green shading in Fig. 5, calibrated on basal melt). This comparison shows

that our Antarctic-wide calibration results in a median γ just below the lower bound of the Levermann et al. γ range. The same

applies to the EAIS sector. For the Amundsen and Peninsula sectors, regional calibration results in γ values at the high end or205

above the Levermann et al. γ range, while the values for the Ross and Weddell Sea are lower.

For the quadratic parameterisation, a similar comparison was made with the γ values applied in ISMIP6 (Jourdain et al.,

2020). Also for the quadratic paramerisation, our median Antarctic-wide calibrated γ (calibrated on four decades of observed

ice discharge) sits at the lower end of the γ range of the Antarctic mean calibration (blue shading in Fig. 5, calibrated on basal

melt) in ISMIP6. The median EAIS, Ross and Weddell sectors are (just) below the Antarctic mean ISMIP6 range, whereas210

the Amundsen calibration results in a calibrated median γ at the high end of the Antarctic mean range and the Peninsula

calibration gives a median γ just above the Antarctic mean range. In ISMIP6, also a calibration on the Pine Island Glacier basal

melt was applied (yellow shading in Fig. 5), which is the highest observed basal melt of the Antarctic ice sheet. Only some of

the calibrations of ESM-RF pairs resulted in γ values in the Pine Island Glacier range. However, it should be remarked that the

ISMIP6 Pine Island Glacier calibration goes together with negative ocean temperature corrections all around Antarctica that215

counter-balance the effects of the large γ values.

To summarise, a comparison of the γ values in our study and γ equivalents in LARMIP-2 (Levermann et al., 2020) and

ISMIP6 (Jourdain et al., 2020) suggests that calibration on past ice discharge rather than on basal melt observations results in

relatively low γ values for the Antarctic-wide calibration. The Amundsen and Peninsula sector are more consistent with the

high end of the γ ranges applied in LARMIP-2 and the Antarctic mean calibration of ISMIP6, while the other sectors (EAIS,220

Ross, Amundsen) are more consistent with the lower end of those γ ranges.

3.2 Hindcasts of Antarctic sea level contribution

Hindcasts of the Antarctic dynamic contribution to sea level rise are made to assess how well Rignot ice discharge could

be reproduced after calibration over the period 1979-2017. The total Antarctic sea level response is based on the summed

contribution over the five sectors using the six calibrated basal melt computation methods (Table 3).225
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Figure 5. Box-and-whisker plots of calibrated γ values of ESM-RF pairs. Only calibrated γ values greater than zero are shown in the plot.

The percentage of ESM-RF pairs with positive γ values is indicated by the green values on top for each region. The horizontal green line

indicates the median value, boxes indicate the 25-75 percentile range and whiskers the 5-95 percentile range. Values beyond this range are

not shown. The shaded regions indicate γ ranges that are used in other studies. The green shading represents the γ values corresponding with

the basal melt sensitivity range of 7-16 m yr−1 K−1 used in Levermann et al. (2020). The blue and yellow shading indicate the 5-95% range

of the γ values used for the nonlocal quadratic parameterisation in ISMIP6 (Jourdain et al., 2020) for both the Antarctic mean (AntMean)

and Pine Island Glacier (PIGL) calibration, respectively. For PIGL the 95% bound is 4.71 × 105, which is outside the scale of the vertical

axis.

Figure 6 shows the hindcasts of all combinations of CMIP6 models and LARMIP-2 linear response functions using the

calibrated γ values (Fig. 5). Each panel represents a basal melt computation method, as specified on top (Table 3). First, we

evaluate the magnitude of the modelled sea level contributions. Most ESM-RF pairs are not able to capture the magnitude

of the summed Antarctic sea level contribution. For each method, the sea level contribution is underestimated by the median

response. This underestimation can be largely attributed to the high number of γ values that were set to zero in the calibration230

procedure (Sect. 3.1). For the unbounded calibrations (left and middle panels), the sea level response of the multimodel mean

value over the 1979-2017 period is approximately half of the magnitude of the observed Antarctic value (Rignot et al., 2019).

The median values of the bounded hindcasts (right panels) are closer to observations. This is because the calibrated γ value

is greater than zero for each ESM-RF pair. Counter-intuitively at first notice, the linear bounded hindcasts (right panels) have

a higher intermodel spread than the unbounded hindcasts. The bounded γ values, however, provide less freedom to restrict235

the historical response of individual ESM-RF pairs to observations, explaining the higher intermodel spread in the sea level

contribution. Hindcasts of regional sea level contributions are further discussed in Appendix A.
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3.3 Selection of ESM-RF pairs

From the previous analyses we can conclude that for all basal melt computation methods most ESM-RF pairs are not able

to capture the magnitude of the observed Antarctic sea level response to a reasonable extent. This makes them less trust-240

worthy for future projections of the sea level response. Therefore, the calibration on ice discharge is combined with a model

selection step in which ESM-RF pairs are selected that capture the summed Antarctic response. ESM-RF pairs are ranked based

on their ability to simulate the magnitude of the observed Antarctic ice discharge over the 1979-2017 period. To compare

the performance between the different methods, for each method the top 10% best-ranking ESM-RF pairs are selected. By

taking the top 10%, the same number of pairs (22) is selected for each method. The best models are defined as the ESM-245

RF combinations with the lowest RMSE compared to observed ice discharge over the full period. Figure 7 depicts the mean

annual sea level contribution biases for this selection of ESM-RF pairs compared to the observations. The mean RMSE over

the top 10% ESM-RF pairs is indicated in the legend and the inter-model spread is visualised for the best (QUA, lowest mean

RMSE) and worst (LBR, highest mean RMSE) methods. The names of the top 10% ESM-RF combinations for the best method

(QUA) are listed in Table A1. The LBR method has the highest mean RMSE due to the wide spread between individual model250

combinations as explained in Sect. 3.2.

Although the model selection reproduces the summed Antarctic sea level response quite accurately, the acceleration in the

observations is not well simulated (Fig. 7). On average, the selected models overestimate Antarctic discharge before around

2010 and underestimate it thereafter. Furthermore, for individual regions the response is not always well captured (see e.g.

Figures A1 and A2 for the QUA and QUR method, respectively). The spread in individual regions is higher for the Antarctic-255

wide calibration than for the regional calibration. Antarctic-wide calibration leads to regional responses that are overestimated

in some regions and underestimated in others (Fig. A1) since the same γ is used for each region. Differences between Antarctic-

wide and regional calibration are greatest for the Amundsen region, which is the most important contributing region to the

summed Antarctic response over the hindcasting period. The Amundsen and Peninsula contributions are underestimated by

the selected models for the Antarctic-wide calibration. The EAIS response is reasonably well reproduced. The responses of the260

Ross and Weddell region are slightly overestimated. The errors in the individual regions compensate each other, resulting in

a summed Antarctic response that is well captured. For the regional calibration, the responses in individual regions are better

captured and more restricted (Fig. A2).

3.4 Projections

In this section, projections of the summed Antarctic sea level contribution are presented. The projections comprise the 21st265

century. Computations start in the year 1850 so that the delayed contribution of basal melt is included in the future sea level

response. We assess two metrics: the cumulative magnitude and the rate of the sea level response. The cumulative magnitude

of the sea level response is used to compare differences over the 21st century. The sea level response rate at the end of the 21st

century is indicative of differences in committed sea level rise beyond 2100.

13

https://doi.org/10.5194/tc-2021-348
Preprint. Discussion started: 24 November 2021
c© Author(s) 2021. CC BY 4.0 License.



1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Quadratic Unbounded Antarctic

1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Linear Unbounded Antarctic

1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Linear Bounded Antarctic

1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Quadratic Unbounded Regional

1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Linear Unbounded Regional

1980 1990 2000 2010

0

5

10

15

Se
a 

le
ve

l r
es

po
ns

e 
(m

m
)

Linear Bounded Regional
Model-RF pairs: 224
Rignot (2019)

Figure 6. Hindcasts of CMIP6-forced sea level response over the period 1979-2017 based on 14 CMIP6 models and 16 linear response

functions. The historical experiment is extended with SSP2-4.5 scenario for the years 2015-2017. The figure shows the results for the full

model suite of ESM-RF pairs (green), together with the Rignot ice discharge (grey). The shaded area indicates one standard deviation,

representing intermodel spread for the modelled response and observational error for the Rignot data.
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Figure 7. Mean sea level contribution bias compared to observations of the top 10% ESM-RF pairs for each basal melt computation method.

The numbers in the legend indicate the mean RMSE over the selected ESM-RF pairs over the period 1979-2017 in mm. The spread (standard

deviation) of the top 10% models is indicated for the LBR (highest mean RMSE) and QUA (lowest mean RMSE) methods by the shading in

the background.

3.4.1 Magnitude and rate270

First, the cumulative magnitude of the sea level response is analysed. The cumulative sea level response is computed by taking

the difference between the year 2100 and the average over the period 1995-2014. Figure 8 shows the projected sea level

response for each SSP scenario and basal melt computation method. The top panels represent the projections including all
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Figure 8. Projected Antarctic sea level response for SSP1-2.6, SSP2-4.5 and SSP5-8.5 in 2100 compared to the period 1995-2005. The

spread is determined by the CMIP6 forcing and the LARMIP-2 linear response functions. The top panels show all ESM-RF combinations

and the bottom panels the top 10% combinations. The green numbers indicate the median values (the orange lines), whereas the boxes show

the 25-75 percentiles and the whiskers the 5-95 percentiles. The basal melt computation methods are ordered from the lowest to the highest

median sea level response.

ESM-RF combinations and the bottom panels the top 10% selections. Not surprisingly a higher emission scenerio leads to a

higher sea level contribution. Absolute differences between the basal melt computation methods become more explicit for the275

higher emission scenarios, but relative differences (ratio of highest to lowest) are comparable. For the full model suite, the

basal melt computation method affects the relative uncertainty in median sea level contribution more than the SSP scenarios

(Table 5).

When the calibration bounds are not considered (unbounded calibrations only), the impact of the basal melt computation

reduces. Then the influence of basal melt computation on variation in projected sea level is similar to the influence of scenarios.280

The basal melt computation can be subdivided into calibration and parameterisation steps. The calibration step is the most

distinctive feature of the basal melt computation in terms of the projected magnitude of the sea level contribution. Antarctic-

wide calibration results in higher projections than regional calibration. Bounded calibration gives higher values than unbounded

calibration (comparison for the linear parameterisation only). The effect of the parameterisation is smallest (comparison for

the unbounded calibration only).285

Second, the variation in the response rates is assessed at the end of the 21st century (Table 6). These are important for sea

level differences beyond 2100. The response rate is computed by a linear regression on the sea level response over the period

2081-2100. The difference between the lowest and highest basal melt method shows that the influence of the basal melt com-

putation method on the response rate is equal to or greater than the effect of the emission scenario. By considering unbounded

calibration methods only, the influence of the scenarios dominates over the basal melt computation method. The basal melt290
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Table 5. Relative uncertainty in the dynamic Antarctic contribution to sea level rise in 2100 compared to 1995-2014. Relative differences

were assessed by the variation factor, which is specified as the sea level contribution associated with variations in a specific source variable.

If the source variable varies from value A to value B, we quantify the impact of this variable on the sea level contribution by the variation

factor B/A (following Hinkel et al. 2021). Only median sea level contributions of ESM-RF pairs are considered.

Variable Condition Variation in source variable Variation factor in sea level

Scenario All SSP1-2.6 -> SSP5-8.5 1.3-1.5

Scenario Top 10% SSP1-2.6 -> SSP5-8.5 1.3-1.5

Basal melt computation All Lowest -> Highest 1.9-2.0

Basal melt computation Top 10% Lowest -> Highest 1.2-1.4

Basal melt computation Unbounded calibration Lowest -> Highest 1.4-1.6

Calibration region All Regional -> Antarctic 1.1-1.4

Calibration bounds All, Linear parameterisation Unbounded -> Bounded 1.5-1.8

Parameterisation All, Unbounded calibration Linear -> Quadratic 1.1-1.3
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%

Figure 9. Same as Fig. 8 but for the sea level response rates over the period 2080-2100.

computation can be subdivided into calibration and parameterisation parts. The calibration step is the most distinctive feature

in the basal melt computation. Antarctic-wide calibration results in higher projections than regional calibration. Bounded cal-

ibration gives higher values than unbounded calibration (comparison for the linear parameterisation only). The effect of the

parameterisation is smallest; The quadratic parameterisation provides higher estimates of future sea level rise rates than the

linear parameterisation (comparison for the unbounded calibration only).295
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We conclude that sea level variations associated with basal melt computation methods are equal or greater than variations

between different pathways of future greenhouse gas emission scenarios. Within the basal melt computation methods, the

calibration step is more important than the parameterisation type for the contribution of Antarctic ice discharge to sea level up

to and beyond 2100.

3.4.2 Best estimate300

In Sect. 3.3 the top 10% best ESM-RF pairs were selected based on their performance in reproducing observed Antarctic ice

discharge over four decades. Figure 10 presents the projections of these selections. For each scenario, the top 10% selection

shows on average a 20-28 mm higher median cumulative sea level response than the full model suite (Fig. 8). This can be partly

attributed to the fact that the selection does not include models with a γ of zero for the regions that contribute most (Amundsen,

EAIS) to the sea level increase. Averaged over all basal melt computation methods, SSP5-8.5 has a median cumulative increase305

of 110 mm compared to 78 mm in SSP1-2.6. Furthermore, the different basal melt computation methods give more similar

results for the selection than for the full model suite (Table 5). In contrast to the full model suite, for the selection there is no

clear relation between the basal melt computation method and the response magnitude within an emission scenario. For the top

10% selection the influence on the response magnitude of the basal melt computation method is thus equal to or smaller than

the effect of the emission scenario.310

The top 10% selection shows on average 0.2-0.5 mm yr−1 higher sea level rates than the full model suite (Fig. 9). SSP5-8.5

has a median response rate that is about twice as large as the rate of SSP1-2.6. As for the cumulative contribution, the rates of

the selected ESM-RF combinations are more equal between different basal melt computation methods for the model selection

than for the full model suite (Table 6). For the top 10% selection the influence on the response rate of the basal melt computation

method is smaller than the effect of the emission scenario. Different than for the full model suite, the selection consistently315

shows higher sea level rates for the Antarctic-wide calibration than for the regional calibration. This can be explained by the

higher contributions (higher γ) of the Ross and Weddell sectors, which show a clear warming trend in the subsurface ocean

(Fig. 4). Other aspects (bounded vs unbounded calibration, quadratic vs linear parameterization) do not have a noticeable effect

on the response rate of the top 10% selection.

For the top 10% of each basal melt computation method, the quadratic parameterisation combined with an Antarctic-320

wide calibration (QUA) resulted in the best estimate of Antarctic discharge over almost four decades (lowest overall RMSE)

(Sect. 3.2). If reproducing the past is good indicator for making future projections, this basal melt computation method (QUA)

will arguably provide the best estimate for the sea level contribution of Antarctic discharge over the coming century. We com-

pared our best estimate with the emulated ISMIP6 and LARMIP-2 studies as presented in IPCC AR6 (Table 7). The cumulative

sea level response is equal or smaller in magnitude than emulated ISMIP6 estimates across all scenarios (depending on the basal325

melt computation method). Compared to LARMIP-2, the response is smaller. The differences with ISMIP6 and LARMIP-2

can be mainly attributed to the calibration on past ice discharge, which resulted in less sensitive basal melt parameterisations

(Fig. 5).
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Table 6. Similar to Table 5, but for the sea level response rate over 2081-2100.

Variable Condition Variation in source variable Variation factor in sea level

Scenario All SSP1-2.6 -> SSP5-8.5 1.9-2.6

Scenario Top 10% SSP1-2.6 - SSP5-8.5 1.9-2.5

Basal melt computation All Lowest -> Highest 2.2-2.5

Basal melt computation Top 10% Lowest -> Highest 1.2-1.4

Basal melt computation Unbounded calibration Lowest -> Highest 1.3-1.7

Calibration region All Regional -> Antarctic 1.2-1.4

Calibration bounds All, Linear parameterisation Unbounded -> Bounded 1.6-2.0

Parameterisation All, Unbounded calibration Linear -> Quadratic 1.1-1.2
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Figure 10. Projections of Antarctic sea level response for SSP1-2.6, SSP2-4.5 and SSP5-8.5 using the top 10% selected ESM-RF combina-

tions. The spread is determined by the CMIP6 forcing and the LARMIP-2 linear response functions.

3.4.3 Modelling uncertainties

Here we assess the role of CMIP6 ESMs and LARMIP-2 ice sheet models in projection uncertainties by comparing the median330

projected sea level contributions for the basal melt computation method with the best performance in the hindcasts (QUA). Fig.

11 shows the projected Antarctic sea level contribution for each individual CMIP6 model as computed with the QUA method.

The spread for each CMIP6 model is determined by the linear response functions. Noticeably, the differences between the

scenarios are small compared to the the differences between individual CMIP6 models. The median sea level contribution for

SSP1-2.6 (SSP5-8.5) varies from 0 mm (0 mm) for CAS-ESM2-0 to 174 (254) mm for MPI-ESM1-2-LR. This difference can335

be attributed to the difference between CMIP6 models.
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Figure 11. Projected Antarctic sea level changes for SSP1-2.6 (blue), SSP2-4.5 (orange) and SSP5-8.5 (red) over the 21st century, defined as

the difference between year 2100 and the period 1995-2014. For each CMIP6 model, the errorbars indicate one standard deviation between

the associated RF timeseries. Basal melt is computed with the quadratic parameterisation which is calibrated Antarctic-wide (QUA).
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Figure 12. Projected Antarctic sea level changes for SSP1-2.6 (blue), SSP2-4.5 (orange) and SSP5-8.5 (red) over the 21st century, defined

as the difference between year 2100 and the period 1995-2014. For each RF, the errorbars indicate one standard deviation between the

associated CMIP6 models. Basal melt is computed with the quadratic parameterisation which is calibrated Antarctic-wide (QUA).

Similar to Fig. 11, Fig. 12 shows the projected Antarctic sea level contribution for each individual ice sheet model (RF).

Here, the spread is determined by the CMIP6 models. Clearly, the spread between RFs is smaller than between CMIP6 models.

Furthermore, the RF spread is also greater than the scenario-induced spread. The sea level contribution for SSP1-2.6 (SSP5-8.5)

varies from 6 mm (10 mm) for GRIS-LSC to 86 mm (127 mm) for ISSM-JPL, pointing at a difference that can be attributed to340

ice sheet models of 80 mm (117) mm, influencing the sea level contribution by a factor 12.7 (14.3).
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4 Discussion

In this study, calibrated projections of Antarctica’s dynamic sea level contribution were made that are consistent with four

decades of past ice discharge in observations. Calibration was applied on the basal melt parameterisation. The contribution of

Antarctica’s ice discharge to sea level changes is computed with state-of-the-art ESMs from Coupled Model Intercomparison345

Project Phase 6 (CMIP6) and linear response functions from LARMIP-2 ice sheet models. The major strength of this method

is that multiple climate and ice sheet models can be combined to assess the full range of modelling uncertainties. A drawback

of the method is that non-linearities between thermal forcing and ice sheet mass loss, related to ice sheet instabilities are not

considered because we use the Linear Response Functions framework. Our results show that the models that we used, even

the top 10%, are not able to represent the acceleration present in the observations (Fig. 7), with overestimation of mass loss350

before 2010 and underestimation thereafter. This could be explained by ice sheet/ocean feedbacks that are not represented in

the models. One reason to introduce the quadratic parameterisation was to account for some positive feedback between ice

melt and ocean forcing. However the feedback between surface freshening due to melt water and basal ice shelf melt is not

explicitly simulated. Recent studies suggest that this feedback is positive (Bronselaer et al., 2018; Golledge et al., 2019; Sadai

et al., 2020), which could explain the inability of our models to represent the observed acceleration. It should also be noted that355

our study does not address the impact of surface melt on calving nor marine ice cliff instability processes, which means that

the projections are a lower bound of what could happen in reality.

Temperature-melt relations are typically parameterised in terms of the heat exchange velocity γ (Favier et al., 2019). The

region of calibration is relevant for the projections, since the calibrated γ value varies around the continent and is dependent

on the ice-shelf cavity type. Calibration of the γ value in the basal melt parameterisation results regularly in a value of zero,360

especially for the Weddell and Ross regions. A γ value of zero indicates insensitivity of basal melt to open ocean subsurface

temperature changes. The likeliest explanation would be that the models predict a warming while the observed discharge

decreased over the observation period (or vice versa). This could be caused either by the importance of natural variability in

the observations or by the inability of the ESMs to simulate temperature trends around Antarctica. Furthermore, the observed

ice discharge trend could be close to zero (for the Weddell sector). Another explanation is that the water inside the ice shelf365

cavities is blocked from the water in the coastal region outside the cavities due to density gradients. This contradicts the

assumption in this study that water from the open ocean can freely access the ice shelf cavities. It is questionable whether the

situation during the calibration period is representative for the future. In the future model projections (Fig. 4), especially for

SSP5-8.5, all coastal regions, especially the Weddell and Ross sectors, experience a warming signal. As the open ocean outside

the cavities warms, it could be expected that this warming will at a certain moment also be transported inside the cavities,370

and contribute there to basal melt and ice discharge. New calibration will then lead to γ values that are greater than zero.

This means that calibrated γ values that link open ocean subsurface temperatures outside cavities to basal melt underneath ice

shelves could be climate-state dependent. It should also be noted that we calibrated the basal melt parameterisation based on

basal melt anomalies and not on absolute basal melt. This is because that allows us to better represent observed melt but the
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Table 7. Projected dynamic contributions to sea level in meters from the Antarctic ice sheet in 2100 relative to 1995-2014. The numbers for

LARMIP-2, ISMIP6 and SMB are obtained from the IPCC AR6 report (Fox-Kemper et al., 2021). Note that for the ISMIP6 estimate surface

mass balance contributions are removed as our study only accounts for ice discharge. QUA and LBA are shown as the best-performing

method in reproducing hindcasts (QUA) and the method that is most comparable to the LARMIP-2 experiment, but calibrated on past ice

discharge (LBA) (Fig. 7).

.

Scenario Forcing/Source 16.6% 50% 83.3%

SSP5-8.5/RCP8.5 Selected models / QUA 0.10 0.12 0.13

Selected models / LBA 0.10 0.12 0.14

ISMIP6 excluding SMB 0.10 0.13 0.17

LARMIP-2 0.10 0.20 0.39

SSP2-4.5/RCP4.5 Selected models / QUA 0.08 0.09 0.10

Selected models / LBA 0.06 0.10 0.12

ISMIP6 excluding SMB 0.07 0.12 0.16

LARMIP-2 0.09 0.17 0.33

SSP1-2.6/RCP2.6 Selected models / QUA 0.07 0.08 0.09

Selected models / LBA 0.07 0.08 0.10

ISMIP6 excluding SMB 0.06 0.11 0.15

LARMIP-2 0.08 0.15 0.29

downside is that anomalies are a second order effect that is harder to model. Lastly, in the current generation of ESMs (CMIP6)375

ice shelf cavities are not (fully) represented, leading to deficiencies in the process representation (Mathiot et al., 2017).

In this study, an Antarctic-wide and regional calibration of the basal melt parameterisation have been applied. Arguably, the

regional parameterisation is more physically correct since individual regions might respond differently to similar forcing due

to differences in ice and ocean dynamics and ice geometries. However, for the Ross, Weddell and Peninsula regions, 50-84%

of the ESM-RF combinations have a calibrated γ equal to zero, resulting in no sea level contribution in future projections. For380

these regions, regional calibration leads to lower median contributions than Antarctic-wide calibration. A possible reason is that

these regions have no clear ocean temperature trend over the period 1850-2018 (and thus small thermal forcing) and relatively

small changes in ice discharge during the calibration period. Calibrating on the Antarctic-wide response gives a less accurate

reproduction of the historical mass loss in these regions, but arguably a better prediction of future mass loss (when the ocean is

warming in these regions). Also, it should be noted that the quadratic parameterisation does introduce some regional difference385

in basal melt sensitivity, with a lower sensitivity in colder cavities. Since both calibration methods have their advantages and

disadvantages, we applied and compared both calibration methods.

Each basal melt parameterisation method has been calibrated on ice discharge. For two basal melt computation methods

(LBA, LBR) additional calibration has been performed on basal melt itself by setting observation-based bounds on the cali-
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bration parameter γ. The results show that basal-melt constrained (bounded) projections (LBA, LBR) lead to higher sea level390

estimates than their unconstrained (unbounded) counterparts (LUA, LUR). The main reason for this is that for the bounded

calibration γ values are greater than zero for all ESM-RF pairs, whereas for the unbounded calibration only 16-85% of the

ESM-RF pairs have values greater than zero (Fig. 5). Parameter constraints on the heat exchange velocity γ in the bounded cal-

ibrations were obtained from the basal melt sensitivity parameter from the Levermann et al. (2020) range of 7-16 m yr−1 K−1.

Therefore it is interesting to compare the sea level contribution projections of the linear bounded Antarctic (LBA) calibration395

method with the LARMIP-2 projections over the same period (as presented in IPCC AR6). The Antarctic-wide calibration is

compared since LARMIP-2 also applies the same basal melt sensitivity in each region. In LARMIP-2 the median projected sea

level contribution is 0.15 m for RCP2.6 and 0.20 m for RCP8.5, compared to 0.08 m for SSP1-2.6 and 0.12 m for SSP5-8.5 in

our study. The calibrated basal melt sensitivity (based on the associated calibrated γ value, Fig. 5) in our study has a median

value of 7 m yr−1 K−1 for all calibration regions, except for the Amundsen sector, which has a median basal melt sensitivity of400

12 m yr−1 K−1. Also, Antarctic-wide calibration resulted in a median γ of 7 m yr−1 K−1, this is the lower bound of the basal

melt sensitivity range. Note that these values are different than the medians in Fig. 5 since here all ESM-RF pairs are included

(as they all have positive values by definition) while Fig. 5 only includes a percentage of the models (those with positive γ

values). This means that the randomly drawn γ values from the full range in the Levermann et al. study result on average in a

more sensitive basal melt parameterisation than the calibrated γ values in our study and suggests that their basal melt sensitiv-405

ity range should be revised downward to be consistent with past ice discharge. Here, it should also be noted that LARMIP-2

overestimates the mass loss observations of Shepherd et al. (2018). The same argument applies to the ISMIP6 γ-values. Similar

to LARMIP-2, calibration shows that γ values in the lower bound of the Antarctic mean range applied in ISMIP6 are more

consistent with four decades of past Antarctic ice discharge (Fig. 5). Consistent with the higher melt sensitivity the projected

sea level contributions are therefore higher in LARMIP-2 and ISMIP6.410

A short assessment was made on the role of CMIP6 ESMs and LARMIP-2 ice sheet models in projection uncertainties

by comparing the median projected sea level contributions for the basal melt computation method with the best performance

in the hindcasts (QUA) (Sect. 3.4.3). This assessment shows that modelling uncertainties, especially those related to ocean

temperature evolution from ESMs, are a greater source of uncertainty in Antarctic mass loss projections than the emission

scenarios and the basal melt computation method. These large intermodel differences in ESMs as well as RFs explain why415

model selection is essential to make future projections more consistent with observations of past ice discharge.

5 Conclusions

This study presents calibrated projections of Antarctica’s ice discharge in 2100 compared to present-day (1995-2014). Ocean

thermal forcing is based on regional subsurface ocean temperature from 14 CMIP6 ESMs and 3 SSP scenarios and bias-

adjusted with GREP ocean reanalysis data. Basal melt is computed with a linear and quadratic relation with ocean thermal420

forcing. The ice discharge is calculated with 16 linear response functions (RF) based on ice sheet model experiments from

LARMIP-2. New compared to other studies is the calibration of the modelled response. We applied a different, iterative
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approach to calibrate the basal melt computation (Fig. 1) since there is still high uncertainty in the temperature-basal melt

relation (Dinniman et al., 2016). Past observations of ice discharge rather than basal melt are used for calibration of the melt

parameterisation. The calibrated γ value for each individual ESM-RF pair is the one that is most consistent with four decades425

of observed ice discharge (Rignot et al., 2019). Apart from the bounded calibrations, the only (physical) limitation is that γ

should be greater or equal to zero. Finally a top 10% selection of ESM-RF combinations is made, based on their performance

in reproducing past ice discharge.

The projected Antarctic discharge shows a clear sensitivity to the emission scenario. Limiting emissions to scenario SSP1-

2.6 compared to SSP5-8.5, would lead to about 30% reduction in the median projected sea level contribution of Antarctic430

discharge in 2100. The delayed feedback of ice discharge to increasing ocean temperatures (as modelled by the linear response

functions) implies that the associated sea level contribution only becomes scenario-dependent after around 2050.

For the full model suite, the basal melt computation method has a greater impact on the projected sea level contribution

than the emission scenario. Across all scenarios, the median Antarctic ice loss is two times higher for the highest method

than for the lowest method. Bounded calibration leads to higher median projections than unbounded calibration since all γ435

values are greater than zero due to the lower bound. Calibrating on the summed Antarctic response leads to higher projections

than calibration per region. This can be explained by regions with a small or negative past contribution to sea level that have

calibrated regional γ values equal to zero (Ross, Weddell), and therefore have no contribution in future projections even if the

subsurface ocean is warming. Adapting Antarctic-wide γ values results in a positive value and positive future contribution for

these regions. The basal melt parameterisation (quadratic or linear) is least important for the projections.440

The top 10% selection gives 20-28 mm higher median projections than the full model suite. This difference can be partly

attributed to the unbounded basal melt computation methods, which include γ values equal to zero for the full model suite.

After selection, the top 10% γ values are greater than zero for the dominant contributing regions (Amundsen, EAIS), resulting

in higher estimates. For the bounded methods, there is no significant difference between the full model selection and top 10%.

This study shows that calibration of the basal melt parameterisation on past ice discharge provides a way to constrain445

historical and future evolution of Antarctic basal melt to observations. This leads to reduced spread in the projections of the

sea level contribution of Antarctica’s ice discharge from basal melt over the 21st century. Moreover, this calibration shows that

the two main studies on which the IPCC AR6 Antarctic sea level contributions are based (ISMIP6 and LARMIP-2) use basal

melt sensitivities that are higher than the calibrated values that we found. If these studies would have calibrated their basal

melt computations on past observations of ice discharge, this would have resulted in lower projections of Antarctica’s sea level450

contribution.

6 Code and data availability

– Linear response functions from LARMIP-2 (Levermann et al., 2020): https://github.com/ALevermann/Larmip2020/tree/

master/RFunctions
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– Global ocean reanalyses: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_455

REANALYSIS_PHY_001_026

– Antarctic ice discharge (Rignot et al., 2019): https://www.pnas.org/highwire/filestream/844425/field_highwire_adjunct_

files/1/pnas.1812883116.sd01.xlsx

Appendix A: Hindcasts of regional sea level contributions

Figures A1 and A2 show the regional sea level contributions of the top 10% best-performing models of the quadratic pa-460

rameterisation for the Antarctic-wide and regional calibration, respectively. Especially for the Weddell region, the quadratic

parameterisation can be better calibrated on the observations (50% positive γ values) than the linear parameterisation (16%).

This is due to the parabolic shape of the observed ice discharge over the observational period (Fig. A2). For the Weddell region,

the cumulative ice discharge is close to zero, resulting in the relatively small calibrated γ values. For the Ross region, the Rignot

ice discharge even shows a declining sea level contribution over the reanalysis period, which could not even be reproduced by465

the best fitting CMIP6 models (Fig. A2). Figure 3 consistently shows no decline in the median ocean temperature of the CMIP6

models over the historical period, pointing at a deficiency in ocean forcing for the Ross region. In the Ross region negative

γ values would give a better fit for many ESM-RF pairs, but this would be physically incorrect since this would suggest that

warmer temperatures lead to less basal melt and vice versa. As a consequence, a high percentage of the ESM-RF pairs has a γ

with a value of zero in the Ross region. For the Peninsula, about half of the models has a γ value of zero. Consistently, most470

CMIP6 models do not simulate a positive temperature trend in this region over the historical period (Fig. 3), also pointing at a

deficiency in the ocean forcing. For the Amundsen and EAIS regions, most models have positive calibrated γ values, consistent

with the positive sea level contribution in these regions and simulated ocean warming trend over the historical period.
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to read it. EvdL performed the computations and prepared the manuscript with contributions from all co-authors.475
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Figure A1. Regional hindcasts of the top 10% ESM-RF pairs for the QUA method over the period 1979-2017 (Table A1). The historical

experiment is extended with SSP2-4.5 scenario for the years 2015-2017. The figure shows the results for the top 10% ESM-RF pairs (green),

together with the Rignot ice discharge (grey). The shaded area indicates one standard deviation, representing intermodel spread for the

modelled response and observational error for the Rignot data.
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Figure A2. Same as Fig. A1, but for the QUR method.
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