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Abstract. Antarctic mass loss is the largest contributor to uncertainties in sea level projections on centennial timescales. In

this study
::
we

::::
aim

::
to

::::::::
constrain

:::::
future

:::::::::
projections

::
of

:
the contribution of

:::::::
Antarctic

:::::::::
dynamics

::
by

:::::
using

:::
ice

::::::::
discharge

:::::::::::
observations.

:::
The

:::::::::::
contribution

::
of

:
Antarctica’s ice discharge to future sea level changes is computed with ocean thermal forcing from 14

earth system models
::::::
(ESMs)

:
and linear response functions

::::
(RFs)

:
from 16 ice sheet models for three greenhouse gas emission

scenarios. Different than in
:::::
shared

:::::::::::::
socio-economic

::::::::
pathway

:::::
(SSP)

:::::::::
scenarios.

::::
New

::::::::
compared

:::
to previous studies, basal melt5

was calibrated on observed Antarctic ice discharge rather than on basal melt itself with an iterative approach. For each

model combination, a linear and quadratic melt dependency were calibrated both regionally (in five Antarctic sectors) and

at the continental scale. Projections using all model combinations show that the variation in basal melt computation methods

:::::::::
sensitivities

::
to
::::::
ocean

::::::::::
temperature

::::::
changes

:::::
were

::::::::
calibrated

:::
on

:::
four

:::::::
decades

::
of

::::::::
observed

:::
ice

::::::::
discharge

:::::::
changes

:::::
rather

::::
than

:::::
using

:::::::::::::::
observation-based

::::
basal

::::
melt

::::::::::
sensitivities.

::::
The

::::::
results

::::
show

::::
that

::::
even

::::
with

:::::::::
calibration

:::
the

::::::::::
acceleration

::::::
during

:::
the

:::::::::::
observational10

:::::
period

::
is

:::::::::::::
underestimated,

:::::::::
indicating

::::::
missing

:::::::
physics.

::::
Also

:::
the

:::::::
relative

::::::::::
contribution

::
of

:::
the

:::::::::
Amundsen

::::::
region

::
is

:::::::::::::
underestimated.

:::
The

::::::::::
Amundsen

::::::::::
contribution

::::
and

:::
sea

:::::
level

::::::::::
acceleration

:::::::::
improved

:::
by

:::::
using

:::
an

::::::::::::::::
Amundsen-specific

:::::::::
calibration

::::::
(rather

:::::
than

:::::::::::::
Antarctic-wide),

::::::::
quadratic

:::::
basal

::::
melt

::::::::::::::
parameterisation

::::::
(rather

::::
than

::::::
linear)

:::
and

:::::::
thermal

::::::
forcing

::::
near

:::
the

:::
ice

:::::
shelf

::::
base

::::::
(rather

:::
than

::::
the

::::::
deepest

:::::
layer

:::::
above

:::
the

::::::::::
continental

::::::
shelf).

::::::::
Although

:::::::::
calibration

::::::::
improved

::::::::
historical

::::::::::::
performance,

:::::::::
calibration

:::::
alone

:::
did

:::
not

::::::
reduce

:::
the

:::::::::
uncertainty

:::
in

:::
the

::::::::::
projections.

:::::::::::
Uncertainties

:::::::::
associated

::::
with

:::::
ESMs

::::
and

::::
RFs affect the projected sea level15

::::::::::
contribution more than the scenario variations (SSP1-2.6 to SSP5-8.5). After calibration, a high number of model pairs still

underestimated ice discharge in hindcasts over 1979-2017. Therefore top 10% best-performing model combinations were

selected for each method. A comparison between these model selections shows that the quadratic melt parameterisation with

Antarctic-wide calibration performs best in reproducing past ice discharge. We conclude that calibration of basal melt on past

ice discharge combined with model selection makes projections of Antarctic ice discharge (more) consistent with observations20

over the past four decades. Moreover, calibration of basal melt on past ice discharge results in lower basal melt sensitivities and

thus lower
:::
SSP

:::::::
scenario

:::::::::
variations

:::
and

:::::::::::::
methodological

:::::::
choices

::
in

:::
the

:::::::::
calibration

:::
and

:::::
basal

::::
melt

::::::::::
computation

:::::::
method.

:::::::
Despite

::
the

::::::::
different

::::::
method

:::::::
applied,

:::
the

::::::::
resulting

:
projections of Antarctica’s sea level contribution than estimates of

:::
are

::
in

::::
line

::::
with
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previous multi-model studies .
:::::::
(ISMIP6,

:::::::::::
LARMIP-2).

:::::::::
However,

:::
our

::::::
results

::::::
suggest

::::
that

::::::::::
constraining

::::
their

:::::
basal

::::
melt

:::::::
relation

::::
with

::
ice

:::::::::
discharge

::::::::::
observations

::
in

:::
the

:::::::::
Amundsen

::::::
region

:::
will

::::
lead

::
to

::::::
higher

:::::
future

:::::::::
estimates.25

1 Introduction

Sea level rise poses an increasing threat to densely populated coasts and deltas worldwide (Hinkel et al., 2014). Even if the 1.5

degree target of the Paris Agreement is met, global mean sea level will rise several meters in the longer term (Clark et al., 2016;

Fox-Kemper et al., 2021). At present, a global acceleration of sea level rise is visible in satellite measurements and the sea level

is already rising more than twice as fast as the average rate over the twentieth century (Nerem et al., 2018; Dangendorf et al.,30

2019).

Mass loss from land ice
:::
(ice

::::::
sheets

:::
and

:::::::
glaciers)

:
is currently accelerating and is now (over the period 2006–2018) the largest

contributor to the global mean sea level rise (Fox-Kemper et al., 2021). Antarctic ice sheet
:::::
(AIS) mass loss has tripled over the

last decade (Shepherd et al., 2018), which can be mainly attributed to increased ice discharge in the Amundsen Sea (Rignot

et al., 2019). Models and geological data indicate that the Antarctic ice sheet
:::
AIS

:
will cause most of the sea level rise in35

the long term
:::
over

:::::::::
thousands

::
of

:::::
years

:
(Bamber et al., 2019). Moreover, melt of

:::::::
Antarctic

:
land ice is the largest contributor

to uncertainties on centennial timescales (Palmer et al., 2020; van de Wal et al., 2019). The degree of acceleration of future

sea level changes is mainly determined by dynamic processes on the Antarctic ice sheet
::::
AIS. The underlying processes are

1) increased melt from below by warmer ocean water (basal melt) and 2) increased calving (iceberg formation) triggered by

basal melt and/or surface melt (Rignot and Jacobs, 2002; Pritchard et al., 2012; Liu et al., 2015; van den Broeke, 2005). It40

is important to gain a better understanding of the many uncertainties about the Antarctic contribution to sea level rise that

exist and to reduce these uncertainties when possible to support adaptation planning (Haasnoot et al., 2020). Uncertainties

associated with the Antarctic contribution to sea level rise even appear to be increasing. Using similar methodologies
::
to

::::
each

::::
other, the estimated Antarctic contribution in Levermann et al. (2020) shows increased uncertainty compared to its previous

study (Levermann et al., 2014) and expert judgment assessments of Bamber et al. (2019) give higher uncertainties than before45

(Bamber and Aspinall, 2013). To address this issue our study aims to gain more insight in the Antarctic contribution to and

uncertainties in future sea level changes and provides directions for reducing these uncertainties.

Future projections of Antarctic mass loss are often based on modelling studies. Most earth system models (ESMs) do not

have interactive ice sheet modules, because ice sheet models are particularly sensitive to small changes in the climate and often

assume unrealistic geometries if they have to be balanced with the data from ESMs. This means that changes in the mass loss50

of an ice sheet are not (properly) predicted by ESMs and that ice sheets in coupled ice sheet-ESMs show undesirable and

unrealistic trends. The proper functioning of ice sheet models in an earth system model is a worldwide effort for which no

effective solution can be expected in the short term. Therefore, ,
::
in
::::::
which ice sheet models are often used as a standalone unit

and balanced with observations. In this setup the forcing of ice sheet models
::::::
forcing

:
is provided by ESMs.

::::
earth

::::::
system

:::::::
models

:::::::
(ESMs). Over the last decade, ice sheet modelling has advanced from single model studies to model55

intercomparison projects (MIPs). In these projects, earth system modelling and ice sheet modelling are combined to make pro-
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jections of land ice. The Ice Sheet MIP (ISMIP
::::::
Model

:::::::::::::
Intercomparison

::::::
Project

:::
for

::::::
CMIP6

::::::::
(ISMIP6) (Nowicki et al., 2016) and

Linear Antarctic Response MIP (LARMIP
:::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::::::
(LARMIP-2) (Levermann et al., 2020) are currently

used as a
::
one

:
basis for projections of the Antarctic land ice evolution (Fox-Kemper et al., 2021). ISMIP6 (Seroussi et al., 2020)

provides process-based projections of the sea level contribution of the Antarctic ice sheet
::::
AIS based on a variety of ice sheet60

models that are forced by atmosphere and ocean output from CMIP5 ESMs. ISMIP6 made a selection of six ESMs based on

two main criteria. The first criterion is based on their performance in reproducing
::
the

:::::
mean

::::
state

::
of

:::
the

:
current climate (atmo-

sphere and ocean) near Antarctica
:
,
:::
but

:::
did

:::
not

:::::::
include

:::::
trends. The second criterion ensures that the ESM selection includes a

diversity of warming rates over the 21st century so that the uncertainty-range in projections is captured (Barthel et al., 2020;

Nowicki et al., 2020). One risk of the second criterion
:::
this

::::::::
selection

::::::
process

:
is that models with a relatively bad performance65

over the historical period in terms of trends could have been chosen. Bias metrics for the selection included criteria on the

mean state of the ocean and atmosphere, but did not include trends. In ISMIP6 basal melt was chosen to depend quadratically

on thermal forcing (Favier et al., 2019) and is calibrated on basal melt observations in two regions (mean Antarctic ice sheet

and the Pine IslandGlacier grounding line )
:::
with

::::
two

::::::
options

:::
for

::::::::::
calibration:

:::
the

:::::
mean

::::
AIS

:::
and

::::
Pine

:::::::
Island’s

:::::::::
grounding

::::
line

(Jourdain et al., 2020). LARMIP-2 focuses on ice sheet mass loss due to ice shelf basal melt (Levermann et al., 2014, 2020). In70

that study,
:
the temperature melt-relation is parameterised with a linear dependency on thermal forcing. ISMIP6 and LARMIP-

2 have thirteen ice sheet models in common and are primarily based on the CMIP5 models
:::::
ESMs

:
and scenarios (RCPs) as

forcing. Edwards et al. (2021) estimated probability distributions for projections under the new SSP scenarios based on CMIP6

ESMs, by using statistical emulation of the ISMIP6 ice sheet models.

Our study follows LARMIP-2 to account for the sensitivity of ice sheet models to climate change by using linear response75

functions (RF) of ice sheet models. The LARMIP-2 RFs were obtained by prescribing for five regions an immediate change

in basal melt of the ice sheet
::::::
shelves and simulating the resulting increase in ice sheet discharge with the ice sheet model. In

this way a relationship between basal melt and mass loss is obtained for each region. Another :
:::
the

:::::
linear

::::::::
response

::::::::
function.

::::::::::
Additionally,

::
a relationship between thermal forcing and basal melt is used to compute basal melt from ocean temperatures

:
:
:::
the

::::
basal

::::
melt

::::::::::::::
parameterisation. These relationships, together with a time-dependent warming

::::::
derived

::::
from

::::::
ESMs, then lead to a80

time-dependent mass loss of the ice sheet. This method was applied by Levermann et al. (2014, 2020) to a number of ice sheet

models. In those studies, CMIP5 models were used to diagnose the relationship between global surface air temperature (GSAT)

and ocean temperature changes around Antarctica, and GSAT was used as a driver of the method. The
:::::::::
advantage

::
of

::::
using

::::::
GSAT

:::
over

::::::
ocean

::::::::::
temperature

:::::::
changes

::
as

:::::
driver

::
is

:::
that

::::
also

:::::::::::
uncertainties

::
in

:::::
GSAT

:::::::
changes

::::
were

::::::::
included

::
in

:::
the

:::::::::
uncertainty

::::::::
estimate.

::::::::::
Furthermore,

::::::
GSAT

::
is

:::::
easier

::
to
::::::
derive,

:::
but

::
it
::::
does

::::
not

::::::
account

:::
for

::::::
(future

:::::::
changes

:::
in)

::::::::
Southern

::::::
Ocean

::::::::
dynamics.

::
It
:::::
could

:::
be85

:::::::
expected

::::
that

:
a
:::::::
regional

::::::
metric

:::
has

:
a
:::::
better

:::::::
relation

::::
with

::::::
forcing

:::::::::
underneath

:::
ice

:::::::
shelves.

:::::::::
Therefore,

:::
the current study improves

this step by using subsurface ocean temperature as driver (Lambert et al., 2021). In addition to the linear melt dependency

:::::::::::::
parameterisation

:
as in the Levermann et al. (2020) study, a more advanced quadratic basal melt parameterisation is applied

since observation-based evidence suggests a nonlinear relationship between melting and ocean temperature (Jenkins et al.,

2018).90
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The basal melt parameterisations are calibrated on observation-based estimates of ice discharge
::::::
changes

:
(Rignot et al.,

2019), rather than on basal melt as is done in ISMIP6.
::::
One

::::::::
advantage

:::
of

::::
using

:::
ice

::::::::
discharge

::::::::::::
measurements

::
is

:::
that

::::
they

:::::::
capture

::
the

::::::
entire

:::
ice

::::
sheet

:::::::
through

:::::::
satellite

::::::::::::
measurements

::
of

:::
ice

::::::
height

:::
and

:::::::
velocity

::::
and

::::::::
therefore

:::
are

:::::
better

::::::::::
constrained

::::
than

:::::
basal

::::
melt

::::::::
estimates

:::::
which

:::
are

:::
not

::::::::
measured

:::
for

:::
the

:::
full

:::
ice

:::::
sheet

:::
and

:::
for

:::
the

:::
full

::::
time

::::::
period

:::
that

:::
we

::::
use

::
for

::::::::::
calibration.

:::::::::
Moreover,

::::
when

:::::
using

:::::
basal

::::
melt

:::
for

::::::::::
calibration,

:::::
basal

::::
melt

::::::::::
observations

::::
are

:::::::
required

::::
long

::::::
before

:::
the

:::::
actual

:::
ice

::::::::
discharge

:::::::::::
acceleration95

::::
takes

:::::
place

:::
due

::
to

:::
the

:::::::
delayed

:::::::
response

::
of

:::
ice

::::::::
discharge

::
to

:::::
basal

::::
melt.

::::
The

:::::::::
advantage

::
of

:::
this

::::
new

::::::::
approach

:
is
::::
that

:::
ice

::::::::
discharge

::::::::::
acceleration

:::::
during

:::
the

::::::::
historical

::::::
period

::
is

::::::
directly

:::::::
derived

::::
from

:::::::::::
observations,

:::::::
thereby

::::::::::
constraining

:::
the

:::::
basal

::::
melt

::::
even

::::::
before

::
the

::::::::::::
observational

::::::
period. As calibration target the mass loss estimates of Rignot et al. (2019) were chosen over Shepherd et al.

(2018) for two reasons. The first reason is that Rignot et al. does not include surface mass balance processes which makes

the data directly comparable with our results
::
the

::::::
linear

:::::::
response

:::::::::
functions

:::
that

:::::
only

::::::::
represent

:::
the

::::::::::
contribution

:::
of

::::::::
Antarctic100

::::::::
dynamics. The second reason is that the Rignot et al. record starts earlier which allows us to look into mass loss acceleration

during a longer period. Two different calibrations
::::::::
calibration

::::::::
methods are applied: at the regional and

:
a
:::::::
regional

:::::::::
calibration

:::
on

::
the

::::::::::
Amundsen

:::::
sector

:::
and

::::
one

::
at

:::
the continental scale.

:::
By

:::::::
applying

:::
the

:::::
same

::::
melt

::::::
relation

::
to
:::
the

::::
past

:::
and

:::
the

::::::
future,

:::
we

::::::
ensure

:::
that

:::
the

::::::
physics

::
is
:::::::::
consistent

::::
with

:::
four

:::::::
decades

::
of

::::::::
observed

::::
mass

::::
loss.

:::::
Here,

:::
the

::::::::::
assumption

::
is

:::
that

:::
no

:::
new

::::::::
processes

:::
are

::::::
taking

:::::
place. Using different warming scenarios and RFs for a variety of models, we arrive at an

:
a
:::
new

:
estimate of the future mass loss105

of Antarctica that is consistent with observed mass loss over the past four decades
:::
and

:::
the

:::::::::
Amundsen

::::::
sector

:::
that

::
is

::::::::::
constrained

::
by

::::::::
observed

:::
ice

::::::::
discharge.

2 Methodology

In this study the contribution of
::::::
changes

::
in

:
Antarctica’s ice discharge to sea level changes is computed with state-of-the-art

ESMs from Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. 2016) and linear response functions from110

the Linear Antarctic Response MIP (LARMIP-2; Levermann et al. 2020) ice sheet models.

Flow diagram of procedure. Observational constraints are indicated in orange, main computations of the Levermann et al.

method in green (including model experiments by the modelling groups), calibration methods in yellow, bias-adjustment in

grey and (intermediate) output data in blue. The continuous lines represent direct pathways while the dashed lines refer to

iterative processes or optional choices during calibration.115

The basic procedure of this study follows that of Levermann et al. (2020) with a number of modifications as explained below

and illustrated in Fig. 1.

2.1
:::::

Ocean
::::::
forcing

Earth system models from CMIP6 are used as a basis for the computations, guaranteeing implementation of state-of-the-art

models in the analysis and projections. Ocean temperatures are directly taken from the CMIP6 models,
:::
The

:::::
ocean

:::::::
forcing120

::::::
consists

:::
of

:::::
annual

:::::
mean

:::::::::
simulated

:::::::::
subsurface

:::::
ocean

:::::::::::
temperatures

:::::
which

:::
are

::::::::
obtained

::::
from

:::::
ESM

:::::
output

:
instead of estimating

them from scaling coefficients and global mean air temperature. For the representation of basal melt our method employs a
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Basal melt parameterization
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Figure 1.
::::
Flow

::::::
diagram

::
of

::::::::
procedure.

:::::::::::
Observational

::::::::
constraints

:::
are

:::::::
indicated

::
in

::::::
orange,

::::
main

::::::::::
computations

::
of

::
the

:::::::::::::
Levermann et al.

::::::
method

:
in
:::::
green

::::::::
(including

:::::
model

:::::::::
experiments

::
by

:::
the

::::::::
modelling

::::::
groups),

::::::::
calibration

:::::::
methods

::
in

::::::
yellow,

:::::::::::
bias-adjustment

::
in
::::
grey

:::
and

:::::::::::
(intermediate)

:::::
output

:::
data

::
in

::::
blue.

::::
The

::::::::
continuous

::::
lines

:::::::
represent

:::::
direct

:::::::
pathways

:::::
while

:::
the

:::::
dashed

::::
lines

::::
refer

::
to
:::::::
iterative

:::::::
processes

::
or

:::::::
optional

::::::
choices

:::::
during

::::::::
calibration.

linear as well as a quadratic melt relation with thermal forcing (TF ), i.e. the difference between the in situ temperature of sea

water (To) and the in situ freezing-melting point temperature (Tf ):

TF = To−Tf .125

Finally, the parameterisations are calibrated on regional or Antarctic-wide observed ice discharge from Rignot et al. (2019).

This calibration step is a key difference with the Levermann et al. studies.

2.2 Ocean forcing
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Table 1. CMIP6 models
::::
ESMs

:
that have been evaluated. For each region the subsurface ocean temperature bias (in K) compared to the

GREP reanalysis is indicated over the period 1993-2018, including years 2015-2018 for the SSP2-4.5 scenario. The ‘drift correction’ column

indicates whether the piControl experiment was used for model drift correctionor
:
.
:::
The

::::::
bottom

:::
rows

:::::
show the historical experiment

::::
mean

:::
and

::::::
standard

:::::::
deviation

:::
(σ)

::
of

:::
the

::::
ESM

:::::
biases

:::
and

::
the

:::::
mean

::::
ocean

:::::::::
temperature

:::
(in

:::

◦C)
:::
and

::::::
standard

::::::::
deviation

::
of

::
the

:::::
GREP

::::::::
reanalysis

::::::
product.

CMIP6 model
::::
ESM EAIS Weddell Amundsen Ross Peninsula Drift correction

ACCESS-CM2 -0.33 -0.11 -1.05 -1.26 0.09 historical
:
–

CAMS-CSM1-0 0.24 -0.05 0.22 -0.94 0.39 piControl

CAS-ESM2-0 1.43 0.79 0.20 -0.18 2.18 historical
:
–

CMCC-ESM2 0.31 -0.23 0.51 -0.10 0.58 piControl

CanESM5 -0.55 -0.43 -0.07 -0.80 -0.21 piControl

EC-Earth3 0.06 -0.57 1.17 0.71 -0.33 historical
:
–

EC-Earth3-Veg -0.10 -0.58 0.84 0.44 -0.34 piControl

GFDL-ESM4 0.05 -0.38 0.45 -1.00 0.20 piControl

INM-CM4-8 -0.37 0.32 -0.66 -0.17 0.19 piControl

INM-CM5-0 -0.74 -0.24 -1.16 -1.11 -0.16 piControl

MIROC6 0.81 0.55 1.58 1.40 0.29 historical
:
–

MPI-ESM1-2-LR -0.31 0.03 0.08 -0.59 -0.41 piControl

MRI-ESM2-0 -0.12 -0.10 -0.12 -0.31 0.32 historical
:
–

NorESM2-MM -0.92 -0.45 -0.71 -0.84 -0.74 piControl

:::
Bias

:
Mean -0.04 -0.10 0.09 -0.34 0.15 -

Std
:::
Bias

::
σ 0.59 0.40 0.78 0.74 0.67 -

:::::
GREP

::::
Mean

: :::
0.53

::::
-0.79

::::
1.37

::::
-0.18

::::
-0.24

:::::
GREP

:
σ
: :::

0.23
:::
0.21

::::
0.24

:::
0.53

:::
0.21

The ocean forcing consists of annual mean simulated subsurface ocean temperatures by CMIP6 ESMs. The ocean temperatures

:::::
GSAT

::
as

::
in

::::::::::
LARMIP-2

::::::::::::::::::
(Lambert et al., 2021)

:
.
:::
The

::::::
ocean

::::::::::
temperatures

:
are taken from the historical experiment (1850-2014)130

and the Shared Socioeconomic Pathways
:::::::
Pathway (SSP)

:::::::
scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 (2015-2100). Only mod-

els that have data available at the Earth System Grid Federation (ESGF) data server for the historical experiment and all three

SSP scenarios (at the time of study) are considered. In addition, models should provide data for the full period (1850-2100)

without any data gaps since the computation of the delayed ice sheet response
::
to

::::
basal

::::
melt

:
requires a continuous time series.

Table 1 summarises which models have been taken into account.135

Ocean temperatures are averaged over five oceanic sectors: the East Antarctic Ice Sheet
::::
AIS (EAIS), Ross, Amundsen,

Weddell and Peninsula sector (Fig. 2), and averaged vertically over a range of 100 m, centered around the depth of the ice shelf
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EAIS
Ross
Amundsen
Weddell
Peninsula

Figure 2. Ocean sector definition.

Table 2. Mean ice shelf depth (in m) for the five sectors in Fig. 2.

Sector Depth (m)

EAIS 369

Weddell 420

Amundsen 305

Ross 312

Peninsula 420

base (Table 2).
:
In

::::::::
addition,

:::::::::::
temperatures

::
in

:::
an

:::::
ocean

:::::
layer

::::::
around

:::
the

:::::
depth

::
of

:::
the

::::::::::
continental

:::::
shelf

::::
near

:::
the

:::
ice

::::
shelf

:::::
front

::::::::
(800-1000

:::
m)

::::
were

:::::
used

::
to

:::::
assess

:::
the

::::::
impact

::
of

:::::::
thermal

::::::
forcing

:::::
depth

::
on

:::
the

::::::::::
projections

:::::
(Table

:::::::
3)(Sect.

::::::
3.3.2). Different from

Levermann et al. (2020), the Peninsula sector is defined as a separate ocean sector rather than using the same ocean sector140

coordinates as the Amundsen sector.

The
::::
ocean

:::::::::::
temperature time series are corrected for model drift by removing the long term trend diagnosed by the linear

trend in the pre-industral control (piControl) experiment (Fig. 3). For models that did not provide suitable data for the piControl

experiment, the model drift is estimated from the historical experiment with a variable detrending period starting in 1850 and

ending between 1900 and 1950. The smallest absolute trend within this period is considered model drift and removed from145

the time series. In this way we assure that (multi-)decadal variability has minimal influence on the trend magnitude . For

the quadratic melt parameterisaton, the resulting
::
not

:::::::::
removed.

::::::::
Although

:::
the

::::::
ocean

::::::::::
temperature

::::
bias

:::
has

:::
no

:::::
clear

:::::::
relation

7
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Figure 3. Annual mean subsurface ocean temperature time series smoothed by a five-year running average filter for the
:::::::
averaged

::::
over

::
all

:::::
ESMs

::::::
(green),

:
model drift- and bias-adjusted(green) CMIP6 multi-model mean

:
, and the GREP ensemble mean (orange). For CMIP6

models,
::::
Both

::
are

::::::::
smoothed

::
by

::
a
::::::
five-year

:::::::
running

::::::
average

::::
filter.

:::
The

:::::::::
temperature

::
is
::::::
derived

::::
from

:
a
::::::
100-m

::::
thick

::::
layer

::::::
centered

::::::
around

:
the

::::
mean

::::
depth

::
of
:::
the

:::
ice

::::
shelf

:::
base

::
as

:::::::
specified

::
in

::::
Table

::
2.

:::
The

:
historical experiment (1850-2014) is combined with SSP2-4.5 (2015-2018) for

this visualisation. Note that the tick distances of the vertical axis are the same for all regions, but the ranges are different.

::::
with

::::::::
projected

::::::::::
temperature

:::::
trends

:::
in

:::::
ESMs

::::::::::::::::::::
(Little and Urban, 2016)

:
,
::
it

::::::
affects

:::
the

:::::::::
magnitude

::
of

:::::
basal

::::
melt

::
in
::::

the
::::::::
quadratic

::::::::::::::
parameterisation.

:::::::::
Therefore,

:::::
before

:::::::::
computing

:::
the

:::::
basal

::::
melt

:::
the

::::
time

:::::
mean

:::::
ocean

:
temperatures are bias-adjusted with global

ocean reanalyses called the Global Reanalysis Ensemble Product (GREP). GREP can be obtained from the Copernicus Marine150

Server at 1 degree horizontal resolution over the period during which altimetry data observations are available (1993-2018).

It is constructed by postprocessing of four reanalyses: GLORYS2V4 from Mercator Ocean (France), ORAS5 from ECMWF,

FOAM/GloSea5 from Met Office (UK), and C-GLORS05 from CMCC (Italy). Although the ocean temperature bias has no

clear relation with projected temperature trends in ESMs (Little and Urban, 2016), it affects the magnitude of basal melt in the

quadratic parameterisation. Therefore, before computing the basal melt the ocean temperatures are bias-corrected. It should be155

noted, however, that the reanalysis data may also be biased due to a paucity of assimilated data and the absence of ice shelves

in the physical ocean models.

Averaged over all CMIP6 models
:::::
ESMs

:
the subsurface temperature of the CMIP6 multi-model mean is cold-biased for the

EAIS, Weddell and Ross sectors over the 1993-2018 period. For the Amundsen and Peninsula sectors the mean simulated

temperature is warm-biased (Table 1). For all regions, the sign of the bias differs between individual models. The ensemble160

mean bias
:::::
ocean

::::::::::
temperature

::::
time

:::::
series

::
of

:::
the

::::::::
individual

::::::
models

:::
are

::::::::
corrected

:::
by

::
the

::::::::
ensemble

:::::
mean

::
of

:::
the

::::::::
reanalysis

::::::::
products

over the 1993-2018 time period is removed from the modelled ocean temperatures over the entire historical and future period

to obtain the bias-adjusted ocean temperatures (Fig. 3).
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Table 3. Abbreviations for
:::::::
Overview

::
of
:
basal melt parameterisation

:::::::::
computation and calibration methods

:::::
applied

::
in

:::
this

::::
study. Two different

:::::
depths

::::
were

::::
used

::
for

:::
the

::::::
thermal

::::::
forcing:

:::::::
centered

::::::
around

::
the

:::::
mean

::::
depth

:::
of

::
the

:::
ice

::::
shelf

::::
base

:::
and

:::
the

::::
layer

::
at

:::::::
800-1000

::
m
:::::
depth.

:::::
Also,

:::
two

::::::
different

:
basal melt parameterisation methods were employed: linear and quadratic. Each parameterisation has been calibrated Antarctic

wide and regionally . Unbounded means that γ has zero as lower limit and no upper limit for at least 95% of the ESM-RF combinations.

Bounded means that the Levermann et al. (2020) bounds are applied on the linear parameterisation (both upper
::::::::
Amundsen

::::::
region.

::::::
Finally,

:::::
median

::::
basal

::::
melt

:::::::::
sensitivities

::::
used

::
in

::::::::
LARMIP-2

:
and lower bounds)

::::::
ISMIP6

::::
have

:::
been

::::::
applied.

Abbreviation
::::::
Thermal

::::::
forcing

::::
depth

:
Parameterisation

:::::
relation

:
Calibration bounds Calibration region

::::
Basal

::::
melt

:::::::
sensitivity

:

QUR
:::
Ice

::::
shelf

:::
base

:
Quadratic Unbounded Regional

::::::::
Amundsen

::::::::
calibration

QUA
:::::::
800-1000

::
m
:

Quadratic Unbounded Antarctic LUR Linear Unbounded Regional
::::::::::

Antarctic-wide
::::::::
calibration

:

LUA Linear Unbounded Antarctic
:::::
ISMIP6

::::::::
AntMean

::::::
Median

LBR Linear Bounded Regional
::::::::
LARMIP-2

::::::
Median

LBA Linear Bounded Antarcticheight

2.2 Basal melt parameterisation

Warming of ocean water above the freezing point temperature
:::::
When

:::
the

:::::
water

::::::::::
temperature

:::::::::
underneath

:::
ice

::::::
shelves

:
in ice shelf165

cavities induces
::::::
reaches

:::
the

::::::::::::::
freezing-melting

:::::
point

::::::::::
temperature

::
it

::::
will

::::::
induce basal melt of the corresponding ice shelves.

CMIP6 models
:::::
ESMs, however, typically do not represent ice shelf cavities and the related thermal and dynamical properties.

Coastal ocean temperatures should therefore be translated into these cavities. This can be done by using a parameterisation that

relates the far-field (coastal) ocean temperature to basal melt. Most of the simple basal melt parameterisations assume a relation

with thermal forcing.
:
,
:::
i.e.

::
the

:::::::::
difference

:::::::
between

:::
the

::
in

:::
situ

::::::::::
temperature

::
of

:::
sea

:::::
water

::::
(To):::

and
:::
the

::
in

:::
situ

::::::::::::::
freezing-melting

:::::
point170

::::::::::
temperature

::::
(Tf ):

:

TF = To−Tf .
::::::::::::

(1)

Our method employs a linear and quadratic melt relation with thermal forcing (Table 3). The quadratic relation was suggested

to outperform a linear relation (Favier et al., 2019), but we will apply both so that we can compare our results with the linear

relation used in Levermann et al. (2020). The linear relation is defined as:175

m= γl

(
ρswcpo
ρiLi

)
TF, (2)

:::::
where

::
m

::
is

:::
the

:::::
basal

::::
melt

:::
and

:::
γl :

is
:::

the
::::::

linear
:::::::::
calibration

:::::::::
parameter. It assumes a constant heat exchange, independent on the

local stratification and circulation. The quadratic relation is defined as:

m= γq

(
ρswcpo
ρiLi

)2

TF |TF |. (3)

where m is the basal melt and γ is the calibration parameter
::::::::
quadratic

:::::::::
calibration

::::::::
parameter

::
is
:::
γq .::::

The
:::::
basal

::::
melt

:::::::::
sensitivity180

:
is
:::::::
defined

::
as

::::::::::
γl

(
ρswcpo
ρiLi

)
:::

for
::::

the
:::::
linear

::::::
relation

::::
and

:::::::::::
γq

(
ρswcpo
ρiLi

)2
:::

for
:::

the
:::::::::

quadratic
::::::
relation. The quadratic relation assumes

9



Table 4. Physical constants.

parameter symbol value unit

ice density ρi 917 kg m-3

sea water density ρsw 1028 kg m-3

specific heat capacity of ocean mixed layer cpo 3947 J kg-1 K -1

latent heat of fusion of ice Li 3.34 × 105 J kg-1

heat exchange velocity γ calibrated m s-1

liquidus slope λ1 -0.0575 ◦C PSU−1

liquidus intercept λ2 0.0832 ◦C

liquidus pressure coefficient λ3 7.59 × 10−4 ◦C m−1

that the heat exchange scales with the buoyancy-driven cavity circulation and that this scales linearly with the large-scale

temperature gradient. The values of the physical constants ρsw, cpo, ρi and Li are given in Table 4. The freezing-melting point

temperature Tf underneath ice shelves is computed from the ocean salinity So and the depth of the ice shelf base zb:

Tf = λ1So +λ2 +λ3zb. (4)185

See Table 4 for the values of the physical constants. Favier et al. take To and Tf either as local or nonlocal values, where

nonlocal is
:
as

:
the product of local and nonlocal (averaged

::
the

:::::::
average

:
over the entire ice draft of a given sector) thermal

forcing. In the current study, a purely nonlocal forcing is applied, similar to DeConto and Pollard (2016) and Levermann et al.

(2020). The values of To are computed as averages over the five (far-field) oceanic sectors, around the depth of the ice shelf base

(see Table 2) . Since most
::
or

:
a
::::::
deeper

::::
layer

:::::::::
(800-1000

::
m

::::::
depth).

:::::
Since

:
CMIP6 models

:::::
ESMs

::::::::
typically do not resolve cavities,190

the far-field ocean temperature is taken. The underlying assumption is that the ocean temperature remains constant while it

is advected into the cavity. Also note that the ocean sectors are somewhat wider than the continental shelf, consistent with

Levermann et al. (2020). The advantage of a wider region is that it allows for more assimilated observations in the reanalysis

product that is used for the bias adjustment of ocean temperature (the continental shelf region is only sparsely sampled).

Furthermore, the resolution of most CMIP6 models is not high enough to resolve the ocean circulation on the continental shelf,195

including the Antarctic Slope Current (Thompson et al., 2018). The
:::
The computation of Tf is based on a constant salinity value

for each oceanic sector, which is computed from the far-field salinity climatology of the reanalysis data. The resulting values

of Tf are approximately -1.6 ◦C in each sector.

Note that the melt is positive if the ocean temperature exceeds the freezing-melting point temperature and negative (i.e.

water is refreezing) otherwise. The change in basal melt anomaly is
:
In

:::
the

:::::::
current

:::::
study,

:::::
basal

::::
melt

:::::::::
anomalies

:::
are

::::
used

:::
to200

:::::::
compute

:::
the

:::
sea

::::
level

:::::::::::
contribution.

:::
The

:::::
basal

::::
melt

:::::::::
anomalies

:::
are defined as the difference in basal melt between time t and the

baseline time period, 1850-1930. This period was chosen since it is long enough to reduce the impact of natural variability on

the baseline but short enough so that it doesn’t include the trends due to anthropogenic forcing.
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Basal melt anomalies in linear parameterisations do not depend on the mean temperature, only on the anomaly. In contrast,

basal melt computed from the quadratic parameterisation depend on the mean temperature as well. As a consequence, biases205

in ocean temperature will influence the estimated magnitude of basal melt changes. Ocean temperatures were therefore

bias-adjusted with the ocean reanalysis data. The basal melt parameterisation can be calibrated with the heat exchange velocity

γ. It should be noted that γ has
:
γl::::

and
::
γq:::::

have a different order of magnitude in the linear and quadratic parameterisationand

is ,
:::::::::::
respectively,

:::
and

:::
are

:
not directly comparable.

2.3 Sea level contribution and calibration210

Linear response functions (RFs) from LARMIP-2 will be used to compute the cumulative sea level contribution ∆S (in meters)

due to a change in basal melt
:::
∆m

:
for each of the five sectors

::::
(Fig.

::
2):

∆S(t) =

t∫
0

dτ ∆m(τ) ·RF (t− τ). (5)

:::
The

::::
sum

::
of

:::
the

:::
five

:::::::
regional

::::
sea

::::
level

:::::::::::
contributions

:::::
gives

::
the

:::::
total

:::::::
Antarctic

::::
sea

::::
level

:::::::::::
contribution.

LARMIP-2 provides RFs of 16 ice sheet models. Combined with the 14 ESMs (Table 1), this results in 224 ESM-RF215

combinations for the projections. The resulting sea level contributions are calibrated on observation-based ice discharge. For

each individual sector and the total Antarctic, we have derived the
:::
For

::::
each

::::::::
ESM-RF

::::
pair,

:::
the

:::::
basal

::::
melt

::::::::::::::
parameterisation

::
is

::::::::
calibrated

::
on

:
observed ice discharge from Rignot et al. (2019)data. Then the .

::::
The root-mean-square error (RMSE) between

the observed and modelled cumulative
:::::::
changes

::
in ice discharge for each

::::
year,

::::::::
weighted

::::::
equally,

::::
over

:::
the

::::::
period

:::::::::
1979-2017

:::
for

::::
each ESM-RF combination

::::
pair is determined over a wide range of γ values .

::
for

:::
Eq.

:::
(2)

:::
and

::::
Eq.

:::
(3). The RMSE is computed220

over the full time series to constrain models on the cumulative sea level change as well as the acceleration. For all calibrations,

γ should be equal or greater than zero, since negative values would imply that temperatures above the melting point lead to

ice growth, which is deemed not physically possible. The γ value giving the lowest RMSE for each ESM-RF pair provides the

calibrated γ (Fig. 5).

The linear
:::::
basal

:::
melt

:::::::::
sensitivity.

:::::
Note

:::
that

:::
this

:::::::::
calibration

::::
step

::
is

:
a
:::
key

::::::::
difference

::::
with

:::
the

:::::::::::::::
Levermann et al.

::::::
studies.

::::::::::::::::::::
Levermann et al. (2020)225

::::
does

:::
not

:::::::
calibrate

:::
the

:
basal melt parameterisation has been calibrated in two ways: with bounded and unbounded γ values

::
on

::
ice

:::::::::
discharge,

:::
but

::::
uses

::::
melt

::::::::::
sensitivities

::::::
derived

:::::
from

:::::::::::
observations.

:::
The

:::::::::
calibration

::
is

::::::
applied

:::::::::
regionally

::
on

:::
the

:::::::::
Amundsen

:::::
region

::::
and

::::::::::::
Antarctic-wide (Table 3). For the ‘unbounded’ calibrations,

the upper bound of the ,
::::::::
resulting

::
in

::::
two

::::
basal

::::
melt

::::::::::
sensitivities

:::
for

::::
each

::::::::
ESM-RF

::::
pair

:::
for

:
a
:::::
given

::::::::::::::
parameterisation.

::::::
Figure

::
5

:::::
shows

:::
the

:::::
basal

::::
melt

::::::::::
sensitivities

::::::::::::
corresponding

:::::
with

:::
the

:::::::::
calibrated γ range

:::::
values

:::
for

::::
the

:::::
linear

:::
and

:::::::::
quadratic

::::
basal

:::::
melt230

:::::::::::::
parameterisation

::::
and

:::
for

::::
the

:::
two

::::::::::
calibration

:::::::
regions.

::::
For

:::
the

:::::::::::::
Antarctic-wide

::::::::::
calibration,

:::
the

:::::
same

::
γ
:::::

value
:::

is
::::::
applied

:::
to

::::
each

::::::
region.

::::
The

:::::::
smallest

::::::
RMSE

::::::::
between

:::
the

::::::::
summed

::::::::
discharge

::::
over

:::
all

:::::::
regions

::
in

:::::::::::
observations

::::
and

::::::
models

::::::::::
determines

::
the

:::::::::
calibrated

:
γ
::::::
value.

:::
For

:::
the

:::::::::
Amundsen

::::::::::
calibration,

::
the

:::::::::
calibrated

:
γ
:::::
value

:
is determined by the requirement that at least 95%

of all ESM-RF combinations should have the best fit within the
:::
best

::
fit

:::::::
between

:::
the

::::::::
modelled

::::::::
response

:::
and

:::::::::::
observations

::::
over

::::
only

:::
the

:::::::::
Amundsen

::::::
region.

:::
The

::::::::
resulting

:
γ range; they have no upper bound. This means that for at most 5% of the ESM-RF235
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pairs there is an upper bound. This resulted in a
:::::
values

:::
are

::::
then

::::::
applied

::
to

:::
the

::::
other

::::
four

::::::
regions

::
to

::::::
obtain

:::
the

::::::::
Antarctic

:::::::
summed

:::::::
response.

:

::
In

::::::::
addition,

::
to

::::::
assess

:::
the

::::::
impact

:::
of

:::
our

:::::::::
calibration

:::::::
method

:::
on

:::
the

::::
sea

::::
level

::::::::::
projections,

::
a
::::::
single

:::::::::
calibration

:::::::::
parameter

:
(γrange of 0.0-6.0 m yr−1 for the quadratic parameterisation and 0.0-0.1 m yr−1 for the linear parameterisation. In order to

compare our results to Levermann et al. (2020), we also applied a bounded calibration . For the bounded calibration, the basal240

melt sensitivity (i.e. γ
(
ρswcpo
ρiLf

)
) should be in the empirically based range determined by Levermann et al. (2020): 7-16 m

yr−1 K−1. The bounded calibration is only applied to the linear parameterisation.

The calibration is applied regionally and Antarctic-wide
:
)
::::::
derived

:::::
from

:::::::
observed

:::::
basal

::::
melt

:::
has

::::
been

:::::::
applied

::
to

::
all

::::::::
ESM-RF

::::
pairs

::::
(Fig.

:::
1).

::::
This

:::::::::
calibration

:::::::::
parameter

:
is
:::::::
derived

::::
from

:::
the

:::::::
median

::::
basal

::::
melt

:::::::::
sensitivity

:::
that

::::
was

::::
used

::
in

::::::::::
LARMIP-2

:::
for

:::
the

:::::
linear

:::::::::::::
parameterisation

::::
and

:::::::
ISMIP6

::
for

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

:
(Table 3). For each ESM-RF pair, the γ parameter with245

the best fit (lowest RMSE ) is selected for each of the five sectors in an iterative approach

:::
For

::
all

:::::
basal

::::
melt

:::::::::::
computation

:::
and

::::::::::
calibration

::::::::
methods,

:::
the

:::::::::
Amundsen

::::::::::
contribution

::::
and

:::
the

::::
total

::::::::::
contribution

:::
of

:::
the

::::
AIS

::
are

:::::::::
analysed.

:::
The

::::::
RMSE

::::::::
between

:::::::
observed

::::
and

::::::::
modelled

:::
ice

::::::::
discharge

:::
for

:::::
these

:::
two

:::::::
regions

::::
was

::::
used

::
to

::::::
assess

:::
the

::::::
impact

::
of

:::::
model

::::::::
selection

::
on

::::::::::
projections

::
of

:::
the

::::::::
Antarctic

::::::::
dynamics

:::::::::::
contribution

::
to

:::
sea

::::
level

:
(Fig. 1). For the regional calibration the

summed Antarctic response is the sum of the regionally calibrated contributions with five basin-specific γ values. In addition,250

the calibration is performed with the same γ value in each region, resulting in Antarctic-wide calibrated γ values.

3 Results

3.1 Basal melt computation and calibration

Basal melt is computed from subsurface ocean temperature time series(Fig. 1).
:
. The temperature time series

::::
over

:::
the

::::::::
historical

:::::
period

:
are shown in Figures 3and 4 for

::::::
Figure

::
3.

:::::
Figure

::
4
:::::
shows

:::
the

:::::::
thermal

::::::
forcing

:::
for

:::
part

:::
of the historical and future period255

, respectively
::::::::::
(1950-2100). Over the 21st century, all regions show a median warming

::::::
increase

:::
in

:::::::
thermal

::::::
forcing

:
but the

magnitude varies between individual regions and becomes scenario dependent around year 2050 (Fig. 4).
::::
2050.

:

The basal melt parameterisations are calibrated by fitting the sea level response of each ESM-RF pair on the Rignot ice

discharge time series
::::::
changes

:::
in

:::::::
observed

::::
ice

::::::::
discharge

:
over the full 1979-2017 period

::::::::::::::::
(Rignot et al., 2019). This exercise

shows that the median γ parameter
::::
basal

::::
melt

:::::::::
sensitivity value resulting in the lowest RMSE varies between individual regions260

:::::
differs

::::::::
between

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration

:::
and

:::::::::
calibration

:::
on

:::
the

::::::::::
Amundsen

:::::
region

:
(Fig. 5). For the Ross and Weddell

regions, a relatively low γ gives a better fit with Rignot data, while for the Amundsen and Peninsula regions a higher γ

improves the calibration. The EAIS and
::::::::
Amundsen

::::::
region

:
a
::::::
higher

::::::
median

::::
basal

::::
melt

:::::::::
sensitivity

::::
than

:::
for

::
the

::::::::::::::::
Antarctic-summed

:::::::
response

::::::::
improves

:::
the

:::
fit.

:::
The

:
Antarctic-wide calibration give intermediate γ values. The relative magnitudes of the γ values

are
:::::::
includes

::::::
regions

:::::
with

:
a
:::::
small

:::
or

:::::::
negative

::::
past

::::::::::
contribution

:::
to

:::
sea

:::::
level,

::::::::
resulting

::
in

:
a
::::::

lower
::::
basal

:::::
melt

:::::::::
sensitivity.

::::
The265

:::::::
relatively

:::::
high

::::::::
magnitude

:::
of

:::
the

::::::
median

:::::
basal

::::
melt

::::::::
sensitivity

::
of

:::
the

::::::::::
Amundsen

:::::
region

::
is consistent with the

:::::
higher

:
sensitivity

to ocean warming of the respective regions as described in Dinniman et al. (2016). For regions with a non-zero contribution
:::
The

::::::::::
contribution

::
of

:::
ice

::::::::
discharge to sea level over the observational period , the percentage of greater-than-zero calibrated γ values
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Figure 4. Projections of annual mean subsurface ocean temperature
::::::
Thermal

:::::
forcing

::::::::
anomalies for SSP1-2.6, SSP2-4.5 and SSP5-8.5 includ-

ing all evaluated CMIP6 models
::::
ESMs

:
(Table 1)

:::
from

::::
1950

::
to
::::
2100

::::::
relative

::
to

:::
the

::::::
baseline

:::::
period

:::::::::
1850-1930. The shaded regions indicate

one associated
::
the

:
intermodel standard deviation. Note that

::::
spread

:::::
(17th

::
to

:::
83rd

:::::::::
percentiles)

::
in
:::::

ocean
::::::::
subsurface

:::::::::
temperature

:::::::
between

:
the

tick distances of the vertical axis are the same for all regions, but the ranges are different
::::
ESMs.

indicates the percentage of
:
is

:::::::
positive

:::
and

:::
(at

::::
least

::::::
partly)

:::::::::
attributable

::
to

:::::
ocean

::::::::
warming

:::
for

::::
both

:::
the

:::::::::
Amundsen

:::::
region

::::
and

:::
the

::::
total

::::
AIS.

:::::::::
Therefore,

:::
for

::::
each

:
ESM-RF pairs that could be calibrated. For each calibration region, the percentage of

:::
pair

:::
the270

:::::::::
calibration

:::::::::
parameter,

:::
and

::::
thus

:::
the

:::::
basal

::::
melt

:::::::::
sensitivity,

::::::
should

::
be

:::::::
positive

:::
for

::::
both

:::::::::
Antarctica

:::
and

:::
the

::::::::::
Amundsen

::::::
region.

::
If

::
the

::::
best

::
fit

:::::::
(lowest

::::::
RMSE)

::
is

:::::::::
associated

::::
with

:
a
:::::::
negative

:::::
basal

::::
melt

:::::::::
sensitivity,

::::
this

:::::
means

::::
that

:::
the ESM-RF

::::::::::
combination

:::::
could

:::
not

::
be

:::::::::
calibrated.

::::::::
Between

::::
83%

::::
and

::::
90%

:::
of

::
all

::::::::
ESM-RF

:
pairs with greater-than-zero calibratedγ values (> 0 m yr−1) are

therefore indicated
::::
could

:::
be

:::::::::
calibrated,

::::::::
dependent

:::
on

:::
the

::::::::::::::
parameterisation

::::
type

:::
and

:::::::::
calibration

:::::::
region,

::
as

::::::::
indicated

::
on

:::
top

:::
of

::
the

:::::
boxes

:
in Fig. 5. These percentages show that for most calibration regions

:::
the

::::::::::::
Antarctic-wide

:::::::::
calibration

::::::
region, the quadratic275

parameterisation has a higher percentage of positive values than the linear parameterisation. The boxplots only represent the

ESM-RF pairs with positive γ values as indicated by the percentages on top. These percentages show that for the Weddell,

Ross and Peninsula sectors less than half of the
::::
basal

::::
melt

:::::::::::
sensitivities.

:::::
These

::::::::
calibrated

:
ESM-RF pairs have greater-than-zero

γ values. The calibrated γ values are used in the hindcasts and projections of Antarctic
::::::
changes

::
in

:
ice discharge.

For the linear parameterisation, we made a comparison between our positive γ values (calibrated on ice discharge) and280

the γ
::::::::
calibrated

::::
basal

::::
melt

::::::::::
sensitivities

::::
and

:::
the values used in LARMIP-2 (Levermann et al., 2020) (green shading in Fig. 5,

calibrated on basal melt). This comparison shows that our Antarctic-wide calibration results in a median γ
::::
basal

::::
melt

:::::::::
sensitivity

just below the lower bound of the Levermann et al. γ
::::::::::
LARMIP-2

:::::::
interval.

:::::::
Regional

:::::::::
calibration

:::
on

:::
the

:::::::::
Amundsen

:::::
sector

::::::
results

::
in

:
a
::::::
median

:::::
basal

::::
melt

:::::::::
sensitivity

:::::
above

:::
the

:::::::::
LARMIP-2

::::::
range.

:::::::::::
Furthermore,

:::
the

:::::
spread

::
in
:::
the

:::::::::
calibrated

::::
basal

::::
melt

::::::::::
sensitivites

:
is
:::::
much

::::::
larger

::::
than

:::
the

:::::
spread

:::
in

:::
the

:::::::::::::::
observation-based range. The same applies to the EAIS sector . For the Amundsen and285
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Figure 5.
::::::::::::
Box-and-whisker

::::
plots

::
of
:::::

basal
::::
melt

::::::::
sensitivity

:::::
values

:::::::::::
corresponding

:::
with

:::
the

::::::::
calibrated

::
γ

:::::
values

::
of

:::::::
ESM-RF

:::::
pairs.

::::
Only

:::
the

::::::::
sensitivities

:::
of

:::::::
calibrated

::
γ
:::::

values
::::::

greater
::::
than

::::
zero

:::
are

:::::
shown

::
in

:::
the

::::
plot.

:::
The

:::::::::
percentage

::
of

:::::::
ESM-RF

:::::
pairs

:::
with

:::::::
positive

::
γ

:::::
values

::
is

:::::::
indicated

::
by

:::
the

::::
green

:::::
values

::
on

:::
top

::
of

:::
the

:::::
boxes

::
for

::::
each

:::::
region.

::::
The

:::::::
horizontal

::::::
orange

:::
line

:::::::
indicates

:::
the

:::::
median

:::::
value,

:::::
boxes

::::::
indicate

:::
the

::::
25-75

::::::::
percentile

::::
range

:::
and

:::::::
whiskers

:::
the

::::
5-95

::::::::
percentile

:::::
range.

:::::
Values

::::::
beyond

:::
this

::::
range

:::
are

:::
not

::::::
shown.

:::
The

:::::
shaded

::::::
regions

::::::
indicate

:::::
basal

:::
melt

::::::::
sensitivity

:::::
ranges

::::
that

::
are

::::
used

::
in

::::
other

::::::
studies.

::::
The

::::
green

::::::
shading

::::::::
represents

:::
the

::::
basal

::::
melt

::::::::
sensitivity

::::
range

::
of

::::
7-16

::
m

:::
yr-1

:::
K-1

::::
used

:
in
::::::::::::::::::

Levermann et al. (2020)
:
.
:::
The

::::
blue

:::
and

:::::
yellow

::::::
shading

:::::::
indicate

::
the

::::::
5-95%

::::
range

::
of

:::
the

::::
basal

::::
melt

:::::::::
sensitivities

:::::::::::
corresponding

:::
with

:::
the

::
γ

:::::
values

:::
used

:::
for

:::
the

::::::
nonlocal

::::::::
quadratic

::::::::::::
parameterisation

::
in

::::::
ISMIP6

:::::::::::::::::
(Jourdain et al., 2020)

::
for

::::
both

:::
the

:::::::
Antarctic

::::
mean

:::::::::
(AntMean)

:::
and

::::
Pine

::::::
Island’s

:::::::
grounding

::::
line

:::::
(PIGL)

:::::::::
calibration

:::::
option,

::::::::::
respectively.

:::
For

::::
PIGL

:::
the

::::
95%

:::::
bound

:
is
:::
84

:
m
::::

yr-1
:::
K-2,

:::::
which

::
is

:::::
outside

:::
the

::::
scale

::
of

:::
the

:::::
vertical

::::
axis.

Peninsula sectors, regional calibration results in γ values at the high end or above the Levermann et al. γ range , while the values

for the Ross and Weddell Sea are lower
:::::::
ESM-RF

::::
pairs

::::
with

::
a

::::::::
calibrated

::::
basal

::::
melt

:::::::::
sensitivity

:::::
above

:::
the

:::::::::::::::
observation-based

:::::
range

:::::
(more

::::
than

:::
half

::
of

:::
the

::::::
model

::::
pairs

:::
for

:::
the

:::::::::
Amundsen

:::::::::
calibration)

::::::
would

:::::::::::
underestimate

::::::::
historical

:::
ice

::::::::
discharge

::
if

:
a
:::::::
random

::::
melt

::::::::
sensitivity

::::::
within

:::
the

:::::::::
LARMIP-2

:::::
range

:::::
would

:::::
have

::::
been

::::
used.

::::
Vice

::::::
versa,

:::::::
ESM-RF

::::
pairs

::::
with

::
a
::::::::
calibrated

:::::::::
sensitivity

:::::
below

:::
the

:::::::::
LARMIP-2

:::::
range

::::::
(about

:::
half

::
of

:::
the

::::::
model

::::
pairs

:::
for

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration)

:::::
would

:::::::::::
overestimate

::::::::
historical

:::
ice

::::::::
discharge290

:
if
::
a

::::::
random

::::
melt

:::::::::
sensitivity

::::
from

::::::
within

:::
the

::::::::::
LARMIP-2

:::::
range

:::::
would

::::
have

:::::
been

::::
used.

For the quadratic parameterisation, a similar comparison was made with the γ values
::::
basal

:::::
melt

::::::::::
sensitivities

:
applied in

ISMIP6 (Jourdain et al., 2020). Also for the quadratic paramerisation, our
::
the

:
median Antarctic-wide calibrated γ (calibrated

on four decades of observed ice discharge)
::::
basal

::::
melt

:::::::::
sensitivity sits at the lower end of the γ range of the Antarctic mean

calibration
:::::::::
(AntMean)

:::::::::
calibration

::::::
option

:
(blue shading in Fig. 5, calibrated on basal melt) )

:::::::
applied

:
in ISMIP6. The median295
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Table 5.
::::::::
Sensitivity

::
of

:::::::::
calibration

::::::::
parameter

::
of

:::
the

:::::::
quadratic

:::::::::::::
parameterisation

::
to
:::::::

thermal
::::::
forcing.

::::::
Values

::::::
indicate

::::::
median

:::::
basal

::::
melt

:::::::
sensitivity

:::
for

::::::::
calibrated

:
γ
::::::

values
::::
based

:::
on

::::
three

::::
types

::
of
:::::::

thermal
::::::
forcing.

:::
For

:::::::::
comparison

:::
the

::::::
median

::::
value

::
of

:::
the

:::::::
AntMean

:::::::::
calibration

:::
that

:
is
::::
used

::
in

::::::
ISMIP6

::
is

:::::
shown.

:::
The

:::
first

::::
type

::
is

::
the

::::::
thermal

::::::
forcing

::
as

:::::
shown

:
in
::::
Fig.

:
3,
:::::
which

::
is

::::
based

:::
on

::
the

::::::::::
bias-adjusted

:::::
ocean

::::::::
subsurface

:::::::::
temperature

:::::::
timeseries

::
of
:::
the

:::::
ESMs

::::
near

::
the

:::
ice

::::
shelf

::::
base.

:::
The

::::::
second

:::
type

::
is

:::::
based

::
on

:::
the

::::
same

::::
ocean

:::::::::
temperature

::::::::
timeseries

:::::
raised

::::
with

:::
one

::::::
standard

::::::::
deviation

:::
(1σ)

::::
that

:::::::
expresses

:::
the

:::::
spread

:::::::
between

:::
the

:::::
ocean

:::::::
reanalysis

:::::::
products

::::::
(GREP

::
σ

::
in

::::
Table

:::
1).

:::
The

::::
third

::::
type

::
is

:::
the

:::::
thermal

::::::
forcing

::
at

:::::::
800-1000

::
m

:::::
depth.

::::::
Thermal

::::::
forcing

:::::::::::
Antarctic-wide [

:
m
:::
yr-1

:::
K-2]

::::::::
Amundsen [

:
m
:::
yr-1

:::
K-2]

::::::
ISMIP6

:::::::
Antmean

::
Ice

::::
shelf

::::
base

::
2.3

: ::
3.7

: ::
2.6

::
Ice

::::
shelf

::::
base

:
+
:::

1σ
::
1.8

: ::
3.4

: :
-

:::::::
800-1000

::
m

::
1.2

: ::
5.5

: :
-

EAIS, Ross and Weddell sectors are (just) below the Antarctic mean ISMIP6 range, whereas the Amundsen calibration results

in a calibrated median γ at the high
::::::
median

::::
basal

:::::
melt

::::::::
sensitivity

::
at

:::
the

:::
top

:
end of the Antarctic mean rangeand the Peninsula

calibration gives a median γ just above the Antarctic mean range. In ISMIP6, also a calibration on the Pine IslandGlacier
::::
Pine

::::::
Island’s

:::::::::
grounding

:::
line

:
basal melt was applied

::
as

::
an

::::::
option (yellow shading in Fig. 5), which is the highest observed basal melt

of the Antarctic ice sheet
::::
AIS. Only some of the calibrations of ESM-RF pairs

:::::
outside

:::
the

:::::
95th

::::::::
percentile

:::::
range

:
resulted in γ300

values in the Pine Island Glacier
:::::
within

:::
the

:::::
PIGL range. However, it should be remarked that the ISMIP6 Pine Island Glacier

calibration goes together with
:::::
PIGL

:::::::::
calibration

::::
also

:::::::
includes

:
negative ocean temperature corrections all around Antarctica

that counter-balance the effects of the large γ values .
::::::::::::::::::
(Jourdain et al., 2020).

:::::::
Similar

::
to

:::
the

:::::
linear

::::::::::::::
parameterisation,

:::::
about

::::
half

::
of

:::
the

::::::::
ESM-RF

::::
pairs

:::
has

::
a
::::::::
calibrated

::::
melt

:::::::::
sensitivity

::::::
higher

::::
than

:::
the

:::::::
ISMIP6

::::::::
AntMean

:::::
range

:::
for

:::
the

:::::::::
Amundsen

::::::::::
calibration.

:::::
These

:::::
model

:::::
pairs

:::::
would

:::::
have

::::::::::::
underestimated

::::::::
historical

:::
ice

::::::::
discharge

::
in
:::

the
::::::::::

Amundsen
:::::
region

::
if
:::
the

:::::::
ISMIP6

::::::::
AntMean

:::::
basal305

::::
melt

::::::::
sensitivity

::::
had

::::
been

:::::::
applied.

:::
For

:::
the

::::::::
quadratic

::::::::::::::
parameterisation,

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
calibration

:::::::::
parameter

::
to

:::
the

:::::::
thermal

::::::
forcing

::
is

::::::
tested.

::
In

:::
this

:::::
way,

::
the

::::::
impact

:::
of

:::
the

:::::::::
uncertainty

::
in
:::
the

:::::::::
reanalysis

::::
data

:::
set

::
on

:::
the

:::
sea

:::::
level

:::::::::
projections

::
is

::::::::
explored.

::::
This

:::
has

:::::
been

::::
done

:::
by

::::::
adding

:
a
:::::::
positive

::::::::::
temperature

:::::::::::
perturbation

::
to

:::
the

:::::::::::
temperature

::::
time

:::::
series

:::::
near

:::
the

:::
ice

:::::
shelf

::::
base

:::
of

::::
each

:::::
ESM.

::::
The

:::::::::::
temperature

::::::::::
perturbation

::
is

::::
equal

::
in
::::
size

::
to

:::
one

::::::::
standard

:::::::
deviation

:::::::
between

:::
the

:::::::::
reanalysis

:::::::
products

::::
(see

:::
the

::::::
shaded

::::::
orange

::::::
regions

::
in

:::
Fig

:::
3).310

:::
The

::::::::
resulting

::::::::
calibrated

:::::
basal

:::::
melt

::::::::::
sensitivities

:::
are

:::::
listed

::
in

:::::
Table

::
5
::::
(Ice

:::::
shelf

::::
base

::
+

::::
1σ).

:::
As

::::::::
expected,

:::
the

::::::
higher

::::::
ocean

::::::::::
temperatures

::::
lead

::
to

:::::::
stronger

:::::::
forcing

::
in

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

:::
and

::::::::
therefore

:
a
:::::
lower

:::::
basal

::::
melt

:::::::::
sensitivity

::
is

:::::::
required

::
for

:::
the

::::
best

::
fit

::::
with

:::::::::::
observations.

:

To summarise, a comparison of the γ
::::::::
calibrated

::::
basal

::::
melt

:::::::::
sensitivity

:
values in our study and γ equivalents in LARMIP-2

(Levermann et al., 2020) and ISMIP6 (Jourdain et al., 2020) suggests that calibration on past ice discharge rather than on basal315

melt observations results in relatively low γ values
::::
basal

::::
melt

::::::::::
sensitivities for the Antarctic-wide calibration. The Amundsen

and Peninsula sector are
::::
sector

::
is
:
more consistent with the high end of the γ

::::
basal

::::
melt

:::::::::
sensitivity

:
ranges applied in LARMIP-2
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and the Antarctic mean calibration of ISMIP6, while the other sectors (EAIS, Ross, Amundsen) are more consistent with the

lower end of those γ ranges .
:::::::::::
Furthermore,

:::
the

:::::
spread

::
in
:::::::::
calibrated

::::
melt

::::::::::
sensitivities

:
is
:::::
much

::::::
higher

::::
than

:::
the

:::::::::::::::
observation-based

:::::
ranges

::
of

::::::::::
LARMIP-2

:::
and

:::
the

:::::::
ISMIP6

::::::::
AntMean

:::::::
method.

:::::::
ESM-RF

:::::
pairs

::::
with

:
a
:::::
strong

:::::::
thermal

::::::
forcing

::::
over

:::
the

::::::::
historical

::::::
period,320

:::
will

::::
have

::
a
:::::
lower

:::::::::
calibrated

::::::::
sensitivity

:::::
than

:::::::
ESM-RF

:::::
pairs

::::
with

::
a

::::
weak

:::::::
thermal

:::::::
forcing

::
to

:::::
obtain

::::
the

:::
best

:::
fit

::::
with

::::::::
observed

::
ice

:::::::::
discharge.

:::::::
Models

::::
with

::::::::
calibrated

::::
melt

:::::::::
sensitivity

:::::
values

:::::::
outside

:::
the

:::::::::::::::
observation-based

:::::
ranges

::::::
would

:::::
either

::::::::::::
underestimate

::
or

::::::::::
overestimate

::::
past

:::
ice

::::::::
discharge

::
if
:::::::::::::::
observation-based

::::::::::
sensitivities

::::
had

::::
been

:::::::
applied.

:::
As

:
a
:::::
result

:::
the

::::::
spread

::
in
:::::::::

simulated
:::
ice

::::::::
discharge

::::
over

:::
the

::::::::
historical

::::::
period

:::
will

:::
be

:::::
lower

:::
for

:::::::::
calibrated

::::
basal

:::::
melt

::::::::::
sensitivities

::::
than

:::
for

:::
the

:::::::::::::::
observation-based

:::::
basal

::::
melt

::::::::::
sensitivities.325

Box-and-whisker plots of calibrated γ values of ESM-RF pairs. Only calibrated γ values greater than zero are shown in

the plot. The percentage of ESM-RF pairs with positive γ values is indicated by the green values on top for each region. The

horizontal green line indicates the median value, boxes indicate the 25-75 percentile range and whiskers the 5-95 percentile

range. Values beyond this range are not shown. The shaded regions indicate γ ranges that are used in other studies. The

green shading represents the γ values corresponding with the basal melt sensitivity range of 7-16 m yr−1 K−1 used in330

Levermann et al. (2020). The blue and yellow shading indicate the 5-95% range of the γ values used for the nonlocal quadratic

parameterisation in ISMIP6 (Jourdain et al., 2020) for both the Antarctic mean (AntMean) and Pine Island Glacier (PIGL)

calibration, respectively. For PIGL the 95% bound is 4.71 × 105, which is outside the scale of the vertical axis.

3.2 Hindcasts of Antarctic
:::
and

::::::::::
Amundsen

:
sea level contribution

Hindcasts of the Antarctic dynamic contribution
:::::::
dynamic

::::::::::
contribution

:::
of

:::
the

::::::::::
Amundsen

::::::
region

:::
and

::::
the

::::
total

::::
AIS

:
to sea335

level rise are made to assess how well Rignot
::::::
changes

::
in
:

ice discharge could be reproduced after calibration over the pe-

riod 1979-2017. The total Antarctic sea level response is based on the summed contribution over the five sectors using the

six calibrated basal melt computation methods (Table 3).
:::::::::
calibration

::
is

:::::::::
performed

::
by

::::::
fitting

:::
the

::::
sea

::::
level

:::
on

:::::::::::
observations

::::
using

::
a
::::
least

:::::::
squares

::
fit

::
of

:::
the

:::
sea

:::::
level

::::::::::
contribution

:::
for

::::
each

:::::
year,

::::::::
weighted

::::::
equally,

::::
over

::::
the

:::::::
hindcast

::::::
period.

::::
The

:::::
results

:::
of

::
the

::::::
linear

:::
and

::::::::
quadratic

::::::::::::::
parameterisation

:::
are

::::::
about

:::::
equal

:::::
when

::::::
applied

::
to

:::
the

::::::
region

:::
of

:::::::::
calibration

:::::
(same

:::::::
RMSE;

:::::
Table

:::
6).340

::::::::
However,

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

::::::::
performs

:::::
better

::::::
(lower

:::::::
RMSE)

::::
after

:::::::::
calibration

:::
on

::
an

:::::::::::
independent

::::::
region

::::
than

:::
the

:::::
linear

:::::::::::::
parameterisation

::::
(i.e.

:::::
when

::::::::
calibrated

:::
on

:::
the

:::::::::
Amundsen

:::::
region

::::
and

::::::
applied

::
to

:::
the

::::
total

::::
AIS

::
or

::::
vice

::::::
versa).

:::::::::::
Additionally,

::
the

::::::::
quadratic

::::::::::::::
parameterisation

::
is

:::::::::
considered

::::
most

:::::::
realistic

:::::::::::::::::
(Jenkins et al., 2018)

:
.
::
In

:::
the

::::::::
remainder

::
of

::::
this

::::::
article,

::::::::
therefore,

::::
only

:::::
results

:::
for

:::
the

::::::::
quadratic

:::::
basal

::::
melt

::::::::::::::
parameterisation

:::
are

::::::
shown

::::
and

::::::::
discussed

:::::
unless

::::::::
specified

::::::::::
differently.

:::::::::
Differences

:::
in

:::
the

:::::::::
projections

:::::::
between

:::
the

::::::::
quadratic

:::
and

:::::
linear

::::::::::::::
parameterisation

:::
are

::::::
further

::::::::
discussed

::
in

:::::
Sect.

:::::
3.3.2.345

Figure 6 shows the hindcasts of all combinations of CMIP6 models and LARMIP-2 linear response functions
::::::::
ESM-RF

::::
pairs using the calibrated γ values

::::
basal

::::
melt

::::::::::
sensitivities (Fig. 5). Each panel represents a basal melt computation method

:::
The

:::
two

::::::
panels

:::::
show

:::
the

::::::::
hindcasts

:::
for

:::
the

::::
total

::::
AIS

::::
and

:::
the

:::::::::
Amundsen

::::::
region, as specified on top (Table 3).

::
in

:::
the

:::::
titles.

::::
The

::::
total

::::::::
Antarctic

:::
sea

:::::
level

:::::::
response

::
is
::::::

based
::
on

:::
the

::::::::
summed

::::::::::
contribution

:::::
over

:::
the

:::
five

:::::::
sectors

::::
(Fig.

:::
2).

::::
The

::::::
colors

::::::::
represent

:::
two

:::::::::
calibration

::::::::
methods,

::::::
where

:::
red

::
is

:::
the

:::::::::
calibration

:::
on

:::
the

:::::::::
Amundsen

::::::
region

:::
and

:::::
blue

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration.

::::
The350

:::::::
observed

:::
ice

::::::::
discharge

::::::
values

:::::::::::::::::
(Rignot et al., 2019)

::
are

::::::
shown

::
in

::::
grey.

:
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Table 6.
::::::
RMSEs

::
of

:::
the

:::
least

:::::::
squares

::
fit

::
of

:::
the

::::::
median

:::
sea

::::
level

:::::::::
contribution

::
of
::::

each
::::

year,
::::::::

weighted
::::::
equally,

:::::::
between

:::::::
calibrated

::::::
results

:::
and

::
ice

::::::::
discharge

:::::::::
observations

::
of

:::::::::::::::
Rignot et al. (2019).

::::::
Results

:::
are

:::::
shown

:::
for

::::::::::
combinations

::
of

:::
the

:::
two

::::::::
calibration

:::::::
methods

:::::::::
(Amundsen

:::
and

:::::::::::
Antarctic-wide)

:::
and

::::::::::::::
parameterisations

:::::
(linear

:::
and

::::::::
quadratic)

::
for

:::
two

:::::::
hindcast

::::::
regions:

:::
AIS

:::::
(AIS)

:::
and

::
the

:::::::::
Amundsen

:::::
region.

.

::::
Basal

::::
melt

::::::
method

:::::
RMSE

:::
AIS

:
[
::

mm]
:::::
RMSE

::::::::
Amundsen

:
[
:::
mm]

:::::
Linear

::::::::
Amundsen

: :::
14.9

: ::
1.4

:

:::::::
Quadratic

:::::::::
Amundsen

::
7.2

: ::
1.4

:

:::::
Linear

:::::::::::
Antarctic-wide

: ::
1.7

: ::
2.7

:

:::::::
Quadratic

::::::::::::
Antarctic-wide

::
1.6

: ::
2.4
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Figure 6.
:::::
Impact

::
of

::::::::
calibration

:::::
target

::::
region

:::
on

::
sea

::::
level

::::::::
illustrated

::
by

:::::::
hindcasts

::::::
showing

:::
the

:::
sea

:::
level

::::::::::
contribution

:::
over

:::
the

:::::
period

::::::::
1979-2017

::::
based

:::
on

::
all

::::::::
calibrated

:::::::
ESM-RF

::::
pairs

:::
for

::
the

::::
total

::::
AIS

:::
(left

::::::
panel)

:::
and

:::
the

::::::::
Amundsen

:::::
region

:::::
(right

:::::
panel).

::::
The

:::::::
historical

:::::::::
experiment

::
is

::::::
extended

::::
with

:::::::
SSP2-4.5

:::::::
scenario

:::
for

::
the

:::::
years

::::::::
2015-2017.

::::
The

::
red

::::
lines

:::::::
indicate

::
the

::::::
median

:::::::::
contribution

:::::
based

::
on

:::
the

::::::
regional

:::::::::
Amundsen

::::::::
calibration,

:::::::
whereas

::
the

::::
blue

::::
lines

::::::
indicate

:::
the

::::::
median

:::::::::
contribution

::
for

:::
the

:::::::::::
Antarctic-wide

:::::::::
calibration.

::::
Only

:::
the

:::::::
quadratic

:::::::::::::
parameterisation

:::
with

::::::
thermal

::::::
forcing

:::
near

:::
the

::
ice

::::
shelf

::::
base

::
is

:::::
shown.

:::
The

::::::::::::::
observation-based

::::::
changes

::
in

::
ice

::::::::
discharge

::::
from

:::::::::::::::
Rignot et al. (2019)

::
are

:::::
shown

::
in

::::
grey.

:::
The

:::::
shaded

::::
area

:::::::
indicates

::
the

::::::::
associated

:::::
likely

::::
range

:::::
(17th

::
to

:::
83rd

:::::::::
percentiles)

:::
for

:::
the

:::::::
modelled

:::::::
response

:::
and

:::
the

::::::::::
observational

::::
error

::
for

:::
the

:::::::::::::::
Rignot et al. (2019)

:::
data.

First, we evaluate the
::::::::
cumulative

:
magnitude of the modelled sea level contributions . Most ESM-RF pairs are not able

to capture the magnitude of the summed Antarctic sea level contribution . For each method, the sea level
::::
over

:::
the

::::::
period

:::::::::
1979-2017

:::::
(Table

:::
7).

:::
The

:::::::
median

:::::::::
Amundsen

:::::::::
calibration

:::::::::::
overestimates

:::
the

:::::::::
cumulative

::::
AIS

::::::::::
contribution

:::
by

:::::
about

::::
30%

:::::::
whereas

::
the

:::::::
median

::::::::::::
Antarctic-wide

:::::::::
calibration

:::::::::::::
underestimates

::
the

:::::::::::
contribution

::
by

:::::
about

::::
10%.

::::
For

:::
the

:::::::::
Amundsen

::::::
region,

::
the

::::::::::
cumulative355

contribution is underestimated by the median response . This underestimation can be largely attributed to the high number of

γ values that were set to zero in the calibration procedure (Sect. 3.1) . For the unbounded calibrations (left and middle

panels), the sea level response of the multimodel mean value over the 1979-2017 period is approximately half of the magnitude

of the observed Antarctic value (Rignot et al., 2019). The median values of the bounded hindcasts (right panels) are closer to
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observations. This is because the calibrated γ value is greater than zero for each ESM-RF pair. Counter-intuitively at first notice,360

the linear bounded hindcasts (right panels) have a higher intermodel spread than the unbounded hindcasts. The bounded γ

values, however, provide less freedom to restrict the historical response of individual ESM-RF pairs to observations, explaining

the higher intermodel spread in the sea level contribution. Hindcasts of regional sea level contributions are further discussed in

Appendix ??.
::
of

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::
(ca.

:::::
20%)

::::
and

:::::::
strongly

::::::::::::
underestimated

:::
by

:::
the

::::::::::::
Antarctic-wide

:::::::::
calibration

:::
(ca.

::::::
60%).

::::
Both

:::::::::
calibration

:::::::
methods

:::
do

:::
not

::::
give

::
an

:::::::::
agreement

::
in
:::::
terms

:::
of

:::
the

:::::::::
cumulative

:::
sea

::::
level

:::::::::::
contribution

:::::::
because

::
of

:::
the

::::::
choice

::
to365

:::::::
calibrate

::
on

:::
the

::::
time

:::::
series

::::::
rather

::::
than

::
on

:::
the

:::::::::
cumulative

:::::
sum.

::::
Even

::::::
though

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration

::
is

:::
(by

:::::::::::
construction)

:::::
closer

::
to

:::
the

::::::::
observed

::::::::
Antarctic

:::
ice

::::::::
discharge

::::
than

::::
the

:::::::::
Amundsen

::::::::::
calibration,

:::
the

:::::
strong

::::::::::::::
underestimation

::
of

:::
the

::::::::::
Amundsen

:::::
region

::::
still

:::::
means

::::
that

:::
the

:::::::
response

::
in

:::::
other

::::::
regions

::
is

::::::::::::
overestimated.

::
It

::::::
should

::
be

::::
kept

::
in

:::::
mind

:::
that

:::
the

:::::
errors

::
in

:::
the

:::::::::
individual

::::::
regions

::::::::::
compensate

::::
each

:::::
other,

:::::::
resulting

:::
in

:
a
:::::::
summed

::::::::
Antarctic

::::::::
response

:::
that

::
is

:::::
close

::
to

:::::::::::
observations.

3.3 Selection of ESM-RF pairs370

From the previous analyses we can conclude that for all basal melt computation methods most ESM-RF pairs are not able to

capture the magnitude of the observed Antarctic
::::::
Second,

:::
we

:::::::
evaluate

:::
the

::::::::
evolution

:::
of

:::
the sea level response to a reasonable

extent. This makes them less trust-worthy for future projections of
::::
over

:::::
time.

:::
For

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration,

:::
the

:::::::
median

::::
value

::::::::::::
overestimates

:::::::
changes

::
in

::::::::
Antarctic

::::::::
discharge

::::::
before

:::::
2001

:::
and

:::::::::::::
underestimates

::::
them

:::::::::
thereafter.

::::
This

::::::
means

::::
that the sea

level response. Therefore, the calibration on ice discharge is combined with a model selection step in which ESM-RF pairs are375

selected that capture the summed Antarctic response. ESM-RF pairs are ranked based on their ability to simulate the magnitude

of the observed Antarctic ice discharge over the 1979-2017 period. To compare the performance between the different methods,

for each method the top 10% best-ranking ESM-RF pairs are selected. By taking the top 10%,
::::::::::
acceleration

::::
over

:::
the

:::
full

::::::
period

:::::
cannot

:::
be

:::::::
captured

:::::
with

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration,

:::::::
making

::
it

:::::
likely

:::
that

::
it
::::
will

:::
be

::::::::::::
underestimated

:::
in

:::::
future

::::::::::
projections

::
as

::::
well.

:::::
This

::
is

::::
also

::::::
visible

::
in

:::
the

:::
ice

::::::::
discharge

::::
rate

::::
over

:::
the

::::
last

::::::
decade

::
of

::::
the

:::::::
hindcast

::::::
(Table

:::
7),

:::::
which

::
is

:::::
lower

::::
than

:::
in380

:::::::::::
observations.

::
In

:
a
::::::
similar

:::::
way,

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::::::::::
overestimates

:::
the

:::::::
changes

:::
in

:::::::::
Amundsen

::::::::
discharge

::::::
before

::::
2005

::::
and

::::::::::::
underestimates

:::::
them

::::::::
thereafter.

:::
So

:::
for

:::
the

:::::::::
Amundsen

:::::::
region,

::::
even

:::::
when

:::::
using

:::
the

::::::::::::::::
Amundsen-specific

::::::::::
calibration,

:
the same

number of pairs (22)is selected for each method. The best models are defined as the ESM-RF combinations with the lowest

RMSE compared to observed ice discharge over the full period. Figure ?? depicts the mean annual sea level contribution biases

for this selection of ESM-RF pairs compared to the observations. The mean RMSE over the
:::::::::
acceleration

::
is
::::

not
:::::::
captured

:::
by385

::
the

:::::::
median

::::::::
response

:::
and

:::
the

::::
rate

::::
over

:::
the

::::
last

::::::
decade

::
of

:::
the

:::::::
hindcast

::
is
::::::::::::::

underestimated.
::
It

::::::
should

::
be

:::::
noted

::::
that

:::
not

::::
just

:::
the

::::::::::
acceleration

::
of

:::
the

:::::::::
Amundsen

:::::::::::
contribution

:::::
cannot

:::
be

::::::::::
reproduced,

:::
but

::::
also

:::
the

::::::
relative

::::::::::
dominance

::
of

:::::::::
Amundsen

::::
with

:::::::
respect

::
to

:::
the

:::::
total

:::::::
Antarctic

:::::::::::
contribution

:::::
(about

:::::
70%

::
in

:::::::::::
observations,

:::::
about

::::::
30-40%

::
in
::::
our

:::::::
results).

::::
Since

:::
the

:::::::::
Amundsen

::::::
region

::
is

:::
the

::::
most

::::::::
important

::::::::::
contributing

::::::
region

::
to

:::
the

:::::::
summed

::::::::
Antarctic

:::::::
response

::::
over

:::
the

::::::::::
hindcasting

::::::
period,

::
we

::::::
tested

:::::::
whether

:
a
::::::::
selection

::
of

::::::
models

:::::
could

:::::
better

:::::::
capture

:::
past

:::
ice

::::::::
discharge

:::
in

::
the

::::::::::
Amundsen

::::::
region.

:::
The

:
top 10%390

ESM-RF pairs is indicated in the legend and the inter-model spread is visualised for the best (QUA, lowest mean RMSE)

and worst (LBR, highest mean RMSE) methods. The names of the
::::::::
calibrated

::::::
models

:::::
with

:::
the

::::
best

:::
fit

::
to

:::
ice

:::::::::
discharge

::::::::::
observations

:::::
(Fig.

::::
A1)

::::
were

:::::::
selected

::::
for

::::
both

:::
the

::::::::::
Amundsen

:::
and

:::::::::::::
Antarctic-wide

::::::::::
calibration.

::::
The

::::::::
selection

::::
was

:::::
based

:::
on
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::
the

::::::
model

:::::::::::
performance

::
in

:::
the

:::::::::
calibration

::::::
region.

:::
As

::
a
::::::
logical

:::::::::::
consequence,

:::
the

:
top 10% ESM-RF combinations for the best

method (QUA) are listed in Table ??. The LBR method has the highest mean RMSE due to the wide spread between individual395

model combinations as explained in Sect. 3.2.

Although the model selection reproduces the summed Antarctic sea level response quite accurately, the acceleration in

the observations is not well simulated (Fig. ??). On average,
::::
pairs

::::
from

::::
the

::::
two

:::::::::
calibration

:::::::
methods

:::::::::
performs

:::::
better

:::
on

::
the

::::::::::
cumulative

:::
sea

:::::
level

:::::::::::
contribution

::
in

:::
the

::::::::::
calibration

:::::
region

::::::
(Table

:::
7).

::::::::::::
Interestingly,

:::
the

:::::
same

::::::::
selection

::
of

:::::::
models

::::
also

:::::::
performs

:::::
better

:::
in the selected models overestimate Antarctic discharge before around 2010 and underestimate it thereafter.400

Furthermore, for individual regions the response is not always well captured (see e.g. Figures ?? and ?? for the QUA and QUR

method, respectively). The spread in individual regions is higher
::::
other

::::::
region.

:::::
After

:::::::::::::
Antarctic-wide

:::::::
selection

:::
the

::::::::::
Amundsen

:::
sea

::::
level

::::::::::
contribution

:::
in

:::
the

::::::::
hindcasts

:::
are

:::::
closer

::
to

:::::::::::
observations.

:::::::::::::
Unfortunately, for the Antarctic-wide calibration

::::::::
selection,

::
the

::::::::::::
contributions

::
of

:::
the

:::::
other

:::::::
regions

:::::::
increase

::
as

:::::
well,

:::::
which

::::::::
increases

:::::
their

::::
error

:::::::
relative

::
to

::::::::::::
observations.

:::
The

::::::::::
Amundsen

:::::::
selection

:::::::
resulted

::
in

::::::
higher

::::::::
estimates

:
than for the regional calibration. Antarctic-wide calibration leads to regional responses405

that are overestimated in some regions and underestimated in others (Fig. ??) since the same γ is used for each region.

Differences between Antarctic-wide and regional calibration are greatest for the Amundsen region , which is the most important

contributing region to
::
full

::::::
model

:::::
suite

::
in the summed Antarctic response over the hindcasting period. The Amundsen and

Peninsula contributions are underestimated by the selected models for the Antarctic-wide calibration. The EAIS response

is reasonably well reproduced. The responses of the Ross and Weddell regionare slightly overestimated. The errors in the410

individual regions compensate each other, resulting in a summed Antarctic response that is well captured. For the regional

calibration , the responses in individual regions are better captured and more restricted (Fig. ??).
::::::::
Amundsen

::::::
region

::::
itself

::::
(by

:::::::::::
construction),

:::
but

::::::
lower

::::::::
estimates

::::::
(closer

::
to

::::::::::::
observations)

:::
for

:::
the

::::::::
Antarctic

::::::::
summed

::::::::
response.

:::
As

:
a
::::::

result,
:::
the

::::::::::
Amundsen

::::::::::
contribution

::::::
relative

:::
to

:::
the

::::
total

::::
AIS

::::::::
improves

::::
after

::::::
model

::::::::
selection

::
on

::::
the

:::::::::
Amundsen

::::::
region.

::::::::::::
Nevertheless,

::::
also

:::
the

:::::
mean

:::::::
response

::
of

:::
the

::::
top

::::
10%

::::::
models

::::::
could

:::
not

:::::::::
reproduce

:::
the

:::::::
observed

:::::::::::
acceleration

::::
over

:::
the

::::::::
historical

::::::
period

::
in

:::
the

::::::::::
Amundsen415

::::::
region.

::::
This

:::::
means

::::
that

::::::
despite

:::
its

::::::::::::
overestimation

::
of

:::
the

::::::::::
cumulative

:::
sum

::::
over

:::
the

::::::::
hindcast

:::::
period

:::
for

:::
the

:::::
AIS,

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::
will

::::::::::
presumably

::::::::::::
underestimate

:::::
future

:::::::::
projections

:::
of

::
the

::::
sea

::::
level

::::::::::
contribution

:::
for

:::
the

:::::::::
Amundsen

::::::
region.

:

Mean sea level contribution bias compared to observations of the top 10% ESM-RF pairs for each basal melt computation

method. The numbers in the legend indicate the mean RMSE over the selected ESM-RF pairs over the period 1979-2017 in

mm. The spread (standard deviation) of the top 10% models is indicated for the LBR (highest mean RMSE) and QUA (lowest420

mean RMSE) methods by the shading in the background.

3.3 Projections
:::
Sea

::::
level

::::::::::::
contribution

::::::::::
projections

In this section, projections of the summed Antarctic sea level contribution
:::
due

::
to

:::::
basal

::::
melt

:::
for

:::
the

::::
AIS

:::
and

:::
the

::::::::::
Amundsen

:::::
region

:
are presented. The projections comprise the 21st century. Computations start in the year 1850 so that the delayed

contribution of
::
ice

::::::::
discharge

::
to

:
basal melt is included in the future sea level response. We assess two metrics: the cumulative425

magnitude and the rate of the sea level response. The cumulative magnitude of the
:::
The

::::::::::
cumulative sea level response is used

to compare differences over the 21st century
::::::::
computed

:::
by

:::::
taking

::::
the

::::::::
difference

:::::::
between

::::
the

::::
year

::::
2100

::::
and

:::
the

:::::::
average

::::
over
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Table 7. Hindcasts of CMIP6-forced
:::
The

::::::
median

::::::::
cumulative

:
sea level response

:::::::::
contribution

:::::
(∆S) over the

::::::
hindcast

:
period 1979-2017

based on 14 CMIP6 models and 16 linear response functions. The historical experiment is extended with SSP2-4.5 scenario for the years

2015-2017. The figure shows
:::
rate

::::::
(dS/dt)

::::
over the results

::
last

::::::
decade

:::::::::
(2008-2017)

::
of

:::
the

::::::
hindcast

:::::
period for the full model suite of ESM-RF

pairs
:::
two

::::::::
calibration

:::::::
methods (green

::::::::
Amundsen

:::
and

:::::::::::
Antarctic-wide) , together with

:::
and

:::
for the Rignot ice discharge (grey)

:::::::::
observations

::
of

::::::::::::::
Rignot et al. (2019). The shaded area indicates one standard deviation, representing intermodel spread

:::::
Results

:::
are

:::::
shown

:
for the modelled

response and observational error for
:::::::
quadratic

::::
basal

::::
melt

::::::::::::
parameterisation

::::
with

::::::
thermal

::::::
forcing

:::
near

:
the Rignot data

::
ice

::::
shelf

:::
base.

:
.

:::
AIS

: ::::::::
Amundsen

:::::
region

:::::
Source

: :::
∆S [

:::
mm]

::::
dS/dt

:
[
:::::
mm/yr]

:::
∆S [

:::
mm]

::::
dS/dt

:
[
:::::
mm/yr]

::
Ice

::::::::
discharge

:::::::::
observations

: :::
13.1

: :::
0.58

: ::
9.7

: :::
0.48

:

::::::::
Amundsen

::::::::
calibration

: :::
17.5

: :::
0.84

: ::
7.6

: :::
0.27

:::::::::::
Antarctic-wide

::::::::
calibration

: :::
11.8

: :::
0.45

: ::
4.3

: :::
0.17

:

::::::::
Amundsen

::::::::
calibration

:
-
:::
top

::::
10%

:::
16.6

: :::
0.86

: ::
9.3

: :::
0.44

:

:::::::::::
Antarctic-wide

::::::::
calibration

:
-
:::
top

::::
10%

:::
13.3

: :::
0.60

: ::
5.3

: :::
0.24

:

::
the

::::::
period

:::::::::
1995-2014. The sea level response rate at the end of the 21st century is indicative of differences in committed sea

level rise beyond 2100.
:::
The

:::
sea

::::
level

::::::::
response

:::
rate

::
is
:::::::::
computed

::
by

:
a
:::::
linear

:::::::::
regression

:::
on

::
the

:::
sea

:::::
level

:::::::
response

::::
over

:::
the

::::::
period

:::::::::
2081-2100.

:
430

3.3.1 Magnitude and rate

First,
::::
First,

:::
we

:::::::
present

:::
the

:::::::::
calibrated

::::::::::
projections

:::
and

:::::::
explore

::::
the

::::::
impact

::
of

::::::::::
calibration

:::
on

:::::::::
projections

:::
of

:
the cumulative

magnitude of the sea level response is analysed. The cumulative sea level response is computed by taking the difference between

the year 2100 and the average over the period 1995-2014. Figure ??
::::::::::
contribution.

::::::::
Second,

:::
the

:::::::::
sensitivity

::
of

:::::::::
projections

:::
to

::::::::::::
methodological

:::::::
choices,

::::
such

::
as

:::
the

::::::::::::::
parameterisation

::::::
relation

:::::::::::::::
(quadratic/linear),

:::::::
thermal

::::::
forcing

:::::
depth

:::
(ice

::::
shelf

::::::::::::
base/800-1000

:::
m)435

:::
and

:::::
model

::::::::
selection

:::::
(Earth

:::::::
system

::::::::
model/Ice

:::::
sheet

::::::
model)

::
is

::::::::
explored.

3.3.1
::::::
Impact

::
of

::::::::::
calibration

:::
on

:::
sea

::::
level

::::::::::
projections

:::::
Figure

::
7

:::::
shows

:::::::::
projections

:::
for

:::
the

::::::::
SSP5-8.5

:::::::
scenario,

:::::
based

::
on

:::
the

:::::::::
calibrated

::::
basal

::::
melt

::::::::::
sensitivities

::
for

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

:::
and

::::::
thermal

:::::::
forcing

::::
near

:::
the

::
ice

:::::
shelf

::::
base.

::::
The

:::::::::
Amundsen

:::::::::
calibration

:::::
leads

::
to

::::::::::::
approximately

::::
60%

:::::
higher

::::::::::
projections

::::
than

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration,

:::::
which

:::
can

:::
be

::::::::
attributed

::
to

:::
the

:::::
higher

:::::
basal

::::
melt

::::::::::
sensitivities

:::
for

:::
this

:::::::::
calibration

:::::::
method

::::
(Fig.

:::
5).440

::
To

:::::::::
understand

::::
how

:::::::::
calibration

::
of

:::::::::
individual

::::::::
ESM-RF

:::::::::::
combinations

::
on

::::
past

:::
ice

::::::::
discharge

:::::::::
influences

:::
the

:::::
results

:::::::::
compared

::
to

::::
using

:::::::::::::::
observation-based

:::::
basal

::::
melt

::::::::::
sensitivities,

:::
we

::::
also

:::::
made

:::::::::
projections

::
in

::::::
which

:
a
:::::
single

:::::
basal

::::
melt

::::::::
sensitivity

::
is
:::::::
applied

::
in

::
all

::::::::
ESM-RF

:::::::::::
combinations.

::::
This

:::::
single

:::::
value

::
is

:::
the

::::::
median

::::
basal

::::
melt

:::::::::
sensitivity

::::::
applied

::
in

::::::::::
LARMIP-2

::::::::::::::::::::
(Levermann et al., 2020)
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Figure 7.
::::::::
Projections

:::::::
showing

::
the

::::::::
calibrated

::
sea

::::
level

:::::::::
contribution

::::
over

::
the

:::::
period

::::::::
2000-2100

:::::
based

::
on

::::::::
SSP5-8.5,

::
for

:::
the

:::
total

::::
AIS

:::
(left

:::::
panel)

:::
and

::
the

::::::::
Amundsen

:::::
region

:::::
(right

:::::
panel).

::::
The

::
red

::::
lines

::::::
indicate

:::
the

::::::
median

:::::::::
contribution

::::
based

:::
on

::
the

:::::::
regional

::::::::
Amundsen

::::::::
calibration,

:::::::
whereas

::
the

::::
blue

::::
lines

::::::
indicate

:::
the

:::::
median

::::::::::
contribution

::
for

:::
the

:::::::::::
Antarctic-wide

:::::::::
calibration.

::::::
Results

::
are

::::::
shown

::
for

:::
the

:::::::
quadratic

:::::::::::::
parameterisation

:::
and

:::::
thermal

::::::
forcing

::::
near

::
the

:::
ice

::::
shelf

::::
base.

:::
The

::::::
shaded

:::
area

:::::::
indicates

:::
the

:::::::
associated

:::::
likely

:::::
ranges

::::
(17th

::
to
::::
83rd

:::::::::
percentiles).

Figure 8.
:::::::
Projected

:::::::
Antarctic

:::
sea

::::
level

:::::::
response

:::
for

:::::::
SSP1-2.6,

::::::::
SSP2-4.5

:::
and

:::::::
SSP5-8.5.

::::
Top

:::::
panels

::::
show

:::
the

:::
sea

:::
level

::::::::::
contribution

::
in

::::
2100

:::::::
compared

::
to

:::
the

:::::
period

::::::::
1995-2014

::::
and

:::::
bottom

:::::
panels

:::
the

:::
sea

::::
level

:::
rise

::::
rates

::::
over

:::
the

:::::
period

:::::::::
2081-2100.

:::
The

:::::
spread

::
is

:::::::::
determined

::
by

:::
the

:::::::
calibrated

:::::::
ESM-RF

:::::
pairs.

:::
The

::::
black

:::::::
numbers

::::::
indicate

:::
the

::::::
median

:::::
values

:::
(the

::::::
orange

:::::
lines),

::::::
whereas

:::
the

:::::
boxes

::::
show

:::
the

::::
25-75

:::::::::
percentiles

:::
and

::
the

:::::::
whiskers

:::
the

::::
5-95

:::::::::
percentiles.

:::
The

:::::
basal

::::
melt

:::::::::
computation

:::::::
methods

:::
are

::::::
ordered

::::
from

:::
the

:::::
lowest

::
to

:::
the

::::::
highest

::::::
median

:::
sea

::::
level

:::::::
response.

:::::::
ESM-RF

::::
pairs

:::
that

:::::
could

::
not

:::
be

:::::::
calibrated

:::
are

:::::::
removed

::::
from

::
all

::::
basal

::::
melt

:::::::
methods

::
so

:::
that

:::
the

::::
same

::::::
models

::
are

:::::::
included

::
in

:::
the

:::::::::
comparison.

:
If
:::::

ESMs
:::
did

:::
not

::::::
simulate

::::
year

::::
2100,

::::
2099

::::
was

:::
used

::::::
instead.

::
for

:::
the

::::::
linear

::::::::::::::
parameterisation

:::
and

::::
the

::::::
median

::::::::
nonlocal

:::::
basal

::::
melt

:::::::::
sensitivity

::::::
applied

:::
in

:::::::
ISMIP6

:::
for

:::
the

::::::::
AntMean

:::::::
method

::::::::::::::::::
(Jourdain et al., 2020)

::
for

:::
the

::::::::
quadratic

:::::
basal

::::
melt

::::::::::::::
parameterisation.

:
445
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::::
First,

:::
the

::::
sea

::::
level

:::::::::::
contribution

::
of

::::
the

::::
total

::::
AIS

::
is

::::::::
analysed.

::::::
Figure

::
8
:
shows the projected sea level response for each

SSP scenario and
:::::::
different

:
basal melt computation method

::::::
methods. The top panels represent the projections including all

ESM-RF combinations
:::::::::
cumulative

::::::::::
projections and the bottom panels the top 10% selections

:::
sea

::::
level

::::::::
response

::::
rate

::::
over

:::
the

:::::
period

:::::::::
2081-2100. Not surprisingly a higher emission scenerio

::::::
scenario

:
leads to a higher sea level contribution.

:::
The

::::::::
SSP5-8.5

:::::::::
projections

:::
are

::::::
almost

::::
50%

::::::
higher

::::
than

:::
the

::::::::
SSP1-2.6

::::::::::
projections.

:
Absolute differences between the basal melt computation450

methods
::::::
within

:::
one

::::
SSP

:::::::
scenario

:
become more explicit for the higher emission scenarios, but relative differences (ratio of

highest to lowest) are comparable. For the full model suite, the basal melt computation method affects the relative uncertainty

in median sea level contribution more than the SSP scenarios (Table ??).

Projected Antarctic sea level response for SSP1-2.6, SSP2-4.5 and SSP5-8.5 in 2100 compared to the period 1995-2005. The

spread is determined by the CMIP6 forcing and the LARMIP-2 linear response functions. The top panels show all ESM-RF455

combinations and the bottom panels the top 10% combinations. The green numbers indicate the median values (the orange

lines), whereas the boxes show the 25-75 percentiles and the whiskers the 5-95 percentiles. The basal melt computation methods

are ordered from the lowest to the highest median sea level response.

Relative uncertainty in the dynamic Antarctic contribution to sea level rise in 2100 compared to 1995-2014. Relative

differences were assessed by the variation factor, which is specified as the sea level contribution associated with variations460

in a specific source variable. If the source variable varies from value A to value B, we quantify the impact of this variable

on the sea level contribution by the variation factor B/A (following Hinkel et al. 2021). Only median sea level contributions

of ESM-RF pairs are considered. Variable Condition Variation in source variable Variation factor in sea level Scenario All

SSP1-2.6 ->
:::
The

::::
ratio

::
of

:::
the

:::::::
highest

::
to

::::::
lowest

::::
basal

::::
melt

:::::::
method

::
is

::::
only

:::::::
slightly

:::::
larger

::::
than

:::
the

::::
ratio

::::::::
between

:::
the SSP5-8.5

1.3-1.5 Scenario Top 10%
:::
and SSP1-2.6 -> SSP5-8.5 1.3-1.5 Basal melt computation All Lowest -> Highest 1.9-2.0 Basal melt465

computation Top 10% Lowest -> Highest 1.2-1.4Basal melt computation Unbounded calibration Lowest -> Highest 1.4-1.6

Calibration region All Regional -> Antarctic 1.1-1.4 Calibration bounds All, Linear parameterisation Unbounded ->

Bounded 1.5-1.8 Parameterisation All, Unbounded calibration Linear -> Quadratic 1.1-1.3

When the calibration bounds are not considered (unbounded calibrations only), the impact
:::::::
scenario

:::::::::
(averaged

::::
over

:::
all

::::::::
methods),

:::::::::
indicating

:::
that

:::
the

::::::::
influence

:
of the basal melt computation reduces. Then the influence of basal melt computation470

on variation in projected sea level is
::::::
method

:::
on

:::
the

:::
sea

:::::
level

:::::::
response

::
is
:::::

more
:::
or

:::
less

:
similar to the influence of scenarios.

The basal melt computation can be subdivided into calibration and parameterisation steps. The calibration step is the most

distinctive feature of the basal melt computation in terms of the projected magnitude of the sea level contribution.
:::::
impact

:::
of

::
the

::::::::
emission

::::::::
scenarios.

:::::
Since

:::
the

:::::::
highest

::::
basal

::::
melt

:::::::
method

::
is

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::
and

:::
the

::::::
lowest

::::::
method

:::
the

:
Antarctic-

wide calibration results in higher projections than regional calibration.Bounded calibration gives higher values than unbounded475

calibration (comparison for the linearparameterisation only) . The effect of the parameterisation is smallest (comparison for the

unbounded calibration only) .
:::::::::
calibration,

::::
this

:::::
means

::::
that

:::
this

:::::::::
difference

:::
can

::
be

:::::::
entirely

::::::::
attributed

::
to

:::
the

:::::::::
calibration

::::::
region.

:

:::
The

::::::::::
projections

::
of

:::
the

::::
AIS

::::
using

:::
the

:::::::
median

:::::
basal

::::
melt

::::::::::
sensitivities

::::::
applied

::
in

:::::::
ISMIP6

:::
and

::::::::::
LARMIP-2

:::
fall

:::
in

:::::::
between

:::
the

:::
two

::::::::
calibrated

::::::::::
projections.

::::
This

::
is

::::::::
consistent

::::
with

:::
the

::::::
median

:::::
basal

::::
melt

::::::::
sensitivity

::
of

::::::::::
LARMIP-2

:::
and

::::::::
ISMIP6,

:::::
which

::
is

::::::
located

:::::
above

:::
the

::::::
median

::::::::::::
Antarctic-wide

:::::::::
calibrated

::::
value

::::
and

:::::
below

:::
the

:::::::::::::::::
Amundsen-calibrated

:::::
value,

::::::::::
respectively

:::::
(Fig.

::
5).

:::::
Even

::::::
though480
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::
the

::::::
spread

:::::::
between

:::
the

:::::
basal

::::
melt

::::::::
methods

::
is

:::::::
extended

:::
by

:::::
using

:::
the

:::::::::
calibration

::::::::
methods,

:::::
using

:::::
single

:::::
basal

::::
melt

::::::::::
sensitivities

:::::
based

::
on

:::::
basal

::::
melt

:::::::::::
observations

::::
with

::::::::
different

::::::::::::::
parameterisation

:::::
types

::::::::::::::
(linear/quadratic)

::::
also

:::::
leads

::
to

::
a
::::
large

::::::
spread

:::
in

:::
the

:::::::::
projections.

:::
We

:::::::
remark

:::
that

:::
the

:::
top

::::
10%

::::::::::::::
best-performing

::::::
models

::
in

::::::::::
reproducing

:::
ice

::::::::
discharge

::::::::::
observations

:::::
(Fig.

::::
A1),

:::::
result

::
in

:::::::
estimates

::::
that

:::
fall

::
in

:::::::
between

:::
the

::::::::::::
Antarctic-wide

:::::
(QA)

:::
and

:::::::::
Amundsen

:::::::::
calibration

:::::
(QR)

::::::::
methods,

:::::::
reducing

:::
the

:::::
spread

:::::
(Fig.

::::
A2).

485

Same as Fig. ?? but for the sea level response rates over the period 2080-2100.

Second, the variation in the response rates is
::
As

:
a
::::
next

::::
step,

:::
the

::::
AIS

:::
sea

:::::
level

:::::::
response

:::::
rates

:::
are assessed at the end of the

21st century (Table ??
:::::::::
2081-2100). These are important for sea level differences beyond 2100. The response rate is computed

by a linear regression on the sea level response over the period 2081-2100. The difference between the lowest and highest basal

melt method
::::
ratio

::
of

:::
the

::::::
highest

::
to
::::::
lowest

::::::
median

:::
sea

:::::
level

::::
rates

::
of

:::
the

:::::::
different

:::::
basal

::::
melt

:::::::
methods shows that the influence of490

the basal melt computation method on the response rate is equal to or greater
::::::
smaller

:
than the effect of the emission scenario.

By considering unbounded calibration methods only, the influence of the scenarios dominates over the basal melt computation

method. The basal melt computation can be subdivided into calibration and parameterisation parts. The calibration step is the

most distinctive feature in the basal melt computation. Antarctic-wide calibration results in higher projections than regional

calibration.Bounded calibration gives higher values than unbounded calibration (comparison for the linear parameterisation495

only).
::::
SSP

::::::::
scenarios.

:
The effect of the parameterisation is smallest; The quadratic parameterisation provides higher estimates

of future sea level rise
:::
SSP

::::::::
scenarios

::
is
::::::::

stronger
:::
for

:::
the

::::::::
quadratic

:::::::::::::::
parameterisations

:::::
(QM,

::::
QA,

::::
QR)

::::
than

:::
for

:::
the

:::::
linear

::::
one

:::::
(LM).

:::
As

:
a
:::::
result

:::
the

::::::
highest

:::::::
median

:::::::
response

::::
rate

::
in

::::::::
SSP5-8.5

::::
and

::::::::
SSP2-4.5

:
is
:::::

using
:::
the

::::
QR

::::
basal

::::
melt

::::::::
method,

:::::::
whereas

::
in

::::::::
SSP1-2.6

::
the

::::::::
response

:::
rate

:::::
based

:::
on

:::
the

::::::
median

::::::::::
LARMIP-2

:::::
basal

::::
melt

::::::::
sensitivity

:::::
(LM)

::
is

:::::::
highest.

::::
This

:::::
could

::
be

::::::::
explained

:::
by

::
the

::::::
linear

::::::
(rather

::::
than

::::::::
quadratic)

:::::::
relation

::::
with

:::::::
thermal

::::::
forcing

::::
(see

:::::
Sect.

::::::
3.3.2),

:::::
which

::
is

::::::::::
independent

:::
on

:::
the

:::::::
absolute

::::::
ocean500

::::::::::
temperature

::::::
(which

::
is

::::::
linked

::
to

:::
the

::::
SSP

:::::::::
scenarios).

::
It
::::::
should

::::
also

:::
be

:::::
noted

::::
that

:::
the

:::::::::
Amundsen

:::::::::
calibration

::
is
:::::
more

:::::::
skewed

::::::
towards

::::::
higher

:::
sea

:::::
level

::::::::
response

:
rates than the linear parameterisation (comparison for the unbounded calibration only).

::::
other

:::::
basal

::::
melt

::::::::
methods.

::::
This

:::::
could

::
be

::::::::
explained

:::
by

:::
the

::::::
higher

::::
basal

::::
melt

::::::::::
sensitivities

::::
that

::::
were

:::::::
required

:::
to

::
fit

:::
the

::::::::
modelled

:::::::
historical

::::::::::
Amundsen

:::
sea

::::
level

::::::::::
contribution

::
to

:::
ice

::::::::
discharge

:::::::::::
observations.

:

We conclude that sea level variations associated with basal melt computation methodsare equal or greater than variations505

between different pathways of future greenhouse gas emission scenarios. Within the basal melt computation methods, the

calibration step is more important than the parameterisation type for the contribution of Antarctic ice discharge to
:::::::
Second,

:::
the

sea level up to and beyond 2100.

3.3.2 Best estimate

In Sect. ?? the top 10% best ESM-RF pairs were selected based on their performance in reproducing observed Antarctic ice510

discharge over four decades. Figure ?? presents the projections of these selections. For each scenario, the top 10% selection

shows on average a 20-28 mm higher median cumulative sea level response than the full model suite
:::::::::
projections

::
of
::::

the

:::::::::
Amundsen

:::::
region

:::
are

::::::::
analysed

:
(Fig. ??). This can be partly attributed to the fact that the selection does not include models

with a γ of zero for the regions that contribute most (Amundsen , EAIS) to the sea level increase. Averaged over all basal melt
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Figure 9.
::::
Same

::
as

::::
Fig.

:
8
:::
but

::
for

:::
the

::::::::
Amundsen

::::::
region.

computation methods,
::
9).

::::
For

:::
the

:::::::::
Amundsen

::::::
region,

:::
the

::::::
highest

:::::::::
projection

::
is

:::::
given

::
by

:::
the

:::::::::
Amundsen

::::::::::
calibration,

:::::::
whereas

:::
the515

:::::
lowest

:::::::::
projection

::
is

:::::
based

::
on

:::
the

::::::
median

::::::::::
LARMIP-2

::::
basal

::::
melt

:::::::
method.

::::
The

::::
ratio

::
of

:::
the

::::::
highest

::
to

::::::
lowest

::::
basal

::::
melt

:::::::
method

::
is

:::::
larger

::::
than

:::
the

::::
ratio

:::::::
between

:::
the SSP5-8.5 has a median cumulative increase of 110 mm compared to 78 mm in

:::
and

:
SSP1-2.6.

Furthermore, the different basal melt computation methods give more similar results for the selection than for the full model

suite (Table ??). In contrast to the full model suite, for the selection there is no clear relation between
:
.6

:::::::
scenario

:::::::::
(averaged

:::
over

:::
all

:::::::::
methods),

::::::::
indicating

::::
that

:::
the

::::::::
influence

::
of

:
the basal melt computation method and the response magnitude within an520

emission scenario. For the top 10% selection the influence on the response magnitude
::
on

:::
the

:::
sea

::::
level

::::::::
response

::
is

:::::
larger

::::
than

::
the

::::::
impact

::
of
:::
the

::::::::
emission

::::::::
scenarios.

:::::
Also

::
for

:::
the

:::::::::
Amundsen

:::
sea

:::::
level

:::::::
response

:::::
rates,

:::
the

::::::
impact of the basal melt computation

method is thus equal to or smaller than the effect of the emission scenario.

The top 10% selection shows on average 0.2-0.5 mm yr−1 higher sea level rates than the full model suite (Fig. ??).
::::::
method

:
is
:::::::
slightly

:::::
larger

::::
than

:::
the

::::::
impact

:::
of

:::
the

:::
SSP

::::::::
scenario.

::::::::
However,

:::
the

::::
rate

::
is

:::::
much

:::::
more

:::::::
sensitive

::
to
:::

the
::::

SSP
::::::::
scenario

::::
than

:::
the525

:::::::::
cumulative

::::
sum.

::::
The

:::
rate

::
is
:::::
about

:::::
80%

:::::
higher

::
in
:
SSP5-8.5 has a median response rate that is about twice as large as the rate

of
::::::::
compared

::
to

:
SSP1-2.6. As for the cumulative contribution, the rates of the selected ESM-RF combinations are more equal

between different basal melt computation methods for the model selection than for the full model suite
:
,
:::::::
whereas

:::
the

:::::::::
cumulative

:::
sea

::::
level

::::::::::
contribution

::
is

::::
only

:::::
about

::::
30%

::::::
higher,

:::::::::
indicating

::::::::
increasing

::::::::::
differences

:::::::
between

::::
SSP

::::::::
scenarios

::::::
beyond

:::::
2100.

:::
The

:::::::::
Amundsen

::::::::::
calibration

::
is

:::::::::
considered

::
to
::::

give
::::

the
::::
most

:::::::
realistic

::::::::
estimate

:::
for

:::::
future

::::::::::
projections

::
of

:::
ice

::::::::
discharge

:::
in

:::
the530

:::::::::
Amundsen

::::::
region.

:::::::::::
Considering

:::
the

::::::
strong

::::::::::::::
underestimation

::
of

::::
past

::::
ice

::::::::
discharge

::::
rate

::
in
::::

the
:::::::::
Amundsen

::::::
region

:::::
using

::::
the

::::::::::::
Antarctic-wide

:::::::::
calibration (Table ??). For the top 10% selection the influence on the response rate of the basal melt computation

method is smaller than the effect of the emission scenario. Different than for the full model suite, the selection consistently
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shows higher sea level rates for the Antarctic-wide calibration than
::
7),

:::
we

::::::
expect

:::
that

:::
the

:::::
future

::::::::::
projections

:::
for

:::
the

:::::::::
Amundsen

:::::
region

::::
will

::
be

:::
too

::::
low

::::
when

:::::
using

::::
this

:::::::
method.

:::
The

:::::::::
Amundsen

::::::::::
projections

::::
using

:::
the

:::::::
median

:::::::::
LARMIP-2

:::::
basal

::::
melt

:::::::::
sensitivity535

::::
(LM)

:::
are

:::::
lower

::::
than

:
for the regional calibration. This can be explained by the higher contributions (higher γ) of the Ross and

Weddell sectors, which show a clear warming trend in the subsurface ocean (Fig. 4). Other aspects (bounded vs unbounded

calibration, quadratic vs linear parameterization)do not have a noticeable effect on
::::::::::::
Antarctic-wide

:::::::::
calibration

:::::::
method

::::
and

:::::::
therefore

:::
are

::::
also

::::::::
expected

::
to

::::::::::::
underestimate

:::
the

:::
sea

::::
level

:::::::::::
contribution

::
of

:::
the

:::::::::
Amundsen

::::::
region.

::::
The

:::::::::
projection

:::::
based

:::
on

:::
the

::::::
median

:::::::
ISMIP6

::::::::
sensitivity

:::::
(QM)

::
is

::::::::
probably

:::
also

:::
too

::::
low,

:::::
since

::::
even

:::
the

::::::::
hindcasts

:::::
based

::
on

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::::::
slightly540

::::::::::::
underestimated

::::::::
observed

:::
ice

::::::::
discharge

::
in

:::
the

:::::::::
Amundsen

::::::
region.

:

:::
We

::::::::
conclude

:::
that

::::
for

:::
the

::::
AIS

:::
the

::::::::::
cumulative

:::
sea

:::::
level

::::::::
variations

:::::::::
associated

:::::
with

:::::
basal

::::
melt

:::::::::::
computation

:::::::
methods

::::
are

::::
about

:::::
equal

::
to
:::::::::
variations

:::::::
between

:::::::
different

::::
SSP

:::::::::
scenarios.

:::
For

:::
the

::::::::
Antarctic

:::
sea

:::::
level

:::::::
response

::::
rate,

:::
the

::::
SSP

:::::::
scenario

::
is

:::::
more

::::::::
important

::::
than the response rate of the top 10% selection.

::::
basal

:::::
melt

:::::::
method.

::
In

:::::::
contrast,

:::
for

:::
the

:::::::::
Amundsen

::::::
region

:::
the

:::::
basal

::::
melt

::::::
method

:::::::
impacts

::
the

::::::::::
projections

::::::::::
(cumulative

:::
sum

::::
and

::::
rate)

::::
more

::::
than

:::
the

::::
SSP

::::::::
scenarios.

:::
For

:::
the

:::::::::
Amundsen

::::::
region,

:::
we

::::
also545

:::::::
conclude

::::
that

:::
the

:::::::::
Amundsen

:::::::::
calibration

::::::::
probably

:::::
gives

:::
the

::::
most

:::::::
reliable

:::::::::
projections

:::::
since

:::
the

:::::::::
Amundsen

:::::::::
calibration

:::::::
already

::::::::::::
underestimated

::::
past

:::
ice

::::::::
discharge

:::
and

:::
its

::::::::::
acceleration

::
in

:::
the

::::::::
hindcasts

:::
and

:::
the

:::::
other

:::::::
methods

::::
give

::::
even

:::::
lower

:::::::::
estimates.

::::::::::
Furthermore,

::::
we

::::::::
compared

::::
our

::::::::
estimates

::::
with

:::
the

::::::::
emulated

:::::::
ISMIP6

::::
and

::::::::::
LARMIP-2

::::::
studies

::
as

:::::::::
presented

::
in

:::::
IPCC

:::::
AR6

:::::
(Table

:::
8).

::::::
Despite

:::
the

::::::::
different

::::::
method

:::::::
applied,

:::
the

::::::::
resulting

:::::::::
projections

::
of

::::::::::
Antarctica’s

:::
sea

:::::
level

::::::::::
contribution

:::
are

::
in

::::
line

::::
with

:::::::
previous

::::::::::
multi-model

:::::::
studies

::::::::
(ISMIP6,

:::::::::::
LARMIP-2).

::::
The

:::::::::
Amundsen

:::::::::
calibration

::::::
results

::
in

:::
an

:::::::
estimate

::::
that

:::
sits

:::::
more

::
or

::::
less550

::
in

:::::::
between

:::
the

:::::::
ISMIP6

:::
and

::::::::::
LARMIP-2

::::::::::
projections,

::
as

::::::::
presented

::
in
:::::
IPCC

:::::
AR6

:::::::::::::::::::::
(Fox-Kemper et al., 2021)

:
.
:
It
::::::
should

:::
be

:::::
noted

:::
that

:::
this

::::
can

::::
only

:::::
partly

:::
be

::::::::
attributed

::
to

:::
the

:::::::::
calibration

:::
on

:::
ice

::::::::
discharge

:::::::::::
observations,

:::::
since

:::
the

:::::::::
projections

:::::
using

:::
the

:::::::
median

::::::
ISMIP6

::::::::
AntMean

:::::::::
sensitivity

:::::
(QM)

:::
and

:::
the

::::::
median

::::::::::
LARMIP-2

:::::::::
sensitivity

::::
(LM)

:::::
result

::
in

:::::
lower

::::::::
estimates

::::
than

:::
for

:::::::
ISMIP6

::::
AR6

:::
and

::::::::::
LARMIP-2

::::
AR6,

:::::::::::
respectively.

:::
The

::::::::::
differences

::::
with

:::::::
ISMIP6

:::
and

::::::::::
LARMIP-2

:::
will

:::
be

::::::
further

:::::::::
discussion

::
in

::::
Sect.

::
4.

:

For the top 10% of each basal melt computation method,555

3.3.2
::::::
Impact

::
of

::::::::::::::
methodological

::::::
choices

:::
on

::::::::::
projections

::
In

:::
this

::::::
section

:::
we

::::::
explore

:::::
what

:::
the

:::::
impact

::
is
::
of

::::::
several

:::::::::::::
methodological

:::::::
choices

::
on

:::
the

:::
sea

::::
level

::::::::
response

:::::::::
projections

::
of

:::
the

::::
AIS

:::
and

:::::::::
Amundsen

::::::
region.

::::::
These

::::::
choices

::::::
include

:::
the

::::::::::::::
parameterisation

:::::::
relation

:::::::::::::::
(quadratic/linear),

::::::
thermal

:::::::
forcing

:::::
depth

:::
(ice

:::::
shelf

::::::::::::
base/800-1000

:::
m)

:::
and

::::::
model

:::::::
selection

::::::
(Earth

::::::
system

:::::::::
model/Ice

:::::
sheet

::::::
model).

:::::::::::
Additionally,

:::
we

::::::
further

::::::::
motivate

:::
our

:::::::
choices

::
to

:::
use the quadratic parameterisation combined with an

:::
with

:::::::
thermal

::::::
forcing

::::
near

::::
the

::
ice

:::::
shelf

::::
base

::
in

::::
our

::::
main

::::::::::
projections560

::::
(Fig.

::
7;

:::
QA

::::
and

:::
QR

::
in

:::::
Figs.

::
8
:::
and

:::
9).

:

::::
First

:::
we

:::::
assess

:::
the

::::::
impact

::
of

:::
the

::::::::::::::
parameterisation

::::
type

:::
on

:::
the

::::::::
calibrated

::::::::::
projections

:::
for

:::
the

:::
AIS

::::
and

:::
the

:::::::::
Amundsen

::::::
region

::::
(Fig.

::::
10).

::
To

::::
this

:::
end

:::
we

::::::
applied

::::
two

:::::::
different

::::::::::::::::
parameterisations:

:
a
:::::
linear

::::
and

:
a
::::::::
quadratic

:::::::
relation

::::
with

::::::
thermal

:::::::
forcing.

:::::
Both

:::::::
relations

:::
are

:::::::::
calibrated

::
on

::::::::
observed

:::
ice

:::::::::
discharge

::::
(Fig.

:::
5)

:::::
using

:::
the

:
Antarctic-wide calibration (QUA) resulted in the best

estimate of Antarctic discharge over almost four decades (lowest overall RMSE)(Sect. 3.2)
:::
and

:::
the

:::::::::
Amundsen

::::::::::
calibration.565

:::
The

::::::
results

:::::
show

::::
that

:
if
::::

the
::::::::::::::
parameterisation

::
is

::::
used

::
to

:::::
make

::::::::::
projections

:::
for

:::
the

:::::
same

:::::
region

:::
as

:::
the

::::::
region

:::
that

::
is
:::::

used
:::
for

:::::::::
calibration

::
the

::::::::::
cumulative

:::
sea

::::
level

::::::::::
contribution

::
is

::::::
almost

:::::
equal

::
for

::::
both

::::::::::::::::
parameterisations.

::::
This

:::::
means

::::
that

:::::::::
calibration

::
on

::::
past
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Table 8. Similar
:::::::
Projected

:::::::
dynamic

::::::::::
contributions to Table ??

::
sea

::::
level

::
in

:::::
meters

::::
from

:::
the

:::
AIS

::
in

::::
2100

::::::
relative

::
to

:::::::::
1995-2014.

:::
The

:::::::
numbers

::
for

:::::::::
LARMIP-2, but

::::::
ISMIP6

:::
and

::::
SMB

:::
are

::::::
obtained

::::
from

:::
the

::::
IPCC

::::
AR6

:::::
report

:::::::::::::::::::
(Fox-Kemper et al., 2021).

::::
Note

:::
that

:
for the sea level response

rate over 2081-2100
::::::
ISMIP6

::::::
estimate

::::::
surface

::::
mass

::::::
balance

::::::::::
contributions

::
are

:::::::
removed

::
as

:::
our

::::
study

:::
only

:::::::
accounts

:::
for

::::::
changes

::
in

::
ice

:::::::
discharge.

::::::
Scenario

: :::::::::::
Forcing/Source

: ::::
17%

::::
50%

:::
83%

Variable
:::::::::::::
SSP5-8.5/RCP8.5 Condition

:::::::::::
Antarctic-wide

::::::::
calibration

::::
(QA) Variation in source variable

::::
0.06 Variation factor in sea level

::::
0.11

:::
0.19

Scenario All
::::::::
Amundsen

::::::::
calibration

::::
(QR) SSP1-2.6 -> SSP5-8

::::
0.09

::::
0.17

:::
0.41

::::::
Median

::::::
ISMIP6

::::::::
sensitivity

::::
(QM)

: ::::
0.05

::::
0.12

:::
0.27

::::::
Median

::::::::
LARMIP-2

::::::::
sensitivity

:::::
(LM)

::::
0.08

::::
0.15

:::
0.32

::::::
ISMIP6

::::
AR6

::::
(excl.

:::::
SMB)

: ::::
0.10

::::
0.13

:::
0.17

::::::::
LARMIP-2

::::
AR6

: ::::
0.10

::::
0.20

:::
0.39

::::::
SSP2-4.5

::::::
/RCP4.5

:
1.9-2.6

:::::::::::
Antarctic-wide

::::::::
calibration

::::
(QA)

::::
0.05

::::
0.09

:::
0.16

Scenario Top 10%
::::::::
Amundsen

::::::::
calibration

::::
(QR)

: ::::
0.07

::::
0.14

:::
0.34

::::::
Median

::::::
ISMIP6

::::::::
sensitivity

::::
(QM)

::::
0.04

::::
0.10

:::
0.22

::::::
Median

::::::::
LARMIP-2

::::::::
sensitivity

:::::
(LM)

::::
0.06

::::
0.12

:::
0.26

::::::
ISMIP6

::::
AR6

::::
(excl.

:::::
SMB)

: ::::
0.07

::::
0.12

:::
0.16

::::::::
LARMIP-2

::::
AR6

: ::::
0.09

::::
0.17

:::
0.33

SSP1-2.6- SSP5-8.5
::::::
/RCP2.6

:
1.9-2.5Basal melt computation

:::::::::::
Antarctic-wide

::::::::
calibration

::::
(QA) All

::::
0.04 Lowest -> Highest

::::
0.07 2.2-2.5

:::
0.14

Basal melt computation Top 10%
::::::::
Amundsen

::::::::
calibration

::::
(QR)

:
Lowest -> Highest

::::
0.06 1.2-1.4

::::
0.12

:::
0.28

Basal melt computation Unbounded calibration
::::::
Median

::::::
ISMIP6

::::::::
sensitivity

::::
(QM)

:
Lowest -> Highest

::::
0.04 1.3-1.7

::::
0.08

:::
0.19

Calibration region All
::::::
Median

:::::::::
LARMIP-2

:::::::
sensitivity

:::::
(LM) Regional -> Antarctic

::::
0.06 1.2-1.4

::::
0.11

:::
0.23

Calibration bounds All, Linear parameterisation
::::::
ISMIP6

::::
AR6

::::
(excl.

:::::
SMB)

:
Unbounded -> Bounded

::::
0.06 1.6-2.0

::::
0.11

:::
0.15

Parameterisation All, Unbounded calibration
::::::::
LARMIP-2

::::
AR6 Linear -> Quadratic

::::
0.08 1.1-1.2

::::
0.15

:::
0.29

::
ice

:::::::::
discharge

:::::::
strongly

:::::::::
constrains

:::
the

:::::
future

::::::::
response

::
if

::::::
applied

::
to
::::

the
:::::
region

:::
of

:::::::::
projections. If reproducing the past is good

indicator for making future projections, this basal melt computation method (QUA) will arguably provide the best estimate for

the sea level contribution of Antarctic discharge over the coming century. We compared our best estimate with the emulated570

ISMIP6 and

::
On

::::
the

::::
other

:::::
hand,

::
if
:::
the

::::::::::
calibration

::
is

:::::::::
performed

::
in

:::
the

:::::::::
Amundsen

::::::
region

::::
and

::::::
applied

::
to

:::::
make

::::::::
Antarctic

::::::::::
projections,

:::
or

:::
vice

::::::
versa,

::::
clear

::::::::::
differences

:::::::
between

:::
the

::::::
linear

:::
and

::::::::
quadratic

:::::::
relation

:::::::
appear.

:::
For

:::
the

::::::::::
Amundsen

:::::::::
calibration,

::::
the

::::::::
quadratic

:::::::::::::
parameterisation

::::::
results

::
in

:::::
lower

::::::::::
projections

:::
for

:::
the

::::::::::::
Antarctic-wide

::::::::::
contribution

::::
than

:::
the

:::::
linear

:::::::::::::::
parameterisation.

::::
This

:::
can

:::
be

::::::::
expected,

::::
since

:::
the

::::::::
quadratic

:::::::::::::
parameterisation

::
is
:::::::::
dependent

::
on

:::
the

:::::::
absolute

:::::
ocean

::::::::::
temperature,

:::::::
whereas

:::
the

:::::
linear

::::::::::::::
parameterisation575

::::
only

::::
uses

::::::::::
temperature

:::::::::
anomalies.

:::
By

:::
its

::::::::
definition

::::
the

::::::::
quadratic

:::::::
relation

::::
with

:::::::
thermal

::::::
forcing

:::::::
implies

::::
that

::::::
sectors

::::
that

:::
are

:::::
melted

:::
by

:::::::
warmer

::::::
waters

:::
are

::::
more

::::::::
sensitive

::::
than

:::
the

::::::
colder

::::::
sectors,

:::::
even

::
if

:::
the

::::
same

:::::
basal

::::
melt

:::::::::
sensitivity

::
is

:::::::
applied.

:::
So

::
if

::
the

::::::::::
Amundsen

:::::::::
calibration

::
is

::::::
applied

:::
to

:::::
colder

::::::
ocean

::::::
sectors,

::::
this

::::
leads

:::
to

:::
less

:::::
basal

::::
melt

:::
for

::
a

::::::
similar

::::::::::
temperature

::::::::
increase,
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Figure 10.
::::::::
Projections

::
of

:::::::
Antarctic

:::
sea

:::::
level

:::::::::
contribution

:::
for

:::::::
SSP5-8.5

:::
for

::
all

::::::::
calibrated

:::::::
ESM-RF

:::::::::::
combinations

:::
for

:::
the

:::
AIS

::::
(left)

::::
and

::::::::
Amundsen

:::::
region

::::::
(right).

::::::
Results

:::
are

:::::
shown

:::
for

::::::
thermal

::::::
forcing

::::
near

:::
the

::
ice

:::::
shelf

::::
base.

:::
The

::::
bars

::::
show

:::
the

::::::
median

:::::::::
projections

:::
for

:::
the

:::::::::::
Antarctic-wide

:::
and

::::::
regional

::::::::
Amundsen

::::::::
calibration

:::::
using

::
the

::::::::
quadratic

::::::
(orange)

:::
and

:::::
linear

::::
(blue)

::::::::::::::
parameterisations.

:::
The

:::::
spread

:::::::
indicates

:::
the

:::
17th

::
to

::::
83rd

::::::::
percentiles.

::::
since

:::
the

:::::
ocean

:::::::::::
temperatures

::::
are

:::::
lower.

::::
The

:::::
linear

:::::::
relation

::
is

::::::::::
independent

::
of

:::
the

::::::::
absolute

::::::::::
temperature,

::::
and

::::::::
therefore

::::::
cannot

::
be

::::::::
calibrated

:::
in

:::
one

::::::
sector

:::
and

::::
then

:::::::
applied

::
to

:::::::
another

::::
one.

:::
For

:::
the

::::::::::
Amundsen

::::::::::
calibration,

:::
the

:::::
linear

:::::
basal

::::
melt

:::::::::
sensitivity580

:::
will

::
be

::::
too

::::
high

::
for

:::
the

:::::::::::::
Antarctic-wide

:::::::::
projections

::::
and

:::
lead

::
to
:::
an

::::::::::::
overestimation

::
of

:::
the

::::::::
Antarctic

::::::::
response

::::
since

:::
the

:::::::::
sensitivity

:
is
::::::::::

completely
:::::::::
accounted

:::
for

::
by

::::
the

:
γ
:::::::::

parameter.
:::

In
:
a
:::::::

similar
::::
way,

:::::::::::::
Antarctic-wide

:::::::::
calibration

::
of

:::
the

::::::
linear

::::::::::::::
parameterisation

::::
leads

::
to

::
an

::::::::::::::
underestimation

::
of

:::
the

::::
basal

::::
melt

:::::::::
sensitivity

:::
and

::::
thus

:::::
lower

::::::::::
projections

::
for

:::
the

:::::::::
Amundsen

::::::
region

::::
than

:::
the

::::::::
quadratic

::::::::::::::
parameterisation.

:::
We

::::::::
conclude

::::
that

::
for

::::
the

:::::
linear

:::::::::
calibration

:::::
basal

::::
melt

::::::::::
sensitivities

:::
can

::::
only

:::
be

::::::::
calibrated

:::
on

:::
the

:::::::::
projection

::::::
region.

:::
The

::::::::
quadratic

:::::::
relation

:::
can

:::
be

:::::
better

::::
used

:::::
when

:::::::::
calibrating

::
on

:::::::
(partly)

::::::::::
independent

::::::
regions

:::::
since

::
it

::
is

::::::::
dependent

:::
on

:::
the585

:::::::
absolute

:::::
ocean

::::::::::
temperature,

::::::
which

::
is

::
an

::::::::
important

:::::::::
motivation

::
to
:::::
apply

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

::
in

:::
our

:::::
study.

:

::::::
Second,

:::
we

::::::::
assessed

:::
the

::::::
impact

::
of

:::
the

:::::::
thermal

:::::::
forcing

:::::
depth

::
on

:::
the

:::::::::
calibrated

:::::::::
projections

:::::
(Fig.

::::
11).

:::
For

::::
this

::::::::::
experiment,

::::::
thermal

::::::
forcing

::::
and

:::::
basal

::::
melt

::::::::
sensitivity

:::
are

:::::
based

:::
on

:::::
ocean

::::::::::
temperature

::
at
::::
two

:::::::
different

:::::::
depths:

:::
100

::
m

::::::::
centered

::::::
around

:::
the

::::
mean

:::::
depth

:::
of

:::
the

:::
ice

:::::
shelf

::::
base

:::::::
(similar

::
to

:
LARMIP-2studies as presented in IPCC AR6 )

::::
and

::
an

::::::
ocean

::::
layer

:::::::
around

:::
the

::::
depth

:::
of

:::
the

::::::::::
continental

::::
shelf

::::
near

::::
the

:::
ice

::::
shelf

:::::
front.

::::
The

::::::
deeper

::::::
ocean

::::
layer

::
is
:::::::

chosen
:::
for

::::::::::
comparison

:::::
since

:::
the

:::::::
relevant590

::::
water

:::::::
masses

:::
that

:::::
drive

:::
the

:::::::
melting

:::::
close

::
to

:::
the

:::::::::
grounding

::::
line

:::::
origin

:::::
from

:::
the

:::::::
deepest

:::::
depth

::
of

:::
the

::::
bed

::::
near

:::
the

:::
ice

:::::
shelf

::::
front,

::::::
which

:::
we

::::::::::
approximate

:::
as

::::::::
800-1000

::
m.

::::
We

::::
only

:::
use

:::
the

::::::::
quadratic

::::::::::::::
parameterisation,

::::::
which

::
is

::::::::
dependent

::
to
:::

the
::::::::

absolute

:::::
ocean

::::::::::
temperature.

:::::::::::
Surprisingly,

:::
for

:::
the

:::::::
deeper

:::::
layer,

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration

::::
leads

:::
to

:
a
:::::
lower

:::::
basal

::::
melt

::::::::::
sensitivity,

:::::::
whereas

:::
the

:::::::::
Amundsen

:::::::::
calibration

::::
leads

:::
to

:
a
::::::
higher

::::
basal

::::
melt

:::::::::
sensitivity

::::
than

:::
the

::::::::::::
corresponding

:::::
basal

::::
melt

::::::::::
sensitivities

::::
near

::
the

:::
ice

:::::
shelf

::::
base (Table 8). The cumulative sea level response is equal or smaller in magnitudethan emulated ISMIP6 estimates595

across all scenarios (depending on the basal melt computation method). Compared to LARMIP-2, the response is smaller. The

differences with ISMIP6 and LARMIP-2 can be mainly attributed to the calibration on past ice discharge, which resulted in

less sensitive basal melt parameterisations (Fig. 5).
::
5).

::::
This

:::
can

:::
be

::::::::
explained

:::
by

:::
the

:::::::::
differences

::
in

:::
the

:::::
water

::::::::::
temperature

::::
and

::
the

::::::::
warming

::::
rates

:::
of

:::
the

:::
two

::::::
layers.

:::
For

:::
the

::::::::::
Amundsen

::::::
region,

:::
the

:::::
ocean

::::::::::
temperature

::
in

:::
the

::::::
deeper

::::::::
800-1000

::
m

:::::
layer

::::::
warms

:::::
slower

::::
than

:::
the

:::::
ocean

::::::::::
temperature

::::
near

:::
the

:::
ice

::::
shelf

::::
base

::::
(Fig.

::::
A3),

::::::::
although

::
the

::::::::::
temperature

:::::
itself

::
is

:::::::::
comparable

::
in

::::::::::
magnitude.600
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Projections of Antarctic sea level response for SSP1-2.6, SSP2-4.5 and SSP5-8.5 using the top 10% selected ESM-RF combinations. The

spread is determined by the CMIP6 forcing and the LARMIP-2 linear response functions.

Figure 11.
::::::::
Projections

::
of
:::

the
:::
sea

::::
level

:::::::::
contribution

::
of

:::
the

:::
AIS

:::::
(left)

:::
and

::::::::
Amundsen

:::::
region

:::::
(right)

:::
for

:::::::
SSP5-8.5

:::
for

::
all

::::::::
calibrated

:::::::
ESM-RF

::::::::::
combinations

::::
using

:::
the

:::::::
quadratic

::::::::::::
parameterisation.

::::
The

:::
bars

::::::
indicate

:::
the

::::::
median

:::
sea

::::
level

:::::::::
contribution

::
in

::::
2100

::::::
relative

::
to

::::::::
1995-2014.

::::
The

:::::
thermal

::::::
forcing

:::
and

::::
basal

::::
melt

::::::::
sensitivity

:::
are

::::
based

::
on

:::::
ocean

:::::::::
temperature

::
at

:::
two

:::::::
different

:::::
depths:

:::
100

::
m
:::::::
centered

:::::
around

:::
the

::::
mean

:::::
depth

::
of

::
the

:::
ice

::::
shelf

:::
base

:::::
(blue)

:::
and

:::::::
800-1000

::
m
:::::
depth

:::::::
(orange).

:::
The

::::
black

::::
lines

::::::
indicate

:::
the

::::
17th

::
to

:::
83rd

:::::::::
percentiles.

::::::::
Therefore,

::
a
:::::
higher

:::::
basal

::::
melt

:::::::::
sensitivity

::
is

:::::::
required

::
to

:::::
match

:::
ice

::::::::
discharge

:::::::::::
observations.

:::
In

:::::::
contrast,

:::
for

::
all

:::::
other

:::::::
regions,

:::
the

:::::
ocean

::::
layer

::
at
:::::::::

800-1000
::
m

:::::
depth

::
is
:::::::
warmer

::::
than

:::
the

::::::::::
temperature

::::
near

::::
the

:::::
depth

::
of

:::
the

:::
ice

:::::
shelf

::::
base,

::::::::
resulting

::
in
::

a
::::::
higher

:::::
ocean

:::::::
forcing.

::
In

:::
the

::::::::
Weddell,

::::
Ross

::::
and

:::
the

::::::::
Peninsula

:::::::
regions,

:::
the

::::::::::
temperature

::::
also

::::::
warms

:::::
faster

::
in

:::
the

::::::
deeper

:::::
layer

::::
than

::
in

::
the

:::::
layer

::
at

:::
the

:::::
depth

::
of

:::
the

:::
ice

::::
shelf

::::
base,

::::::::
resulting

::::
also

::
in

:::::::
stronger

:::::
ocean

:::::::
forcing.

::
As

::
a

:::::::::::
consequence,

:::
the

::::::::
calibrated

:::::
basal

::::
melt

::::::::
sensitivity

::
is

:::::
lower

:::
for

:::
the

::::::::::::
Antarctic-wide

::::::::::
calibration.605

:::
For

:::
the

::::
AIS

:::::::::
projections,

:::
the

::::::
lower

::::::::::::
Antarctic-wide

:::::
basal

::::
melt

:::::::::
sensitivity

::
for

:::::::::
800-1000

::
m

:::::
depth

::
is

::::::
largely

:::::::::::
compensated

::
by

::
a

:::::
larger

:::::
ocean

::::::
forcing

:::
for

:::
the

::::::::::::
Antarctic-wide

:::::::::
calibration.

::::
This

::::::
results

::
in

:
a
::::::
similar

:::
sea

:::::
level

::::::::::
contribution

:::
for

::
the

:::::::::
800-1000

:::::::
m-based

:::::::::
projections

::::::::
compared

::
to

:::::
using

:::
the

::::::
thermal

:::::::
forcing

::::
near

:::
the

::::
depth

:::
of

::
the

:::
ice

:::::
shelf

::::
base.

::::::::
However,

:::
the

::::
high

:::::::::
Amundsen

:::::
basal

::::
melt

::::::::
sensitivity

:::
for

:::
the

::::::::
800-1000

::
m
:::::
depth

:::::::::
combined

::::
with

:::
the

:::::
larger

:::::::::::::
Antarctic-wide

:::::
ocean

::::::
forcing

:::::
leads

::
to

::::::
higher

::::::::
estimates

:::
for

:::
the

:::
AIS

::::::::::
projections.

::::::::::
Projections

:::
for

:::
the

:::::::::
Amundsen

::::::
region

:::
are

:::::::::
oppositely

::::::::
affected.

::::
The

:::::
ocean

::::::
forcing

::
is
:::::::

smaller
::
at

::::::::
800-1000

:::
m610

::::
depth

:::::
than

::::
near

:::
the

:::
ice

::::
shelf

:::::
base,

::::
and

::::::::
combined

::::
with

::
a
:::::
lower

:::::
basal

::::
melt

:::::::::
sensitivity

:::
for

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration

::::
this

::::
leads

::
to

:::::
much

:::::::
smaller

::::::::::
projections.

:::
For

::::
the

:::::::::
Amundsen

::::::
region

:::::
itself,

:::
the

::::::
higher

::::
basal

:::::
melt

:::::::::
sensitivity

:::::
partly

:::::::::::
compensates

:::
for

::
the

:::::::
smaller

:::::
ocean

:::::::
forcing,

::::::::
resulting

::
in

:
a
:::::::
smaller

:::
sea

::::
level

::::::::::
projection.

:::
As

:
a
::::::
result,

:::
the

::::::
fraction

:::
of

:::::::::
Amundsen

:::::::::
compared

::
to

:::
the

::::
total

::::::::
Antarctic

::::::::::
contribution

::
is

:::::
larger

:::
for

:::
the

::::::
thermal

:::::::
forcing

::::
near

::
the

:::
ice

:::::
shelf

::::
base

::::
than

:::
for

:::
the

::::::::
800-1000

::
m

:::::
depth

:::::
layer.

:::::
Since

:::
this

:::::::
fraction

:::
was

:::::::
already

::::::
smaller

::::
than

::
in

::::::::::
observations

:::
in

::
the

::::::::
hindcast

::::::::::
experiments

:::::
using

::::::
thermal

:::::::
forcing

::::
near

::
the

:::
ice

:::::
shelf

::::
base615

:::::
(Sect.

::::
3.2),

:::
we

::::
argue

::::
that

:::::
using

::::::
thermal

::::::
forcing

::::
near

:::
the

:::
ice

::::
shelf

::::
base

:::::
leads

::
to

:::::
more

::::::
realistic

::::::
results

::::
than

:::::::
thermal

::::::
forcing

::
in

:::
the

::::::::
800-1000

::
m

:::::
depth

:::::
layer.

:::
We

:::::::
conclude

::::
that

::
the

:::::
depth

::
of

:::::::
thermal

::::::
forcing

:::
has

:
a
:::::
large

:::::::
influence

:::
on

:::
the

:::::::
resulting

:::
sea

::::
level

::::::::::
contribution

::
in

:::::
future

::::::::::
projections.

::::
Most

:::::::::::::
straightforward,

::
it
::::::::
influences

:::
the

:::::::
thermal

::::::
forcing

::
in

:::
the

::::::::::
projections,

:::::
which

::
is

::::::::::::::
depth-dependent,

:::
but

::::
also

:::::::::::::::
region-dependent.

::::::::
However,

:::::
when

:::::::::
calibration

::
is

::::::
applied,

:::
the

:::::::
thermal

:::::::
forcing

:::::
depth

:::
also

::::::
affects

:::
the

:::::::
strength

::
of

:::
the

:::::
basal

::::
melt

:::::::::
sensitivity

:::::::
through620

28



::
its

::::::::
evolution

::::
over

:::
the

::::::::
historical

::::::
period.

::::
The

::::::
thermal

::::::
forcing

::::
near

:::
the

:::
ice

:::::
shelf

::::
base

::::
leads

::
to
::
a
::::
more

:::::::
realistic

:::::::::::
contribution

::
of

:::
the

:::::::::
Amundsen

:::::
region

:::::::::
compared

::
to

:::
the

::::
total

::::
AIS,

:::
and

::
is

::::::::
therefore

::::::
applied

::::::::::
throughout

:::
this

:::::
study.

:

3.3.3 Modelling uncertainties
::::::::
associated

:::::
with

:::::
Earth

:::::::
System

::::
and

:::
Ice

:::::
Sheet

::::::
Models

Here
::
In

::::
this

::::::
section,

:
we assess the role of CMIP6 ESMs and

:::
RFs

:::
of

:::
the LARMIP-2 ice sheet models in projection uncertain-

ties
:::
for

:::
the

::::
AIS by comparing the median projected sea level contributions for the basal melt computation method with the625

best performance in the hindcasts (QUA
:::::::::
Amundsen

::::::::::
calibration,

:::::
which

::
is

:::::::::
considered

::
to

:::::::
perform

:::::
better

::::
than

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration

:::
(see

:::::
Sect.

:::::
3.3.1).

::::::
These

::::::
models

:::::
cause

:::
the

::::::
spread

::
of

:::
the

:::::::::
projections

:::
for

:
a
:::::::
specific

::::
basal

:::::
melt

::::::
method

::::
(see

:::
the

::::::
shaded

::::::
regions

::
in

::::
Fig.

:
7
::::
and

:::
the

::::
error

::::
bars

::
in
:::::
Figs.

::::
8-11). Fig. 12 shows the projected Antarctic sea level contribution for each indi-

vidual CMIP6 model as computed with the QUA method. The
::::
ESM

:::
for

:::
the

:::::::::
Amundsen

::::::::::
calibration.

:::::
Here,

:::
the spread for each

CMIP6 model
::::
ESM is determined by the linear response functions

::
of

:::
the

:::
ice

::::
sheet

::::::
models. Noticeably, the differences between630

the scenarios are small compared to the the differences between individual CMIP6 models. The median sea level contribution

for
:::::
ESMs,

:::::::
despite

:::
the

::::
bias

:::::::::
adjustment

:::::
with

:::::
ocean

:::::::::
reanalysis

::::
data.

:::
As

::
a

:::::::
measure

::
of

:::::
ESM

:::::::
spread,

:::
we

:::::::
compute

:::
the

::::::::
standard

:::::::
deviation

::::::::
between

::
the

:::::::
median

:::::
values

::::
(bar

::::::::
heights).

:::
The

:::::::::
intermodel

::::::::
standard

:::::::
deviation

::::::
varies

::::
from

::::
144

:::
mm

:::
for

:
SSP1-2.6 (

::
.6

::
to

:::
205

::::
mm

::
for

:
SSP5-8.5)varies from 0 mm (0 mm ) for

::
.5.

:::
The

:::::
ESM

::::
with

::::
the

::::::::
strongest

::::::
median

::::
sea

::::
level

:::::::::::
contribution

:
(CAS-ESM2-0to 174 (254) mm for MPI-ESM1-2-LR. This635

difference can be attributed to the difference between CMIP6 models
:
)
:::
also

:::::::
exhibits

:::
the

::::::
largest

:::::::
warming

::::
over

:::
the

::::
21st

::::::
century

:::
for

::::
each

::::::::
individual

:::::
ocean

::::::
sector

:::
and

:::
has

:::
the

::::::
second

::::::
highest

:::::::
median

::::::::
calibrated

:::::
basal

::::
melt

:::::::::
sensitivity

::
for

:::
the

:::::::::
Amundsen

::::::
region

::::
(not

::::::
shown).

:::::
Also,

::
it

:::
has

:::
the

:::::
fourth

:::::
lowest

:::::::
ranking

::
in

::::::::::
reproducing

::::::::
historical

:::
ice

::::::::
discharge

::::::::
compared

::
to

:::
the

::::
other

::::::
ESMs.

:::::::::::
Remarkably,

::
the

::::
five

:::::
ESMs

::::
with

:::
the

::::::
highest

::::::
RMSE

:::
for

:::
the

:::::::::
Amundsen

::::::
region

:::::
(when

:::::::::
comparing

::::
their

::::::::
historical

:::::::::::
performance

::
to

:::
ice

::::::::
discharge

:::::::::::
observations)

:::
are

:::::::
amongst

:::
the

:::
six

:::::::
models

::::
with

:::
the

:::::::
highest

:::::::::
cumulative

:::
sea

:::::
level

::::::::::
contribution

:::
for

:::
the

::::
AIS

:::
in

:::
the

::::::::::
projections.640

::::
This

:::::::
suggests

:::
that

::::::::
applying

::::
ESM

::::::::
selection

:::::
based

::
on

:::
the

:::::::::::
performance

::
of

:::::
ESMs

::
in

::::::::::
reproducing

:::
ice

::::::::
discharge

:::::::::::
observations

::
in

:::
the

:::::::::
Amundsen

:::::
region

::::::
would

:::::
result

::
in

:::::
lower

::::::::
estimates

::
of

:::
the

::::::::
Antarctic

::::::::
dynamics

::::::::::
contribution

::
to

:::
sea

:::::
level

:::::::::
projections.

Similar to Fig. 12, Fig. 13 shows the projected Antarctic sea level contribution for
:::
the

:::
RF

:::
of each individual ice sheet

model(RF). Here, the spread
::
in

:::
the

::::
error

::::
bars

:
is determined by the CMIP6 models. Clearly, the spread between RFs is smaller

than between CMIP6 models. Furthermore, the
:::::
ESMs.

::::
The RF spread is also greater than the scenario-induced spread. The sea645

level contribution for
::::::
Similar

:::
as

::
for

:::
the

::::::
ESMs,

:::
we

:::::::::
computed

:::
the

:::::::::
intermodel

:::::::
standard

::::::::
deviation

:::::::
between

:::
ice

:::::
sheet

::::::
models

::
as

::
a

:::::::
measure

::
of

:::
ice

::::
sheet

::::::
model

::::::
spread.

::::
The

:::::::
standard

::::::::
deviation

:::::::
between

:::
the

:::::::
median

:::::
values

:::::
varies

:::::
from

::
46

::::
mm

:::
for SSP1-2.6 (

::
.6

::
to

::
62

::::
mm

:::
for SSP5-8.5) varies from 6 mm (10 mm) for GRIS-LSC to 86 mm (127 mm) for ISSM-JPL, pointing at a difference

that can be attributed to ice sheet models of 80 mm (117) mm, influencing the .
:

:::
The

:::
RF

::
of

:::
the

:::
ice

::::
sheet

::::::
model

:::::
giving

:::
the

:::::::
smallest

::::::
median

:::
sea

::::
level

:::::::::::
contribution

:::::
(GRIS

:::::
LSC)

:::
has

:::
the

::::::
second

:::::
lowest

:::::::::
calibrated650

::::
basal

::::
melt

:::::::::
sensitivity

:::
for

:::
the

:::::::::
Amundsen

::::::
region

:::
and

:::::
could

:::
not

::
be

:::::::::
calibrated

::
in

:::::::::::
combination

::::
with

:::
half

::
of
:::

the
::::::
ESMs.

::::
We

::::::
remark

:::
that

::::
this

:::
RF

::::
also

::::
gave

:::
the

::::::::
smallest

:::::
signal

::
in

::::::::::
LARMIP-2

:::::::::::::::::::::
(Levermann et al., 2020).

::::
The

:::
RF

:::
of

:::
the

:::
ice

:::::
sheet

:::::
model

:::::
with

:::
the

:::::::
smallest

::::::::
calibrated

:::::
basal

::::
melt

:::::::::
sensitivity

:::::
(PISM

::::::
DMI)

:::
also

:::::
could

:::
not

:::
be

::::::::
calibrated

:::::
when

:::::::::
combined

::::
with

:::
the

::::::
forcing

:::
for

::
6

:::
out

::
of

:::
the

::
14

::::::
ESMs.

:::::::::
Moreover,

:::::
GRIS

::::
LSC

::::
and

:::::
PISM

::::
DMI

:::::
have

:::
the

::::::
highest

::::::
RMSE

:::::
when

::::::::
compared

::::
with

::::::::
observed

:::
ice

:::::::::
discharge.
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Figure 12. Projected Antarctic sea level changes for SSP1-2.6 (blue), SSP2-4.5 (orange) and SSP5-8.5 (red) over the 21st century, defined

as the difference between year 2100 and the period 1995-2014. For each CMIP6 model
:::
ESM, the errorbars indicate one standard deviation

between the
:::
17th

::
to

::::
83rd

::::::::
percentiles

::::::::
(computed

::::
from

:::
the associated RF timeseries). Basal melt is computed with the quadratic parameterisa-

tion which is calibrated Antarctic-wide (QUA)
:
on

:::
the

::::::::
Amundsen

:::::
region.

::::
This

:::::::
suggests

:::
that

:::
RF

::::::::
selection

:::::
based

::
on

:::::::::::
reproducing

:::::::
historical

:::
ice

::::::::
discharge

::::::
would

:::::
result

::
in

:::::
higher

::::::
future

::::::::
estimates

::
of

:::
the sea655

level contributionby a factor 12.7 (14.3). .
:

::
As

::
a
::::
final

::::::::::
assessment,

:::
the

:::::::
RMSE

::::
over

:::
the

::::::::::
Amundsen

:::::
region

::::
was

:::::
used

::
to

::::
rank

:::
the

:::::::::
historical

::::::::::
performance

:::
of

:::::::::
individual

:::::::::::
combinations

::
of

::::::::
ESM-RF

:::::
pairs.

::::
The

:::
top

::::
10%

:::::::::::::
best-performing

::::::::
ESM-RF

:::::
pairs

::::
have

:::::::
slightly

:::::
lower

::::::::
estimates

:::
for

:::
the

::::::::
Antarctic

::::::::::
contribution

:::
but

::::::
similar

:::::::
estimates

:::
for

:::
the

:::::::::
Amundsen

::::::::::
contribution

::::
(Fig.

::::
A2).

:::
As

:
a
:::::
result

:::
the

::::::
relative

::::::::::
contribution

::
of

:::
the

:::::::::
Amundsen

:::::
region

::::::::
increases

::::::::
compared

::
to
:::

the
:::::
total

::::::::
Antarctic

::::::::
dynamics

::::::::::
contribution

::
to

:::
sea

:::::
level,

::
as

::::
was

::::
also

:::::
visible

:::
in

:::
the

::::::::
hindcasts

::
of

:::
the660

:::
top

::::
10%

::::::
models

:::::::
(Table

::
7).

:

::::
This

:::::::::
assessment

:::::
shows

::::
that

::::::::
modelling

:::::::::::
uncertainties

::
of

:::::
ESMs

:::
as

:::
well

:::
as

::
ice

:::::
sheet

::::::
models

:::
are

:
a
::::::
greater

::::::
source

::
of

:::::::::::
uncertainties

::
in

::::::::
Antarctic

::::
mass

::::
loss

:::::::::
projections

::::
than

:::
the

::::::::
emission

::::::::
scenarios

::::
and

:::
the

::::
basal

::::
melt

:::::::::::
computation

:::::::
methods

:::::::
applied

::
in

:::
this

::::::
study.

:::
The

:::::::::::
uncertainties

:::::::::
associated

::::
with

:::
the

:::::
ocean

::::::::::
temperature

::::::::
evolution

::::
from

:::::
ESMs

::
is
::::
even

::::::
larger

:::
than

:::::
those

:::::
from

::
ice

:::::
sheet

:::::::
models,

::::::
despite

:::
the

:::
bias

:::::::::
adjustment

::::
that

:::
has

::::
been

::::::
applied

::
to
:::
the

:::::::::
subsurface

::::::::::::
temperatures.

:::
We

:::
also

::::
find

::::
some

::::::::
relations

:::::::
between

::::::::
historical665

:::::
model

:::::::::::
performance

:::
and

:::::
future

::::::::::
projections,

:::::
which

:::::
point

:
at
::::::
model

:::::::
selection

::
as

::
a
:::::::
potential

::::
next

::::
step

::
to

:::::
better

:::::::::
understand

:::
the

:::::
future

::::::::::
contribution

::
of

::::::::
Antarctic

::::::::
dynamics

::
to

:::
sea

::::
level

::::::::
changes.

4 Discussion

In this study, calibrated projections of Antarctica’s
:::::::::
projections

::
of

::::
the dynamic sea level contribution were made that are

consistent with
:
of

:::
the

::::
AIS

::::
and

:::
the

:::::::::
Amundsen

::::::
region

:::
are

::::::::
presented

:::
that

:::::
were

::::::::
calibrated

:::
on four decades of past ice discharge670

in
::
ice

:::::::::
discharge observations. Calibration was applied on the basal melt parameterisation. The contribution of Antarctica’s ice

discharge to sea level changes is computed with
::::
using

:::::::
forcing

::::
from state-of-the-art ESMs from Coupled Model Intercompari-

son Project Phase 6 (CMIP6) and
:::::
applied

:::
to linear response functions from LARMIP-2 ice sheet models. The major strength
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Figure 13. Projected Antarctic sea level changes for SSP1-2.6 (blue), SSP2-4.5 (orange) and SSP5-8.5 (red) over the 21st century, defined

as the difference between year 2100 and the period 1995-2014. For each RF, the errorbars indicate one standard deviation between the
:::

17th

:
to
::::
83rd

::::::::
percentiles

:::::::::
(computed

:::
from

:::
the

:
associated CMIP6 models

:::::
ESMs). Basal melt is computed with the quadratic parameterisation which

is calibrated Antarctic-wide (QUA)
::
on

:::
the

::::::::
Amundsen

:::::
region.

of this method is that multiple climate and ice sheet models can be combined to assess the
::::
their

:
full range of modelling uncer-

tainties. A drawback of the method is that non-linearities between thermal forcing and ice sheet mass loss, related to ice sheet675

instabilities
:::
and

:::::
ocean

::::::::
dynamics

:
are not considered because we use the Linear Response Functions framework. Our results

show that the models that we used, even the top 10%, are not able
:::::
linear

:::::::
response

::::::::
functions

::::::::::
framework.

:::
The

::::::::
inability

::
of

::::
our

::::::
models

:
to represent the acceleration present in the observations

:::::::
observed

::::::::::
acceleration

:
(Fig. ??) ,

with overestimation of mass loss before 2010 and underestimation thereafter. This
:
6)

:
could be explained by ice sheet/ocean

feedbacks that are not represented in the models.
:::::
Recent

::::::
studies

:::::::
suggest

::
a

:::::::
positive

:::::::
feedback

::::::::
between

:::
ice

::::
sheet

:::::::
melting

::::
and680

:::::::::
subsurface

:::::
ocean

:::::::
warming

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bronselaer et al., 2018; Golledge et al., 2019; Sadai et al., 2020)

:::
that

:::::
could

:::::::
explain

:::
this

:::::::::
deficiency

::
in

:::
the

:::::::
models.

:
One reason to introduce the quadratic parameterisation was to account for some

:
a
:

positive feedback be-

tween ice melt and ocean forcing,
:::
as

::::::::
presented

::
in

:::::::::::::::::
Jenkins et al. (2018). However the feedback between surface freshening

due to melt water and basal ice shelf melt is not explicitly simulated . Recent studies suggest that this feedback is positive

(Bronselaer et al., 2018; Golledge et al., 2019; Sadai et al., 2020), which could explain the inability of our models to represent685

the observed acceleration
::
in

:::
this

::::::::::::::
parameterisation. It should also be noted that our study does not address the impact of surface

melt on calving nor marine ice cliff instability processes, which means that the projections are a lower bound of what could

happen in reality.

Temperature-melt
::
In

:::
the

::::::
current

::::::::::
generation

::
of

::::::
ESMs

::::::::
(CMIP6)

:::
ice

:::::
shelf

:::::::
cavities

:::
are

:::
not

::::::
(fully)

:::::::::::
represented,

::::::
leading

:::
to

:::::::::
deficiencies

:::
in

:::
the

::::::
process

::::::::::::
representation

::::::::::::::::::
(Mathiot et al., 2017)

:
.
:::
The

:::::::::::::
inflow/ambient

::::::::::
temperature

::
is
:::::::

affected
:::

by
::::::
mixing

:::::
with690

::::::::
meltwater

:::
and

:::::
ocean

:::::::::
dynamical

::::::::
processes

:::::
inside

:::
the

::::::
cavity.

:::::::::::
Furthermore,

:::::::
pressure

:::::::
changes

:::::
inside

:::
the

:::::
cavity

::::::
impact

:::
the

:::::::
freezing

::::
point

::::::::::
temperature

::::
and

::::
thus

:::
the

::::::
thermal

:::::::
forcing.

:::::
Also,

:::
the

:::::::::
resolution

::
of

:::::
most

::::::
CMIP6

:::::
ESMs

::
is
::::

not
::::
high

::::::
enough

::
to

:::::::
resolve

:::
the

:::::
ocean

:::::::::
circulation

::
on

:::
the

::::::::::
continental

:::::
shelf,

::::::::
including

:::
the

::::::::
Antarctic

:::::
Slope

:::::::
Current

:::::::::::::::::::
(Thompson et al., 2018)

:
.
::::
Due

::
to

:::::
these

:::::
ocean
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:::::
model

:::::::::::
deficiencies,

::::::::::::::
temperature-melt

:
relations are typically parameterised in terms of the heat exchange velocity γ (Favier

et al., 2019). ,
:::::
which

::
is
::::
used

:::
as

:::::::::
calibration

::::::::
parameter

::
in

:::
our

::::::
study.695

The region of calibration is relevant for the projections, since the calibrated γ value
::::
basal

::::
melt

::::::::
sensitivity

:
varies around the

continent and is dependent on the ice-shelf cavity type. Calibration of the γ value in the basal melt parameterisation results

regularly
::
for

:::::::
10-17%

::
of

:::
the

::::::::
ESM-RF

::::
pairs

:
in a value of zero, especially for the Weddell and Ross regions. A γ value of zero

:::::
which indicates insensitivity of basal melt to open ocean subsurface temperature changes. The likeliest explanation would be

that the models predict a warming while the observed discharge decreased over the observation period (or vice versa). This700

could be caused either by the importance of natural
::::::::::::
(multidecadal) variability in the observations or

::
ice

::::::::
discharge

:::::::::::
observations

:::::
and/or

::::::::
simulated

:::::
ocean

:::::::
forcing

::
or by the inability of the ESMs to simulate temperature trends around Antarctica. Furthermore,

the observed ice discharge trend could be close to zero (for the Weddell sector) . Another explanation
:::::::
However,

:::
we

:::::
found

::::
that

::::
each

::::
ESM

:::::
could

::::
lead

::
to
::
a
:::::::::
successful

:::::::
(positive

::
γ)

::::::::::
calibration

:
if
:::::::::
combined

::::
with

::::::
several

::::
RFs,

:::
so

:
it
::

is
:::
the

::::::::
ESM-RF

:::::::::::
combination

:::::
which

:::::::::
determines

::::::::
whether

:::::::::
calibration

::
is

:::::::::
successful.

::
A
::::::::

physical
::::::::::
explanation

:::
for

:
a
:::::::::

mismatch
:
is that the water inside the ice705

shelf cavities is blocked from the water in the coastal region outside the cavities due to density gradients. This contradicts the

assumption in this study that water from the open ocean can freely access the ice shelf cavities.
:::
Also

::::
note

::::
that

:::
the

:::::
ocean

::::::
sectors

::
in

:::
our

:::::
study

::
are

:::::::::
somewhat

:::::
wider

::::
than

:::
the

:::::::::
continental

:::::
shelf,

:::::::::
consistent

::::
with

:::::::::::::::::::
Levermann et al. (2020)

:
.
::::
The

::::::::
advantage

::
of

::
a

:::::
wider

:::::
region

::
is

:::
that

::
it
::::::
allows

::
for

:::::
more

::::::::::
assimilated

::::::::::
observations

::
in

:::
the

:::::::::
reanalysis

::::::
product

::::
that

::
is

::::
used

::
for

:::
the

::::
bias

:::::::::
adjustment

:::
of

:::::
ocean

::::::::::
temperature

:::
(the

::::::::::
continental

::::
shelf

::::::
region

:
is
::::
only

:::::::
sparsely

:::::::::
sampled).710

It is questionable whether the situation during the calibration period is representative for the future. In the future model

projections (Fig. 4), especially for SSP5-8.5, all coastal regions, especially the Weddell and Ross sectors, experience a warming

signal. As the open ocean outside the cavities warms, it could be expected that this warming will at a certain moment also

be transported inside the cavities, and contribute there to basal melt and ice discharge. New calibration will then lead to

γ values that are greater than zero
::::
larger

:::::::::::::
Antarctic-wide

:::::
basal

::::
melt

::::::::::
sensitivities. This means that calibrated γ values

::::
basal715

::::
melt

::::::::::
sensitivities that link open ocean subsurface temperatures outside cavities to basal melt underneath ice shelves could be

climate-state dependent
:::::::::::
time-evolving. It should also be noted that we calibrated the basal melt parameterisation based on basal

melt anomalies and not on absolute basal melt. This is because that allows us to better represent observed melt but the downside

is that anomalies are a second order effect that is harder to model . Lastly, in the current generation of ESMs (CMIP6) ice shelf

cavities are not (fully) represented, leading to deficiencies in the process representation (Mathiot et al., 2017).
:::
and

:::::::
observe.

:
720

In this study, an Antarctic-wide and regional
:::::::::
Amundsen calibration of the basal melt parameterisation have been applied.

Arguably, the regional parameterisation is more physically correct since individual regions might respond differently to similar

forcing due to differences in ice and ocean dynamics and ice geometries. However, for the Ross, Weddell and Peninsula

regions, 50-84% of the ESM-RF combinations have a calibrated γ equal to zero, resulting in no sea level contribution in

future projections. For these regions, regional calibration leads to lower median contributions than Antarctic-wide calibration.725

A possible
:::
The

:::::::
relation

:::::::
between

:::::::
thermal

::::::
forcing

::::
and

::::
basal

::::
melt

::
is
:::::
more

:::::::
difficult

::
to

:::::
derive

:::
for

:::
the

::::
full

::::
AIS.

:::
The

:
reason is that

these regions have no clear ocean temperature trend over the period 1850-2018 (and thus small thermal forcing) and relatively

small changes in
:
it
:::::::
includes

:::::::
regions

::
in

::::::
which

:::::
ocean

:::::::
warming

::::
has

:::
not

::::
been

:::::::
causally

::::::
linked

::
to

:::::::
changes

::
in

:::
ice

::::::::
dynamics

:::
as

:::
the
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:::::::
warming

::::
was

:::
too

:::::
small

::
or

::::::
absent

::::
over

:::
the

::::::::
historical

::::::
period.

::::::::
However,

:::::::
regions

::::
with

:::::
small ice discharge during the calibration

period . Calibrating
::
are

::::::::
expected

::
to

::::
melt

::
as

:::
the

:::::::
climate

::::::
warms.

:::
The

:::::::::
calibration

:::::
could

::::::::
therefore

:::::
result

::
in

:
a
:::::
basal

::::
melt

:::::::::
sensitivity730

:::::
which

::
is

:::
too

:::
low

:::
for

:::::
future

::::::::::
projections.

::::::::
Moreover,

:::::::::
calibrating

:
on the Antarctic-wide response gives a less accurate reproduction

of the historical mass loss in these regions, but arguably a better prediction of future mass loss (when the ocean is warming in

these regions). Also, it should
:::
the

:::::::::
Amundsen

::::::
region.

:::::::::
Therefore,

:::
the

::::::::::::
Antarctic-wide

:::::::::
calibration

:::::
gives

::::::::::
information

::::
about

::
a
:::::
lower

:::::
bound

:::
for

:::
the

:::::
future

::::::::::
projections:

:::
i.e.

:::::
what

:::::
would

:::::::
happen

:
if
:::
the

:::::
total

:::
AIS

::::::
would

::::
keep

:::
the

:::::
same

:::::
basal

::::
melt

::::::::
sensitivity

::
to
::::::

ocean

:::::::
warming

::
in

:::
the

::::::
future.735

:::
The

::::::::::
Amundsen

::::::
region

::
is

:::::::::
considered

::::
the

::::
best

::::::
region

:::
for

:::::::::
calibration

:::::
since

::
it
::::
has

::::
been

::::::
shown

::::
that

:::
the

::::::::::
Amundsen

:::::
mass

:::
loss

::
is

:::::::::
dominated

:::
by

:::
ice

:::::::::
dynamics.

:::::::
Previous

:::::::
studies

::::
have

::::::
shown

::::
that

:::
ice

:::::::::
dynamical

:::::::
changes

::::
were

:::::::
causally

::::::
linked

::
to
::::::

ocean

:::::::
warming

::::::
during

:::
the

:::::::::::
observational

:::::
record

:::::::::::::::::
(Rignot et al., 2019)

:
.
:
It
:::::
could

:::
be

:::::::
expected

::::
that

::::
when

::::::
ocean

::::::::::
temperatures

:::::::
increase

::::
and

:::::::::
experience

::::::
similar

:::::::
warming

:::::
rates

::
in

::::
other

:::::::
regions,

:::
the

:::::
basal

::::
melt

:::::::::
sensitivity

::::
will

:::
also

:::::::
increase

:::
in

::::
those

:::::::
regions.

::
It
::::::
should

::::
also

be noted that the quadratic parameterisation does introduce some regional difference in basal melt sensitivity , with
:::
due

::
to

:::
its740

:::::::::
dependence

:::
on

:::
the

:::::::
absolute

::::::::::
temperature,

::::::::
resulting

::
in a lower sensitivity in colder cavities. Since both calibration methods have

their advantages and disadvantages, we applied and compared both calibration methods.

Projected dynamic contributions to sea level in meters from the Antarctic ice sheet in 2100 relative to 1995-2014. The

numbers for LARMIP-2, ISMIP6 and SMB are obtained from the IPCC AR6 report (Fox-Kemper et al., 2021). Note that

for the ISMIP6 estimate surface mass balance contributions are removed as our study only accounts for ice discharge. QUA745

and LBA are shown as the best-performing method in reproducing hindcasts (QUA) and the method that is most comparable

to the LARMIP-2 experiment, but calibrated on past ice discharge (LBA) (Fig. ??).. Scenario Forcing/Source 16.6% 50%

83.3%SSP5-8.5/RCP8.5 Selected models / QUA 0.10 0.12 0.13 Selected models / LBA 0.10 0.12 0.14 ISMIP6 excluding

SMB 0.10 0.13 0.17 LARMIP-2 0.10 0.20 0.39SSP2-4.5/RCP4.5 Selected models / QUA 0.08 0.09 0.10 Selected models /

LBA 0.06 0.10 0.12 ISMIP6 excluding SMB 0.07 0.12 0.16LARMIP-2 0.09 0.17 0.33SSP1-2.6/RCP2.6 Selected models /750

QUA 0.07 0.08 0.09 Selected models / LBA 0.07 0.08 0.10 ISMIP6 excluding SMB 0.06 0.11 0.15LARMIP-2 0.08 0.15 0.29

Each basal melt parameterisation method has been calibrated on ice discharge. For two basal melt computation methods

(LBA, LBR) additional calibration has been performed on basal melt itself by setting observation-based bounds on the

calibration parameter γ. The results show that basal-melt constrained (bounded) projections (LBA, LBR) lead to higher sea

level estimates than their unconstrained (unbounded) counterparts (LUA, LUR). The main reason for this is that for
:::::
When

:::
the755

::::
high

::::
basal

::::
melt

::::::::::
sensitivities

:::::::
derived

::::
from

:::
the

::::::::::
Amundsen

:::::::::
calibration

:::
are

::::::
applied

:::
to

:::
the

::::
other

:::::::
regions,

:::
the

::::::::
resulting

:::::
basal

::::
melt

:::
will

::::
thus

::
be

:::::::
smaller

:::
due

::
to

:::
the

::::::
colder

:::::::::::
temperatures.

::::::::
Arguably,

:::
the

::::::::
quadratic

::::::::::::::
parameterisation

:::::
based

::
on

:
the bounded calibration

γ values are greater than zero for all ESM-RF pairs, whereas for the unbounded calibrationonly 16-85% of the ESM-RF

pairs have values greater than zero (
::::::::
Amundsen

::::::
region

::
is

::::::::
therefore

:::::
more

:::::::::
physically

::::::
correct

::::
than

:::
the

:::::
linear

:::::::::::::::
parameterisation.

:::
The

::::::::
nonlinear

:::::::
relation

:::::::
between

::::
melt

:::
and

::::::::::
temperature

::::::
change

::::::
found

::
in

::::::::::
observations

::::::::::::::::::
(Jenkins et al., 2018)

:::
also

:::::::
suggests

::::
that

:::
the760

:::::::
quadratic

:::::::
relation

:::::
based

:::
on

:::
the

::::::::::
Amundsen

:::::
region

::::::
might

::
be

:::::::::
applicable

::
to

:::
the

::::::::::
cold-water

::::::
sectors.

::::
The

:::::::::
Amundsen

::::::::::
calibration

:
is
::::::::

therefore
::::::::::

considered
:::::
more

::::::
reliable

:::
for

::::::
future

::::::::::
projections

::
of

:::
the

::::
total

::::
AIS

:::::
than

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration.

:::::::::
However,
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::::::::
individual

:::::::
regions

:::::
might

::::
still

:::::::
respond

:::::::::
differently

:::
to

::::::
similar

::::::
forcing

::::
due

::
to
::::::::::

differences
::
in

:::
ice

::::
and

::::::
ocean

::::::::
dynamics

::::
and

:::
ice

:::::::::
geometries.

:

:::
The

::::
AIS

::::::::::
projections

:::::
using

:::
our

:::::::::::
methodology

::::
with

:::::::
median

::::
MIP

::::::::::
sensitivities

:::::
(LM,

:::::
QM; Fig. 5) . Parameter constraints on765

the heat exchange velocity γ in the bounded calibrations were obtained from the basal melt sensitivity parameter from the

Levermann et al. (2020) range of 7-16 m yr−1 K−1. Therefore it is interesting to compare the sea level contribution projections

of the linear bounded Antarctic (LBA) calibration method with the LARMIP-2 projections over the same period (
::
8)

:::::::
resulted

::
in

:::::
lower

:::::::::
projections

::::
than

::
in

:::
the

:::::::
original

:::::
MIPs as presented in IPCC AR6

:::::
(Table

::
8). The Antarctic-wide calibration is compared

since
::::::::
differences

::::::::
between

::
the

::::
AIS

:::::::::
projections

:::::
using

:::
our

:::::::::::
methodology

::::
with

:::::::
median

::::
MIP

::::::::::
sensitivities

:::
and

:::
the

:::::::
original

::::
MIPs

::::
can770

::
be

::::::::
attributed

::
to

:::::::::
differences

::
in
:::::::
thermal

::::::
forcing

::::
and

::::::::
modelling

::
of

:::
the

:::
ice

:::::
sheet

::::::::
response.

:::
We

::::
used

:
a
::::::::
different

::
set

::
of
::::::
ESMs,

::::::
which

:::
can

::::
lead

::
to

::::
large

::::::::::
differences

::
in

:::
the

::::::::
modelled

::::::::
response

:::
(see

:::::
Sect.

::::::
3.3.3).

:::::
These

:::::
large

:::::::::
intermodel

:::::::::
differences

:::
in

:::::
ESMs

:::::
point

::
at

:::::
model

::::::::
selection

::
as

:
a
:::::::::
promising

::::
next

:::
step

::
to

::::::
reduce

:::::::::::
uncertainties

::
in

:::::
future

:::::::::
projections

::
of
:::
the

:::::::::::
contribution

::
of

:::
ice

::::::::
dynamics

::
to

:::
sea

::::
level

:::::::
changes.

:::::
Since

:::
we

::::
only

::::
used

::::::::::
temperature

:::::::::
anomalies

:::::
from

:::::
ESMs

::
as

:::::::
forcing,

:::
the

::::::::
selection

::::::
criteria

::::::
should

:::
not

::
be

:::::
based

:::
on

::
the

:::::
mean

:::::::
climate

:::
but

:::
on

::::::
climate

::::::
trends.

:::::::::::
Furthermore,

:
LARMIP-2 also applies the same basal melt sensitivity in each region.775

In LARMIP-2 the median projected sea level contribution is 0.15 m for RCP2.6 and 0.20 m for RCP8.5, compared to 0.08 m

for SSP1-2.6 and 0.12 m for SSP5-8.5 in our study. The calibrated basal melt sensitivity (based on the associated calibrated γ

value, Fig. 5) in our study has a median value of 7 m yr−1 K−1 for all calibration regions, except for the Amundsen sector,

which has a median basal melt sensitivity of 12 m yr−1 K−1. Also, Antarctic-wide calibration resulted in a median γ of

7 m yr−1 K−1, this is the lower bound of the basal melt sensitivity range. Note that these values are different than the medians780

in Fig. 5 since here all ESM-RF pairs are included (as they all have positive values by definition) while Fig. 5 only includes a

percentage of the models (those with positive γ values). This means that the randomly drawn γ values from the full range in

the Levermann et al. study result on average in a more sensitive basal melt parameterisation than the calibrated γ values in our

study and suggests that their basal melt sensitivity range should be revised downward to be consistent with past ice discharge.

Here, it should also be noted that LARMIP-2 overestimates the mass loss observations of Shepherd et al. (2018). The same785

argument applies to the
:::
uses

::::::
global

:::::
mean

::::::::::
temperature

::
as

:::::
driver

::
of

:::
the

:::::::
method,

:::::::
whereas

:::
we

:::
use

:::::::::::
bias-adjusted

:::::
ocean

::::::::::
temperature

::::
from

:::
the

::::::
ESMs.

:::
The

:::::::::::::
methodological

:::::::::
differences

::::
with

:
ISMIP6 γ-values. Similar to LARMIP-2, calibration shows that γ values

in the lower bound of the Antarctic mean range applied in ISMIP6 are more consistent with four decades of past Antarctic ice

discharge (Fig. 5). Consistent with the higher melt sensitivity the projected sea level contributions are therefore higher in
::::
AR6

::
are

:::::
even

:::::
larger

::::
than

:::
for LARMIP-2 and

::::
since

:
ISMIP6 .790

A short assessment was made on the role of CMIP6 ESMs and LARMIP-2
:::
does

::::
not

:::
use

:::
the

::::::
linear

::::::::
response

::::::::
functions

:::::::::
framework

:::
but

:::
runs

::::::
offline ice sheet models in projection uncertainties by comparing the median projected sea level contributions

for the basal melt computation method with the best performance in the hindcasts (QUA) (Sect. 3.3.3). This assessment

shows that modelling uncertainties, especially those related to ocean temperature evolution from ESMs, are a greater source of

uncertainty in
::
to

:::::::
account

::
for

:::
the

:::
ice

::::
sheet

::::::::
response.

:::::::
Despite

::
all

:::::
these

:::::::::
differences

::
in

:::::::::::
methodology,

:::
we

:::::
arrive

::
at

:::::::::
projections

::::::
which795

::
are

:::
in

:::
line

:::::
with

:::::::
previous

:::::::::::
multi-model

::::::::::
assessments

::
of
::::

the
::::::::::
contribution

::
of

:
Antarctic mass loss projections than the emission

scenarios and the basal melt computation method. These large intermodel differences in ESMs as well as RFs explain why
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model selection is essential to make future projections more consistent with observations of past ice discharge
::
to

:::::
future

::::
sea

::::
level.

:::::::::
However,

::
it

:::::
could

::
be

::::::::
expected

::::
that

:::::::::
calibration

:::
of

:::
the

:::::
basal

::::
melt

::::::::::::::
parameterisation

::
in

:::::::
ISMIP6

::::
and

::::::::::
LARMIP-2

:::
on

:::
the

:::::::::
Amundsen

:::::
region

::::
will

:::::
result

:::
in

::::::
higher

:::::::::
projections

:::
of

:::
the

::::::::
Antarctic

:::
sea

:::::
level

::::::::::
contribution

::::
than

:::
the

::::::::::
projections

::::::::
presented

:::
in800

::::
IPCC

:::::
AR6.

5 Conclusions

This study presents calibrated projections of
::
the

:::::::::::
contribution

::
of Antarctica’s ice discharge

::
to

:::
sea

::::
level

:
in 2100 compared to

present-day (1995-2014).
::::
Since

:::::
there

:
is
::::
still

::::
high

:::::::::
uncertainty

::
in

:::
the

:::::::::::::::
temperature-basal

::::
melt

::::::
relation

:::::::::::::::::::
(Dinniman et al., 2016)

:
,
:::
we

::::::
applied

:
a
::::
new

::::::::
approach

::
to

::::::::
constrain

:::
this

:::::::
relation

::::
(Fig.

:::
1).

::::
This

:::
was

:::::
done

::
by

:::::::::
calibrating

:::
the

::::::::
modelled

:::::::
response

:::
on

:::
ice

::::::::
discharge805

::::::::::
observations

:::::
rather

:::::
than

:::::::::::::::
observation-based

::::::::
estimates

::
of

:::::
basal

:::::
melt.

:
Ocean thermal forcing is based on regional subsurface

ocean temperature from 14 CMIP6 ESMs and 3 SSP scenarios and bias-adjusted with GREP ocean reanalysis data. Basal melt

is computed with a linear and quadratic relation with ocean thermal forcing. The ice discharge is
:::
The

:::::::
changes

::
in

:::
ice

::::::::
discharge

::
are

:
calculated with 16 linear response functions (RF) based on ice sheet model experiments from LARMIP-2. New compared

to other studies is the calibration of the modelled response. We applied a different, iterative approach to calibrate the basal melt810

computation (Fig. 1) since there is still high uncertainty in the temperature-basal melt relation (Dinniman et al., 2016). Past

observations of ice discharge rather than basal melt are used for

::
An

::::::::::::
improvement

::::
over

:::::::
previous

:::::::::::
multi-model

:::::::::::
assessments,

:::::
which

:::::::
focused

::::::
mainly

:::
on

:::
the

::::::
future,

::
is

:::
that

:::
the

::::
new

::::::::::
projections

::
of

:::
the

:::
sea

::::
level

::::::::::
contribution

:::
of

::::::::
Antarctic

::::::::
dynamics

:::
are

::::
more

:::::::::
consistent

::::
with

::::::::
historical

:::
ice

::::::::
discharge

:::::::::::
observations.

::::::::::
Calibration

::
of

::::::::
individual

::::::::
ESM-RF

:::::
pairs

::::::::
increased

:::
the

::::::
spread

::
in

::::
basal

:::::
melt

::::::::::
sensitivities

:::
but

::::::::
decreased

::::::
spread

::
in

:::
the

:::::::
hindcast

:::::::::::
experiments815

::
of

::::::::::
Antarctica’s

:::
sea

::::
level

:::::::::::
contribution.

::::::::::::
Unfortunately,

:
calibration of the melt parameterisation. The calibrated γ value for each

individual ESM-RF pair is the one that is most consistent with four decades of observed ice discharge (Rignot et al., 2019)

. Apart from the bounded calibrations, the only (physical) limitation is that γ should be greater or equal to zero. Finally a

top 10% selection of ESM-RF combinations is made, based on their performance
::::
basal

::::
melt

:::::::
relation

::
on

:::
ice

:::::::::
discharge

:::
did

:::
not

:::::
reduce

:::
the

::::::
spread

::
in

:::::
future

::::::::::
projections

::
of

:::
the

::
ice

:::::::::
dynamics

::::::::::
contribution

::
to

:::
sea

::::
level

::::::::
compared

::
to
:::::
using

:::::::::::::::
observation-based

:::::
basal820

::::
melt

::::::::::
sensitivities.

::::
Basal

::::
melt

::::
was

::::::::
computed

::::
with

:
a
:::::
linear

::::
and

:::::::
quadratic

:::::::
relation

::::
with

:::::
ocean

::::::
thermal

:::::::
forcing.

:::
The

::::::::
quadratic

:::::
basal

::::
melt

:::::::::::::
parameterisation

:::::::
performs

:::::
better

::::
than

:::
the

:::::
linear

::::::::::::::
parameterisation in reproducing past ice discharge. ,

:::::::::
especially

:::::
when

::::::
applied

::
to

::
an

:::::::::::
independent

::::::
region.

::::
This

::
is

:
a
:::::::::::
consequence

::
of

:::
the

::::::::::
dependency

:::
on

:::
the

:::::::
absolute

:::::
ocean

:::::::::::
temperature

::
in

:::
the

::::::::
quadratic

::::::::::::::
parameterisation,

::::::
which

:::::
makes

:::
the

::::::::::::::
temperature-melt

:::::::
relation

:::::::
weaker

::
in

:::::
colder

:::::::
regions

:::
and

:::::::
stronger

:::
in

::::::
warmer

:::::::
regions.

:::::::::::
Observations

:::::::
confirm

::::
that

:::
the825

:::::::
quadratic

:::::::
relation

:::::::
between

:::::::
thermal

::::::
forcing

:::
and

:::::
basal

::::
melt

::
is

:::::
more

::::::
realistic

::::::::::::::::::
(Jenkins et al., 2018).

:

The projected Antarctic discharge shows a clear sensitivity to the emission scenario. Limiting emissions to scenario SSP1-2.6

compared to SSP5-8.5, would lead to about 30% reduction in the median projected sea level contribution of Antarctic discharge

in 2100. The delayed feedback of ice discharge to increasing ocean temperatures (as modelled by the linear response functions)

implies that the associated sea level contribution only becomes scenario-dependent after around 2050.830
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For the full model suite, the basal melt computation method has a greater impact on the projected
::
We

::::
find

::::
that

:::
the

:::::
depth

::
of

::::::
thermal

::::::
forcing

::::
has

:
a
:::::
large

::::::::
influence

::
on

:::
the

::::::::
resulting

:
sea level contribution than the emission scenario. Across all scenarios,

the median Antarctic ice loss is two times higher for the highest method than for the lowest method. Bounded calibration

leads to higher median projections than unbounded calibration since all γ values are greater than zero due to the lower

bound. Calibrating on the summed Antarctic response leads to higher projections than calibration per region. This can be835

explained by regions with a small or negative past contribution to sea level that have calibrated regional γ values equal

to zero (Ross, Weddell), and therefore have no contributionin future projections even if the subsurface ocean is warming.

Adapting Antarctic-wide γ values results in a positive value and positive future contribution for these regions. The basal melt

parameterisation (quadratic or linear) is least important for the projections.
::
in

:::::
future

::::::::::
projections.

::
In

:::
our

:::::
study

:::
we

:::::::
applied

:::
the

::::
same

:::::::
thermal

::::::
forcing

:::::
depth

::
as

::
in

::::::::::::::::::::
Levermann et al. (2020),

::::::
which

:
is
:::
the

:::::::
forcing

::::
near

:::
the

::
ice

:::::
shelf

::::
base.

::::::
Using

:
a
::::::
thermal

:::::::
forcing840

::::
depth

::::
near

:::
the

:::
ice

::::
shelf

::::
base

:::::
rather

::::
than

:::
the

::::::
deepest

:::::
ocean

:::::
layer

:::::
above

:::
the

:::::::::
continental

::::
shelf

:::::
leads

::
to

:
a
:::::
larger

:::::::
relative

::::::::::
contribution

::
of

:::
the

:::::::::
Amundsen

:::::
region

::
to
:::
the

::::
total

::::::::
Antarctic

:::
sea

:::::
level

::::::::::
contribution,

::::::
which

::
is

:::::
closer

::
to

:::::::::::
observations.

:

The top 10% selection gives 20-28 mm higher median projections than the full model suite. This difference can be partly

attributed to
:
A

:::::::::
drawback

::
of

:::
the

:::::::::
Amundsen

::::::::::
calibration

::
is

::::
that

:
it
::::::::::::

overestimates
:::
the

::::
total

:::::::::
Antarctic

::::::::
dynamics

::::::::::
contribution

:::
to

:::
sea

::::
level

::::
over

:::
the

::::::::
historical

::::::
period.

:::::::::
However,

:::
we

:::
find

::
a
:::::
large

:::::::::
uncertainty

::::
that

::
is

:::::::::
associated

::::
with

:::::::::
intermodel

::::::
spread

::
of

::::::
ESMs845

:::
and

::::
RFs.

:::::::::
Therefore,

:::
an

::::::::
ESM-RF

::::
pair

:::::::
selection

::
is
:::::::

applied
::
in

::::::
which the unbounded basal melt computation methods, which

include γ values equal to zero for the full model suite. After selection, the top 10% γ values are greater than zero for

the dominant contributing regions (Amundsen , EAIS), resulting in higher estimates. For the bounded methods, there is no

significant difference between the full model selection and top 10%
:::::
model

:::::
pairs

::::
with

:::
the

::::
best

::
fit

:::
for

:::
the

:::::::::
Amundsen

::::::
region

:::
are

:::::::
selected,

:::::
which

:::
are

::::::
models

::::
with

::
a

:::::
higher

:::
sea

::::
level

::::::::::
contribution

::
in

:::
the

:::::::::
Amundsen

::::::
region.

:::::::::::
Surprisingly,

:::
the

::::::::
Antarctic

::::::::::
contribution850

::
for

::::
this

:::::
model

::::::::
selection

::
is

:::::
lower,

:::::::
bringing

:::
the

::::::
results

:::::
closer

::
to
:::::::::::
observations.

This study shows that calibration of the basal melt parameterisation on past ice discharge provides a way to constrain

historical and future evolution of Antarctic basal melt to observations. This leads to reduced
::::
The

:::::
results

::::
also

:::::
show

::::
that

::
a

::::
large

::::
part

::
of

:::
the

:::::::::
calibrated

::::
basal

:::::
melt

::::::::::
sensitivities

:::
are

:::::
higher

:::::
than

::::
those

:::::::
derived

:::::
from

::::
melt

:::::::::::
observations,

:::::
which

::
is
:::::::

related
::
to

:
a
:::::
wider

:
spread in the projections

::::::::
calibrated

:::::
basal

::::
melt

::::::::::
sensitivities.

::::::::
However,

:::::
even

::::
with

:::::::::
calibration

::
on

::::
past

:::
ice

:::::::::
discharge,

:::
the855

::::::::::
acceleration of the sea level contribution of Antarctica’s ice discharge from basal melt over the 21st century. Moreover, this

:::::
during

:::
the

:::::::::::
observational

::::::
period

::
is

:::::::::::::
underestimated,

:::::::::
indicating

::::::
missing

:::::::
physics.

:

:::
The

:
calibration shows that the two main studies on which the IPCC AR6 Antarctic sea level contributions are based (ISMIP6

and LARMIP-2) use
::::::
median

:
basal melt sensitivities that are higher than the

::::::
median

::::::::::::
Antarctic-wide

:
calibrated values that we

found. If these studies would have calibrated their basal melt computations on past observations of ice discharge, this would860

have resulted in lower projections of Antarctica’s sea level contribution. ,
:::
but

:::::
lower

::::
than

:::
the

::::::
median

:::::::::
Amundsen

::::::::::
calibrations.

::::
The

:::::::::
Amundsen

:::::::::
calibration

:::::::
performs

:::::
better

::
in
:::::::::
simulating

:::
the

:::
sea

::::
level

:::::::::::
acceleration

:::
and

:::
the

:::::::::
dominance

::
of

:::
the

:::::::::
Amundsen

::::::
region

::::
over

::
the

::::::::
historical

::::::
period

::::::::
compared

::
to
:::::::::::::

Antarctic-wide
::::::::::
calibration,

:::
and

::::::::
performs

:::::::
arguably

:::::
better

::::
than

:::
the

:::::::::::::
Antarctic-wide

:::::::::
calibration

::::
when

::
it
::::::
comes

::
to

:::::
future

::::::::::
projections.

::
If

:::
the

:::::::::
Amundsen

::::::::::
calibration

:::::
would

:::
be

::::::::
combined

::::
with

:::
the

:::::::::::::
methodological

:::::::::
framework

:::
of
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::::::
ISMIP6

::::
and

:::::::::
LARMIP-2

::
as

::::::::
presented

::
in
:::::
IPCC

:::::
AR6,

:::
our

::::::
results

::::::
suggest

::::
that

:::
the

:::::::
estimate

::
of

:::
the

:::::::
Antarctic

:::::::::
dynamics

::::::::::
contribution865

::
to

:::
sea

::::
level

:::::
would

:::
be

:::::
higher

::::
than

::
in
:::
the

:::::::
original

:::::::
studies.

6 Code and data availability

– Linear response functions from LARMIP-2 (Levermann et al., 2020): https://github.com/ALevermann/Larmip2020/tree/

master/RFunctions

– Global ocean reanalyses: https://resources.marine.copernicus.eu/product-detail/GLOBAL_REANALYSIS_PHY_001_870

026/INFORMATION

– Antarctic ice discharge (Rignot et al., 2019): https://www.pnas.org/doi/suppl/10.1073/pnas.1812883116/suppl_file/pnas.

1812883116.sd01.xlsx

– Other code available from reasonable request to the author.

Appendix A: Hindcasts of regional sea level contributions875

Figures ?? and ?? show the regional sea level contributions of the top 10% best-performing models of the quadratic parameterisation

for the Antarctic-wide and regional calibration, respectively. Especially for the Weddell region, the quadratic parameterisation

can be better calibrated on the observations (50% positive γ values) than the linear parameterisation (16%). This is due to the

parabolic shape of the observed ice discharge over the observational period (Fig. ??). For the Weddell region, the cumulative

ice discharge is close to zero, resulting in the relatively small calibrated γ values. For the Ross region, the Rignot ice discharge880

even shows a declining sea level contribution over the reanalysis period, which could not even be reproduced by the best

fitting CMIP6 models (Fig. ??). Figure 3 consistently shows no decline in the median ocean temperature of the CMIP6 models

over the historical period, pointing at a deficiency in ocean forcing for the Ross region. In the Ross region negative γ values

would give a better fit for many ESM-RF pairs, but this would be physically incorrect since this would suggest that warmer

temperatures lead to less basal melt and vice versa. As a consequence, a high percentage of the ESM-RF pairs has a γ with a885

value of zero in the Ross region. For the Peninsula, about half of the models has a γ value of zero. Consistently, most CMIP6

models do not simulate a positive temperature trend in this region over the historical period (Fig. 3), also pointing at a deficiency

in the ocean forcing. For the Amundsen and EAIS regions, most models have positive calibrated γ values, consistent with the

positive sea level contribution in these regions and simulated ocean warming trend over the historical period.

Regional hindcasts of the top 10% ESM-RF pairs for the QUA method over the period 1979-2017 (Table ??). The historical890

experiment is extended with SSP2-4.5 scenario for the years 2015-2017. The figure shows the results for the top 10% ESM-RF

pairs (green), together with the Rignot ice discharge (grey). The shaded area indicates one standard deviation, representing

intermodel spread for the modelled response and observational error for the Rignot data.

Same as Fig. ??, but for the QUR method.
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Top 10% model pairs of the quadratic parameterisation with Antarctic-wide calibration (QUA). Earth system model Ice895

sheet modelINM-CM5-0 MALI LAN INM-CM4-8 MALI LAN EC-Earth3 ISSM JPL CAMS-CSM1-0 SICO UHO MIROC6

UA UNN INM-CM4-8 UA UNN MIROC6 ISSM UCI EC-Earth3 IMAU VUB INM-CM4-8 AISM VUB MRI-ESM2-0 CISM

NCA CAMS-CSM1-0 MALI LAN MIROC6 AISM VUB MIROC6 CISM NCA MRI-ESM2-0 MALI LAN INM-CM5-0

ISSM JPL ACCESS-CM2 AISM VUB CAMS-CSM1-0 CISM NCA MRI-ESM2-0 BISI LBL 1KM CanESM5 CISM NCA

MRI-ESM2-0 SICO UHO MRI-ESM2-0 ISSM JPL CAMS-CSM1-0 UA UNN900
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