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Abstract

The statistics of ice-ridging signatures were studied using high
(1.25 m) and medium (20 m) resolution SAR images over the Baltic
sea ice cover, acquired in 2016 and 2011, respectively. Ice surface
profiles measured by the 2011 airborne campaign were used as vali-
dation data. The images did not delineate well the individual ridges
as linear features. This was assigned to the random occurrence of
such ridge rubble arrangements that generate bright SAR returns. In-
stead, the ridging signatures were approached in terms of the local
density of bright returns selected by a variably bright pixel percent-
age (BPP). Density was quantified by counting bright pixel numbers
(BPN) in pixel blocks with variable side length L. A statistical model
for BPN distributions was determined by considering how the BPN
values change with the BPP and was found to apply over a wide range
of values for BPP and L. The statistical approach was also able to
simulate a higher BPP image when seeded by a low BPP image. It
was also found to apply to surface profile data analysed by counting
ridge sail numbers in profile segments of variable length L. This pro-
vided a statistical connection between the bright pixel density and the
ridge density. The connection was studied for the 2011 data in terms
of surface rubble coverage estimated both from the medium-resolution
image and from the surface profiles. Apart from a scaling factor, both
were found to follow the same distribution.

Keywords: sea ice, ice ridges, ridging parameters, Synthetic Aper-
ture Radar (SAR), X-band, TerraSAR-X, statistical analysis, simula-
tion.



1 Introduction

The ports of the northern Baltic Sea are kept accessible by icebreakers during
severe winters, and there exists a demand for accurate ice information, espe-
cially on ice ridging. Ridge fields increase collision and besetting risks and
reduce the predictability of shipping operations. In the Finnish-Swedish ice
charts, ridging is coded by the degree of ice ridging (DIR), which is a numeral
based on icebreaker observations and manually interpreted SAR images. Due
to the qualitative nature of DIR, a need for SAR methods to retrieve quan-
titative ridging parameters persists. The usual surface parameters are ridge
sail height and ridge density, which can be used to parameterise associated
statistical models. Ridge sail height and ridge density are also related to the
fraction of the surface area covered by ridge rubble, a parameter that con-
tributes to the magnitude of ¢° in SAR images. The surface statistics can
be linked to the subsurface ridge keel statistics with cross-sectional models,
providing an estimate of the total mass of ridged ice.
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It is still not well-understood how the pixel-to-pixel intensity variations
relate to the variation in ridging. Backscattering from rough surfaces like
brash and sastrugi may overwhelm the ridging signatures, and changes in
temperature, moisture and snow cover may alter their discernibility. Air tem-
peratures around Odegrees— C° reduce the penetration depth of microwaves
into the snow layer, decreasing the backscattering. For high frequencies, vol-
ume backscattering may exceed surface backscattering (Albert, 2012). For
low-salinity ice, the scattering is dominated by volume inhomogeneities in
the uppermost layers of the ice, which in part explains the high variation of
X-band ¢° values for the northern Baltic Sea ice (Dierking, 1999). As the
resolution of operative SAR data is usually not better than 100 m the ¢° val-
ues come from varying assemblages of ridge rubble and other surface types.
Correlations between SAR signature and ridged ice volume emerge, as shown
in the Beaufort Sea study of {MeHine—4998}Melling (1998), but quantitative
estimates are hard to obtain.

In the Baltic, physieal-baekseattering SAR research has approached ridging
from two main directions. Physics-based approaches seek to determine the
microwave backscattering properties of ridged ice, while image-based approaches



seek to retrieve ridging with image segmentation methodologies, trained and

validated by field data.
Physical backscattering was studied extensively in the 1980s and 1990s.

This included models taking the sail block angle distributions into account.
According to the 3D model of {Manninen;—+992-1996-Manninen (1992 and 1996),
the most important ice properties in the C-band backscattering from ridges
are microscale surface roughness, dielectric constant and sail block geome-
try. The main difference between ridged and level ice was that backscatter-
ing from ridge blocks has a broad range of incidence angles, whereas level
ice has a narrow range. On the other hand, using a 2D model describ-
ing the sail as a collection of circular facets with variable surface roughness,
{Carlstrémand-Ulander; 1995)-Carlstrom and Ulander (1995) concluded that
specular reflections are dominant. Both models predict rather similar results
due to the broad distributions of ridge block orientations and dimensions.
Ridge backscatter has also been observed to be slightly sensitive to the radar
azimuth angle by—(Johansson et al., 1992).

Baltic image-based research has mostly used nonlinear regression and
Bayesian methods to classify ridged ice types. {Stmiti-et-al5+992)-Simild et al. (1992)
found reasonable results using surface profile data and tail-to-mean ratio
computed from the SAR pixel value distribution as a predictor. Utilising 3D
scanner data, {Stmili-et-al-—2040)-Simild et al. (2010) demonstrated that in
dry and cold ice conditions with thin snow cover, a correspondence between
freeboard and C-band SAR can be found if the dominant ice thickness is
known.

In (Mékynen-and-Hallikainen-2004)-Mékynen and Hallikainen (2004) the
o°, distributions were computed for several ice deformation categories and
1n(:1dence angles from scatterometer campaign data. Only small differences
were noticed between the X- and C-band or different polarisations with the
exception of HV-polarization. This agrees with the results of {(Eriksson-et-al-—26146}
Eriksson et al. (2010). The same scatterometer data was utlhsed in the
hierarchical Bayesian model of {Simili-et— ‘ e
Simila et al. (2001). Gegiuc et al. (2018) assessed automated determination
of DIR numerals in three stages: segmentation of a SAR image, computing
a feature vector to each segment, and classifying the segments. Training
data consisted of Gulf of Bothnia DIR numerals from ice charts. In addi-
tion, a clear correlation between DIR numerals and deformed ice volume was
demonstrated using surface profile data.

The present paper provides a model that connects SAR image statistics
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with ridging statistics. It can be used both for theoretical investigations and

for ice information production. In Section 2. after describing data the method
of counting the bright pixel numbers (BPN), respectively ridge sail numbers

(RSN),_is introduced and an estimate of ridge sail rubble coverage from
observed ridge density is provided. A theoretical argument for generating
BPN and RSN statistics and the resulting distribution model and SAR
texture simulation method are then presented. Section 3 validates the model
theoretically and by direct comparison between ridging and SAR data. In
Section 4 we discuss_the developed approach and its possible applicability
for other SAR frequencies than for X-band.

2 Data and methods

2.1 Data

Two modes of TerraSAR-X (TSX) satellite data were used. The medium
-resolution HH-polarized ScanSAR image was acquired on 28 February 2011
over the Gulf of Bothnia. The high -resolution HH-polarized Stripmap image
was acquired on 5 March 2016 near the Hailuoto island in the Bay of Bothnia.
Surface profile data was collected in the Bay of Bothnia during 2 — 7 March
2011 along tracks shown in Fig. 1.

The ScanSAR swath width is 100 km and the azimuthal length ofis
150 km, while in the studies, a 106x94 km subimage was used. The image
was land masked and rectified to Mercator projection with reference latitude
61°40° N and pixel size 20 m. As the incidence angle range from 29.5° to
38.7° is narrow, no incidence angle corrections were done +—(Mékynen et al.,
2002), only the calibration of the backscattering coefficients o°.

The Stripmap image is a Geocoded Ellipsoid Corrected (GEC) product
without any terrain correction and a Spatially Enhanced Product (SE) de-
signed for the highest possible square ground resolution. The image was
rectified into 1.25 m resolution in the Mercator projection. The covered
area is about 33.6 x 42km? (width x length), from which a 19 x 19km?* km
subimage was used in the analyses.

The ice profile dataset comprising 2800 km of the profile was collected
during the week after the ScanSAR acquisition. The helicopter-borne sys-

tem was similar to that described by {Haas-et-al;2009}Haas et al. (2009

Only the LIDAR surface profile data is used here, while the electro-



magnetic (EM) ice thickness has been addressed in {Renkainen—et-al—2048}
Ronkainen et al. (2018). The analysis of LIDAR data followed standard pro-

cedures. After a reference-level determination, the local maxima were identi-
fied by the Rayleigh criterion that demands that for two successive maxima,
the minimum elevation between them must be less than half from either
maximum. Otherwise, the shallower one is not counted. The elevation dis-
tribution of maxima has a negative exponential tail for values higher than 0.4
m, which was selected as the cutoff elevation. Above the cutoff, the maxima
are assumed to be ridge sails. The average sail height and ridge densities are
0.65 m and 11.7 1/km, respectively.

The winter prior to the ScanSAR acquisition and profiling campaign was
colder than average. During the campaign, SW winds up to 18 m/s triggered
opening and deformation periods in the Bay of Bothnia, and the drift speed
of the research vessel Aranda serving as the campaign base was typically
0.1C00.4 knots. The ice thickness varied from 30 to 60 cm in pack ice.
The air temperature increased from -10 C° on 24 February to -1.5 C° on
27 February. When the ScanSAR image was acquired, T, was -2.3 C° at
the Aranda base. Snow lines measured during 2C64 March had a mean
thickness of 8 cm and a standard deviation of 11 cm. About 50 cm thick snow
accumulations were often found by ridges, sometimes covering shallower sails.
On 3 March, the snow already had some moisture, and the density varied
from 0.2 to -30.3 kg/m3 on level ice and 0.3-0.4 kg/m3 near ice ridges. It can
be assumed that during the ScanSAR acquisition prior to the campaign, the
snow was still dry and did not significantly affect the backscattering.

The winter of 2016 was mild, and only the Bay of Bothnia had an ice
concentration of 100%. Recurrent periods of mostly SW winds induced cycles
of deformation, opening and freeze-up. Only in the beginning of March did
the basin attain a more persistent ice cover consisting of ridged and rafted
ice types. On 5 March, the fast ice thickness in the NE quadrant of the
basin was 50C065 cm, the level of ice thickness in the ridged ice pack was 30-
50 cm and the air temperature was from -1 to 4degrees C°. The temperature
stayed below zere() C°, and no snowfall occurred during the 10 days before
the Stripmap SAR image acquisition date when the snow thickness on the
mainland was about 30 cm.



2.2 Approach

From the backscattering viewpoint, the principal quantity to describe ridging
is the relative area of ice surface covered by ridge rubble (rubble coverage).
Curvilinear ridge sails are often visible, having a roughly triangular cross-
section and a typical scale of 1010 m in the across sail direction and tens to
hundreds of metres in along sail direction. However, less well-defined block
accumulations are also understood here as ridging as they contribute to the
rubble coverage. Their signatures in surface profiles are also similar to those
of curvilinear ridges.

It appears clear that the returns from the ridge rubble dominate the
brighter end of the backscattering intensity histogram. The brightness statis-
tics involve a certain uncertainty, however. The histogram depends on the
processing of the image aimed at a good visual appearance. A change in
ambient conditions may result in quite different intensity histograms for an
otherwise unchanged ice cover. Still, an ice charting expert can typically
recognise in both cases the same ridging signatures as these appear persistent
and symptomatically nonhomogeneous. The persistence shows up clearly in
binary images comprising a certain percentage of bright pixels from the in-
tensity histogram tail. If the percentage is reduced, the ridging signatures
become more sparse but tend to retain structural congruence with the non-
reduced signatures.

In a way, the objective of the present approach is to provide a statistical
foundation for the assessment that the ridging signatures in two SAR images
'look the same’. Towards this end, a certain bright pixel percentage (BPP)
is selected with an intensity threshold. For a higher BPP, the selected bright
pixels are expected to be predominantly returns from ridge rubble. The
spatial variation related to the ridging signatures is described in terms of the
bright pixel number (BPN) in pixel blocks with side length L, or equivalently
in terms of the bright pixel coverage (relative area, density) in the blocks.
The side length L and the BPP are variable parameters of the BPN approach.

Proper validation data for the BPN approach would consist of ridge rub-
ble topography in square areas with a comparable side length, for example,
scanning LIDAR data over snow-free ice. The extent of such data is limited,
however. The validation data, therefore, consists of linear surface profiles
from which ridge sails are identified. The profiles are divided into segments
of length L, and the ridge sail numbers (RSN) in the segments are counted.
Only those sails are counted that exceed a certain height threshold. The ridge



rubble coverage will inherit the RSN statistics that can then be parametri-
cally compared with BPN statistics for concurrent datasets. The segment
length L and the sail height threshold are variables of the RSN approach.

As the BPN and RSN approaches are formally analogical, a more theo-
retical validation exercise seeks to show that they follow the same statistical
model. The model is derived by considering how BPN and RSN values change
with threshold changes (threshold process). High-resolution ( 1.25 m) images
resolving individual ridge sails are used.

2.3 Estimating ridge rubble coverage

Ridge rubble coverage can be estimated along a linear profile from ridge sail
height and ridge density. To provide realistic estimates, the effect of the
cutoff sail height used in the profile analysis must be assessed, as well as the
application of results reported on the sail width/height ratio, which is noted
as R = w/h. Considering first the ridge width, the effect of oblique angles
of sail crossings must be taken into account. For randomly oriented ridges,
the average width is 7/2 times the perpendicular width (Mock, 1972). The
reported R ratios for perpendicular width are usually around 4. However, the
measurements typically refer to the highest point of some sail section, while
aerial imagery shows that the sail width does not vary as much as the sail
height but is rather constant. The results of {Fzensu—2003)Lensu (2003)
indicate that the highest point of a sail section is typically 2.5 times the
average sail height, and thus the average value of R random sail crossings is
about 10. To add, the Rayleigh criterion counts as singular ridges certain
wider multiple peaked formations. Deformed ice fields also include scattered
rubble and other diffuse roughness not accounted for in the estimates. To
include the contribution of these, the value R = 13 is adopted.

The cutoff sail height affects both ridge density and ridge height. To esti-
mate the cutoff effect, the extrapolation model by {enst;-2663)-Lensu (2003)
is applied. It is assumed that the average sail height is representative of the
whole data set and only the variation of ridge density is at issue. For the
present LIDAR profile data with a cutoff height of 0.4 m and an average sail
height 0.65 m, the model provides estimates that the true average height is
he = 0.48 m and that the true densities are 2.0 times the observed density.

Taken together, the ridge rubble coverage RRC' along a profile is:

RRC T
— = 5><R><ha><2><)\ (1)



_ g % 13 % 0.00048 x 2 x A, (2)

where all quantities are in kilometres (h,=average height, A=observed ridge
density). A unit increase in the observed ridge density for 0.4 m cutoff
data increases the along profile rubble coverage by 1.96%. However, as the
interpolation factors are rough estimates, the value 2% is used instead.

If the profiling flights have crossed an area multiple times in different
directions, which for our data was the case for coastal ridge fields near the
flight base, the estimate is representative of areal rubble coverage. For a
singular crossing, the relationship involves randomness and is generally the
more reliable the larger the considered area is, provided that homogeneity
of ridging conditions persists. On the other hand, independent estimates of
rubble coverage from SAR or other data can be converted to ridge density
interpreted either as an average of multiple crossings or as the probability to
find the said density in a singular random crossing.

2.4 Threshold process

For an idealised SAR image with accurate real-valued intensities, the pixel
values can be arranged into strictly increasing order. Starting from an empty
image matrix and from the brightest pixel, the pixels of the ordered series
can then be added to the matrix one by one. It can then be studied how the
probability for the BPN to increase by one depends on the pixel block state <
L,BPN,...> as defined by L, BPN, and possibly by other descriptors. The
probabilities can then be used to formulate recurrence relations generating
finite BPN distributions.

For integer-valued SAR images, the process starts from the BPN values
for maximum intensity and proceeds in unit integer steps by adding pixels
of subsequent lower intensity. This is designated as the threshold process.
The increase probabilities are replaced by increase rates, that is, the relative
number of events of unit BPN increase. For RSN, an analogical process
decreases the sail height threshold by small values, starting from a threshold
equalling the highest ridge. The increase rates of the threshold process are
then interpreted as increase probabilities of an idealised process. This is
legitimate if the number of increase events larger than unity is relatively
small for each step.

The threshold process is continued to a certain pixel intensity or ridge
sail height cutoff, called a target threshold. The derivation of the statistical
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model is based on the following observation. The intensity or ridge sail
height values higher than or equal to the target threshold can be randomly
permuted. This changes the increase rates, generating another threshold
process. However, the BPN or RSN distribution observed on the target
threshold level is the same for both processes. Thus, the new increase rates
can be used to generate the observed distribution. The random permutation
has the merit of removing the spatial correlations of intensities or sail heights
so that the threshold process is reduced to a random deposition process.

2.5 Scale system of distributions

The threshold process and the distribution model are presented for RSN
statistics. The case for BPN is conceptually analogical but involves compli-
cations not present in RSN statistics: discreteness of integer data, resolution
set by pixel size, and L? as the maximum BPN value.

In RSN analysis, surface profile data is divided into segments, and the
numbers n of sails in the segments are counted. A discrete distribution k(n;)
for sail number n; becomes defined for each scale L;. If L; < L; is a shorter
segment, a conditional distribution k(n;|n;) becomes defined. This can be
interpreted as the conditional probability to find n; sails in an Lj;-segment
nested inside an L;-segment containing n; sails. The k(n;|n;) can be also
called downscaling probabilities as they can be used to derive distribution
k(n;) from k(n;). The approach can be extended to a cascade of scales,
constituting a scale system of distributions.

In an ideal threshold process, the sail heights are arranged into strictly
increasing order and added one by one to the segmented profile. Two nested
segments with lengths L; > L; are considered so that the longer segment L;
is divided into segments with length L; and L; — L;. If the sail is added in the
process to L;-segment, it has a certain probability of getting added to each
subsegment. This probability must satisfy the additivity condition P(L;) =
P(L;) + P(L; — L;j). The simplest assumption satisfying the condition is
P(L;) ~ n; + aL;, which leads to the hypergeometric distribution (Lensu,
2003):
alj+n; —1njal; —al; — 1+n; —njn; —n;

/{;(ny|n1) - al; +n; —1n;

5 nj:O,l,...,ni.

(3)
If L;/L; > 1, then the finite and discrete distribution k(n;|n;) is approxi-
mated by k(n;) and k(n;) is approximated by the negative binomial distri-

10



bution

al; n; alL;
k(nj) = aL;+n; — ln;p™ (1 —p)™, where p= m’ )

and furthermore, if < n; > is large, the continuous approximation of Eq. 4
is the gamma distribution:
1

L.
) — _—  poya—l —pn; — alL: _ al;
f(ny) F(a)ﬁ n“ e ", a=al;, f <mg >

(5)

It is convenient to assume that L; is a regional scale where ridging statis-
tics are described by the negative binomial k(n;), as approximated by the
gamma distribution. The hypergeometric k(n;|n;) is then be used to describe
local variation.

The statistical model is validated in two stages. First, the additivity
condition is validated by conducting a threshold process for selected scales
and target thresholds and observing whether the increase rates have a linear
dependence on the RSN or BPN. In the next stage, the distribution models
are fitted to the data. In the sections to follow, this is done by the observed
mean and variance, and the goodness of fit is checked. The parameter a is
obtained from the variance
Lin;(aL; + n;)(L; — Lj)

(ni)?
al;

(6)

var(n;|n;) =

and

var(n;) = (n;) +

J (7)

for the hypergeometric and negative binomial models, respectively. The vari-
ance for the negative binomial distribution is larger than the mean, which
ensures that a is positive in Eq. 7. The parameter a quantifies the relative
strength of the component process of the random spatial deposition of sails,
that is, the Poisson process. If the validation results agree for test cases
selected from a certain scale range, it can be concluded that the scale system
is applicable over the scale range.

2.6 Simulation of SAR texture by the threshold pro-
cess

To analyse the BPN threshold process in full detail requires that bright pixels
are added one by one in process steps. For integer-valued images, this cannot
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be attained. On the other hand, it is possible in a validation approach where
the generative hypotheses are tested by simulating the generative process.
The simulation commences from a certain stage of the observed threshold
process. New bright pixels are added one by one following the assumed
probabilities and possibly other conditions. The simulated result is then
compared with the observed one.

A binary image with value 1 (white) for an observed low percentage of
brightest pixels is used to seed the process. The simulation changes the
value of black (zero) pixels into white, one at a time. This is done by a scale
cascade, which is assumed here to follow the linear generative hypothesis.
The first step divides the image into four rectangles along randomly chosen
vertical and horizontal lines. To each rectangle is assigned weight aNO+ N1,
where NO is the number of pixels, N1 is the number of white pixels, and
a < 1 is a parameter that controls the relative strength of a random spatial
placement (Poisson process). One of the rectangles is selected for the next
step with a probability defined as the ratio of rectangle weight to the sum of
weights. The selected rectangle is divided further into four, and the cascade
is continued until the rectangle contains only one black pixel that is changed
to a white pixel. The process repeats until a preset number of white pixels
is reached.

The simulation approach can also be applied to other generative hypothe-
ses. Imposed maps of spatially distributed weights can be used to include
spatial aspects of the generative process, like correlations, homogeneity, gra-
dients and support, i.e. the subregion outside of which the process is not
active.

3 Results

3.1 Observed threshold process rates and distributions
for ridge sail number

From the profile data set described in Section 2.1, profiles exceeding 5 km

in length were selected and truncated to be divisible into 1.6 km, in total

2256 km. For RSN analysis the segment length L the cascade [50,100,200,400,800]

(meters) was used. The threshold process decreased in 0.01 m steps from

2.5 meters (10 ridges). The target threshold was set to 0.5 m (18638 ridges).
The increase rates per step were determined as the mean value of RSN
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increases, including zero increase, and the presented results are for the pooled
data comprising all steps to the 0.5 m target threshold. The increase rates
were calculated both for the original data and for randomly permuted sail
heights. The results shown in Fig. 2 disregarded the tail part with an exces-
sive variation. In the right panel of Fig. 2, the highest RSN values correspond
to ridge density 160/km, a value characteristic of rubble fields with no level
ice visible. The increase rates were linear with a slight superlinear bend.

The rates for non-randomised data deviate after beginning from linear to
sublinear increase. For other scales, the behaviour was similar, and for long
L, the rate more or less settled to a constant value in its tail part. A likely
reason is that sail height correlations that arise naturally as block thickness
(a parameter controlling ridge sail height) vary spatially during the course of
the ice season. Correlations were indeed found between RSN and the average
sail height.

The hypergeometric and negative binomial distributions were fitted to the
data with observed mean and variance. The negative binomial k(n;) agrees
well with the empirical distributions derived from the full dataset in Fig. 3.
Only the number of empty segments is overestimated for 200 m and 400 m
segment lengths. Fig. 4 shows the hypergeometric distributions k(n;|n;) for
the conditioning scale L; = 1600 m and for the range [50,100,200,400] of the
subsegment scale L;. The results for two values of conditioning RSN, n; = 16
and n; = 72, are shown. These are equivalent to ridge densities 10/km and
45/km for the segments L,. The agreement is good, considering that the
subset size is limited by fixed value n;. Similar results are found for other
combinations of L;, L;, and n,.

The hypergeometric model was derived from the assumption that the
rate of the RSN increase for the segment length is proportional to n + alL.
The parameter a is obtained from the mean and variance and is generally
found to decrease with L following the power law. For the hypergeometric
case shown, the exponent has about the same value of 0.5 for all values of
the conditioning n; from 16 to 72. The parameter a was interpreted as the
relative Poisson intensity, which also provides the rate of sail appearances to
empty segments in the threshold process. If there is no rubble present in the
segment, it can be said to consist of level ice and cannot experience a change
of RSN from 0 to 1, either. The Poisson parameter of level ice segments is
zero, and the observed Poisson parameter a is obtained by multiplying the
true Poisson parameter of rubble segments by their relative coverage. Thus
the power law suggests that the area covered by ridge rubble has fractal

13



geometry.

3.2 Characteristics of high-resolution SAR

The pixel size of the March 2016 Stripmap image is 1.25 m, which re-
solves backscattering signatures from individual ridges. The size of the
image (Fig. 5) is 19x19 km, but for analysis and visualisation, different
subimages were also used, principally 7000x7000 (8.7x8.7 km) and 1024x1024
(1.3x1.3 km)subimages with representative ridging signatures. To proceed
following the approach outlined in Section 2.2, a certain bright pixel per-
centage (BPP) is selected and a binary image with unit values for the bright
pixels is generated. The variation of bright pixel density is described in terms
of bright pixel numbers (BPN) in pixel blocks with variable side length L.

Two derivative image types are also presented. Following the BPN ap-
proach, the first derivative replaces (as a sliding operation) pixel values with
BPN wvalues calculated for pixel blocks centred at the target pixel. This is
accomplished by a convolution with a Lx[L all-ones kernel. The result is
termed ’contextual image’, as the visibility of ridging signatures and their
effective resolution depend on BPP and block side length L, which can be
chosen to suit the application context. The other derivative is ’category im-
age’, which divides the brightest 30% of pixels into three 10% classes, either
for the original or the contextual image.

In the category-image version of the Stripmap image, Fig. 5, ridging fea-
tures appear to be visually delineated by the brightest 20%), while the interval
70C680% begins to add more scattered pixels. The hope of a similar quasi-
photorealistic appearance as is found in comparable TerraSAR-X terrestrial
images by Dumitru and Datcu (2013) does not quite materialise. There are
obvious linear ridges, but these consist of chains of detached bright compo-
nents that do not connect to continuous features. Larger features, reminis-
cent of ridge groups or small rubble fields, are more readily observed. How-
ever, they are also aggregates of detached bright components, and a similar
texture is also found for ship ice channels that are flat and rather uniform
beds of bright scatterers. Increasing the bright pixel percentage from 30%
slightly improves the connectedness of ridge signatures but at the same time
obscures their delineation by adding scattered bright pixels to apparent level
ice areas.

These observations agree with the results by {Manninens1992)-and{Carlstrémand - Hander; 19
Manninen (1992) and Carlstrom and Ulander (1995) that indicate that bright
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returns from ridge rubble depend on random factors like a favourable orien-
tation of blocks, while the returns from the remaining sail may fail to be
clearly distinct from the surrounding level ice. The apparent randomness
also corroborates the assumption that the density of the bright pixels in the
image is proportional to the coverage of ridge rubble.

In the contextual image and its category image rendering, Fig. 6, the
sliding block side length is L = 101 (126 m), and the BPP is chosen to
be 20% or comprising the red and yellow pixels of Fig. 5. It is seen that
the ridging signatures are enhanced and their connectedness improved in the
contextual images.

3.3 Observed threshold process rates and distributions
for high-resolution BPN

For the analyses of the 7000 x 7000 upper left corner subimage of the Stripmap
image was used in order to avoid the refrozen lead visible in Fig. 5. The image
was divided into non-overlapping pixel blocks with side length L, measured in
pixels. The intensity threshold was decreased by unit integer steps, starting
from 255, and the rate of BPN increase as a function of BPN was obtained
for each step. In the presented results, the rate data comprises all steps down
to the target threshold. In the subimage, 1.2% of the highest intensities are
saturated to 255. This percentage is equal to that for the intensity band
[218,254] and would correspond to the extending of the exponential tail of
the intensity histogram beyond 255 to 350. This somewhat affects the results
for the initial steps of the process.

Analogically to the RSN analysis, the pixel intensities above and including
the target threshold were randomly permuted. In Fig. 7, the block side length
is set to L = 36 and the target intensity threshold values [182,149,118,86]
are chosen, corresponding to BPP values [5,10,20,40]. As for the RSN, the
magnitude of the rates is not relevant, and they have been scaled so that the
sum rate equals L? or 1024. The different degrees of saturation then separate
the point clouds in the figure. Linearity is observed unless the saturation of
the pixel block is felt after 3/4 of the block capacity is filled.

In the other test case in Fig. 8, the BPP is set to 20% (target intensity
threshold 118), and the block side length increases from 4 to 128. In addition
to the same scaling of rates as in the first test case, the BPN range [0, L?]
has been scaled to [0,1]. The results are similar to the first test case. For
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comparison, the same result is shown for the original data where the pixel
intensities are not randomised. For higher L, the relationship is then approx-
imately linear for small relative BPN values, but otherwise, it is quadratic.
Intensity correlations are the likely reason, but no further conclusions are
attempted.

The agreement of the proposed distribution system with the data is again
good. Distributions were calculated from block tiling of the 9216 x 9216
(11.5 x 11.5 km) upper left corner subimage. Fig. 9 shows negative bino-
mial distributions k(n) fitted by observed mean and variance for BPP 10%,
and three scales are shown. The fourth subplot shows the model parameter
a as obtained from the mean and variance for the binary cascade of scales
=-846—+256-L = 8,16, ...,256 and for three BPP values. The power
law exponents vary from -0.45 to -0.37 and are thus close to but somewhat
smaller than the values obtained in the RSN analysis. Also, the negative
hypergeometric model k(n;|n;) conditioned by scale L; and BPN value n; ap-
plies well. Fig. 9 shows the results for selected combinations of Li, Lj and n;.
The conditioning scale cannot much exceed the value L; = 16 as the number
of instances n; for conditioning pairs (L;, n;) decreases as L.

3.4 Simulated high-resolution SAR texture

The simulation algorithm was applied to the 1024x1024 subimage indicated
in Fig. 5. The white pixels of the initial binary image correspond to BPP 3%.
The simulation added 10% so that the resulting BPP is 13%. If aNO > N1,
the Poisson process dominates the simulation step, but overall, the process
gravitates towards image areas with a higher density of white pixels. How-
ever, if the fraction of white pixels is initially low, the Poisson component
process tends to add nonzero pixels into larger empty areas, first creating
dispersion and then spurious clusters. To reduce this, an additional condi-
tion requires that in a process step, a white pixel cannot be added within
a rectangle if its fraction of nonzero pixels is below a threshold C'o and the
rectangle area measured as pixel number is within certain limits [N1, N2].
This effectively means restricting the support of the process.

The parameters were a = 1/20, Co = 1/100 and [N1, N2] = [100, 20000],
and the results are shown in Fig. 10. Although not matching exactly on
the pixel level, both 13% images exhibit the same pixel density variations.
For contextual and category images for L = 21, the results for the real and
simulated 13% images match almost exactly, that is, they contain the same
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information at scale L = 21. The results provide additional corroboration
for the soundness of the generative hypothesis. They also provide the insight
that certain parts of 'mon-deformed’ ice should be left outside the ridging
statistics, a feature also previously suggested by the emergence of power law
exponents for the parameter a in the distribution fits. The parameters of
this demonstration were determined by simple experimentation, but more
systematic approaches can be conceived. Especially, intensity values could
be incorporated, which would introduce spatial intensity correlations, and
the fractality suggested by the distribution analysis could be encoded into
the simulation steps.

3.5 SAR and LIDAR comparison for the 2011 image

The analysis of ridged areas in the 20 m resolution TSX ScanSAR image
proceeds in a similar manner as the analysis of high-resolution SAR data.
The basic SAR tools are the bright pixel percentage (BPP) and the counting
of bright pixel numbers (BPN) in pixel blocks. The target is distributions
f(z), where z is the estimated ridge rubble coverage (RRC) in pixel blocks
(SAR RRC) or their ground truth counterparts as determined from LIDAR
surface profiling flights (LIDAR RRC).

The essential assumptions are that LIDAR RRC can be estimated from
profile data, Section 2.3, that the bright pixel number can be used as a
proxy for SAR RRC and also for 20 m resolution data, and that both RRC
concepts inherit their statistics from the model for RSN and high-resolution
SAR BPN, sections 3.1 and 3.3. It is noted that the 20 m resolution can
still detect much of the ridging signature in Fig. 11 and that the simulation
method described in Section 2.6 works.

The BPP is set to 20%. The exact BPP value is not essential, but the
chosen one is expected to comprise most of the ridging signatures and not too
much level ice. Similarly, as for the high-resolution image, the bright pixels
are mostly not connected to continuous ridging features. A convolution op-
eration is then conducted, generating a contextual image Fig. 11, where each
pixel value of the original image is replaced by the number of bright pixels
(BPN) in a 15 by 15 pixel block centred at the pixel. As the target is rubble
coverage, the BPN values are changed to percentage points. The convolution
operation acts similarly as in the high-resolution SAR and effectively reveals
the ridged areas and connects many of the ridging structures that are only
vaguely discernible in the original SAR imagery.
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For comparisons between the SAR, RRC and LIDAR RRC, the resolution
of the contextual image is weakened to 1 km?. This coarser scale image Fig. 12
is called an analysis image, and its pixel value is the mean of all pixels inside
the corresponding contextual image pixel block. These pixels represent the
SAR RRC and are compared with LIDAR RRC values determined in grid
cells matching the pixels with respect to size and location. The LIDAR data
were assigned to the grid cells in Fig. 12 using the coordinates included in
the data. If the LIDAR grid cell contains data, its value is the ridge density
detected in it, and the RRC in percentage points is estimated by multiplying
the density by 2%, Eq. 5. Ridge densities larger or equal than 50 then have
100% RRC. This was the case for about 2% of all the cells with nonzero ridge
density and occurred only in the rubble field zone close to the eastern coast.

As mentioned in Section 2.1, ice drift and deformation occurred during
the profiling campaign week after the acquisition of the SAR image. As the
ice drift could have been well over 10 km during the time gap, and the flights
are from several days, it is not possible to establish a pairing between the
two RRC estimates in SAR analysis pixels and LIDAR grid cells, and the
comparison was made regionally. All LIDAR data in the area covered by
the SAR image was used for the RRC values in the LIDAR grid, Fig. 12.
The SAR RRC analysis image Fig. 12 includes all pixels outside the mask
(N=7549 pixels). LIDAR data (N=1017 cells) comprise about 13% of the
SAR pixels.

The two datasets are compared in terms of a quantile-quantile (Q-Q)
plot for the respective distributions. This can be viewed as a nonparametric
approach to comparing their underlying distributions. There is also no need
to compare the grid values pairwise or have equally sized datasets. The
quantile pairs are largely located along a line with a ratio of 1.34 between
the quantiles (Fig. 13, the left panel). This indicates that the shapes of the
distributions are similar and that they may belong to the same distribution
family. As LIDAR RRC is expected to follow a gamma distribution (Eq. 5),
this is then also expected for SAR RCC. For two gamma distributions, the
linearity of the Q-Q plot entails that the shape parameters are equal, which
also holds for the model Eq. 5 if the scale L; and the process parameter a
are the same for both. The slope of the Q-Q plot then equals the ratio of the
scale parameters, suggesting that a value of 1.34 can be used as a scaling
coefficient.

It was examined how close to each other the distributions of the SAR and
LIDAR RRC are with and without the scaling coefficient of 1.34, Fig. 13.
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The original SAR and LIDAR RRC densities show the same basic shape
but do not match well. When SAR RRC is scaled by 1.34, the match is
improved, and the obtained mean values are very close to each other: 26.2%
for the scaled SAR RRC and 25.9% for the LIDAR RRC. Converting the
mean values to the number of ridges yields about 13 ridges per km? for both
data sets. Gamma distributions were also fitted to both data sets. The
maximum likelihood estimates for the shape parameter of the scaled SAR
RRC gamma density is 1.7 and the scale parameter 15.5. The respective
values for LIDAR data are 1.4 and 18.2. Thus, although the parameters of
the fits are close to each other, they are not equal.

The problems with the fit and agreement with gamma distribution mostly
concern the tail part of the distribution. The linearity of the Q-Q plot was no
longer valid for SAR, RRC over 50 % and for LIDAR RRC over 75 % RRC.
The SAR RRC values over 50% are relatively rare in the data, and highly
ridged areas form proportionally a much larger fraction in the LIDAR data.
Especially the rubble field hump seen by the end of the LIDAR distribution
is not present in the SAR distribution. As the LIDAR flights frequently flew
over the large coastal rubble field zone (see-Fig. 11), a larger proportion of
the LIDAR data was collected from this area than was the case with the SAR
RRC data. The scaling coefficient was found to increase with the area of SAR
included in the comparison and varied from 1.3 to 1.6. With a spatially more
uniform coverage of the LIDAR flights over the SAR image, the agreement
would probably have been better for the tail part.

As expected, decreasing the BPP value increases the scaling coefficient
when the SAR image extent and the LIDAR data stay fixed. Three cases
were examined: For BPP 10 %, the scaling is 2.22, for 15 %, it is 1.61 and in
the above analysis with BPP 20 %), it is 1.34. In all three cases, the QQ plot
is linear for its main part and the mean of the scaled SAR RRC distribution
are always close to the LIDAR RRC mean.

3.6 Contextual images as ridging information

Although in SAR images from a ridged ice cover the bright returns are pre-
dominantly from ridge rubble, the step to quantitative methods has proved
hard. The bright pixels do not typically connect well to ridging features -
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MWM%MWWMWWM
is_improved in the contextual images that enhance the ridging signature
by a BPN sliding operation (Fig. 6 or Fig. 11)alse-doesnot—chansemuch:
Fhis-appears-morestrikingly—. If BPP is changed the BPN values change
accordingly but for two_pixel blocks the change more often retains the size
order of their BPN values than reverses it. Consequently the appearance

of the contextual image is not sensitive to changes of BPP. This is more
strikingly demonstrated in the category versions of the contextual 1mages

(Fig. 6); :

The upper panels in Fig. 14 show the 1024x1024 sublmage of the hlgh—
resolution SAR indicated in Fig. 5 and its BPP 20%, L = 21 contextual
derivative presented as a category image in the upper right panel. However,
for the BPP range from 2% (pixels with value 255) to 95%, the category
image is-would be almost identical to that in the upper right panel. The same
result is found for several alternative methods to generate a Contextual image,
like the L = 21 sliding block average of intensity. Mere-strikinglyMoreover,
the information of the contextual image is essentially retalned in different
randomising transformations. In the lower left panel of Fig. 14 the 1024x1024
image has been multiplied eight times by a random matrix that erodes the
ridging signature almost beyond visual recognition. However, the contextual
category image still emerges essentially unchanged in its main features in the
right panel.

The observed behaviour is due to the fact that changes in BPP, changes
in method, or randomising operations on the average preserve the order of
values in the contextual images. This feature is enhanced in the category
versions as the flux of values across category boundaries is then relatively
small. This can be studied in detail by pixel-to-pixel mapping between two
contextual images. For example, mapping for the 1024x1024 subimage with
L = 21 and BPP 20% the BPN values to matching L = 21 sliding intensity
averages the relationship is monotonous on the average. For each BPN value,
the mapped intensity averages have a normal distribution with a standard
deviation in the range of 3.5C064.5. On the other hand, the widths of the
70% — 80%, 80% — 90% and 90% — 100% categories for the intensity average
are 9, 15 and 102, respectively. Thus, the highest class, in particular, retains
its delineation in this method change. More importantly, if the change in
BPN values induced by a change in ambient conditions preserves the order

~—
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on the average, the category images can be consistently used in the daily
production of ice information.

The pixel block side length L affects the resolution of detail in the con-
textual images, and its value may be chosen to suit the context, hence the
term. Including a pragmatic viewpoint, L = 21 of Fig. 14 and L = 101 of
Fig. 6 correspond to the width and length scales of icebreaking ships so that
the BPN values of contextual images provide the number of bright scatterers
that the ship bow or the whole ship interacts with at a time. As BPN has
been shown to be a proxy of ridge rubble coverage, the contextual images
have direct pertinence to navigability. The categorised versions can be in-
terpreted as classes of navigational difficulty, or as delineation of areas that
a ship should not enter. They can be used in tactical navigation or in route
optimisation that only seeks to avoid difficult ice types. More advanced route
optimisation is based on physical models for the added resistance from the
ridges. The ice-going speed and the probability of besetting can then be
obtained in simulations that take the ice conditions along alternative tracks
as input, specifically ridge density and ridge height (Kuuliala et al., 2016).
As the contextual images provide only relative ridge density estimates, the
scaling to true values, as well as ridge height, must be determined by other
means. These may include observations from ships, measurements, or satel-
lite data, especially ICESat-2 profiles. Another possibility is to use a shinOs
response, observed remotely from AIS data, to classify the contextual image
signatures directly in terms of ice cover resistance (Simild and Lensu, 2018).

4 Discussion and conclusions

Ice charting experts are usually able to recognise the same ridging signatures
in SAR images that have different resolutions or are taken in different am-
bient conditions. The present approach proceeded from this observation by
analysing SAR images in terms of the local density of bright pixels chosen
by a certain percentage (BPP). The tail intensity variations, which are often
relied on in SAR ice type classification approaches, were left to a secondary
role. The quantification is in terms of bright pixel numbers (BPN) counted
in pixel blocks. First, high-resolution images were investigated for which the
bright returns can be assumed to come from individual ridge sails. A dis-
tribution model was derived and found to apply also to ridge sail numbers
(RSN) determined for surface profile segments. A validation study using
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a medium-resolution SAR image with near concurrent ground truth data
demonstrated that the method can be used to derive ridge density up to
the scaling factor. This can be provided by independent observations, most
promisingly by ICESat-2 surface profiles.

The distribution model was derived with a threshold process where bright
pixels or ridge sail were deposited sequentially to the image canvas or surface
profile. The probability for the deposition to end in a certain pixel block or
profile segment was proportional to the corresponding BPN or RSN value.
This raises the question of the role of the physical ridge formation events
that manifest as the formation of new sails to profile segments or as the ap-
pearance of new bright scatterers in a SAR image time series. An alternative
approach to sail statistics considers sail spacings or sail-to-sail distances. A
new sail cuts the spacing into two, and if the probability for this to happen
does not depend on the spacing, the spacing distribution is asymptotically
lognormal, as shown by {Kelmegerev1941Kolmogorov (1941). As the RSN
and the number of spacings are about equal for ridge segments, the prob-
ability that a new ridge appearing in the profile ends in a certain segment
is then proportional to the RSN of the segment. This indicates that the
applicability of lognormal and hypergeometric models have the same phys-
ical origin. The lognormal has also been found to apply to sail spacings in
the Baltic since {Lewis-et-al-=4993}Lewis et al. (1993). Another hint of the
background physical process is that the BPN statistics is parameterisable
by pixel block side length L rather than area L?. The length of ridge sails
typically exceeds L, and thus a ridge formation event does not add bright
scatterers pixelwise but as a chain crossing the pixel block.

In the high-resolution SAR, it was likely that most bright pixels indi-
cate ridge rubble. Their statistics were studied using binary images, and no
attempt was made to interpret the intensity variations of the bright pixels,
although it may be noted that they followed exponential distribution. It was
observed that the bright pixel texture in dense ridge fields was not much dif-
ferent from that of ship channels that are flat rubble beds. All studied BPP
values generated more or less the same contextual images. This suggests that
the correlation between sail height and SAR intensity is weak. It remains to
be investigated whether connectedness, curvature and other measures may
provide ridge height estimates.

High-resolution SAR data provide a kind of baseline for the investiga-
tions on ridge parameter retrieval as the returns have a connection both
with ground truth ridging statistics and with the backscattering models by
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Manninen (1992) and Carlstrom and Ulande

. The hypergeometrlc model provides a Scale connection tool that can be
used to study how lower resolution pixel intensities relate to the pixel statis-
tics in higher resolution matching pixel blocks. Our high- and medium-
resolution images did not have the required spatiotemporal overlap, unfortu-
nately. However, the medium-resolution image did not appear much different
in binary BPP versions, which mostly consisted of disconnected pixels and
generated contextual images that enhanced the ridging features in a sim-
ilar way for a wide range of BPP values. Also, the simulation algorithm
applied to the medium-resolution image as well as the Gamma distribution
asymptotics of the hypergeometric model.

Relying on the results obtained in {Miékynen—and-Hallikainen—2004)-Makynen and Hallikainen
for the scatterometer data at X- and C-band and {Bierking—26+0)-Dierking (2010

for L-band SAR imagery, it can be hypothesised that the results for C-band
and L-band would follow similar lines. A possible obstacle to the presented
analysis occurs when the air temperature is warm enough to make the snow
cover wet. Asshown by (Mékynensand Hallikainen;2004 Méikynen and Hallikainen (2004)
, this essentially decreases the contrast between level and deformed ice, and
thus it is uncertain whether the proposed method applies in the wet snow con-
ditions. However, for this not to happen, any change in ambient conditions
should severely overturn the order of BPN values, otherwise the persistence
of contextual category images demonstrated in Section 3.6 would prevail. In
addition, higher ridges are often snow-free and less affected by wet condi-
tions. Further studies applying matching multiplatform data with different
resolutions and varying ambient conditions are needed to clarify this and
other unanswered issues left open.

References

Albert, M.D., Lee Y.U., Ewe, H., and Chuah, H.: Multilayer Model Formu-
lation and Analysis of Radar Backscattering from Sea Ice, Prog. Electro-
magn. Res., 128, 267-290, https://doi.org:10.2528 /PIER 12020205, 2012.

Breiman, L.: Random forests, Machine Learning, 45, 5-32, 2001.

Calstrom, A., Ulander, L. M. H.: Validation of backscatter models for level
and deformed sea ice in ERS-1 SAR images, Int. J. Remote Sens., 16,
3245-3266, 1995.

23



Carlstrom, A., Ulander, L.M.H.,and Dierking, W. Radar Scattering Models
and ERS-1 SAR Data Inversion for Baltic Sea Ice. In Baltic experiment for
ERS-1 (BEERS). Edited by L.M.H. Ulander. Winter Navigation Research
Board, National Maritime Administration, Norrképing, Sweden. Research
Report 51, pp. 35-70, 1994.

Calstrom, A., Ulander, L. M. H.: Validation of backscatter models for level
and deformed sea ice in ERS-1 SAR images, Int. J. Remote Sens., 16,
3245-3266, 1995.

Carlstrom, A.: A microwave backscattering model for deformed first-year
sea ice and comparisons with SAR data, IEEE T. Geosci. Remote S., 35,
378-391, https://doi.org/10.1109/36.563277, 1997.

Dierking, W. Multifrequency scatterometer measurements of Baltic
Sea ice during EMAC-95, Int. J. Remote Sens., 20:2, 349-372,
https://doi.org/10.1080/014311699213488, 1999.

(Dierking, W. Mapping of Different Sea Ice Regimes Using Images From
Sentinel-1 and ALOS Synthetic Aperture Radar, IEEE T. Geosci. Remot
S., 48(3):1045 1058 https://doi.org/10.1109/TGRS.2009.2031806, 2010)

Dumitru, C.O., Datcu, M.: Information content of wvery high res-
olution SAR images: Study of feature extraction and imag-
ing parameters. IEEE T. Geosci. Remote S., 51, 4591-4610,
https://doi.org/10.1109/TGRS.2013.2265413, 2013.

Eicken, H., Gradinger, R., Salganek, M., Shirasawa, K., Perovich, D.K.,
Leppéaranta, M. (eds.): Sea ice field research techniques. University of
Alaska Press, Fairbanks, Alaska, 2009.

Eriksson, L.E.B. et al. Evaluation of new spaceborne SAR sensors for sea-
ice monitoring in the Baltic Sea, Can. J. Remote Sensing, 36, S56—-S73,
https://doi.org/10.5589,/m10-020, 2010.

Fredensborg Hansen, R. M., Rinne, E., Farrell, S. L., Skourup, H.: Esti-
mation of degree of sea ice ridging in the Bay of Bothnia based on ge-
olocated photon heights from ICESat-2, The Cryosphere, 15:6, 2511-2529,
https://doi.org/10.5194 /tc-15-2511-2021, 2021.

24



Fritz, T., Eineder, M. (eds.): TerraSAR-X Basic Product Specifica-
tion Document. TX-GS-DD-3302. Airbus DS 2013. Available online:
https://sss.terrasar-x.dlr.de/docs/TX-GS-DD-3302.pdf (accessed
on 19 May 2021).

Gegiuc, A., Simila, M., Karvonen, J., Lensu, M., Makynen, M., and Vainio,
J.: Estimation of degree of sea ice ridging based on dual-polarized C-band
SAR data, The Cryosphere, 12, 343-364, 2018.

Johansson, R. , Askne, J., Modelling of radar backscattering from low-salinity
ice with ice ridges, Int. J. Remote Sens. 8, (11), 1667-1677, 1987.

Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling,
A.: Helicopter-borne measurements of sea ice thickness, using a small
and lightweight, digital EM system, J. Appl. Geophys., 67, 234-241,
https://doi.org/10.1016/j.jappgeo.2008.05.005, 2009.

Haas, C., Casey, A., Lensu, M.: Safewin 2011 airborne EM
sea ice thickness measurements in the Baltic Sea. PANGAEA,
https://doi.pangaea.de/10.1594/PANGAEA.930545, 2021.

Hallikainen, M.: Microwave remote sensing of low-salinity sea ice. In F.
Carsey (Ed.), Microwave Remote Sensing of Sea Ice, 361-373. Washington
D.C.: AGU, 1992.

Karvonen, J., Simila, M., and Mkynen, M.: Open water detection from
Baltic Sea ice Radarsat-1 SAR imagery, IEEE Geosci. Remote S. Letters,
2, 275-279, https://doi.org/10.1109/LGRS.2005.847930, 2005.

Kolmogorov, A.N.: On the log-normal distribution of particles sizes during
breakup process. Dokl. Akad. Nauk. SSSR, 99-101, 1941.

Kuuliala, L., Kujala, P., Suominen, M., and Montewka, J.: Estimating oper-
ability of ships in ridged ice fields, Cold Regions Science and Technology,
135, 51-61, https://doi.org/10.1016/j.coldregions.2016.12.003, 2016.

Lensu, M.: The evolution of ridged ice fields. Helsinki University of Technol-
ogy, Ship Laboratory report series M, 280, 140, 2003.

Lepparanta, M., Hakala, R.: The structure and strength of first-year
ice ridges in the Baltic Sea, Cold. Reg. Sci. Technol., 20:3, 295-311,
https://doi.org/10.1016/0165-232X(92)90036-T., 1992.

25



Lewis, J. E., Lepparanta, Granberg, H. B.: Statistical properties of
sea ice surface topography in the Baltic Sea. Tellus, 45 A, 127-142,
https://doi.org/10.3402/tellusa.v45i2.14865, 1993.

Manninen, A. T.. Effects of ridge properties on calculated surface
backscattering in BEPERS-88. Int. J. Remote Sens, 13, 2469-2487,
https://doi.org/10.1080/01431169208904282, 1992.

Manninen, A. T.: Surface morphology and backscattering of ice-ridge sails
in the Baltic Sea. Journal of Glaciology, 42, 141-156, 1996.

Melling, H.. Detection of features in first-year pack ice by syn-
thetic aperture radar (SAR), Int. J. Remote Sens., 19:6, 1223-1249,
https:/doi.org/10.1080/014311698215702, 1998.

Mock, S. J., Hartwell, A. D., Hibler III, W. D.. Spatial aspects
of pressure ridge statistics, J. Geophys. Res. 77 (30), 5945-5953,
https://doi.org/10.1029/JC0771030p05945, 1972.

Makynen, M., Manninen, A., Simila, M., Karvonen, J., Hallikainen, M.:
Incidence Angle dependence of the statistical properties of the C-Band
HH-polarization backscattering signatures of the Baltic sea ice, IEEE T.
Geosci. Remote S., 40, 2593-2605, 2002.

Makynen, M., Hallikainen, M.: Investigation of C- and X-band backscatter-
ing signatures of the Baltic Sea ice., Int. J. Remote Sens., 25, 2061-2086,
2004.

Palosuo, E., Lepptranta, M., Seind, A.: Formation, thickness and stability
of fast ice along the Finnish coast, Styrelsen for vintersjofartsforskning.
Research report. No.36. Finland. 19p. + appends. 1982.

Ronkainen, I., Lehtiranta, J., Lensu M., Rinne, E., Haapala, J., Haas,
C.: Interannual sea ice thickness variability in the Bay of Bothnia, The
Cryosphere, 12:11, 3459-3476, https://doi.org/10.5194 /tc-12-3459-2018,
2018.

Simila, M., Lepparanta, M., Granberg, H. B, Lewis, J. E.: The re-
lation between SAR imagery and regional sea ice ridging character-
istics from BEPERS-88, Int. J. of Remote Sens., 13:13, 2415-2432,
https://doi.org/10.1080/01431169208904279, 1992.

26



Simila, M, Arjas, E., Méakynen, M., and Hallikainen, M.: A Bayesian clas-
sification model for sea ice roughness from scatterometer data, IEEE
T. Geosci. Remote S., 39, 1586-1595, https://doi.org/10.1109/36.934090,
2001.

Simila, M., Méakynen, M, Heiler, I.. Comparison between C band synthetic
aperture radar and 3D laser scanner statistics for the Baltic Sea ice, J.
Geophys. Res.- Oceans, 115, C10 https://doi.org/10.1029/2009JC005970,
2010.

Simila, M. and Lensu, M.: Estimating the Speed of Ice-Going Ships by In-
tegrating SAR Imagery and Ship Data from an Automatic Identification
System. Remote Sens. 10, 1132. https://doi.org/10.3390/rs10071132, 2018.

WMO Sea ice Nomenclature, WMO n. 259 (rev, 2010), 2010.

27



f01.png

Figure 1: The profiling measurement lines during the 2011 field campaign.

The ice conditions on the days of image acquisitions and the locations of the
image frames.
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Figure 2: Sail number increase rate for a threshold process with target thresh-
old 0.5 m. Left: Rate for observed sail heights and randomised sail heights
for segment length L = 100 m . Right: Rates for randomised sail heights for
different segment lengths.
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Figure 3: Negative binomial fits to the RSN distribution for the full LIDAR
dataset and for different segment lengths.
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Figure 4: Hypergeometric fits for distributions k(n;|n;) conditioned by L; =
1600 m and n; = 16 (left panel group) and n; = 72 (right panel group). The
scales L; belong to [50,100,200,400].
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f05.png

Figure 5: The 15200x15200 Stripmap image with the locations of 1024x1024
(blue) and 200x200 (yellow) subimages indicated (upper panel). The
1024x1024 and 200x200 subimages (lower panel).
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Figure 6: The 15200x15200 contextual image (on the left) and corresponding
category image derived from the full image with BPP 20% and E=sliding
block side length 101. The colorbar extends to the maximum observed BPB

in the blocks, 9831. The location of the 1024x1024 subimage is also indicated.
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Figure 7: The BPN increase rates for pixel block side length 36 and BPP
increasing from 5% to 40% in binary fashion.
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Figure 8: The BPN increase rates for BPP 20% and the pixel block side
length increasing from 4 to 128 in binary fashion.
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Figure 9: In the left panel group BPN distributions and their negative bi-
nomial fits for BPP 10% and three different pixel block side lengths L. The
parameter a is also shown for a scale cascade 8,16,...,256 and for three
different BPP. In the right panel group hypergeometric fits for conditional
BPN distributions for different combinations of conditioning scale L; and
conditioning BPN n;.
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Figure 10: BPP 3% binary image, BPP 13% image, and the BPP 13% image
generated from the BPP3% image by the simulation algorithm.

37



f11.png

Figure 11: The test area covered by the TSX SAR imagery with resolution
of 20 m. On the right is the contextual image with BPP 80%.
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Figure 12: The analysis image over the test area presented as a SAR RRC
image on the right and the corresponding LIDAR RRC image. The units are
percentage points in both images
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Figure 13: The quantile-quantile plot for the SAR and LIDAR data sets (left).
The SAR and LIDAR RRC distributions overlaid (middle). The scaled SAR
and original LIDAR RRC distributions (right).
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Figure 14: Results for 1024x1024 Stripmap subimage multiplied by 8 times
by a random matrix. Left column: The subimage (upper left) and the ran-
domised subimage (lower left). Right colum: Category versions of contextual
images obtained by BPP 20% and 21x21 convolution kernel for the original
subimage (upper right) and for the randomised subimage (lower right).
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