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Abstract. The statistics of ice ridging signatures was
:::::::::
ice-ridging

:::::::::
signatures

::::
were

:
studied using high (1.25 m) and medium

(20 m) resolution SAR images over the Baltic sea ice cover, acquired in 2016 and 2011, respectively. Ice surface profiles

measured by the 2011 airborne campaign was
::::
were used as validation data. The images did not delineate well

::
the

:
individual

ridges as linear features. This was assigned to the random occurrence of
::::
such ridge rubble arrangements that generate bright5

SAR return
::::::
returns. Instead, the ridging signatures were approached in terms of the local density of bright pixels

::::::
returns selected

by a variable
::::::
variably

:
bright pixel percentage (BPP). Density was quantified by counting bright pixel numbers (BPN) in pixel

blocks with variable side length L. As a sliding operation this resulted in enhanced ridging signatures and better applicability of

SAR images in ice information production. A statistical model for BPN distributions was determined by considering how the

BPN values change with the BPP and was found to apply over
:
a
:
wide range of values for BPP and L. The statistical approach10

was also able to simulate a higher BPP image when seeded by a low BPP image. It was also found to apply to surface profile

data analysed by counting ridge sail numbers in profile segments of variable length L. This provided
:
a
:
statistical connection

between the bright pixel density and
:::
the ridge density. The connection was studied for the 2011 data in terms of surface rubble

coverage estimated both from the medium resolution
:::::::::::::::
medium-resolution

:
image and from the surface profiles. Apart from a

scaling factor, both were found to follow the same distribution.15

Keywords: sea ice, ice ridges, ridging parameters, Synthetic Aperture Radar (SAR), X-band, TerraSAR-X, statistical analysis,

simulation.

1
:::::::::::
Introduction

The Baltic Sea is a semi-enclosed brackish sea water basin in northern Europe. Baltic drift ice has dynamic nature due to forcing

by winds and currents, which results in an uneven broken ice field with distinct floes, leads and cracks, brash ice barriers, rafted20

ice and ice ridges. The upper limit for thermodynamically grown ice in the drift ice zone is 70 cm or less during most winters

(Palosuo et al., 1982), while the keel depth of ice ridges is typically 5 to 15 m (Leppäranta and Hakala, 1992; Ronkainen et al., 2018)

.

Navigation in the Northern Baltic continues trough the ice season. During an average winter all Finnish ports become

surrounded by ice and they
::::
ports

:::
of

:::
the

::::::::
northern

:::::
Baltic

::::
Sea

:
are kept accessible by icebreakers during severe wintersalso.25

As there are annually up to 20,000 port calls trough the ice cover in Finland only,
:
,
:::
and

:
there exists a demand for accurate
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ice informationespecially on ridging conditions. Without the presence of ridged ice the managing of wintertime maritime

operations would be much simpler matter.

Ridge fields complicate the navigation and icebreaker assistance by inducing performance variations between ships of

different capabilities as well as speed variation for each individual ship. This includes occasional besetting , which, in convoy

operations, increases collision risks and causes delays and disorder in port logistics. Better information about the distribution5

of ridged ice would improve routing, icebreaker operation planning and the predictability of arrival times. This would make

the Baltic winter navigation system as a whole more efficient, safe, environmentally friendly and economical. This applies also

to other to other ice infested sea areas.

Operative production of ice ridging information is based on satellite data and surface observations. ,
:::::::::
especially

::
on

:::
ice

:::::::
ridging.

:::::
Ridge

:::::
fields

:::::::
increase

:::::::
collision

:::
and

::::::::
besetting

::::
risks

::::
and

::::::
reduce

:::
the

:::::::::::
predictability

::
of

:::::::
shipping

::::::::::
operations. In the Finnish-Swedish10

ice chartsthis information ,
:::::::
ridging is coded by the degree of ice ridging (DIR), which is a numeral that seeks not only to

quantify ridging but also to characterise navigational difficulty. Icebreakers communicate their estimates of DIR values to

the ice services where DIR values are assigned to ice chart polygons using the estimates, other data,
:::::
based

:::
on

:::::::::
icebreaker

::::::::::
observations

:
and manually interpreted SAR images.

Due to the qualitative nature of DIRthe need for truly quantitative ridging statistics
:
,
::
a

::::
need

:::
for

::::
SAR

::::::::
methods

::
to

:::::::
retrieve15

:::::::::
quantitative

:::::::
ridging

:::::::::
parameters

:
persists. The usual surface parameters to describe ridging are ridge

::
are

:::::
ridge

::::
sail height and

ridge densityor the number of ridge sails per km along a linear track. The surface statistics can be linked to the statistics of

the subsurface ridge keels with cross-sectional modelsfor sail and keel geometry. This provides estimate of the total mass of

ridge rubble from the surface parameters. Statistical models can also be used generate simulated thickness profiles for ridged

ice, applied to model ship speed reduction and besetting risk (Kuuliala et al., 2016). Finally, ridge ,
::::::
which

:::
can

:::
be

::::
used

:::
to20

::::::::::
parameterise

:::::::::
associated

::::::::
statistical

:::::::
models.

:::::
Ridge sail height and ridge density are

:::
also

:
related to the fraction of the surface area

covered by ridge rubble, a parameter which
:::
that

:
contributes to the magnitude of σo

::
σ◦ in SAR images

Ridge sail height and density can be determined by airborne profiling measurements which however do not usually belong

to the routines of ice information production. At the same time, research seeking to determine ridging parameters from SAR

images has not made enough progress to fulfill the expectations of the ice information producers. This difficulty has three main25

sources. Individual ridges are usually not resolved, the characteristics of the satellite instruments, images and acquisitions are

varying, and there are sensitivities to ambient conditions and surface properties not related to ridges. To this adds the fact that

ground truth data and the SAR signatures cannot usually be matched if the ice has drifted or deformed in the meantime.

In this paper we approach the problem in a way that makes feasible the quantification of ridge density from SAR at least

in a relative fashion. The approach relies on the assumption that ridge density variation dominates the spatial variation of30

ridging signature in SAR images. The same statistical model is found to apply both to the variation of ridge density and to the

variation of density of pixels chosen to represent
:
.
::::
The

::::::
surface

::::::::
statistics

:::
can

::
be

::::::
linked

::
to

:::
the

::::::::::
subsurface

::::
ridge

::::
keel

::::::::
statistics

::::
with

::::::::::::
cross-sectional

:::::::
models,

::::::::
providing

:::
an

:::::::
estimate

::
of

::::
the

::::
total

::::
mass

:::
of ridged ice. An extensive set of Baltic surface profile

data is used to formulate and validate the statistical model for ridge density. Two different TerraSAR-X X-band SAR images

from the Baltic Sea are used, obtained with different imaging modes and resolutions. The high resolution (1.25 m) image is35
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used to study how individual ridges contribute to SAR signatures, and develop the statistical model in SAR context. The other,

with 20 m resolution, is nearly concurrent with the surface data set which is used to validate the approach.

2 Background

SAR-based retrieval of ridging has previously approached the problem
::::
SAR

:::::::
research

:::
has

::::::::::
approached

::::::
ridging

:
from two main

directions. Physics based approaches have tried
:::::
-based

:::::::::
approaches

::::
seek

:
to determine the microwave backscattering properties5

of ridged icetypes so that these could be distinguished from other ice types. The scale of this problem ranges from the size

of ridge blocks to the pixel size of low resolution SAR images for which the ridged ice σ◦ comes from a mixture of block

accumulations and other ice types. On the other hand, image based
:
,
:::::
while

:::::
image

::::::
-based approaches seek to develop methods

to retrieve degrees of ridging using
::::::
retrieve

::::::
ridging

::::
with

:
image segmentation methodologies, supported

:::::
trained

:
and validated

by field data.10

One reason for the weak connection between the physics based and image based approaches is that it is not well understood

:
It
::
is

:::
still

:::
not

::::::::::::::
well-understood how the pixel-to-pixel intensity variations relate to the ridging statistics and how this is affected by

different wavelengths, polarisations, viewing angles, platforms, resolutions, roughness types, and ambient conditions
:::::::
variation

::
in

::::::
ridging. Backscattering from rafted ice, brash, sastrugi and other rough surfaces

::::
rough

:::::::
surfaces

::::
like

:::::
brash

:::
and

:::::::
sastrugi may

overwhelm the ridging signature
::::::::
signatures, and changes in temperature, moisture and snow cover may alter the discernibilityof15

ridging signatures from day to day. Theoretical models, e. g., (Albert, 2012), predict that for high frequency waves the
::::
their

:::::::::::
discernibility.

:::
Air

:::::::::::
temperatures

::::::
around

::
0

::::::
degrees

::::::
reduce

:::
the

::::::::::
penetration

:::::
depth

::
of

::::::::::
microwaves

::::
into

:::
the

:::::
snow

:::::
layer,

:::::::::
decreasing

::
the

:::::::::::::
backscattering.

:::
For

:::::
high

::::::::::
frequencies,

:
volume backscattering may exceed surface backscattering and significantly change

the σ◦. A feature specific to
:::::::::::
(Albert, 2012)

:
.
:::
For

:
low-salinity iceis the importance of scattering ,

:::
the

:::::::::
scattering

::
is dominated

by volume inhomogeneities in the uppermost part
::::
layers

:
of the ice. As verified by (Dierking, 1999) this partly

:
,
:::::
which

::
in

::::
part20

explains the high variation in
:
of

:
X-band σ◦ values for the

:::::::
northern Baltic Sea ice for which the salinity ranges from 0.2 to

2 permille (Hallikainen, 1992).

Not many papers have addressed the identification of ridges from SAR imagery. The likely reason is that the resolution of the

operative SAR satellite modes has been too low,
:::::::::::::
(Dierking, 1999)

:
.
::
As

:::
the

:::::::::
resolution

::
of

::::::::
operative

::::
SAR

::::
data

:
is
:
usually not better

than 100 m , to resolve individual ridges. Instead,
:::
the σ◦ depends on the aggregate effect of highly variable conditions in each25

pixel. For an experienced eye it may appear evident which texture typesindicate ridging even in very low resolution imagery.

The step from this to quantitative methods has proved hard although correlations clearly exist. An article which discussed

detecting ridges in length is (Melling, 1998) where the study area was in the Beaufort Sea. A strong correlation was observed

between the spatial frequency of ridges identified from the SAR and the average draft of the ice field in the X-band. It was

noted that the X-band airborne SAR (25 m resolution) yielded better ridge identification than the C-band ERS-1 SAR (30 m30

resolution) for first-year pack ice.
:::::
values

:::::
come

:::::
from

::::::
varying

:::::::::::
assemblages

::
of

::::
ridge

::::::
rubble

:::
and

:::::
other

::::::
surface

:::::
types.

:::::::::::
Correlations

:::::::
between

::::
SAR

::::::::
signature

:::
and

::::::
ridged

:::
ice

::::::
volume

:::::::
emerge,

::
as

::::::
shown

::
in

:::
the

:::::::
Beaufort

:::
Sea

:::::
study

::
of

:::::::::::::
(Melling, 1998)

:
,
:::
but

::::::::::
quantitative

:::::::
estimates

:::
are

::::
hard

::
to
::::::
obtain.

:
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In the BalticSea the most intensive phase of the SAR based work related to sea ice ridging took place in late 1980’s and

early 1990’s. Several aspects of the problem were examined. There were both physics based approaches seeking to model the

microwave backscattering from ridges, and image based approaches trying to identify ridging signatures from SAR images or

classifying them with respect to degrees of deformation. Backscattering models were constructed by (Johansson et al., 1992; Manninen, 1992; Carlström and Ulander, 1995; Manninen, 1996; Carlström et al., 1997)

. These included also three-dimensional models taking full ridge geometry in account, that is, the shape of the ridge sails and5

the size, shape and angle distributions of the sail blocks
:
,
:::::::
physical

::::::::::::
backscattering

::::
was

:::::::
studied

:::::::::
extensively

:::
in

:::
the

:::::
1980s

::::
and

:::::
1990s.

::::
This

::::::::
included

::::::
models

::::::
taking

:::
the

:::
sail

:::::
block

:::::
angle

::::::::::
distributions

::::
into

:::::::
account. According to the 3D-backscattering model

for an ice ridge by (Manninen, 1992)
::
3D

::::::
model

::
of

::::::::::::::::::::
(Manninen, 1992, 1996)

:
, the most important ice properties in the C-band

microwave surface backscattering from ridge sails are , in order of importance,
:::::::::::
backscattering

:::::
from

:::::
ridges

:::
are microscale sur-

face roughness, dielectric constant and geometrical properties of the ice blocks. If the surface roughness and dielectric constant10

variations over the ridged and surrounding areas are small the magnitude of backscattering is dictated by the geometry of the

ice block accumulations, basically the relative surface area covered by the accumulations and the orientations of the ice blocks

in them.

In (Carlström and Ulander, 1995) the authors used 2D-model where an ice ridge is assumed to be a collection of circular

facets with superimposed surface roughness. Thicknesses and slopes of facets varied. The authors concluded that the specular15

reflections are dominant unlike the results reported by (Manninen, 1992). According to (Manninen, 1992, 1996) the
:::
sail

:::::
block

::::::::
geometry.

::::
The main difference between ridged and level ice is

:::
was that backscattering from ridge blocks has a broad range

of incidence angles,
:
whereas level ice has a very narrow range.

::
On

:::
the

:::::
other

:::::
hand,

:::::
using

:
a
:::
2D

::::::
model

:::::::::
describing

:::
the

:::
sail

::
as

::
a

::::::::
collection

::
of

:::::::
circular

:::::
facets

::::
with

::::::
variable

:::::::
surface

:::::::::
roughness,

:::::::::::::::::::::::::
(Carlström and Ulander, 1995)

::::::::
concluded

::::
that

:::::::
specular

:::::::::
reflections

::
are

:::::::::
dominant. Both models predict rather similar results for first-year ridges in C-band SAR imagery due to the broad distribu-20

tions of ridge-block
::::
ridge

:::::
block

:
orientations and dimensions. Ridge backscatter has also been observed to be slightly sensitive

to
:::
the radar azimuth angle by (Johansson et al., 1992). We note that the modelling predictions based on in situ measurements

agreed well with SAR data in the comparison reported by (Carlström et al., 1997).

Due to the complicated nature of the geometric models they can hardly be utilised in practice to interpret observed σ◦.

Sufficient understanding of ridging statistics, required for the integrating the physical model for areally averaged backscattering25

values, has been lacking as well. However, the physical models help us understand which ice properties control the separation

of ridges from the surrounding level ice and why ridges often remain undetected even in high resolution SAR images or fail to

appear in them as continuous curvilinear features.

In our SAR based ridging studies we have often indicated the intensity of ridging using the degree of ice ridging (DIR)

categories in the absence of field data for large sea ice areas. The DIR classes are semi-heuristic numerals although a clear30

correlation between the classes and deformed ice volume was found for the profile 2011 data set used in (Gegiuc et al., 2018)

. The earliest SAR based ridging estimation in the Baltic Sea was (Similä et al., 1992) where a regression estimation for ridge

density was proposed with
::::
Baltic

:::::::::::
image-based

:::::::
research

:::
has

::::::
mostly

::::
used

::::::::
nonlinear

:::::::::
regression

:::
and

::::::::
Bayesian

:::::::
methods

::
to

:::::::
classify

:::::
ridged

:::
ice

:::::
types.

:::::::::::::::::
(Similä et al., 1992)

:::::
found

:::::::::
reasonable

::::::
results

:::::
using

::::::
surface

::::::
profile

::::
data

:::
and

:
tail-to-mean ratio as a predictor.

Tail-to-mean ratio is a function of
::::::::
computed

:::::
from the SAR pixel value distribution It yielded reasonable results for the test35
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set consisting of the in situ airborne profiling databut due to lack of further validation data the model could not be adapted

to different ice conditions . Later, the DIR estimation problem in the Baltic Sea has been investigated in multiple papers.
::
as

:
a
::::::::
predictor.

::::::::
Utilising

:::
3D

:::::::
scanner

::::
data,

:::::::::::::::::
(Similä et al., 2010)

:::::::::::
demonstrated

::::
that

::
in

:::
dry

::::
and

::::
cold

:::
ice

:::::::::
conditions

::::
with

::::
thin

:::::
snow

:::::
cover,

:
a
:::::::::::::
correspondence

:::::::
between

:::::::::
freeboard

:::
and

::::::
C-band

:::::
SAR

:::
can

::
be

::::::
found

:
if
:::
the

::::::::
dominant

:::
ice

::::::::
thickness

::
is

::::::
known.

:

In (Mäkynen and Hallikainen, 2004) the σ◦
:
, distributions were computed for several ice deformation categories with different5

incidence angles utilising data collected during many Baltic Sea scatterometer field campaigns. The utilised deformation

categories approximated the DIR classes and were determined using a video-based assessment.
:::
and

::::::::
incidence

::::::
angles

:::::
from

:::::::::::
scatterometer

::::::::
campaign

:::::
data. Only small differences were noticed between the X- and C-band results or using

:
or

:
different

polarisations with the exception of HV-polarization. The results agree with those obtained in (Eriksson et al., 2010). Part of

the scatterometer data collected by Mäkynen was reanalysed using a
::::
This

::::::
agrees

::::
with

:::
the

::::::
results

::
of

:::::::::::::::::::
(Eriksson et al., 2010)10

:
.
:::
The

:::::
same

::::::::::::
scatterometer

::::
data

::::
was

:::::::
utilised

::
in

:::
the

:
hierarchical Bayesian model in (Similä et al., 2001)with improved DIR

classification results.

In (Gegiuc et al., 2018) sea ice ridging was assessed using the DIR classes retrieved from ice charts covering the whole Gulf

of Bothnia. The analysis had
::
of

:::::::::::::::::
(Similä et al., 2001).

::::::::::::::::::
(Gegiuc et al., 2018)

::::::
assessed

:::::::::
automated

::::::::::::
determination

::
of

::::
DIR

::::::::
numerals

::
in three stages: segmentation of

:
a
:
SAR image, computing a feature vector to each segmentand then ,

::::
and

:
classifying the15

segments. Training data consisted of several ice charts. Different ice charts served as the validation data for the classification

maps. The results were encouraging and the method will be transferred into operational use. Thus it is possible to improve

regional ridging information by combining advanced methods with usual operative information production by expert analysts.

The actual ridging statistics required for effective ice routing and for ice forecast model assimilation is not captured by the DIR

classes however.
::::
Gulf

::
of

:::::::
Bothnia

::::
DIR

::::::::
numerals

:::::
from

:::
ice

:::::
charts.

:::
In

:::::::
addition,

::
a
:::::
clear

:::::::::
correlation

:::::::
between

::::
DIR

::::::::
numerals

::::
and20

::::::::
deformed

::
ice

:::::::
volume

::::
was

:::::::::::
demonstrated

:::::
using

::::::
surface

::::::
profile

::::
data.

A case study by (Similä et al., 2010) showed that in dry and cold ice conditions with thin snow cover it was possible to find

correspondence between freeboard and C-band SAR data in the Baltic Sea assuming that the dominant thickness of the regional

level ice is known. The used field data was collected during the CryoVex-2005 campaign. A nonlinear regression model with

three control variables, σ◦, the dominant thickness of level ice, and a variable accounting the effect of the SAR incidence angle,25

was used. The predicted estimates by the model followed closely freeboard changes also in the ridged area.

2 Approach

Considering the task to quantify ridging from a SAR image it is assumed here that open water areas have been detected

(Karvonen et al., 2005). It may also be assumed that the ice cover signature has been segmented by an algorithm or by an

ice charting expert into types among which ridged ice is one and such that the segmentation excludes other rough types of30

non-ridged surface with very bright return. The present approach concentrates on the remaining task of quantifying ridging for

the ridged ice.
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Figure 1.
:::
The

:::::::
profiling

::::::::::
measurement

::::
lines

:::::
during

::
the

:::::
2011

:::
field

::::::::
campaign.

In a birds-eye view ridging shows as block accumulations covering the surface. These are often identifiable curvilinear sails

with approximately triangular cross section and with typical scale 1-10 m in across sail direction and tens to hundreds of

meters in along sail direction. The essential feature of ridge rubble is that it may generate a strong backscattering signature.

Thus all block accumulations with block structure resembling that of ridge sails are understood here as ridging. This includes

rubble fields and other more chaotic block formations that cannot be decomposed into curvilinear sails. From backscattering5

viewpoint the the principal ridging quantity is the coverage (relative area) of ice surface covered by ridge rubble.

It appears clear that the returns from the ridge rubble dominate the brighter end of the backscattering intensity histogram. The

brightness statistics involves certain uncertainty, however. The intensity histogram depends on the processing of the image and

on enhancements aiming at good visual appearance. The ambient conditions affect the brightness statistics so that temporally

separated SAR images from the same ridged ice field may have quite different intensity histograms. However, an ice charting10

expert could still recognise the same ridging features and would provide a similar manual classification to ‘degrees of ridging’

in both cases. This relies on observing that the order of intensity is retained by and large for the ridged ice types although

the intensity histogram would change. The ridging signatures appear as persistent and symptomatically nonhomogeneous.

This shows up clearly in binary images comprising a certain percentage of bright pixels from the intensity histogram tail. If the

percentage is reduced, the ridging signatures become more sparse but tend to retain structural congruence with the non-reduced15

signatures.

In a way, the objective of the present approach is to provide statistical foundation for the assessment that the ridging

signatures in two SAR images ‘look the same’. Towards this end, a certain bright pixel percentage (BPP) is selected with

an intensity threshold. For higher BPP the selected bright pixels are expected to be predominantly returns from ridge rubble.

The spatial variation related to the ridging signatures is described in terms of the bright pixel number (BPN) in pixel blocks20

with side lenght L, or equivalently in terms of bright pixel coverage (relative area) in the blocks. The side length L and the

BPP are variable parameters of the approach.

The results of this paper fall into two main categories. The first one presents application oriented results based on ‘contextual

images’ obtained from a SAR image by a sliding BPN operation. The other one derives a model for the BPN statistics and

seeks to validate it by observational data. Most proper validation data would consist of ridge rubble coverage in square areas25
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with comparable side length L. The extent of such data is limited, however. The validation data consists therefore of linear

surface profiles from which ridge sails are identified. The profiles are divided into segments of length L and the ridge sail

numbers (RSN) in the segments are counted. Only those sails are counted that exceed a certain height threshold.

Thus the BPN and RSN approaches are formally analogical and the the objective is to show that they follow the same

statistical model. The model is derived by considering how BPN and RSN values change with threshold changes (threshold5

process). Ridge rubble coverage will inherit the RSN statistics that can then be parametrically compared with BPN statistics

for concurrent datasets.

2 Data Sets and Processing
::::::::
methods

2.1 SAR data
::::
Data

The German
::::
Two

::::::
modes

::
of TerraSAR-X (TSX) satellite was launched in 2007. It can be operated in different modes, usually in10

Stripmap or ScanSAR mode (Fritz and Eineder, 2013). The ScanSAR
:::
data

::::
were

:::::
used.

::::
The

:::::::
medium

:::::::::
-resolution

:
HH-polarized

::::::::
ScanSAR image was acquired on 28 February 2011 over the northern part of the Sea of Bothnia

::::
Gulf

::
of

::::::::
Bothnia.

::::
The

::::
high

:::::::::
-resolution

:::::::::::
HH-polarized

::::::::
Stripmap

:::::
image

::::
was

:::::::
acquired

:::
on

:
5
::::::
March

::::
2016

:
near the Quark.It has swath width of

:::::::
Hailuoto

::::::
island

::
in

:::
the

:::
Bay

:::
of

:::::::
Bothnia.

:::::::
Surface

:::::
profile

::::
data

::::
was

::::::::
collected

::
in

:::
the

::::
Bay

::
of

:::::::
Bothnia

::::::
during

::::
2− 7

::::::
March

:::::
2011

:::::
along

:::::
tracks

::::::
shown

::
in

:::
Fig.

::
1.

:
15

:::
The

::::::::
ScanSAR

:::::
swath

:::::
width

::
is

:
100 km and azimuthal length of

::
the

:::::::::
azimuthal

:::::
length

:::
ofis

:
150 km. The ScanSAR mode consists

of four Stripmap beams which are combined to achieve the 100 km wide swath.

The preprocessing of the ScanSAR image comprised calibration (calculation of σ◦
HH ), georectification and land masking.

:
,

::::
while

:::
in

:::
the

:::::::
studies,

:
a
:::::::
106x94

:::
km

::::::::
subimage

::::
was

:::::
used,

::::
Fig.

:::
12.

:
The image was rectified into the

:::
land

:::::::
masked

::::
and

:::::::
rectified

::
to Mercator projection with 20 m pixel size. This georectification is compatible with the FIS ice charts and the navigation20

system of the Finnish and Swedish icebreakers. In this Mercator projection the reference latitude is
:::::::
reference

:::::::
latitude 61◦40’ N

. The incidence angle varies
:::
and

:::::
pixel

::::
size

::
20

:::
m.

:::
As

:::
the

::::::::
incidence

:::::
angle

:::::
range

:
from 29.5◦ to 38.7◦ . Because the incidence

angle range is relatively narrow, we did not perform any statistical incidence angle correction
:
is
:::::::
narrow,

::
no

:::::::::
incidence

:::::
angle

:::::::::
corrections

::::
were

:::::
done,

:
(Mäkynen et al., 2002), only the calibration of the backscattering coefficients σ◦.

The equivalent number of looks (ENL) was on average 7 in the ScanSAR scene and the radiometric resolution 1.4 dB. The25

average noise equivalent sigma zero (NESZ) was -21 dB (Fritz and Eineder, 2013).

For high resolution SAR studies is used a Stripmap image acquired on 5 March 2016 near the Hailuoto island in the Bay

of Bothnia . The acquired product
:::::::
Stripmap

::::::
image

:
is a Geocoded Ellipsoid Corrected (GEC) product without any terrain

correction . It is also
:::
and

:
a Spatially Enhanced Product (SE) designed for the highest possible square ground resolution. The

HH-polarization image was rectified into 1.25 m resolution in the Mercator projection. The covered area is about 33.6×42km230

(width × length).
:
,
::::
from

::::::
which

:
a
::::::::::
19× 19km2

:::
km

:::::::::
subimage

:::
was

::::
used

::
in

:::
the

::::::::
analyses,

::::
Fig.

::
2.
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2.2 Laser data

The laser data was collected during a helicopter-borne thickness profiling campaign in the Bay of Bothnia during 2− 7 March

2011, i.e. ,
:::
The

:::
ice

::::::
profile

::::::
dataset

:::::::::
comprising

:::::
2800

:::
km

::
of

:::
the

::::::
profile

:::
was

::::::::
collected during the week after the acquisition of the

ScanSAR image. The measurement system combines laser distance measurement to ice or snow surface and electromagnetic

(EM) distance measurement to the ice–water interface. The measurement system
:::::::
ScanSAR

::::::::::
acquisition.

::::
The

::::::::::::::
helicopter-borne5

::::::
system was similar to that described by (Haas et al., 2009). The campaign comprises approximately 2800 km of helicopter-borne

EM (HEM) measurement lines shown in Figure ??. After leaving the flight base the logging was turned on at about 64 N 23 E

and within 50 km from this point the repeating tracks sample the ice cover almost completely in 1 NM resolution. Only the

surface
::::
Only

:::
the

:::::::
LIDAR

::::::
surface

::::::
profile

:
data is used here. The thickness data ,

:::::
while

::::
the

:::::::::::::
electromagnetic

:::::
(EM)

:::
ice

::::::::
thickness

has been addressed in (Ronkainen et al., 2018), and the relationship of the surface ridging parameters to the thickness and to10

the DIR ridging index of Finnish-Swedish ice charts in (Gegiuc et al., 2018).

The profiling measurement lines during the 2011 field campaign.

:
. The analysis of laser

::::::
LIDAR

:
data followed standard proceduresdescribed in (Eicken et al., 2009). The zero level was

determined by conducting a two-step high-pass filtering with minimum point selection between the steps. Then .
:::::
After

::
a

::::::::::::
reference-level

::::::::::::
determination,

:::
the

:
local maxima were identified by Rayleigh criterion demanding that

::
the

::::::::
Rayleigh

::::::::
criterion15

:::
that

::::::::
demands

:::
that

:
for two successive maxima,

:
the minimum elevation between them must be less than half from either maxi-

mum. Otherwise
:
, the shallower one is not counted. The elevation distribution of Rayleigh separated maxima has

::::::
maxima

:::
has

::
a

negative exponential tail for values higher than 0.4 mthat
:
,
:::::
which

:
was selected as cutoff elevation.

::
the

::::::
cutoff

::::::::
elevation,

::::
Fig.

::
1.

Above the cutoff,
:
the maxima are assumed to be predominantly ridge sails. The average ridge height and density

:::
sail

::::::
height

:::
and

::::
ridge

::::::::
densities are 0.65 m and 11.7 1/km,

:::::::::::
respectively.20

2.2 Weather and Ice Conditions

2.1.1 Winter 2010/2011

The winter 2010/2011 prior the field
:::
The

::::::
winter

::::
prior

::
to
::::

the
::::::::
ScanSAR

::::::::::
acquisition

:::
and

::::::::
profiling campaign was colder than

average. When the field campaignto the Bay of Bothnia started in late February, the the ice extent was larger than average

annual maximum extent. There was a drifting ice station in the southern part of the basin from 25 February to 4 March (initial25

location 63◦45.85’ N,l21◦55.34’ E) after which the helicopter campaign continued to 7 March. During this period the Bay of

Bothnia did not have 100% ice concentration because high SW winds , the mean wind speed being 10 m/s with variation from

5 m/s
::::::
During

::
the

:::::::::
campaign,

::::
SW

:::::
winds

::
up

:
to 18 m/s , repeatedly triggered drift

:::::::
triggered

:::::::
opening

:
and deformation periods and

opening in the southern part of
:
in

:
the basin. The wind direction changed NW during the helicopter campaign . According to the

Finnish Ice Service ice charts the level ice thickness near the coast
::::
Bay

::
of

:::::::
Bothnia,

::::
and

:::
the

::::
drift

:::::
speed

::
of

:::
the

:::::::
research

::::::
vessel30

::::::
Aranda

::::::
serving

:::
as

:::
the

::::::::
campaign

::::
base

::::
was

:::::::
typically

:::::::
0.1–0.4

:::::
knots.

::::
The

:::
ice

::::::::
thickness varied from 30 to 70 cm and from 30 to

60 cm in the middle of the Sea of Bothnia. The modal thicknesses of the HEM profiles are mostly within this range as well.
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The air temperature began to increase from below
::::
pack

:::
ice.

::::
The

:::
air

::::::::::
temperature

::::::::
increased

::::
from

:
-10 C◦ (on 24 February ) to

-1.5 C◦ (
::
on

:
27 February). When the TSX

::::::::
ScanSAR

:
image was acquired,

:
Ta was -2.3 C◦ in the ice station.

Short snow lines were measured during 2-4 March . The mean thickness was
:
at
:::
the

::::::
Aranda

:::::
base.

:::::
Snow

::::
lines

::::::::
measured

::::::
during

:::
2–4

::::::
March

:::
had

::
a

::::
mean

::::::::
thickness

:::
of 8 cm and the standard deviation (STD)

:
a
:::::::
standard

::::::::
deviation

::
of

:
11 cm. About 50 cm thick

:::::::
cm-thick

:
snow accumulations were often found by ridges, sometimes covering the ridge sail

::::::::
shallower

::::
sails. On 3 Marchthe5

snow had already some moisture
:
,
:::
the

:::::
snow

::::::
already

::::
had

:::::
some

::::::::
moisture, and the density varied

::::
from 0.2 -0.3

:
to

::
.3 kg/m3 on

level ice and 0.3-0.4 kg/m3 near ice ridges. We can assume
:
It
::::

can
:::
be

:::::::
assumed

:
that during the TSX image acquisition the

::::::::
ScanSAR

:::::::::
acquisition

::::
prior

::
to
:::
the

:::::::::
campaign,

:::
the

:
snow was still dry and it did not affect significantly

::
did

:::
not

:::::::::::
significantly

:::::
affect

the backscattering.

The ice station drifted about 0.1-0.4 knots during the time gap between the TSX image and the helicopter flights. Throughout10

this time period additional deformation occurred in the area where the flights were performed. Hence neither the location nor

the deformation characteristics of ridge fields stayed as they were at the time of TSX image acquisition. When assessing the

results, these changes must be taken into account.

2.1.1 Winter 2015/2016

The winter in
::::::
winter

::
of 2016 was mild

:
, and only the Bay of Bothnia had

::
an

:
ice concentration of 100%. Recurrent periods of15

mostly SW winds induced cycles of deformation, opening and freezeup and only
::::::::
freeze-up.

:::::
Only in the beginning of March

the basin attained
::
did

:::
the

:::::
basin

:::::
attain

::
a more persistent ice cover consisting of ridged and rafted ice types. On 5 March

:
,
:::
the

fast ice thickness in the NE quadrant of the basin was 50-65
:::::
50–65 cm, the level

::
of ice thickness in the ridged ice pack

:::
was

30-50 cm , and the air temperature
:::
was

:
from -1 to -4

:
4 degrees. The temperature stayed below zero

:
, and no snowfall occurred

during
::
the

:
10 days before the Stripmap SAR image acquisition date ,

::::
when

:
the snow thickness on mainland being

:::
the

::::::::
mainland20

:::
was

:
about 30 cm.

3 High resolution SAR image analysis

2.1 Ridging signatures and contextual images

The pixel size of the Stripmap image is 1.25 m which resolves backscattering signatures from individual ridges. The full

image (Fig H1) size is 19x19 km but for analysis and visualisation we used also different subimages, principally 7000x700025

(8.7x8.7 km) and 1024x1024 subimages with representative ridging signature.

For better visualisation, images are also presented as category images for which the highest 30% of bright pixels is divided

into three

2.1
::::::::

Approach

9



Figure 2.
:::
Full

:::::::::::
high-resolution

::::::::
Stripmap

:::::
image

:::
with

:::
the

:::::::::
7000x7000

:::
and

:::::::::
1024x1024

::::::::
subimages

::::::::
indicated

:::::
(upper

::::::
panel).

:::
The

:::::::::
1024x1024

:::::::
subimage

:::
and

:::::
further

:::::::
200x200

::::::
closeup

::::
from

:::
the

::::
upper

:::
left

:::::
corner

:::::
(lower

::::::
panel).

::::
From

:::
the

::::::::::::
backscattering

:::::::::
viewpoint,

:::
the

::::::::
principal

:::::::
quantity

::
to

:::::::
describe

::::::
ridging

::
is

:::
the

::::::
relative

::::
area

::
of

:::
ice

::::::
surface

:::::::
covered

::
by

:::::
ridge

:::::
rubble

::::::
(rubble

:::::::::
coverage).

::::::::::
Curvilinear

::::
ridge

::::
sails

:::
are

:::::
often

::::::
visible,

::::::
having

::
a

::::::
roughly

:::::::::
triangular

:::::::::::
cross-section

:::
and

:
a
::::::
typical

:::::
scale

::
of

::
1–10 % classes. In the 1024x1024 subimage ridging features appear then as delineated by the brightest 20 percent while the

interval 70-80% begins to add more scattered pixels. The percentiles were 105 (-17.7 dB)for 70% , 124 (-15.5 dB) for 80%,
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Figure 3.
:::
The

:::::::::
categorised

:::::::
Stripmap

::::::::
1024x1024

::::::::
subimage

:::
and

:::::
further

:::::::
200x200

::::::
closeup

::::
from

::
the

:::::
upper

:::
left

:::::
corner

:::::
(lower

::::
right

::::::
image).

Figure 4. Full high resolution Stripmap
:::
The

::::::::
contextual

::::::
images

:::
and

:::::::::::
corresponding

::::::
category

::::::
images

::::::
derived

::::
from

:::
the

:::
full

:
image with the

7000x7000
:::
BPP

::::
20% and 1024x1024 subimages indicated

:::::
L=121

:
(upper panel). The 1024x1024 subimage ,

:
and further 200x200 closeup

from the upper left corner
::::::::
1024x1024

:::::::
subimage

::::
with

::::
BPP

::::
20%

:::
and

::::
L=21 (Lower panel

::::
lower

:::::
panels).

and 159 (-11.3 dB) for 90%. It is seen that the hope of a similar quasi-photorealistic appearance as is found in comparable

TerraSAR-X terrestrial images by Dumitru and Datcu (2013) fails to materialise. There are obvious linear ridges but these

consist of chains of detached bright components that do not connect into continuous features. Larger features, reminiscent

11



of ridge groups or small rubble fields, are more readily observed . However, they are also aggregates of detatched bright

components, with a texture not much different from ship channels that can be assumed to be flat and have uniform spatial

distribution of bright scatterers. Increasing the bright pixel percentage from 30% improves slightly the connectedness of ridge

signatures but at the same time obscures their delineation by adding scattered bright pixels in between
:
m

::
in
::::

the
:::::
across

::::
sail

:::::::
direction

::::
and

::::
tens

::
to

::::::::
hundreds

:::
of

::::::
metres

::
in

:::::
along

::::
sail

::::::::
direction.

::::::::
However,

::::
less

:::::::::::
well-defined

:::::
block

:::::::::::::
accumulations

:::
are

::::
also5

:::::::::
understood

::::
here

::
as

:::::::
ridging

::
as

::::
they

:::::::::
contribute

::
to

:::
the

::::::
rubble

::::::::
coverage.

:::::
Their

:::::::::
signatures

::
in

:::::::
surface

::::::
profiles

:::
are

::::
also

:::::::
similar

::
to

::::
those

::
of

::::::::::
curvilinear

:::::
ridges.

The contextual images and corresponding category images derived from the full image with BPP 20% and L=121 (upper

panel), and from the 1024x1024 subimage with BPP 20% and L=21 (lower panels).

These observations agree with the results by Manninen (1992) and Carlström and Ulander (1995) indicating that bright10

returns from ridge rubble depend on random factors like favorable orientation of blocks while the returns from the remaining

sail may fail to be clearly distinct from the surrounding level ice
:
It
:::::::
appears

::::
clear

::::
that

:::
the

::::::
returns

::::
from

:::
the

::::
ridge

::::::
rubble

::::::::
dominate

::
the

:::::::
brighter

::::
end

::
of

:::
the

::::::::::::
backscattering

:::::::
intensity

:::::::::
histogram.

::::
The

:::::::::
brightness

:::::::
statistics

::::::
involve

::
a

::::::
certain

:::::::::
uncertainty,

::::::::
however.

::::
The

::::::::
histogram

:::::::
depends

:::
on

:::
the

:::::::::
processing

::
of

:::
the

::::::
image

:::::
aimed

::
at
::

a
:::::
good

:::::
visual

::::::::::
appearance.

::
A

::::::
change

:::
in

:::::::
ambient

:::::::::
conditions

::::
may

::::
result

:::
in

::::
quite

::::::::
different

:::::::
intensity

::::::::::
histograms

:::
for

::
an

::::::::
otherwise

::::::::::
unchanged

:::
ice

:::::
cover.

:::::
Still,

::
an

:::
ice

:::::::
charting

::::::
expert

:::
can

::::::::
typically15

::::::::
recognise

::
in

::::
both

:::::
cases

:::
the

:::::
same

:::::::
ridging

::::::::
signatures

:::
as

:::::
these

::::::
appear

::::::::
persistent

::::
and

::::::::::::::
symptomatically

:::::::::::::::
nonhomogeneous.

::::
The

:::::::::
persistence

:::::
shows

:::
up

::::::
clearly

::
in

::::::
binary

::::::
images

::::::::::
comprising

::
a

::::::
certain

:::::::::
percentage

::
of

::::::
bright

:::::
pixels

::::
from

::::
the

:::::::
intensity

:::::::::
histogram

:::
tail.

::
If

:::
the

:::::::::
percentage

::
is

:::::::
reduced,

:::
the

:::::::
ridging

::::::::
signatures

:::::::
become

:::::
more

:::::
sparse

::::
but

::::
tend

::
to

:::::
retain

::::::::
structural

::::::::::
congruence

::::
with

:::
the

::::::::::
non-reduced

:::::::::
signatures. The apparent randomness also corroborates the assumption that the density of the bright pixels in the

image is proportional to coverage of ridge rubble and may act as proxy of ridge rubble coverage and ridge density.20

To proceed following the approach outlined in Section 2.1
:
In

::
a
::::
way,

:::
the

::::::::
objective

:::
of

:::
the

::::::
present

::::::::
approach

::
is
::
to
:::::::

provide
::
a

::::::::
statistical

:::::::::
foundation

:::
for

:::
the

::::::::::
assessment

:::
that

:::
the

:::::::
ridging

:::::::::
signatures

::
in

::::
two

::::
SAR

:::::::
images

:::::
’look

:::
the

::::::
same’.

:::::::
Towards

::::
this

:::
end,

a certain bright pixel percentage (BPP) is selected and a binary image with unit values for the bright pixels is generated.

The variation of bright pixel density
::::
with

::
an

::::::::
intensity

::::::::
threshold.

:::
For

::
a

:::::
higher

::::
BPP,

:::
the

:::::::
selected

::::::
bright

:::::
pixels

:::
are

:::::::
expected

::
to

:::
be

::::::::::::
predominantly

::::::
returns

::::
from

::::
ridge

::::::
rubble.

::::
The

::::::
spatial

:::::::
variation

::::::
related

::
to

:::
the

::::::
ridging

:::::::::
signatures is described in terms of densities25

::
the

::::::
bright

::::
pixel

:::::::
number

:::::
(BPN)

:
in pixel blocks with variable side length L

::::
side

:::::
length

::
L, or equivalently in terms of bright pixel

numbers (BPN
::
the

::::::
bright

::::
pixel

::::::::
coverage

:::::::
(relative

::::
area,

:::::::
density) in the blocks. This is done as a sliding operation for the binary

image, accomplished by a convolution with LxL unit matrix kernel. The result is ‘contextual image’ with the same size as the

original image.
:::
The

:::
side

::::::
length

::
L

:::
and

:::
the

::::
BPP

:::
are

:::::::
variable

:::::::::
parameters

::
of
:::
the

:::::
BPN

::::::::
approach.

:

Suggested by Figure ??, the BPP is chosen to be 20%. The block side lenghts L= 21 (26 m) and L= 101 (126 m) are30

selected for the 1024x1024 and full images respectively. They are also shown as categorised images where the 30% of highest

BPN values are divided into three 10% classes. It is seen that the ridging signatures are enhanced and their connectedness is

improved in the contextual images (Figure ??).

Including a pragmatic viewpoint, L= 21 and L= 101 correspond to the width and length scales of icebreaking ships so

that the BPN values of contextual images provide the number of bright scatterers the ship bow or the whole ship interacts at a35
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time. If the BPN is accepted as a proxy of ridge rubble coverage, the contextual image has direct pertinence to the navigability.

Efficient ship route optimisation in ridged ice cover is based on physical models for the added resistance from the ridges.

The ice-going speed and the probability of besetting can then be obtained in simulations that take the iceconditions along

alternative tracks as input (Kuuliala et al., 2016). The contextual image has potential to provide data for the purpose. The

other possibility is to use ships’ remotely observed response to classify the contextual image signatures in terms of ice cover5

resistance (Similä and Lensu, 2018). The classes of categorised contextual images can be interpreted as classes of navigational

difficulty, or rather as delineation of areas that a ship should not enter. They can be used in tactical navigation or in route

optimisation that only seeks avoid difficult ice types.

2.2 Sensitivity of contextual images

The pixel block side
::::::
Proper

::::::::
validation

::::
data

:::
for

::
the

:::::
BPN

::::::::
approach

:::::
would

::::::
consist

::
of

:::::
ridge

:::::
rubble

::::::::::
topography

::
in

:::::
square

:::::
areas

::::
with10

:
a
::::::::::
comparable

::::
side

::::::
length,

::
for

::::::::
example,

::::::::
scanning

::::::
LIDAR

::::
data

::::
over

:::::::::
snow-free

:::
ice.

::::
The

:::::
extent

::
of

:::::
such

:::
data

::
is
:::::::
limited,

::::::::
however.

:::
The

:::::::::
validation

::::
data,

::::::::
therefore,

:::::::
consists

::
of

:::::
linear

:::::::
surface

::::::
profiles

::::
from

::::::
which

:::::
ridge

::::
sails

:::
are

::::::::
identified.

::::
The

::::::
profiles

:::
are

:::::::
divided

:::
into

::::::::
segments

::
of

:
length

::
L,

:::
and

:::
the

:::::
ridge

:::
sail

::::::::
numbers

::::::
(RSN)

::
in

:::
the

::::::::
segments

:::
are

:::::::
counted.

:::::
Only

:::::
those

::::
sails

:::
are

:::::::
counted

::::
that

::::::
exceed

:
a
::::::
certain

::::::
height

:::::::::
threshold.

:::
The

:::::
ridge

::::::
rubble

::::::::
coverage

::::
will

:::::
inherit

::::
the

::::
RSN

::::::::
statistics

:::
that

::::
can

::::
then

::
be

:::::::::::::
parametrically

::::::::
compared

::::
with

:::::
BPN

:::::::
statistics

:::
for

:::::::::
concurrent

:::::::
datasets.

::::
The

:::::::
segment

::::::
length

:
L affects the resolution of detail in the contextual15

images and its value may be chosen to suit the context; hence the term. The question on the effect of BPP to the contextual

images is of importance. There are also alternative methods to generate a contextual image, like sliding block average for

intensity. With increasing BPP the variation of the BPN in the contextual image, measured by the coefficient of variation,

decreases towards zero and the contrast between ridged areas and the background grows weaker. However, this appears less

in the categorised images. Choosing BPP from the range from 2% (pixels with value 255) to 95% results into a catergorised20

images that are not much different from that in Figure ??. This is also found if sliding intensity average is usedinstead. More

strikingly, the information of the contextual image is essentially retained in different randomising transformations done for

the original image. In Figure ?? the 1024x1024 image has been multiplied eight times by a random matrix which erodes the

ridging signature of
:::
and

:::
the

::::
sail

:::::
height

::::::::
threshold

:::
are

::::::::
variables

::
of

:
the original image almost beyond recognition. However, the

contextual images still emerge essentially unchanged in their main features.
::::
RSN

::::::::
approach.

:
25

Results for 1024x1024 image multiplied 8 times by a random matrix. A) The 200x200 subimage B) Contextual image

obtained by BPP 20% and 21x21 convolution kernel C) Categorisation in terms of coverage.
::
As

:::
the

:::::
BPN

:::
and

::::
RSN

::::::::::
approaches

::
are

::::::::
formally

:::::::::
analogical,

::
a

::::
more

:::::::::
theoretical

:::::::::
validation

:::::::
exercise

:::::
seeks

::
to

:::::
show

:::
that

::::
they

::::::
follow

:::
the

:::::
same

::::::::
statistical

::::::
model.

::::
The

:::::
model

::
is

::::::
derived

:::
by

:::::::::
considering

::::
how

::::
BPN

::::
and

::::
RSN

::::::
values

::::::
change

::::
with

::::::::
threshold

::::::
changes

:::::::::
(threshold

::::::::
process).

:::::::::::::
High-resolution

:
(
::::
1.25

::
m)

:::::::
images

:::::::
resolving

:::::::::
individual

:::::
ridge

::::
sails

:::
are

::::
used.

:
30

These observations indicate that, within the considered pixel block methods using the same block size, the order of the BPN

values is only weakly affected by method change. For
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2.2
:::::::::

Estimating
:::::
ridge

::::::
rubble

::::::::
coverage

:::::
Ridge

::::::
rubble

:::::::
coverage

::::
can

::
be

:::::::::
estimated

:::::
along

:
a
::::::

linear
::::::
profile

::::
from

:::::
ridge

:::
sail

::::::
height

::::
and

::::
ridge

:::::::
density.

:::
To

:::::::
provide

:::::::
realistic

::::::::
estimates,

:::
the

:::::
effect

:::
of

:::
the

:::::
cutoff

::::
sail

::::::
height

::::
used

::
in
:

the 10% classes used in the categorised images the change does not

induce extensive flux of contextual image values across class boundaries. In more detail, starting with some reference method

it can be investigated how the contextual image values are mapped to those of an alternative method. For example, mapping5

for L= 21 and BPP 20% the 1024x1024 image BPN values to matching L= 21 sliding intensity averages the relationship

is monotonous on the average. For each BPN value the mapped intensity averages have a normal distribution with standard

deviation in the range 3.5-4.5. On the other hand, the widths of the 70%− 80%, 80%− 90% and 90%− 100% categories for

the intensity average image are 9, 15
:::::
profile

:::::::
analysis

:::::
must

::
be

::::::::
assessed,

::
as

:::::
well

::
as

:::
the

:::::::::
application

:::
of

::::::
results

:::::::
reported

:::
on

:::
the

:::
sail

::::::::::::
width/height

:::::
ratio,

::::::
which

::
is

:::::
noted

::
as

:::::::::
R= w/h.

::::::::::
Considering

::::
first

:::
the

:::::
ridge

::::::
width,

:::
the

:::::
effect

::
of

:::::::
oblique

::::::
angles

::
of

::::
sail10

:::::::
crossings

:::::
must

::
be

:::::
taken

::::
into

:::::::
account.

::::
For

::::::::
randomly

:::::::
oriented

::::::
ridges,

:::
the

:::::::
average

:::::
width

::
is

::::
π/2

:::::
times

:::
the

::::::::::::
perpendicular

:::::
width

:::::::::::
(Mock, 1972).

::::
The

:::::::
reported

::
R

:::::
ratios

:::
for

::::::::::::
perpendicular

:::::
width

:::
are

::::::
usually

::::::
around

::
4.

::::::::
However,

:::
the

::::::::::::
measurements

:::::::
typically

:::::
refer

::
to

::
the

:::::::
highest

::::
point

::
of

:::::
some

:::
sail

:::::::
section,

:::::
while

:::::
aerial

:::::::
imagery

:::::
shows

::::
that

:::
the

:::
sail

:::::
width

::::
does

:::
not

::::
vary

::
as

:::::
much

::
as

:::
the

:::
sail

::::::
height

:::
but

::
is

:::::
rather

::::::::
constant.

:::
The

::::::
results

:::
of

::::::::::::
(Lensu, 2003)

::::::
indicate

::::
that

:::
the

::::::
highest

:::::
point

:::
of

:
a
::::
sail

::::::
section

::
is

:::::::
typically

::::
2.5

:::::
times

:::
the

::::::
average

:::
sail

::::::
height,

:
and 102 respectively. Thus especially the highest class retains its delineation in this method change.15

In the present study the BPN statistics is at focus however. For selected pair ofL and BPP a certain finite, discrete distribution

with maximum value L2 becomes defined for
::::
thus

:::
the

::::::
average

:::::
value

::
of

::
R

::::::
random

::::
sail

:::::::
crossings

::
is
:::::
about

:::
10.

::
To

::::
add,

:
the BPN. A

distribution model parameterised by L and BPP would provide basis for the study of interrelations between contextual images

defined for different scales L. The principal approach towards the BPN statistics is to consider how the statistics is changed in

BPP changes
:::::::
Rayleigh

:::::::
criterion

::::::
counts

::
as

:::::::
singular

::::::
ridges

::::::
certain

:::::
wider

:::::::
multiple

:::::::
peaked

:::::::::
formations.

:::::::::
Deformed

:::
ice

:::::
fields

::::
also20

::::::
include

::::::::
scattered

:::::
rubble

::::
and

::::
other

:::::::
diffuse

::::::::
roughness

:::
not

:::::::::
accounted

:::
for

::
in

:::
the

:::::::::
estimates.

::
To

:::::::
include

:::
the

::::::::::
contribution

:::
of

:::::
these,

::
the

:::::
value

:::::::
R= 13

::
is

::::::
adopted.

As an introduction to the theme, the BPN values are obtained from a non-overlapping L= 8 block tiling (i.e. not as a sliding

operation of contextual images). The BPP for a 1024x1024 image is increased from 10% to 15%. For each block this induces

a BPN increase from n to n+m(n) where m(n) is
:::
The

:::::
cutoff

::::
sail

::::::
height

::::::
affects

::::
both

:::::
ridge

::::::
density

::::
and

:::::
ridge

::::::
height.

:::
To25

:::::::
estimate

:::
the

:::::
cutoff

::::::
effect,

:::
the

:::::::::::
extrapolation

::::::
model

:::
by

::::::::::::
(Lensu, 2003)

:
is
:::::::

applied.
::

It
::

is
::::::::

assumed
::::
that

:::
the

:::::::
average

:::
sail

::::::
height

::
is

:::::::::::
representative

::
of

:
the number of added bright pixels. In Figure ?? the range of n+m(n) is shown for each value n together

with the distribution m(n) given n= 11. The mean value of m(n) increases first with n, but levels off in the mid-range and

starts to decrease for higher BPN. For n= 11 and other selected the test values m(n) follows Poisson distribution. Thus the

change m(n) can be modeled as resulting from a process where new bright pixels are assigned randomly to the blocks with a30

rate that depends on n. This observation leads to the generative model for the BPN distributions in the next section.
:::::
whole

::::
data

::
set

::::
and

::::
only

:::
the

:::::::
variation

:::
of

::::
ridge

:::::::
density

:
is
::
at
:::::
issue.

::::
For

:::
the

::::::
present

:::::::
LIDAR

:::::
profile

::::
data

::::
with

::
a
:::::
cutoff

::::::
height

::
of

:::
0.4

::
m

:::
and

:::
an

::::::
average

:::
sail

::::::
height

::::
0.65

::
m,

:::
the

::::::
model

:::::::
provides

::::::::
estimates

::::
that

:::
the

:::
true

:::::::
average

:::::
height

::
is
:::::::::::
ha = 0.48 m

:::
and

::::
that

:::
the

:::
true

::::::::
densities

::
are

:::
2.0

:::::
times

:::
the

::::::::
observed

:::::::
density.
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The increase in BPN values for L= 8 blocks when BPP is increased from 10% to 15%. On the left, the range and mean

value of increased BPN. On the right, distribution of BPN increase for blocks with 11 bright pixels.

3 Statistical model

2.1 Ridge sail rubble and ridge sail numbers

In the present approach the statistics of SAR images from ridged ice cover is described in terms of bright pixel numbers5

(BPN) in non-overlapping pixel blocks. High resolution ( 1.25 m ) images resolving individual ridge sails are used in the

development. Bright pixels are defined by an intensity threshold, or by equivalent bright pixel percentage (BPP), and the

numbers of bright pixels in the pixel blocks are counted. The parameters of the approach are the block side length L in pixels

and the BPP (equivalently, intensity threshold for the BPP). The guiding hypothesis is that BPN values increase on the average

with the area covered by ridge sail rubble. It is less evident whether or not the BPN values increase with ridge height if the sail10

rubble coverage remains the same. Another issue is the interpretation of lower resolution SAR images not resolving individual

ridges
:::::
Taken

:::::::
together,

:::
the

:::::
ridge

:::::
rubble

::::::::
coverage

:::::
RRC

:::::
along

:
a
::::::
profile

:::
is:

RRC

A
:::::

=
:

π

2
×R×ha×λ

:::::::::::::

(1)

=
:

π

2
× 13× 0.00048× 2× lambda,

:::::::::::::::::::::::::::

(2)

:::::
where

:::
all

::::::::
quantities

:::
are

::
in

:::::::::
kilometres

:::::::::::
(ha=average

::::::
height,

::::::::::
λ=observed

:::::
ridge

::::::::
density).

::
A

::::
unit

:::::::
increase

::
in

:::
the

::::::::
observed

:::::
ridge15

::::::
density

:::
for

:::
0.4

::
m

:::::
cutoff

::::
data

::::::::
increases

:::
the

:::::
along

::::::
profile

::::::
rubble

:::::::
coverage

:::
by

::::::
1.96%.

:::::::::
However,

::
as

:::
the

:::::::::::
interpolation

::::::
factors

:::
are

:::::
rough

::::::::
estimates,

:::
the

:::::
value

:::
2%

::
is

::::
used

::::::
instead.

Sail rubble can be quantified from two-dimensional topographic data but only few local datasets exist from the Baltic, one

analysed data being (Similä et al., 2010). The more extensive validation data consists of airborne ice surface profiles from

which ridge sails and their heights are identified. Profile data will retain its importance also in the future as narrow beam20

satellite laser altimetry by IceSAT−2 is likely to become a major source of validation data (Fredensborg Hansen et al., 2021).

For pencil beam airborne laser data, which is used in this study, ridge sail statistics is described in terms of profile segments of

length L. The numbers of ridge sails reaching above certain height threshold in the segments are counted (ridge sail numbers,

RSN). Segment length L and
:
If
:::
the

::::::::
profiling

:::::
flights

:::::
have

::::::
crossed

:::
an

::::
area

:::::::
multiple

:::::
times

::
in

:::::::
different

:::::::::
directions,

::::::
which

::
for

::::
our

:::
data

::::
was

:::
the

::::
case

:::
for

:::::::
coastal

::::
ridge

:::::
fields

:::::
near

:::
the

:::::
flight

::::
base,

:::
the

::::::::
estimate

::
is

::::::::::::
representative

::
of

:::::
areal

:::::
rubble

:::::::::
coverage.

:::
For

::
a25

::::::
singular

::::::::
crossing,

:
the sail height threshold are parameters. They are conceptually equivalent to the pixel block side length and

the pixel intensity threshold for SAR images.
:::::::::
relationship

:::::::
involves

::::::::::
randomness

::::
and

::
is

::::::::
generally

:::
the

:::::
more

::::::
reliable

:::
the

::::::
larger

::
the

::::::::::
considered

::::
area

::
is,

::::::::
provided

:::
that

:::::::::::
homogeneity

::
of

:::::::
ridging

:::::::::
conditions

:::::::
persists.

:::
On

:::
the

::::
other

:::::
hand,

:::::::::::
independent

::::::::
estimates

::
of

:::::
rubble

::::::::
coverage

::::
from

::::
SAR

:::
or

::::
other

::::
data

:::
can

::
be

:::::::::
converted

::
to

::::
ridge

::::::
density

::::::::::
interpreted

:::::
either

::
as

::
an

:::::::
average

::
of

:::::::
multiple

::::::::
crossings

::
or

::
as

:::
the

:::::::::
probability

::
to

::::
find

:::
the

:::
said

:::::::
density

::
in

:
a
:::::::
singular

:::::::
random

:::::::
crossing.

:
30
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Correlations are expected between RSN values and the sail rubble coverage in the horisontally extended area from which

the linear profile data samples. In the Section 3.1 we will derive Equation 2, which yields an estimate that on the average one

ridge per km corresponds approximately to 2% sail rubble coverage in km2. Thus, as mediated by the sail rubble coverage,

correlations between bright pixel numbers and ridge sail number is expected. Due to temporal separation and ice drift, BPN

values in pixel blocks and RSN values in segments cannot usually be directly compared for matched pairs of blocks and5

segments. To this adds the fact that Eq. 2 holds as such only for extended homogenous ridge fields while the local RSN values

are random linear samples from the local two-dimensional sail geometry. The approach therefore seeks to demonstrate that

both BPN and RSN follow the same statistical model and to establish parametric relations between the two.

2.1 Threshold process

For an idealised SAR image with accurate real-valued intensities
:
, the pixel values can be arranged into strictly increasing order.10

The derivation of the statistical model for the BPN in pixel blocks is based on the following approach. In the idealised setting,

starting from
:::::::
Starting

::::
from

:::
an empty image matrix and from the brightest pixel, the pixels of the ordered series are added

one by one
::
can

:::::
then

::
be

::::::
added to the matrix

:::
one

:::
by

:::
one. It can then be studied how the probability for the BPN to increase

by one depends on the
::::
pixel

:::::
block state <L,BPN,...> of the block as defined by side length

::
by L, BPN, and possibly by other

descriptors. These increase
::::
The probabilities can then be used to formulate recurrence relations that can be used to generate15

::::::::
generating

:
finite BPN distributions. This is manageable at least when the relations depend linearly on BPN, which will be also

the assumption behind the distribution models applied in the present approach.

For integer valued SAR imagesthe process is realised by starting
:::::::::::
integer-valued

:::::
SAR

::::::
images,

::::
the

::::::
process

:::::
starts

:
from the

BPN values for maximum intensity , usually 255, and adding step by step
:::
and

::::::::
proceeds

::
in

:::
unit

::::::
integer

:::::
steps

::
by

::::::
adding

:
pixels

of subsequent lower intensity. This means decreasing the intensity threshold by unit integer steps, and the process is designated20

here as
:
is
:::::::::
designated

::
as

:::
the

:
threshold process. The increase

::::::::
increased probabilities are replaced by increase

::::::::
increased rates, that

is, the relative number of events of unit BPN increase. For RSN,
:
an analogical process decreases

::
the sail height threshold with

::
by

:
small values, starting from a threshold equalling the highest ridge. The increase rates are then intepreted as increase

::
of

:::
the

:::::::
threshold

:::::::
process

:::
are

::::
then

:::::::::
interpreted

::
as

::::::::
increased

:
probabilities of an idealised process. Strictly taken this requires that

::::
This

::
is

::::::::
legitimate

::
if the number of increase events larger than unity is relatively small for each step. In practice the steps are limited25

from below by the discreteness of the SAR intensity, or by the nominal reading accuracy of profiling instruments, typically 1

cm.

The threshold process is continued to certain BPP a
::::::

certain
:::::

pixel
:::::::
intensity

:
or ridge sail height cutoff, called a target thresh-

oldabove which the statistics is assumed to be dominated by ridges. The derivation of statistical model from the increase rate

::
the

::::::::
statistical

::::::
model is based on the following observation. The target threshold being set, the SAR intensity or ridge sail height30

values higher than or equal to the target threshold can be randomly permuted. This changes the increase rates, generating

another threshold process. However, the end result, or the
::::
BPN

::
or

::::
RSN

:
distribution observed on the target threshold level ,

is the same for both processes. Thus,
:

the new increase rates can be used to generate the observed distribution. The random

permutation has the merit that it removes
:
of

:::::::::
removing the spatial correlations of intensities or sail heights . The threshold
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process reduces
::
so

::::
that

:::
the

::::::::
threshold

::::::
process

::
is

:::::::
reduced to a random deposition processthat does not depend on intensities or

sail heights.

2.2 Scale system of distributions

The threshold process and the distribution model are presented for ridge sail numbers
::::
RSN

:::::::
statistics. The case for bright

pixel numbers
::::
BPN

:
is conceptually analogical . However, the BPN statistics involves features present in SAR images but5

not in profile data: material sea ice characteristics such as mm-cm scale surface roughness of ice and inhomogeneities in the

uppermost part of ice,
:::
but

:::::::
involves

::::::::::::
complications

:::
not

::::::
present

::
in
:::::
RSN

::::::::
statistics: discreteness of integer data, resolution set by

pixel size, and the limit L2 as the maximum BPN value.

In RSN analysis
:
,
:
surface profile data is divided into segments

:
, and the numbers n of sails in the segments are counted.

Segment length Li is a variable parameter. A discrete distribution k(ni) for sail number ni becomes defined for each scale Li.10

If Lj < Li is a shorter segment, a conditional distribution k(nj |ni) becomes defined. This can be interpreted as the conditional

probability to find nj sails in an Lj-segment nested inside an Li-segment containing ni sails. The k(nj |ni) can be also called

downscaling probabilities as they can be used to derive distribution k(nj) from k(ni). This
:::
The

:
approach can be extended to a

cascade of scales, constituting a scale system of distributions. It is convenient if shorter scales divide longer scales, preferably

as a binary cascade where segments are successively bisected.15

In an idealised threshold processes
::::
ideal

::::::::
threshold

:::::::
process,

:
the sail heights can be

::
are

:
arranged into strictly increasing order

and added one by one to the segmented profile. Two nested segments with lengths Li > Lj are considered and the shorter

segment Lj is divided further
:
so

::::
that

:::
the

::::::
longer

:::::::
segment

:::
Li :

is
:::::::

divided
:
into segments with length Lj and Li−Lj . If the sail

is added in the process to L
::
Li-segment, it has a certain probability to become

:
of

:::::::
getting added to each subsegment. This

probability must satisfy the additivity condition P (Li) = P (Lj) +P (Li−Lj). In general the probabilities depend on local20

conditions, especially sail height correlations. If the correlations are removed by a random permutation of heights the
:::
The

simplest assumption satisfying the additivity condition is P (Li ∼ ni + aLi). This assumption
:::::::
condition

::
is

::::::::::::::::
P (Li)∼ ni + aLi,

:::::
which leads to the hypergeometric distribution (Lensu, 2003):

k(nj |ni) =

(
aLj+nj−1

nj

)(
aLi−aLj−1+ni−nj

ni−nj

)(
aLi+ni−1

ni

) , nj = 0,1, . . . ,ni. (3)

If Li/Lj � 1, then the finite and discrete distribution k(nj |ni) is approximated by k(nj) and k(nj) is approximated by the25

negative binomial distribution

k(nj) =

(
aLj +nj − 1

nj

)
paLj (1− p)nj , where p=

aLj
aLj+< nj >

, (4)

and further
:
,
:::
and

:::::::::::
furthermore, if < nj > is large, the continuous approximation of Eq. 4 is the gamma distribution:

f(nj) =
1

Γ(α)
βαnα−1eβnj betanj

::::
, α= aLj , β =

aLj
< nj >

. (5)
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It is convenient to assume that L is
::
Li::

is
::
a regional scale where the variation in ridging conditions is

::::::
ridging

::::::::
statistics

:::
are

described by the negative binomial k(ni),
:
as approximated by the gamma distribution. The hypergeometric k(nj |ni) can

::
is

then be used to describe local variation.

The scale system is validated along
::::::::
statistical

:::::
model

::
is
::::::::
validated in two stages. The

::::
First,

:::
the

:
additivity condition is first vali-

dated by conducting a threshold process for selected scales and target thresholds and observing whether the increase rates have5

:
a linear dependence on the sail number. As the threshold process is an artificial device and process steps are incommensurate,

the actual values of the linear parameters provide little information.
::::
RSN

::
or

:::::
BPN. In the next stage, the distribution models are

fitted to the data. In the sections to followthis is made by
:
,
:::
this

::
is

::::
done

:::
by

:::
the observed mean and variance,

:
and the goodness of

fit is checked. The parameter a is obtained from the variance

var(nj |ni) =
Ljni(aLi +ni)(Li−Lj)

L2
i (aLi + 1)

(6)10

and

var(nj) = 〈nj〉+
〈ni〉2

aLj
(7)

for the hypergeometric and negative binomial models, respectively. We remark that the
:::
The variance for the negative binomial

distribution is larger than the mean
:
, which ensures that a is positive in Eq. 7. The parameter a quantifies in the threshold process

the
::
the

:
relative strength of

::
the

:
component process of

::
the

:
random spatial deposition of sails, that is,

::
the

:
Poisson process. If the15

validation results agree for test cases selected from a certain scale range, it can be concluded that the scale system is applicable

over the scale rangeand for any combination of scales.

2.3 Observed rates and distributions for ridge sail number
:::::::::
Simulation

:::
of

::::
SAR

:::::::
texture

::
by

:::
the

:::::::::
threshold

:::::::
process

The profile data set described in Section ?? was used to study the scale system and its generative threshold process. All profile

data consisting of
::
To

:::::::
analyse

:::
the

::::
BPN

::::::::
threshold

::::::
process

::
in
::::
full

::::
detail

:::::::
requires

::::
that

:::::
bright

:::::
pixels

:::
are

:::::
added

::::
one

::
by

:::
one

::
in

:::::::
process20

::::
steps.

::::
For

::::::::::::
integer-valued

:::::::
images,

:::
this

::::::
cannot

::
be

::::::::
attained.

:::
On

:::
the

:::::
other

::::
hand,

::
it
::
is

:::::::
possible

::
in

::
a
::::::::
validation

::::::::
approach

::::::
where

:::
the

::::::::
generative

::::::::::
hypotheses

:::
are

:::::
tested

::
by

:::::::::
simulating

:::
the

:::::::::
generative

:::::::
process.

::::
The

:::::::::
simulation

::::::::::
commences

::::
from

::
a
::::::
certain

:::::
stage

::
of

:::
the

:::::::
observed

::::::::
threshold

:::::::
process.

:::::
New

:::::
bright

::::::
pixels

:::
are

:::::
added

:::
one

:::
by

::::
one

::::::::
following

:::
the

::::::::
assumed

::::::::::
probabilities

::::
and

:::::::
possibly

:::::
other

:::::::::
conditions.

:::
The

:::::::::
simulated

:::::
result

:
is
::::
then

:::::::::
compared

::::
with

:::
the

::::::::
observed

:::
one.

:

:
A
::::::

binary
::::::
image

::::
with

:::::
value

::
1

::::::
(white)

:::
for

:::
an

:::::::
observed

::::
low

:::::::::
percentage

:::
of

:::::::
brightest

::::::
pixels

::
is

::::
used

::
to
:::::

seed
:::
the

:::::::
process.

::::
The25

::::::::
simulation

:::::::
changes

:::
the

:::::
value

::
of

:::::
black

:::::
(zero)

:::::
pixels

::::
into

:::::
white,

::::
one

::
at

:
a
:::::
time.

::::
This

:
is
:::::
done

::
by

::
a

::::
scale

:::::::
cascade,

::::::
which

:
is
::::::::
assumed

:::
here

:::
to

:::::
follow

::::
the

:::::
linear

:::::::::
generative

:::::::::
hypothesis.

::::
The

::::
first

::::
step

::::::
divides

:::
the

::::::
image

:::
into

::::
four

:::::::::
rectangles

:::::
along

:::::::::
randomly

::::::
chosen

::::::
vertical

:::
and

:::::::::
horizontal

:::::
lines.

:::
To

::::
each

::::::::
rectangle

::
is

:::::::
assigned

::::::
weight

:::::::::::
aN0 +N1,

:::::
where

:::
N0

::
is
:::
the

:::::::
number

::
of

::::::
pixels,

::::
N1

::
is

:::
the

::::::
number

::
of

::::::
white

:::::
pixels,

::::
and

:::::
a < 1

::
is

::
a

::::::::
parameter

::::
that

:::::::
controls

:::
the

:::::::
relative

:::::::
strength

::
of

::
a

::::::
random

::::::
spatial

:::::::::
placement

::::::::
(Poisson

:::::::
process).

::::
One

::
of

:::
the

:::::::::
rectangles

::
is

:::::::
selected

:::
for

:::
the

::::
next

::::
step

::::
with

::
a
:::::::::
probability

:::::::
defined

::
as

:::
the

::::
ratio

::
of
::::::::

rectangle
::::::

weight
:::

to
:::
the30

:::
sum

:::
of

:::::::
weights.

::::
The

:::::::
selected

::::::::
rectangle

::
is

::::::
divided

::::::
further

::::
into

::::
four,

::::
and

:::
the

:::::::
cascade

::
is

::::::::
continued

::::
until

::::
the

:::::::
rectangle

::::::::
contains

::::
only

:::
one

:::::
black

::::
pixel

::::
that

::
is

:::::::
changed

::
to

:
a
:::::
white

:::::
pixel.

::::
The

::::::
process

::::::
repeats

:::::
until

:
a
:::::
preset

:::::::
number

::
of

:::::
white

:::::
pixels

::
is

:::::::
reached.

:
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:::
The

:::::::::
simulation

::::::::
approach

:::
can

::::
also

::
be

:::::::
applied

::
to

:::::
other

::::::::
generative

::::::::::
hypotheses.

::::::::
Imposed

::::
maps

:::
of

:::::::
spatially

:::::::::
distributed

:::::::
weights

:::
can

::
be

::::
used

:::
to

::::::
include

::::::
spatial

::::::
aspects

::
of

:::
the

:::::::::
generative

:::::::
process,

::::
like

::::::::::
correlations,

:::::::::::
homogeneity,

::::::::
gradients

::::
and

:::::::
support,

:::
i.e.

:::
the

::::::::
subregion

::::::
outside

::
of

::::::
which

:::
the

::::::
process

::
is

:::
not

::::::
active.

3
::::::
Results

3.1
::::::::

Observed
::::::::
threshold

:::::::
process

:::::
rates

:::
and

::::::::::::
distributions

:::
for

:::::
ridge

:::
sail

:::::::
number5

::::
From

:::
the

::::::
profile

::::
data

:::
set

::::::::
described

:::
in

::::::
Section

::::
2.1,

:
profiles exceeding 5 km in length was

::::
were

:
selected and truncated to be

divisible into 1.6 km, in total 2256 km. In the determination of RSN values for variable segment lengths
:::
For

:::::
RSN

:::::::
analysis

::
the

::::::::
segment

:::::
length

:
L the binary cascade [50,100,200,400,800] (meters) was used. The threshold process was set to decrease

::::::::
decreased in 0.01 m steps from 2.5 meters , which value selects (10 ridge sails from the whole dataset. The weight of cases

where RSN values increase by more than one in a step increases exponentially with the decreasing threshold. This affects the10

results significantly for thresholds smaller than 0.5 m. The
::::::
ridges).

:::
The

:
target threshold was set therefore to 0.5 m , selecting

:
(18638 ridges, and the number of threshold process steps was 201.

:
).

The increase rates
:::
per

::::
step

:
were determined as the mean value of RSN increases, including zero increase. The ,

::::
and

:::
the

presented results are for the pooled data comprising all steps to the 0.5 m target threshold. However, the results were essentially

similar if a higher target threshold was used. The increase rates were calculated both for the original data and for the data with15

randomly permuted sail heights. The results are shown in Figure ?? where the graphs are truncated for the tail part of RSN

values for which the few RSN increase instances show
:::::
shown

::
in
::::
Fig.

::
5

:::::::::
disregarded

:::
the

:::
tail

::::
part

::::
with

::
an

:
excessive variation. In

the right panel of Figure ??
:::
Fig.

::
5,

:
the highest RSN already corresponds

:::::
values

::::::::::
correspond

:
to ridge density 160/km, a value

characteristic to rubble fields
::
of

::::::
rubble

::::
fields

::::
with

:::
no

::::
level

:::
ice

::::::
visible. The increase rates were generally linear for the randomly

permuted data. There is
:::::
linear

::::
with a slight superlinear bendwhen both L and RSN have higher values.20

The increase rates for the original, non randomised data are shown also in Figure ?? for L= 100 and are seen to
::::
rates

:::
for

:::::::::::::
non-randomised

::::
data

:
deviate after beginning from linear to sublinear increase. For other scales,

:
the behaviour was similar

:
,

and for long L
:
, the rate more or less settled to a constant value in its tail part. Sail height correlations are the likely reason

for these observations. These
::
A

:::::
likely

::::::
reason

:
is
::::

that
:::
sail

::::::
height

::::::::::
correlations

::::
that arise naturally as the thickness of parent ice

from which the ridges are created varies spatially and
:::::
block

::::::::
thickness

::
(a

::::::::
parameter

:::::::::
controlling

:::::
ridge

:::
sail

::::::
height)

::::
vary

::::::::
spatially25

during the course of
:::
the ice season. Clear correlations were also

::::::::::
Correlations

::::
were

::::::
indeed

:
found between RSN and the average

sail heightfor a segment.

Sail number increase rate for in a threshold process with target threshold 0.5 m. Left: Rate for observed sail heights and

randomised sail heights for segment length L= 100 m . Right: Rates for randomised sail heights for different segment lengths.

The hypergeometric and negative binomial distributions were fitted to
:::
the data with observed parameters (mean and vari-30

ance). The negative binomial k(ni) agrees well with the empirical distributions derived from the full dataset in Figure ??.

:::
Fig.

::
6.

:
Only the number of empty segments is overestimated for 200 m and 400 m segment lengths. Figure ??

::::
Fig.

:
7
:
shows

the hypergeometric distributions k(nj |ni) for the conditioning scale Li = 1600 m and for the range [50,100,200,400] of
:::
the
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subsegment scale Lj . Results
:::
The

::::::
results

:
for two values of conditioning RSN, ni = 16 and ni = 72, are shown. These are

equivalent to ridge densities 10/km and 45/km for the segments Li. The agreement is good,
:
considering that the subset size is

limited by fixed value ni. Similar results are found for other combinations of Li,Lj , and ni. The hypergeometric model was

derived from the assumption that the rate of
:::
the RSN increase for

::
the

:
segment length is proportional to n+ aL.

The parameter a is obtained from
::
the

:
mean and variance and is generally found to decrease with L following a

:::
the power law.5

For the shown hypergeometric case
:::::::::::::
hypergeometric

::::
case

::::::
shown,

:
the exponent has about the same value

::
of

:
0.5 for all values

of the conditioning ni ranging from 16 to 72. The parameter a can be interpreted as
:::
was

:::::::::
interpreted

::
as

:::
the

:
relative Poisson

intensitythat ,
::::::
which also provides the rate of sail appearances to empty segments in the threshold process. The threshold

process is basically governed by the physical presence of ridge rubble in the profile segments. In an idealised setting, if there is

not rubble present it cannot be detected by the threshold process either
:
If

:::::
there

:
is
:::
no

:::::
rubble

::::::
present

::
in
:::
the

::::::::
segment,

::
it

:::
can

::
be

::::
said10

::
to

::::::
consist

::
of

::::
level

:::
ice

:::
and

::::::
cannot

:::::::::
experience

::
a

::::::
change

::
of

::::
RSN

:::::
from

:
0
::
to

::
1,

::::::
either.

:::
The

:::::::
Poisson

:::::::::
parameter

::
of

::::
level

:::
ice

::::::::
segments

:
is
:::::
zero,

:::
and

::::
the

:::::::
observed

:::::::
Poisson

:::::::::
parameter

::
a

::
is

:::::::
obtained

:::
by

::::::::::
multiplying

:::
the

:::
true

:::::::
Poisson

:::::::::
parameter

::
of

::::::
rubble

::::::::
segments

:::
by

::::
their

::::::
relative

::::::::
coverage. Thus the power law suggests that the area covered by ridge rubble has fractal geometry. This point is

addressed further in the Discussion section.

Figure 5.
:::
Sail

::::::
number

::::::
increase

:::
rate

:::
for

::
in

:
a
:::::::
threshold

::::::
process

:::
with

:::::
target

:::::::
threshold

::
0.5

:::
m.

:::
Left:

::::
Rate

:::
for

::::::
observed

:::
sail

::::::
heights

:::
and

:::::::::
randomised

:::
sail

:::::
heights

:::
for

::::::
segment

:::::
length

:::::::
L= 100

::
m

:
.
:::::
Right:

::::
Rates

:::
for

::::::::
randomised

:::
sail

::::::
heights

:::
for

::::::
different

:::::::
segment

::::::
lengths.

3.2 Observed rates and distributions for BPN
:::::::::::::
Characteristics

::
of

::::::::::::::
high-resolution

::::
SAR15

For the BPN threshold process analyses the high resolution
:::
The

:::::
pixel

::::
size

::
of

:::
the

::::::
March

:::::
2016

::::::::
Stripmap

::::::
image

::
is

::::
1.25

:::
m,

:::::
which

:::::::
resolves

::::::::::::
backscattering

:::::::::
signatures

::::
from

:::::::::
individual

::::::
ridges.

::::
The

:::
size

:::
of

:::
the

:::::
image

:::::
(Fig.

:::
3)is

::::::
19x19

::::
km,

:::
but

:::
for

:::::::
analysis

:::
and

:::::::::::
visualisation,

::::::::
different

:::::::::
subimages

::::
were

::::
also

:::::
used,

:::::::::
principally

::::::::::
7000x7000

:::::::
(8.7x8.7

::::
km)

::::
and

:::::::::
1024x1024

::::::::::
subimages

::::
with

:::::::::::
representative

::::::
ridging

::::::::::
signatures.

::
To

:::::::
proceed

::::::::
following

:::
the

::::::::
approach

:::::::
outlined

::
in

:::::::
Section

:::
2.1,

::
a
::::::
certain

:::::
bright

:::::
pixel

:::::::::
percentage

:::::
(BPP)

::
is

:::::::
selected

:::
and

:
a
::::::
binary

:::::
image

::::
with

::::
unit

::::::
values

::
for

:::
the

::::::
bright

:::::
pixels

::
is

:::::::::
generated.

:::
The

::::::::
variation

::
of

:::::
bright

:::::
pixel

::::::
density

::
is20

::::::::
described

::
in

:::::
terms

::
of

:::::
bright

:::::
pixel

:::::::
numbers

::::::
(BPN)

::
in

::::
pixel

::::::
blocks

::::
with

:::::::
variable

::::
side

:::::
length

::
L.

:
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Figure 6. Negative binomial fits to the RSN distribution for the full dataset and for different segment lengths.

Figure 7. Hypergeometric fits for distributions k(nj |ni) conditioned by Li = 1600 m and ni = 16 (left panel group) and ni = 72 (right

panel group). The scales Li belong to [50,100,200,400].

:::
Two

:::::::::
derivative

::::::
image

:::::
types

:::
are

::::
also

:::::::::
presented.

:::::::::
Following

:::
the

:::::
BPN

:::::::::
approach,

:::
the

::::
first

::::::::
derivative

::::::::
replaces

:::
(as

:
a
:::::::

sliding

::::::::
operation)

:::::
pixel

::::::
values

::::
with

:::::
BPN

:::::
values

:::::::::
calculated

:::
for

:::::
pixel

::::::
blocks

:::::::
centred

::
at

:::
the

:::::
target

:::::
pixel.

:::::
This

::
is

:::::::::::
accomplished

:::
by

::
a

:::::::::
convolution

::::
with

::
a
::::
LxL

:::::::
all-ones

::::::
kernel.

:::
The

:::::
result

::
is

::::::
termed

:::::::::
’contextual

:::::::
image’,

::
as

:::
the

:::::::
visibility

:::
of

::::::
ridging

::::::::
signatures

::::
and

::::
their

:::::::
effective

::::::::
resolution

:::::::
depend

:::
on

::::
BPP

:::
and

:::::
block

::::
side

::::::
length

::
L,

::::::
which

:::
can

:::
be

::::::
chosen

::
to

::::
suit

:::
the

:::::::::
application

:::::::
context.

::::
The

:::::
other

::::::::
derivative

::
is

::::::::
’category

::::::
image’,

::::::
which

::::::
divides

:::
the

::::::::
brightest

::::
30%

::
of

::::::
pixels

:::
into

:::::
three

::::
10%

:::::::
classes,

:::::
either

:::
for

:::
the

::::::
original

:::
or

:::
the5

::::::::
contextual

::::::
image.

:

::
In

:::
the

::::::::::::
category-image

:::::::
version

::
of

:::
the

::::::::
Stripmap

:::::
image,

:::
fig.

::
3,
:::::::
ridging

::::::
features

::::::
appear

::
to

::
be

:::::::
visually

:::::::::
delineated

::
by

:::
the

::::::::
brightest

::
20
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:::::
These

::::::::::
observations

:::::
agree

::::
with

:::
the

::::::
results

:::
by

:::::::::::::::
(Manninen, 1992)

:::
and

::::::::::::::::::::::::::
(Carlström and Ulander, 1995)

:::
that

:::::::
indicate

:::
that

::::::
bright

::::::
returns

::::
from

::::
ridge

::::::
rubble

::::::
depend

::
on

:::::::
random

::::::
factors

:::
like

:
a
:::::::::
favourable

:::::::::
orientation

::
of

::::::
blocks,

:::::
while

:::
the

::::::
returns

::::
from

:::
the

:::::::::
remaining

:::
sail

::::
may

:::
fail

::
to

:::
be

::::::
clearly

::::::
distinct

::::
from

:::
the

:::::::::::
surrounding

::::
level

:::
ice.

::::
The

::::::::
apparent

::::::::::
randomness

:::
also

:::::::::::
corroborates

:::
the

::::::::::
assumption

:::
that

:::
the

::::::
density

::
of

:::
the

::::::
bright

:::::
pixels

::
in

:::
the

:::::
image

::
is

::::::::::
proportional

:::
to

::
the

::::::::
coverage

::
of

:::::
ridge

::::::
rubble.

:

::
In

:::
the

::::::::
contextual

::::::
image

:::
and

:::
its

:::::::
category

:::::
image

:::::::::
rendering,

::::
Fig.

:::
17,

:::
the

::::::
sliding

:::::
block

:::
side

::::::
length

::
is

:::::::
L= 101

::::
(126

:::
m),

::::
and

:::
the5

::::
BPP

:
is
::::::
chosen

::
to
:::
be

::::
20%

::
or

::::::::::
comprising

:::
the

:::
red

:::
and

::::::
yellow

:::::
pixels

::
of

::::
Fig.

:::
17.

::
It

:
is
::::
seen

::::
that

:::
the

::::::
ridging

:::::::::
signatures

:::
are

::::::::
enhanced

:::
and

::::
their

::::::::::::
connectedness

::::::::
improved

::
in

:::
the

:::::::::
contextual

::::::
images

:::::
(Fig.

:::
17).

:

3.3
::::::::
Observed

::::::::
threshold

:::::::
process

:::::
rates

:::
and

::::::::::::
distributions

:::
for

:::::::::::::
high-resolution

:::::
BPN

:::
For

:::
the

:::::::
analyses

:::
of 7000× 7000subimage was used. Instead of contextual image generated by a convolution operation, the

image was
:
,
:::
the

:::::
upper

::::
left

::::::
corner

::::::::
subimage

::
of

:::
the

::::::::
Stripmap

::::::
image

::::
was

::::
used

:::
in

::::
order

:::
to

:::::
avoid

:::
the

:::::::
refrozen

::::
lead

::::::
visible

:::
in10

:::
Fig.

::
3.

::::
The

:::::
image

::::
was divided into non-overlapping pixel blocks with varying side length L, measured in pixels. The intensity

threshold was decreased by unit integer steps, starting from 255, and the rate of BPN increase as a function of BPN was

obtained for each step. In the presented results
:
, the rate data comprises all steps down to the target threshold. In the subimage

:
,

1.2% of the highest intensities are saturated to 255. This percentage is equal to that for
:::
the intensity band [218,254] and would

correspond to the extending of the exponential tail of
::
the

:
intensity histogram beyond 255 to 350. This somewhat affects the15

results for the initial steps of the threshold cascade
::::::
process.

Analogically to the RSN analysis
:
, the pixel intensities above and including the target threshold were randomly permuted.

The increase rate was investigated first for a fixed block side length L and varying target thresholds expressed as BPP. Then

the same was done for varying
::
In

::::
Fig.

::
8,

:::
the block side length and for a fixed target threshold. The first test case is presented

for L= 36 in Figure ??,where the
::
is

:::
set

::
to

::::::
L= 36

::::
and

:::
the

::::::
target

:::::::
intensity

::::::::
threshold

::::::
values

:
[
::::::::::::
182,149,118,86]

:::
are

:::::::
chosen,20

:::::::::::
corresponding

:::
to BPP values [5,10,20,40]correspond to intensity thresholds 182,149,118,86. Similarly as .

:::
As

:
for the RSNthe

absolute
:
,
:::
the magnitude of the rates is not relevant, only their possible linearity. For presentation purposes the rates

:::
and

::::
they

have been scaled so that the sum rate equals L2 or 1024. The different degrees of saturation then separate the point clouds in

Figure ??. Linear dependence of rates on BPN
::::
Fig.

::
8.

:::::::
Linearity

:
is observed unless the saturation of the pixel block is felt . This

occurs after 3/4 of the block capacity is filledand affects significantly only cases BPP 20% and 40%.25

The
:
In

:::
the

:
other test case is presented for BPP 80% in Figure ??, where

::
in

::::
Fig.

::
9,

:::
the

::::
BPP

::
is

:::
set

::
to

::::
20%

::::::
(target

::::::::
intensity

:::::::
threshold

:::::
118),

::::
and

:
the block side length increases in binary fashion from 4 to 128. In addtion to the

:::::::
addition

::
to

:::
the

:::::
same

scaling of rates described above the
::
as

::
in

:::
the

::::
first

:::
test

:::::
case,

:::
the

:
BPN range [0,L2] has been scaled to [0,1]. The results are

similar as above
::
to

:::
the

:::
first

:::
test

::::
case. For comparison, the same result is shown for the original data where the pixel intensities

are not randomised. For higher L,
:
the relationship is

::::
then approximately linear for small relative BPN values, but otherwise,

:
it30

is quadraticand the second order fit is also symmetric within the range of nonzero rates. The quadratic behavior is discernible

also in Figure ??. .
:
Intensity correlations are the apparent reason

:::::
likely

::::::
reason, but no further conclusions are attempted. Also

for the variable BPP case the nonpermuted rates have quadratic dependence on BPN although the data grows diffuse for higher
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BPN if BPP is other than 40%. The rate data 90% percentiles for BPP= [5,10,20,40] are BPN=[134,240,403,637]. Linearity

is not a very good approximation for the 90% range, and is less good for higher BPP.

The BPN increase rates for pixel block side length 36 and BPP increasing from 5% to 40% in binary fashion.

The BPN increas rates for BPP 20% and for pixel block side length increasing from 4 to 128 in binary fashion.

The agreement of the proposed distribution system with the data is again good. Empirical distributions
::::::::::
Distributions

:
were5

calculated from block tiling of the 9216×9216 (11.5×11.5 km) upper left corner subimage. Figure ??
:::
Fig.

::
10

:
shows negative

binomial distributions k(n) fitted by observed mean and variance . BPP is
::
for

::::
BPP

:
10%and the results for ,

::::
and three scales

are shown. The fourth subplot shows the model parameter a as obtained from
:::
the mean and variance for the binary cascade of

scales L= 8,16, . . . ,256 , and for three BPP values. The power law exponents varies
:::
vary

:
from -0.37 to -0.45

::::
0.45 and are thus

close to
::
but

:::::::::
somewhat

::::::
smaller

::::
than

:::
the values obtained in

::
the

:
RSN analysis. Also

:
, the negative hypergeometric model k(nj |ni)10

conditioned by scale Li and BPN value ni applies well. Figure ?? show
:::
Fig.

::
10

::::::
shows

:::
the results for selected combinations of

Li,Lj and ni. The conditioning scale cannot exceed much
::::
much

::::::
exceed

:
the value Li = 16 as the number of instances nj for

conditioning pairs (Li,ni) decrease
::::::::
decreases as L−4.

Figure 8.
:::
The

::::
BPN

::::::
increase

::::
rates

:::
for

::::
pixel

::::
block

::::
side

:::::
length

::
36

:::
and

::::
BPP

:::::::
increasing

::::
from

:::
5%

::
to

::::
40%

::
in

:::::
binary

::::::
fashion.

3.4 Simulation of
::::::::
Simulated

::::::::::::::
high-resolution SAR texture by the threshold process

The hypergeometric distribution model was derived from the assumption that the RSN/BPN increase rate of the threshold15

process has linear dependence on RSN or BPN. This assumption was validated by the rates calculated from data and by fitting

the model to data by mean and variance. To analyse the increase probabilities of the threshold process in fullest detail would

require that ridge sails or bright pixels are added one by one by process steps.For present integer valued images this cannot

be attained. On the other hand, it is possible to test generative hypotheses by simulating the corresponding generative process.
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Figure 9.
:::
The

::::
BPN

::::::
increase

::::
rates

:::
for

:::
BPP

::::
20%

:::
and

:::
the

::::
pixel

::::
block

::::
side

:::::
length

::::::::
increasing

:::
from

::
4
::
to

:::
128

::
in

:::::
binary

::::::
fashion.

Figure 10. In the left panels BPN distributions and their negative binomial fits for BPP 10% and three different pixel block side lengths

L. The parameter a is also shown for a scale cascade 8,16, . . . ,256 and for three different BPP. In the right panel hypergeometric fits for

conditional BPN distributions for different combinations of conditioning scale Li and conditioning BPN ni.

The simulation commences from a certain stage of the observed threshold process. New objects, here bright pixels or sails, are

added one by one following the assumed transition probabilities. The simulated process is then compared with the observed

one. This allows also the analysis of the spatial aspects of the generative process, most importantly homogeneity and support,

or the subregion outside which the process is not active.

This approach is formulated here for SAR images using the linear assumption but including certain additional restrictions5

related to the spatial distribution. A binary image with value 1 for low percentage of brightest pixels is used to seed the

process
::::::::
simulation

:::::::::
algorithm

:::
was

:::::::
applied

::
to

:::
the

:::::::::
1024x1024

::::::::
subimage

::::::::
indicated

::
in

::::
Fig.

::
3.

::::
The

:::::
white

:::::
pixels

::
of

:::
the

:::::
initial

::::::
binary

:::::
image

:::::::::
correspond

::
to
::::
BPP

::::
3%. The simulation changes the value of zero pixels into one, one at a time. This is done by a scale

cascade following the linear generative hypothesis. The first step divides the image into four rectangles along randomly chosen
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vertical and horizontal lines. To each rectangle is assigned weight aN0 +N1, where N0 is number of pixels, N1 number of

occupied pixels, and a < 1 is a parameter that controls the relative strength of random spatial placement (Poisson process).

One of the rectangles is selected for next step with a probability defined as the ratio of rectangle weight to the sum of weights.

The selected rectangle is divided further into four and the cascade is continued until there is only one non-occupied pixel in the

rectangle. The status of this pixel is changed to one and the process repeats until a preset number of nonzero pixels is reached.5

:::::
added

::::
10%

::
so

:::
that

:::
the

::::::::
resulting

::::
BPP

:
is
:::::
13%. If aN0�N1,

::
the Poisson process dominates the simulation step, but overallthe

process inevitably
:
,
:::
the

::::::
process

:
gravitates towards image areas with

:
a higher density of nonzero

::::
white

:
pixels. However, if the

fraction of nonzero
::::
white

:
pixels is initially low, the Poisson component process tends to add nonzero pixels into larger empty

areas, creating first
:::
first

:::::::
creating dispersion and then spurious clusters. To reduce this, an additional condition requires that the

nonzero
:
in
::
a
::::::
process

::::
step,

::
a
:::::
white pixel cannot be added within a rectangle if its fraction of nonzero pixels is below a threshold10

Co and the rectangle size is within certain limits [N1,N2]. This effectively means restricting the support of the process.

The simulation process was applied to the same 1024x1024 image as in Figure ??. The initial binary image corresponds to

BPP 3% . The simulation added 10% so that the end result BPP is 13%. The parameters were a= 1/20, Co= 1/100 , and

[N1,N2] = [100,20000],
:

and the results are shown in Figure ??
::::
Fig.

:::
11. Although not matching exactly on pixel level

:::
the

::::
pixel

:::::
level,

:
both 13% images exhibit the same pixel density variations. Convolving with 21× 21 kernel the and generating15

:::
For contextual and category images similar to those shown in Figure ??

:::
for

:::::::
L= 21, the results for the real and simulated

13% images match almost exactly, that is, they contain the same information at scale L= 21. The results provide additional

corroboration for the soundness of the generative hypothesis. They provide also
:::
also

:::::::
provide

:::
the

:
insight that certain parts

of ‘non deformed’
::::::::::::
’non-deformed’

:
ice should be left outside the ridging statistics, a feature suggested also previously

:::
also

::::::::
previously

:::::::::
suggested by the emergence of power law exponents for the parameter a in the distribution fits. The parameters of20

this demonstration were determined by simple experimentation, but more systematic approaches can be conceived. Especially,

the intensity values could be incorporated
:
, which would introduce spatial intensity correlations

:
,
:::
and

:::
the

::::::::
fractality

::::::::
suggested

:::
by

::
the

::::::::::
distribution

:::::::
analysis

:::::
could

::
be

::::::::
encoded

:::
into

:::
the

:::::::::
simulation

:::::
steps.

Figure 11. BPP 3% binary image, BPP 13% image, and the BPP 13% image generated from the BPP3% image by the simulation algorithm.
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4 Data analysis for medium resolution SAR data

3.1 SAR and LASER
::::::
LIDAR

:
comparison for

:::
the 2011 image

To analyse
:::
The

:::::::
analysis

::
of

:
ridged areas in the TSX ScanSAR image of resolution 20 m we proceed

::::::::
resolution

::::
TSX

:::::::::
ScanSAR

:::::
image

::::::::
proceeds in a similar manner than in

::
as

:
the analysis of high resolution SAR dataabove. As is validated extensively the

highest backscatter values in the Baltic Sea are mostly generated by the deformed areas,e.g., (Mäkynen and Hallikainen, 2004)5

. The following deformation types were included: ridges, rubble fields and ice channels filled with rubble and brash ice. The

ridges as well as the ice channels appear in the SAR image as bright filaments if the SAR resolution is fine enough.

The test area covered by the TSX SAR imagery with resolution of 20 m.

The tools in the analysis are a pixel block and the intensity values above a preset threshold as in the high resolution case.

We examine the
::::::::::::
high-resolution

:::::
SAR

::::
data.

::::
The

:::::
basic

::::
SAR

:::::
tools

:::
are

:::
the

:::::
bright

:::::
pixel

:::::::::
percentage

::::::
(BPP)

::::
and

:::
the

:::::::
counting

:::
of10

:::::
bright

::::
pixel

::::::::
numbers

:::::
(BPN)

:::
in

::::
pixel

::::::
blocks.

::::
The

:::::
target

::
is

::::::::::
distributions

:
f(x)distribution where the argument ,

::::::
where x has the

value of the deformed areas inside pixel block which are abbreviated here as RRC (ridge and rubble coverage ) and its unit

is percentage. The resolution of 20 m in the TSX image is sufficient to detect part of the ridges, see ??. For the navigational

purposes the rubble filled ice channels form an obstacle for the winter shipping as discussed earlier. Hence the ice channels are

not treated separately from other forms of ice deformation
:
is
:::
the

::::::::
estimated

:::::
ridge

::::::
rubble

:::::::
coverage

::::::
(RRC)

::
in

:::::
pixel

::::::
blocks

:::::
(SAR15

:::::
RRC)

::
or

::::
their

::::::
ground

::::
truth

:::::::::::
counterparts

::
as

:::::::::
determined

:::::
from

::::::
LIDAR

:::::::
surface

:::::::
profiling

::::::
flights

:::::::
(LIDAR

:::::
RRC).

We note that the terms BPN and RSN which were essential for the statistical treatment of the high resolution SAR datain

Sections ?? and ?? are equivalent to the terms SAR RRC and HEM RRC utilised in this Section. Already in the analysis

of high resolution SAR image the equivalency of the terms was stated.Our focus in this Sectionis on the relationship of the

areal coverage between two different datasets. Hence we prefer the terms SAR and HEM RRC.
::::
The

:::::::
essential

:::::::::::
assumptions20

::
are

::::
that

:::::::
LIDAR

:::::
RRC

:::
can

:::
be

::::::::
estimated

:::::
from

:::::
profile

:::::
data,

:::::::
Section

:::
2.2,

::::
that

:::
the

::::::
bright

::::
pixel

:::::::
number

::::
can

::
be

::::
used

:::
as

:
a
::::::

proxy

::
for

:::::
SAR

::::
RRC

::::
and

::::
also

:::
for

::
20

::
m

:::::::::
resolution

::::
data,

::::
and

:::
that

:::::
both

::::
RRC

::::::::
concepts

::::::
inherit

::::
their

:::::::
statistics

:::::
from

:::
the

:::::
model

:::
for

:::::
RSN

:::
and

:::::::::::::
high-resolution

::::
SAR

:::::
BPN,

:::::::
sections

:::
??

:::
and

:::::
3.3.

:
It
::

is
:::::

noted
::::

that
:::
the

:::
20

::
m

:::::::::
resolution

:::
can

::::
still

:::::
detect

:::::
much

::
of

:::
the

:::::::
ridging

:::::::
signature

::
in
::::
Fig.

:::
12

:::
and

:::
that

:::
the

:::::::::
simulation

:::::::
method

::::::::
described

::
in

:::::::
Section

:::
2.3

:::::
works.

:

The first step in the analysis is to extract the bright pixel set with the
::::
BPP

::
is

::
set

:::
to 20%threshold (here -14.4 dB) from the25

SAR imagery covering the study area. The set is denoted here with B. A binary image is constructed in which pixel has value

one if it is in B and zero otherwise. The resulting image is called the seed image, see Figure ??. Similarly to the results of

Sect. ?? the specification of the threshold for B is not highly sensitive for our purposes, a topic we will discuss later. The

ridging in the 20 m SAR data still preserves many of the properties of the very high resolution SAR imagery. One of these

properties is that the in Sect. 2.3 introduced simulation method works also for the medium resolution image.30

The seed image of 80% BPP derived from the TSX SAR imagery with resolution of 20 m on 28 February 2011 image .

The contextual image obtained from the seed image by convolving it with kernel of 15× 15 pixels.

In the seed image the bright pixels in the set B
:::
The

:::::
exact

::::
BPP

:::::
value

::
is
:::
not

:::::::::
essential,

:::
but

:::
the

::::::
chosen

::::
one

::
is

:::::::
expected

:::
to

:::::::
comprise

:::::
most

::
of

:::
the

::::::
ridging

::::::::
signatures

::::
and

:::
not

:::
too

:::::
much

::::
level

:::
ice.

::::::::
Similarly,

::
as

:::
for

:::
the

:::::::::::::
high-resolution

:::::
image,

:::
the

::::::
bright

:::::
pixels
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are mostly not connected to each other. To increase the connectedness among the bright pixels and hence forming anticipated

ridge structures, we convolve the seed image with kernel of 15 by 15 pixels to form
::::::::
continuous

:::::::
ridging

:::::::
features.

::
A

::::::::::
convolution

::::::::
operation

:
is
::::
then

::::::::::
conducted,

:::::::::
generating a contextual image . The amount of pixels belonging to B in the convolution window

is converted to percentage point and assigned to the center pixel of the convolution window in the contextual image. The

maximum distance to a seed image pixel (20 m by20 m) which contributes to the computation of the center pixelvalue is5

always less than 170 m, mostly less than 100 m. The pixel size of the resulting contextual image remains the same
::::
Fig.

:::
12,

:::::
where

::::
each

::::
pixel

:::::
value

::
of

:::
the

:::::::
original

:::::
image

::
is

:::::::
replaced

:::
by

:::
the

::::::
number

::
of

:::::
bright

::::::
pixels

:::::
(BPN)

::
in
::
a
::
15

:::
by

::
15

::::
pixel

:::::
block

:::::::
centred

:
at
:::
the

:::::
pixel.

:::
As

:::
the

:::::
target

::
is

:::::
rubble

:::::::::
coverage,

::
the

:::::
BPN

:::::
values

:::
are

:::::::
changed

:::
to

:::::::::
percentage

::::::
points.

:::
The

::::::::::
convolution

::::::::
operation

::::
acts

:::::::
similarly

:
as in the original SAR image (20 m).

The contextual image Fig. ?? reveals effectively
:::::::::::::
high-resolution

::::
SAR

::::
and

:::::::::
effectively

::::::
reveals the ridged areas . The spatial10

arrangement of bright pixels in the seed image is such that the applied convolution operation
:::
and

:
connects many of the

ridge and the ice channel structures which one can detect visually
::::::
ridging

::::::::
structures

::::
that

:::
are

:::::
only

:::::::
vaguely

:::::::::
discernible

:
in

the original SAR imagery. The magnitude of the backscattering generated by ridging in a pixel is roughly proportional to

the size of rubble area covered by the pixel although subject to the random variation due to the arrangement of ice blocks

(Manninen, 1992; Carlström and Ulander, 1995). Due to the curvilinear structure of a ridge and the variation of its ice block15

accumulations with respect to orientation and coverage the backscattering magnitude fluctuates in the neighboring pixels across

which the ridge meanders. The convolution operation collects these only partially visible ridge pixels surprisingly well together.

The convolution acts in the medium resolution SAR imagery similarly as in the high resolution imagery.

To derive ridging statistics the resolution

Figure 12.
:::
The

:::
test

:::
area

:::::::
covered

::
by

::
the

::::
TSX

::::
SAR

:::::::
imagery

:::
with

::::::::
resolution

::
of

::
20

::
m.

:::
On

:::
the

::::
right

:
is
:::
the

::::::::
contextual

:::::
image

:::
with

::::
BPP

::::
80%.

:::
For

::::::::::
comparisons

::::::::
between

::
the

:::::
SAR

::::
RRC

::::
and

::::::
LIDAR

:::::
RRC,

:::
the

:::::::::
resolution of the contextual image is weakened to 1 km2. In20

the coarser resolution image each pixel comprises 50x50 contextual image pixels. The larger scale image
::::
This

::::::
coarser

:::::
scale

:::::
image

::::
Fig.

::
??

:
is called an analysis image. The pixel value in the analysis image

:
,
:::
and

:::
its

:::::
pixel

:::::
value is the mean of all the
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contextual image pixels inside the 1 km2 resolution pixel and is given in percentage points
:::::::::::
corresponding

:::::::::
contextual

::::::
image

::::
pixel

:::::
block. These pixels are

::::::::
represent the SAR RRC (SAR based ridge and rubble coverage) pixels.

The ridge rubble coverage can be estimated also from the profiling data (HEM RRC ). In the computation of HEM RRC ridge

density is multiplied by average ridge width which is obtained from average sail height by approximation. To provide realistic

estimates the effect of cutoff sail height used in the profile analysis must be assessed, as well as the applicability of results5

reported on sail width/height ratio which is noted R= w/h. Considering first the ridge width, the effect of oblique angles of

sail crossings must be taken into account. If the ridges are randomly oriented, the average width is π/2 times the perpendicular

width (Mock, 1972). This can also be interpreted that the ridge sail length per unit areaA= km2
:::
and

:::
are

::::::::
compared

::::
with

:::::::
LIDAR

::::
RRC

::::::
values

:::::::::
determined

::
in

::::
grid

::::
cells

::::::::
matching

:::
the

::::::
pixels

::::
with

::::::
respect

::
to

::::
size

:::
and

::::::::
location.

:::
The

:::::::
LIDAR

::::
data

::::
were

::::::::
assigned

::
to

::
the

::::
grid

::::
cells

::
in
::::
Fig.

:::
??

:::::
using

::
the

::::::::::
coordinates

::::::::
included

::
in

:::
the

::::
data.

::
If

:::
the

::::::
LIDAR

::::
grid

::::
cell

:::::::
contains

::::
data,

::
its

:::::
value

:
is π/2 times10

the ridge density. The reported R ratios are usually around 4. However, the measurements typically refer to the highest point of

some sail section while aerial imagery shows that the sail width does not vary as much as the sail height but is rather constant.

The results of (Lensu, 2003) indicate that the highest point of a sail section is typically 2.5 times the average sail height. This

is the expected value sampled from the profiling measurements for which the value of R is then 10. To add, Rayleigh criterion

counts as singular ridges a certain number of wider multiply peaked formations. Deformed ice fields usually also include15

scattered rubble and other diffuse roughness not accounted for in the extrapolation model. To include the contribution of these

we increase the average width by further 30%. Thus the value R= 13 is used.

The cutoff sail height affects both ridge density and ridge height. If the cutoff is raised, ridge density decreases but average

sail height increases. To estimate the cutoff effect the extrapolation model by (Lensu, 2003) is applied. It is assumed that the

average sail height is representative for the whole data set and only the variation of ridge density is at issue.For the present20

laser profile data with cutoff height 0.4 m and average sail height 0.65 m the model provides estimates that the true average

height is ha = 0.48 m and that true densities are 2.0 times observed density.

Taken together, a unit increase in the observed ridge density for 0.4 m cutoff dataincreases the along profile rubble coverage

by 1.96%:

RRC

A
=

π

2
×R×ha×λ25

=
π

2
× 13× 0.00048× 2,

where all quantities are in kilometers (ha=average height, λ=ridge density).

As deformed ice fields usually include scattered rubble and other diffuse roughness not accounted for the by the extrapolation

model and when we also take into account the uncertainties involved, the value of HEM RRC is rounded to 2% of the pixel area

for a single ridge
:::
the

:::::
ridge

::::::
density

:::::::
detected

::
in

:::
it,

:::
and

:::
the

:::::
RRC in Eq. 2. If the profiling flights have crossed an area multiple30

times in different directions, which was the case for coastal ridge fields near the flight base, the estimate is representative of

areal rubble coverage. For a singular crossing the relationship involves randomness and is generally the more reliable the larger

the considered area is, provided that homogeneity of ridging conditions persists.

28



Hence one ridge has about 2% RRC per km2 and ridging with ridge density of 10 ridges/km occupy about 20% of the 1 km2

unit area. We use this estimate for HEM RRC in the statistical analysis. Because one ridge in an analysis pixel corresponds to

2% rubble coverage, RRC can be directly converted to the amount of ridges, i.e. RSN, if needed. In the case of SAR RRC a

direct conversion to BPN is not possible anymore in the analysis image.

The analysis image over the test area presented as a SAR RRC image. The units are percentage points.5

The HEM flights over the test area presented as a HEM RRC image. The units are percentage points.

3.2 Combining SAR and Laser datasets

To each ridge the following quantities are attached: latitude and longitude coordinates as well as spacing (distance to previous

ridge). From the profile data is already removed the ridges with sail height less than 0.4 m. The information of the spacing is

not used in the computations.10

A grid with 1 km2 cell area for the profile measurements was formed. The coordinates of each grid cell corresponded to the

analysis image pixel with the same resolution. Then we identified the profile measurements belonging to different cells. The

value of HEM grid cell is the number of ridges detected in it (RSN). RRC for each grid cell is estimated as discussed above:

multiplying the count of ridges
:::::::::
percentage

:::::
points

::
is

::::::::
estimated

::
by

::::::::::
multiplying

:::
the

::::::
density

:
by 2%. All the grid cells with amount

of 50 ridges or more were indicated to ,
:::
Eq.

::
5.
::::::
Ridge

:::::::
densities

:::::
larger

::
or

:::::
equal

::::
than

:::
50

:::
then

:
have 100% RRCbased on the ridged15

area estimates. About
:
.
::::
This

::::
was

:::
the

::::
case

:::
for

:::::
about

:
2% of all the cells where one or more ridges occurred had 100% RRC

coverage. These cells situated near coast
::::
with

:::::::
nonzero

::::
ridge

:::::::
density

:::
and

::::::::
occurred

::::
only in the rubble field zone . It is possible

that some of the ridges in these 100% RRC cells were measured more than once because these cells were in the area where

majority of the HEM flights began, see Fig. ??.
::::
close

::
to

:::
the

::::::
eastern

:::::
coast.

:

As was pointed out in Section ??
:::
2.1,

:
ice drift and additional deformation after the acquirement

::::::::::
deformation

:::::::
occurred

::::::
during20

::
the

::::::::
profiling

::::::::
campaign

:::::
week

::::
after

:::
the

:::::::::
acquisition of the SAR imageare present in the profile data but do not show up in the SAR

imagery. Hence the comparison based on the one-to-one pixel correspondence is not adequate. We performed the comparison

regionally between the two data sets. The sparsity of the HEM flights in many parts of the SAR image (Fig. ??) reduced the

amount of the HEM RRC grid cells. All nonempty profile grid cells in the SAR covered area were utilised when the regional

distribution of RRC based on the HEM data was computed (
::
As

:::
the

:::
ice

::::
drift

:::::
could

::::
have

::::
been

::::
well

::::
over

:::
10

:::
km

::::::
during

:::
the

::::
time25

:::
gap,

::::
and

:::
the

:::::
flights

:::
are

::::
from

::::::
several

:::::
days,

:
it
::
is

:::
not

:::::::
possible

::
to

:::::::
establish

::
a

:::::::::
one-to-one

:::::::::::::
correspondence

:::::::
between

::
the

:::::
RRC

::::::::
estimates

::
for

:::
the

:::::
SAR

:::::::
analysis

:::::
pixel

::::::
LIDAR

::::
grid

:::::
cells,

:::
and

:::
the

::::::::::
comparison

::::
was

:::::
made

:::::::::
regionally.

:::
All

:::::::
LIDAR

::::
data

::
in

:::
the

::::
area

:::::::
covered

::
by

:::
the

::::
SAR

::::::
image

:::
was

::::
used

:::
for

:::
the

:::::
RRC

:::::
values

::
in
:::
the

:::::::
LIDAR

::::
grid,

:
Fig. ??

:::::::
13(right). The SAR based analysis image is shown

in
::::
RRC

:::::::
analysis

::::::
image Fig. ??. It covered all the profile measurement profiles and also areas between the HEM flight lines.

The extent
::::::
13(left)

:::::::
includes

:::
all

:::::
pixels

::::::
outside

:::
the

:::::
mask

::::::::
(N=7549

::::::
pixels).

:::::::
LIDAR

::::
data

::::::::
(N=1017

::::
cells)

::::::::
comprise

:::::
about

:::::
13% of30

the SAR image is larger than the HEM flight routes require. This is due to practical considerations. We wanted to preserve the

structure of the SAR imagery. In addition ice drift made it impossible to determine corresponding points in the SAR and HEM

data with any reasonable accuracy. The ice drift of R/V Aranda varied from 0.1 to 0.4 knots. The time difference between SAR
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Figure 13.
:::
The

:::::::
analysis

::::
image

::::
over

:::
the

:::
test

::::
area

:::::::
presented

::
as

:
a
::::
SAR

:::::
RRC

::::
image

:::
on

:::
the

:::
right

::::
and

::
the

:::::::::::
corresponding

::::::
LIDAR

::::
RRC

::::::
image.

:::
The

::::
units

::
are

:::::::::
percentage

::::
points

::
in
::::
both

::::::
images.

and HEM data ranged from two to four days. Hence the trajectory length of ice drift could be well over 10 km during the time

gap. The main ice drift direction was eastward.
:::::
pixels.

:

3.1.1 The results

In this Section we compare the data sets based on the SAR imagery and the profile data. The samples from the both data sets

have the same resolution. We consider their similarity using the
:::
The

::::
two

:::::::
datasets

:::
are

::::::::
compared

::
in

:::::
terms

::
of

::
a quantile-quantile5

(Q-Q) plot for the distributions. The use of Q–Q plots to compare two sample sets of data
::::::::
respective

:::::::::::
distributions.

::::
This

:
can be

viewed as a nonparametric approach to comparing their underlying distributions.

Since the Q–Q plot compares distributions, there is no need for the values to be observed as pairs, as in scatter plot, or

that the number of samples in the two groups being compared to be of same order of magnitude. There are about seven times

more samples from the SAR RRC estimates (N=7549) than from the HEM RRC estimates (N=1017). The distinctive and most10

important feature in the Q-Q plot (Fig. ??) is that the
:::::
There

::
is

::::
also

::
no

::::
need

::
to

::::::::
compare

:::
the

:::
grid

::::::
values

:::::::
pairwise

::
or

::::
have

:::::::
equally

::::
sized

:::::::
datasets.

::::
The

:
quantile pairs are largely located along a line . This implies that the distributions are linearly related which

in turn implies that the
:::
with

::
a

::::
ratio

::
of

::::
1.34

::::::::
between

:::
the

:::::::
quantiles

:::::
(Fig.

:::
14,

:::
the

:::
left

::::::
panel).

::::
This

:::::::
indicates

::::
that

:::
the shapes of the

distributions are similar . Because the HEM RRC follows
:::
and

::::
that

:::
they

::::
may

::::::
belong

::
to

:::
the

:::::
same

:::::::::
distribution

:::::::
family.

::
As

:::::::
LIDAR

::::
RRC

::
is

:::::::
expected

::
to

::::::
follow

:
a
:
gamma distribution (Eq. 5.), then also SAR RCC can be approximated by gamma distribution. This15

linear relationship was not anymore valid for the upper tail of deformation estimates, approximately for SAR RRC over 50 %

and for HEM RRC over 75 % RRC. This can be expected because the SAR RRC values over 50% are in the data relatively

rare. The relationship is also affected by the limited amount of the HEM flight lines.

The quantile-quantile plot for the SAR and HEM data sets.

From the general trend of the
:
),
::::
this

:
is
::::
then

::::
also

:::::::
expected

:::
for

::::
SAR

:::::
RCC.

:::
For

::::
two

::::::
gamma

:::::::::::
distributions,

:::
the

:::::::
linearity

::
of

:::
the Q-Q20

:::
plot

::::::
entails

:::
that

:::
the

:::::
shape

::::::::::
parameters

::
are

::::::
equal,

:::::
which

::::
also

:::::
holds

:::
for

::
the

::::::
model

:::
Eq.

::
5

:
if
:::
the

:::::
scale

::
Lj::::

and
:::
the

::::::
process

:::::::::
parameter
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:
a
:::
are

:::
the

:::::
same

::
for

:::::
both.

::::
The

::::
slope

::
of

:::
the

::::
Q-Q

:
plot we can see that the ratio between the HEM/SAR quantiles remained almost

constant, here about
::::
then

:::::
equals

:::
the

::::
ratio

:::
of

:::
the

::::
scale

::::::::::
parameters,

:::::::::
suggesting

:::
that

::
a

::::
value

::
of

:
1.34 on the interval from 0 to 75%

for the HEM data. As a consequence the distributions f(a ∗x) = g(x) are
::
can

:::
be

::::
used

::
as

:
a
:::::::
scaling

:::::::::
coefficient.

:
It
::::
was

::::::::
examined

::::
how close to each other , where f is the underlying density of SAR RRC estimates, a is a weight coefficient

( 1.34) and g is the corresponding density for the HEM RRC estimates. The 1/a value is the slope of the line fitted to the5

quantiles in the HEM-SAR Q-Q plot. In the SAR-HEM Q-Q plot the slope is a.

We examined how
::::::::::
distributions

:::
of

:::
the

::::
SAR

::::
and

::::::
LIDAR

:::::
RRC

:::
are

::::
with

:::
and

:::::::
without

:::
the

::::::
scaling

:::::::::
coefficient

::
of

:::::
1.34,

::::
Fig.

:::
14.

:::
The

:::::::
original

::::
SAR

::::
and

:::::::
LIDAR

::::
RRC

::::::::
densities

:::::
show

:::
the

:::::
same

::::
basic

:::::
shape

::::
but

::
do

:::
not

::::::
match

:::::
well.

:::::
When

::::
SAR

:::::
RRC

::
is

::::::
scaled

::
by

:::::
1.34,

:::
the

:::::
match

::
is

:::::::::
improved,

:::
and

:::
the

::::::::
obtained

:::::
mean

::::::
values

:::
are

::::
very

::::
close

:::
to

::::
each

:::::
other:

::::::
26.2%

:::
for

:::
the

::::::
scaled

::::
SAR

:::::
RRC

:::
and

::::::
25.9%

::
for

:::
the

:::::::
LIDAR

:::::
RRC.

::::::::::
Converting

:::
the

::::
mean

::::::
values

::
to

:::
the

:::::::
number

::
of

:::::
ridges

::::::
yields

:::::
about

::
13

::::::
ridges

:::
per

::::
km2

:::
for

::::
both10

:::
data

::::
sets.

:::::::
Gamma

:::::::::::
distributions

::::
were

::::
also

:::::
fitted

::
to

::::
both

::::
data

::::
sets.

::::
The

::::::::
maximum

:::::::::
likelihood

::::::::
estimates

:::
for

:::
the

:::::
shape

:::::::::
parameter

::
of

:::
the

:::::
scaled

:::::
SAR

::::
RRC

::::::
gamma

:::::::
density

::
is

:::
1.7

:::
and

:::
the

::::
scale

:::::::::
parameter

::::
15.5.

::::
The

:::::::::
respective

:::::
values

:::
for

:::::::
LIDAR

:::
data

:::
are

:::
1.4

::::
and

::::
18.2.

:::::
Thus,

::::::::
although

:::
the

:::::::::
parameters

:::
of

:::
the

:::
fits

:::
are

:
close to each otherthe distributions of the SAR and HEM RRC are with

and without weight coefficient 1.34. The estimated densities for the analysis image RRC and the HEM RRC without weight

coefficient are overlaid in Fig. ??(left panel). The original SAR and HEM RRC densities show the same basic shape. The15

distributions illustrate that
:
,
::::
they

:::
are

:::
not

:::::
equal.

:

:::
The

::::::::
problems

:::::
with

:::
the

::
fit

::::
and

:::::::::
agreement

::::
with

:::::::
gamma

::::::::::
distribution

::::::
mostly

:::::::
concern

::::
the

:::
tail

::::
part

::
of

:::
the

:::::::::::
distribution.

::::
The

:::::::
linearity

::
of

:::
the

::::
Q-Q

::::
plot

:::
was

:::
no

::::::
longer

::::
valid

:::
for

::::
SAR

:::::
RRC

::::
over

:::
50

::
%

:::
and

:::
for

:::::::
LIDAR

::::
RRC

::::
over

:::
75

::
%

:::::
RRC.

::::
The

::::
SAR

:::::
RRC

:::::
values

::::
over

::::
50%

:::
are

::::::::
relatively

::::
rare

::
in

:::
the

::::
data,

:::
and

:
highly ridged areas form proportionally a much larger fraction in the HEM

datathan
::::::
LIDAR

:::::
data.

:::::::::
Especially

:::
the

:::::
rubble

:::::
field

:::::
hump

::::
seen

::
by

::::
the

:::
end

::
of

:::
the

:::::::
LIDAR

::::::::::
distribution

::
is

:::
not

::::::
present

:
in the SAR20

analysis image data. This is due to the profile measurement arrangement where the HEM
::::::::::
distribution.

::
As

:::
the

:::::::
LIDAR

:
flights

frequently flew over the large coastal rubber field zone ,
:::::
rubble

::::
field

:::::
zone

:
(see Fig. ??. Consequently a significantly

:::
13),

::
a larger

proportion of the HEM
::::::
LIDAR

:
data was collected from this area than was the case with the SAR RRC data. The difference

explains also the breakdown of the linear relationship in the upper tail of the Q-Q plot (Fig. ??). One can speculate that if

the HEM flights were located more uniformly
:::::
scaling

:::::::::
coefficient

::::
was

:::::
found

::
to

:::::::
increase

:::::
with

:::
the

:::
area

:::
of

::::
SAR

::::::::
included

::
in

:::
the25

:::::::::
comparison

::::
and

:::::
varied

:::::
from

:::
1.3

::
to

:::
1.6.

:::::
With

:
a
:::::::
spatially

:::::
more

:::::::
uniform

:::::::
coverage

:::
of

:::
the

::::::
LIDAR

::::::
flights over the SAR image, the

weight coefficient would be closer to 1.
::::::::
agreement

::::::
would

:::::::
probably

:::::
have

::::
been

:::::
better

:::
for

:::
the

:::
tail

::::
part.

The SAR RRC density with weight coefficient 1.34 is compared to the HEM density in Fig. ??(the rigt panel). We observe

a high agreement in the distributions. The value of the weight coefficient changes if the area of the SAR image is extended.

For the SAR-HEM comparison the weight coefficient varied from 1.3 to 1.6 depending on how the SAR image area of interest30

was defined. When the new weight coefficients were applied the SAR RRC distributions were quite similar to the one shown

in
::
As

:::::::::
expected,

:::::::::
decreasing

:::
the

::::
BPP

:::::
value

::::::::
increases

:::
the

::::::
scaling

:::::::::
coefficient

:::::
when

:::
the

:::::
SAR

:::::
image

::::::
extent

:::
and

:::
the

:::::::
LIDAR

::::
data

:::
stay

:::::
fixed.

:::::
Three

:::::
cases

:::::
were

:::::::::
examined:

:::
For

::::
BPP

:::
10

::
%,

:::
the

:::::::
scaling

:
is
:::::
2.22,

:::
for

::
15

:::
%,

::
it

::
is

::::
1.61

:::
and

::
in

:::
the

::::::
above

:::::::
analysis

::::
with

::::
BPP

::
20

:::
%,

::
it

::
is

::::
1.34.

::
In

:::
all

::::
three

::::::
cases,

:::
the

:::
QQ

::::
plot

:::::
linear

:::
for

::
its

:::::
main

:::
part

::::
and

:::
the

::::
mean

:::
of

:::
the

:::::
scaled

:::::
SAR

::::
RRC

::::::::::
distribution

::
are

::::::
always

:::::
close

::
to

:::
the

:::::::
LIDAR

::::
RRC

:::::
mean.

:
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Figure 14.
:::
The

:::::::::::::
quantile-quantile

:::
plot

:::
for

:::
the

::::
SAR

:::
and

::::::
LIDAR

:::
data

:::
sets

:::::
(left).

:::
The

::::
SAR

::::
and

::::::
LIDAR

::::
RRC

:::::::::
distributions

:::::::
overlaid

:::::::
(middle).

:::
The

:::::
scaled

::::
SAR

:::
and

::::::
original

::::::
LIDAR

::::
RRC

:::::::::
distributions

::::::
(right).

3.2
:::::::::

Contextual
::::::
images

:::
as

::::::
ridging

:::::::::::
information

:

::::::::
Although

::
in

::::
SAR

::::::
images

::::
from

::
a

:::::
ridged

:::
ice

:::::
cover

::
the

::::::
bright

::::::
returns

:::
are

::::::::::::
predominantly

::::
from

::::
ridge

::::::
rubble,

:::
the

::::
step

::
to

::::::::::
quantitative

:::::::
methods

:::
has

::::::
proved

:::::
hard.

::::
The

:::::
bright

::::::
pixels

::
do

::::
not

:::::::
typically

:::::::
connect

::::
well

::
to
:::::::

ridging
:::::::
features.

:::::
This

:::
was

::::::
found

::::
here

::::
also

:::
for

::::::::::::
high-resolution

:::::
SAR

:::
and

::::
was

:::::::
assigned

::
to

:::
the

:::::::
random

:::::::::
occurrence

::
of

:::::::::
favourable

::::::
rubble

:::::
block

:::::::::::
arrangements.

:

:::
The

::::::::::
randomness

::::::::
problem

:::
can

:::::
partly

:::
be

::::::::
bypassed

:::
by

:::
the

::::
BPN

::::::::
approach

:::
as

:::
the

:::::
ratios

::
of

:::::
BPN

:::::
values

:::
do

:::
not

:::::::
change

:::::
much5

::::
even

::
in

::::
large

:::::::
changes

::
in
:::::
BPP.

:::::
Thus,

:::
the

:::::::::
appearance

:::
of

::::::::
contextual

:::::::
images

:::
that

:::::::
enhance

:::
the

::::::
ridging

::::::::
signature

:::
by

:
a
:::::
BPN

::::::
sliding

::::::::
operation

:
(Fig. ??(the right panel)

::
17

:::
or

:::
Fig.

::::
12)

::::
also

::::
does

:::
not

:::::::
change

:::::
much.

:::::
This

:::::::
appears

::::
more

:::::::::
strikingly

::
in

:::
the

::::::::
category

:::::::
versions

::
of

:::
the

:::::::::
contextual

::::::
images

:
(
::::
Fig.

::
17

::
),

:::::
which

:::::::
provide

::
an

:::::::::::::::::
application-oriented

:::
way

:::
to

:::::::
delineate

::::::
ridged

:::
ice.

The similarity of the weighted SAR RRC and original HEM RRC distributions is visually obvious.We fit the gamma

distributions to both data sets. The maximum likelihood estimates for the shape parameter of the weighted SAR RRC gamma10

density is 1.7 and the scale parameter 15.5. The respective values for HEM data are 1.4 and 18.2. The expected values are very

close to each other: 26.2% for weighted SAR RRC and 25.9% for HEM RRC. Converting the mean values to the amount of

ridges yields about 13 ridges per km2 for both data sets. For the original SAR data the estimated mean is 19.5%, i. e.about

10 ridges per km2. Hence the HEM/SAR ratio for the expected amount of ridges per km2 without any weighting is about

1.3
::::

upper
::::::
panels

::
in

::::
Fig.

:::
??

:::::
show

:::
the

:::::::::
1024x1024

:::::::::
subimage

::
of

:::
the

:::::::::::::
high-resolution

:::::
SAR

::::::::
indicated

::
in

::::
Fig.

:::
??.

:::::
(???)

:::::
Both

:::
the15

:::::
image

:::
and

:::
its

::::
BPP

::::
20%,

:::::::
L= 21

:::::::::
contextual

::::::::
derivative

:::
are

::::::::
presented

::
as

::::::::
category

::::::
images.

::::::::
However,

:::
for

:::
the

::::
BPP

:::::
range

:::::
from

:::
2%

:::::
(pixels

::::
with

:::::
value

::::
255)

::
to
:::::
95%,

:::
the

:::::::
category

::::::
image

::
is

:::::
almost

::::::::
identical

::
to

:::
that

::
in

:::
the

:::::
upper

:::::
right

::::
panel

::::::
(mihin

::::::
kuvaan

:::::::::
viitataan?

::::::::
Fig02??).

:::
The

:::::
same

:::::
result

:
is
:::::
found

:::
for

::::::
several

:::::::::
alternative

:::::::
methods

::
to

::::::::
generate

:
a
:::::::::
contextual

:::::
image,

::::
like

:::
the

::::::
L= 21

::::::
sliding

:::::
block

::::::
average

::
of

::::::::
intensity.

:::::
More

:::::::::
strikingly,

:::
the

::::::::::
information

::
of

:::
the

:::::::::
contextual

::::::
image

:
is
::::::::::

essentially
:::::::
retained

::
in

:::::::
different

:::::::::::
randomising

:::::::::::::
transformations.

::
In

::::
Fig.

:::
??

::
in

:::
the

:::::
lower

:::
left

:::::
panel,

:::
the

::::::::::
1024x1024

:::::
image

::::
has

::::
been

:::::::::
multiplied

::::
eight

:::::
times

:::
by

:
a
:::::::
random

::::::
matrix20

:::
that

::::::
erodes

:::
the

::::::
ridging

::::::::
signature

::::::
beyond

::::::
visual

::::::::::
recognition.

::::::::
However,

:::
the

:::::::::
contextual

:::::::
category

::::::
image

::::
still

:::::::
emerges

:::::::::
essentially

:::::::::
unchanged

::
in

::
its

:::::
main

::::::
features

::
in
:::
the

:::::
right

:::::
panel.

The SAR and HEM RRC distributions overlaid (left). The weighted SAR and original HEM RRC distributions (right).
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The essential feature found in
:::
The

::::::::
observed

:::::::::
behaviour

::
is

::::
due

::
to

:::
the

::::
fact

::::
that

:::::::
changes

:::
in

::::
BPP,

::::::::
changes

::
in

:::::::
method,

:::
or

::::::::::
randomising

:::::::::
operations

:::
on

:::
the

:::::::
average

:::::::
preserve

::::
the

:::::
order

::
of

::::::
values

::
in

:::
the

:::::::::
contextual

:::::::
images.

:::::
This

::::::
feature

::
is

::::::::
enhanced

:::
in

::
the

::::::::
category

:::::::
versions

::
as

:::
the

::::
flux

::
of

::::::
values

:::::
across

::::::::
category

:::::::::
boundaries

::
is

::::
then

::::::::
relatively

:::::
small.

::::
This

:::
can

:::
be

::::::
studied

::
in

:::::
detail

:::
by

:::::::::::
pixel-to-pixel

:::::::
mapping

::::::::
between

:::
two

:::::::::
contextual

:::::::
images.

:::
For

::::::::
example,

:::::::
mapping

:::
for

:::
the

::::::::::
1024x1024

::::::::
subimage

::::
with

::::::
L= 21

::::
and

::::
BPP

::::
20%

::
the

:::::
BPN

:::::
values

::
to

::::::::
matching

::::::
L= 21

::::::
sliding

:::::::
intensity

::::::::
averages

::
the

::::::::::
relationship

::
is

::::::::::
monotonous

:::
on

::
the

::::::::
average.

:::
For

::::
each5

::::
BPN

:::::
value,

:::
the

:::::::
mapped

:::::::
intensity

::::::::
averages

::::
have

:
a
::::::
normal

::::::::::
distribution

::::
with

::
a

:::::::
standard

::::::::
deviation

::
in

:::
the

:::::
range

::
of

:::::::
3.5–4.5.

:::
On

:::
the

::::
other

:::::
hand,

:::
the

::::::
widths

::
of the HEM-SAR analysis was the linear relationship between the RRC distributions from the different

sources. It was also observed that if the areal extent of SAR image with fixed BPP is increased, the weighting coefficient a

increases but the linear relationship holds. The increase of a likely can be attributed to the fact that the size and the location

of the HEM data remains the same in all cases but the magnitude of SAR RRC grid cells decreases on average
::::::::::
70%− 80%,10

::::::::::
80%− 90%

:::
and

:::::::::::
90%− 100%

:::::::::
categories

:::
for

:::
the

:::::::
intensity

:::::::
average

:::
are

::
9,

:::
15

:::
and

::::
102,

:::::::::::
respectively.

:::::
Thus,

:::
the

:::::::
highest

:::::
class,

::
in

::::::::
particular,

::::::
retains

::
its

::::::::::
delineation

::
in

:::
this

:::::::
method

::::::
change.

:::::
More

::::::::::
importantly,

::
if

:::
the

::::::
change

::
in

::::
BPN

::::::
values

:::::::
induced

::
by

::
a

::::::
change

::
in

::::::
ambient

:::::::::
conditions

::::::::
preserves

:::
the

:::::
order

::
on

:::
the

::::::::
average,

::
the

::::::::
category

::::::
images

:::
can

:::
be

::::::::::
consistently

::::
used

::
in

:::
the

::::
daily

::::::::::
production

::
of

::
ice

::::::::::
information.

If we vary BPP in the identification of potential ridge pixels from the SAR imagery, the value of a changes when the SAR15

image extent and the HEM data stay fixed. The validity of the linear relationship between these data sets is examined in three

cases: For threshold 90 % a is 2.22, for 85 % 1.61 and in our analysis with 80 % threshold a is 1.34, that is, a increases when

BPP increases and
:::
The

:::::
pixel

:::::
block

::::
side

:::::
length

::
L

::::::
affects

:::
the

::::::::
resolution

::
of

:::::
detail

::
in
:::
the

:::::::::
contextual

:::::::
images,

:::
and

:::
its

::::
value

::::
may

:::
be

::::::
chosen

::
to

:::
suit

:::
the

:::::::
context,

:::::
hence

:::
the

:::::
term.

::::::::
Including

:
a
:::::::::
pragmatic

:::::::::
viewpoint,

::::::
L= 21

::
of

::::
Fig.

:::
??

:::
and

:::::::
L= 101

:::
of

:::
Fig.

:::
??

::::::
(mihin

:::::
kuviin

:::::::::
viitataan?)

::::::::::
correspond

::
to

:::
the

:::::
width

:::
and

::::::
length

:::::
scales

::
of

::::::::::
icebreaking

:::::
ships

::
so

:::
that

:::
the

:::::
BPN

:::::
values

:::
of

:::::::::
contextual

::::::
images20

::::::
provide

:::
the

:::::::
number

::
of

:::::
bright

::::::::
scatterers

::::
that

:::
the

::::
ship

::::
bow

::
or

:::
the

::::::
whole

::::
ship

:::::::
interacts

::::
with

::
at

::
a

::::
time.

:::
As

::::
BPN

::::
has

::::
been

::::::
shown

::
to

::
be

:
a
::::::
proxy

::
of

:::::
ridge

:::::
rubble

::::::::
coverage,

:::
the

:::::::::
contextual

::::::
images

:::::
have

:::::
direct

:::::::::
pertinence

::
to

::::::::::
navigability.

::::
The

::::::::::
categorised

:::::::
versions

:::
can

::
be

:::::::::
interpreted

:::
as

::::::
classes

::
of

::::::::::
navigational

::::::::
difficulty,

::
or

:::
as

:::::::::
delineation

::
of

:::::
areas

:::
that

::
a

:::
ship

::::::
should

:::
not

:::::
enter.

:::::
They

:::
can

:::
be

::::
used

::
in

::::::
tactical

:::::::::
navigation

::
or

::
in

:::::
route

::::::::::
optimisation

::::
that

::::
only

:::::
seeks

::
to

:::::
avoid

:::::::
difficult

::
ice

::::::
types.

:::::
More

::::::::
advanced

::::
route

:::::::::::
optimisation

::
is

:::::
based

::
on

:::::::
physical

:::::::
models

:::
for

:::
the

:::::
added

:::::::::
resistance

::::
from

:::
the

::::::
ridges.

::::
The

::::::::
ice-going

:::::
speed

::::
and

:::
the

:::::::::
probability

:::
of

:::::::
besetting

::::
can25

:::
then

:::
be

:::::::
obtained

::
in

::::::::::
simulations

:::
that

::::
take

:::
the

:::
ice

::::::::
conditions

:::::
along

:::::::::
alternative

:::::
tracks

::
as

::::::
input,

:::::::::
specifically

:::::
ridge

::::::
density

:::
and

:::::
ridge

:::::
height

::::::::::::::::::
(Kuuliala et al., 2016)

:
.
:::
As

:::
the

:::::::::
contextual

::::::
images

:::::::
provide

::::
only

:::::::
relative

:::::
ridge

::::::
density

:::::::::
estimates,

:
the amount of bright

pixels decreases. In all three cases the relationship between the RRC datasets is linear. The mean of the weighted SAR RRC

distribution in these instances is always close to the HEM RRC mean. The range of the threshold values yielding largely linear

relationship between these two datasets depend on great extent and concentration of HEM data. However, for the available30

datasets it is not restricted only to the BPP value used in the analysis
::::::
scaling

::
to

::::
true

::::::
values,

::
as
:::::

well
::
as

:::::
ridge

::::::
height,

::::
must

:::
be

:::::::::
determined

:::
by

::::
other

::::::
means.

::::::
These

::::
may

::::::
include

:::::::::::
observations

::::
from

:::::
ships,

:::::::::::::
measurements,

::
or

:::::::
satellite

::::
data,

:::::::::
especially

::::::::
ICESat-2

::::::
profiles.

::::::::
Another

:::::::::
possibility

::
is

::
to

:::
use

::
a
:::::
ship’s

::::::::
response,

::::::::
observed

::::::::
remotely

:::::
from

::::
AIS

::::
data,

::
to

:::::::
classify

:::
the

:::::::::
contextual

::::::
image

::::::::
signatures

:::::::
directly

::
in

:::::
terms

::
of

:::
ice

:::::
cover

::::::::
resistance

:::::::::::::::::::::
(Similä and Lensu, 2018).
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Figure 15.
:::::
Results

:::
for

:::::::::
1024x1024

:::::
image

::::::::
multiplied

::
8
:::::
times

::
by

::
a
::::::
random

::::::
matrix.

::::
Left

:::::::
column:

:::
The

:::::::
200x200

::::::::
subimage

:::::
(upper

:::::
left),

::::::::
randomised

::::::::
contextual

:::::
image

:::::::
obtained

::
by

::::
BPP

:::
20%

::::
and

::::
21x21

:::::::::
convolution

:::::
kernel

:::::
(lower

::::
left).

:::::
Right

::::::
column:

:::::::::::
Categorisation

::
of

:::
the

::::::
original

::::
image

::::::
(upper

::::
right),

:::::::::::
Categorisation

::
of
:::
the

:::::::::
randomised

:::::
image

:::::
(lower

:::::
right).

Ridging signatures in SAR images can usually be identified by ice service experts and experienced ice navigators who also

are

4
:::::::::
Discussion

::::
and

::::::::::
conclusions

::
Ice

::::::::
charting

::::::
experts

:::
are

::::::
usually

:
able to recognise the same signatures in

::::::
ridging

:::::::::
signatures

::
in

::::
SAR

:
images that have different

resolutions or are taken in different ambient conditions. One way to to make this observation more precise is to consider binary5

images that select a relatively small percentage of brightest pixels from the SAR image. The ridged ice tends to appear in

these as spatial structures consisting of mostly disconnected or weakly connected pixels. Changing the percentage changes the

connectivity of these pixel clouds but not their general delineation, and the same binary structures can be often identified in

other SAR images with different resolutions and many different acquisition parameters. However, we note that the acquisition

frequency has an important role in the ridging identification (Eriksson et al., 2010).10
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Figure 16.
:::
The

::::::::
contextual

:::::
images

::::
(left)

:::
and

:::::::::::
corresponding

:::::::
category

:::::
image

:::::
(right)

:::::
derived

::::
from

:::
the

::::::::
1024x1024

::::::::
subimage

:::
with

::::
BPP

::::
20%

:::
and

::::
L=21.

Figure 17.
:::
The

::::::::
contextual

:::::
images

::::
(left)

:::
and

:::::::::::
corresponding

:::::::
category

:::::
image

:::::
(right)

:::::
derived

::::
from

:::
the

::::::::
1024x1024

::::::::
subimage

:::
with

::::
BPP

::::
20%

:::
and

::::
L=21.
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The present approach proceeds from these observations
:::
The

::::::
present

::::::::
approach

:::::::::
proceeded

::::
from

:::
this

::::::::::
observation

:
by analysing

SAR images in terms of
:::
the local density of bright pixels chosen by a certain percentage (BPP). The tail intensity variation,

that is
::::::::
variations,

::::::
which

:::
are often relied on in SAR ice type classification approaches, is

::::
were

:
left to a secondary role. The

quantification is in terms of bright pixel numbers (BPN) counted in pixel blockswith variable side length L. The development

considers first high resolution images
:
.
:::::
First,

:::::::::::::
high-resolution

::::::
images

:::::
were

::::::::::
investigated

:
for which the bright returns can be5

assumed to come from individual ridge sails. This also provides connection to physical studies investigating the backscattering

from ridge block accumulations. The approach leads first to methods to enhance the visibility of the ridging structures and to

classify SAR texture for the purposes of ice charting or ice navigation. The methods have a remarkable stability against changes

in the BPP or in the intensity histogram. A more systematic foundation is then provided by a hypergeometric model for BPN

distribution system that is found to apply over wide range of values for L and BPP
::
A

:::::::::
distribution

::::::
model

:::
was

::::::
derived

::::
and

:::::
found

::
to10

::::
apply

::::
also

::
to

:::::
ridge

:::
sail

:::::::
numbers

::::::
(RSN)

::::::::::
determined

::
for

:::::::
surface

:::::
profile

:::::::::
segments.

::
A

::::::::
validation

:::::
study

:::::
using

:
a
::::::::::::::::
medium-resolution

::::
SAR

:::::
image

::::
with

::::
near

:::::::::
concurrent

:::::::
ground

::::
truth

::::
data

:::::::::::
demonstrated

:::
that

:::
the

:::::::
method

:::
can

:::
be

::::
used

::
to

:::::
derive

:::::
ridge

::::::
density

:::
up

::
to

:::
the

::::::
scaling

:::::
factor.

::::
This

::::
can

::
be

:::::::
provided

:::
by

::::::::::
independent

:::::::::::
observations,

:::::
most

::::::::::
promisingly

::
by

::::::::
ICESat-2

:::::::
surface

::::::
profiles.

The hypergeometric distribution model was derived with a threshold process where the bright pixels
::::
bright

::::::
pixels

::
or

:::::
ridge

:::
sail were deposited sequentially to the image canvas after removing the correlations. The rate for pixels to become added to a15

pixel block increased linearly with the BPN of the block. This was found for a wide range of BPP and L values and provided

justification for the distribution model. The value of the model parameter a, the relative strength of the Poisson component

of the process, was found by fitting the model to the data by mean and variance. The model was further corroborated by a

simulation where a pixel deposition process following the linear rate was shown to increase the BPP of a seed image in a

realistic fashion. The linear increase rate and the distribution model were similarly found to apply to ridge sail (RSN) data in20

an analogical threshold process of sequential deposition of ridge sails on an 1D surface profile.

The results raise the question on the relation between the threshold process and the actual ridging process. The ongoing

ridging process in a converging ice field manifests along a surface profile as appearing
::
or

::::::
surface

:::::::
profile.

:::
The

::::::::::
probability

:::
for

::
the

:::::::::
deposition

:::
to

:::
end

::
in
::

a
::::::
certain

:::::
pixel

:::::
block

::
or

::::::
profile

:::::::
segment

::::
was

::::::::::
proportional

:::
to

:::
the

::::::::::::
corresponding

::::
BPN

:::
or

::::
RSN

::::::
value.

::::
This

:::::
raises

:::
the

:::::::
question

::
of

:::
the

::::
role

::
of

:::
the

:::::::
physical

:::::
ridge

::::::::
formation

:::::
events

::::
that

:::::::
manifest

:::
as

::
the

:::::::::
formation of new sails to profile25

segments , and the associated rates can in principle be determined. This can be done by sampling random profile segments of

length Li, that is, both the starting point and the orientation of the segments are random. The sample is monitored during a

short time interval, and the RSN increase events in the segments and their subsegments Lj are recorded. For the following time

interval this is repeated for a new sample. This minimises but does not completely remove the fact that the segments understood

as lines quasi spray painted on the surface will deform in the increase events. This is less prominent for segments that are long30

in comparison to strains associated with ridge formation events.

Thus the hypothesis will be that the ridging as a sequential process of ridge formation events is behind the observed statistics.

In this context a more common approach to spatial sail statistics in terms of
::
or

::
as

:::
the

::::::::::
appearance

::
of

::::
new

:::::
bright

:::::::::
scatterers

::
in

:
a
::::
SAR

::::::
image

::::
time

::::::
series.

:::
An

:::::::::
alternative

::::::::
approach

:::
to sail

:::::::
statistics

::::::::
considers

:::
sail

:
spacings or sail-to-sail distancesneeds be

considered. The formation of a .
::
A

:
new sail cuts the spacing into two, and the process is analogical to a sequential fragmentation35
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process. If the
:
if
:::
the

:
probability for this to happen does not depend on the spacing, the spacing distribution is asymptotically

lognormalas originally ,
::
as

:
shown by (Kolmogorov, 1941). The lognormal has also been found to apply to sail spacings, in the

Baltic since (Lewis et al., 1993). Conceptually, neglecting the strains, lognormal generative hypothesis of equal fragmentation

probability for all spacings entails linear increase rate for larger RSN values. Thus
::
As

:::
the

:::::
RSN

:::
and

:::
the

:::::::
number

::
of

::::::::
spacings

::
are

:::::
about

:::::
equal

:::
for

:::::
ridge

::::::::
segments,

:::
the

::::::::::
probability

:::
that

::
a
::::
new

::::
ridge

:::::::::
appearing

::
in

:::
the

::::::
profile

::::
ends

::
in

::
a

::::::
certain

:::::::
segment

::
is

::::
then5

::::::::::
proportional

::
to

:::
the

::::
RSN

::
of

:::
the

::::::::
segment.

::::
This

:::::::
indicates

::::
that the applicability of lognormal and hypergeometric models have the

same generative origin.

It is worth noting that if the 1D description of the generative process is accepted with its face value, and ridged ice thickness

is described by segment averages, the thickness increase rate is higher for thicker segments. This runs counter the usual

assumptions of thickness redistribution. However, the appearing of a sail to a 1D profile segment is a manifestation of a 2D10

ridge formation event that may extend even kilometres in along sail direction. A possible and more plausible explanation

is that the initial fault triggering the ridge buildup is more likely to find its way into already damaged areas with material

discontinuities and, counterpoising, stress concentrations. However, these questions are almost uncharted territory.

Although ridged ice cover lacks natural discrete units in 2D, discrete distributions can be applied in 2D to BPN values of

pixel blocks. The 2D sail rubble coverage can be estimated from ridge density as in Eq. 8 and the BPN acts as a proxy for it.15

However, from the generative point of view the BPN is rather a proxy of RSN. If bright pixels are counted along a random line

segment extending across the pixel block, the unit increase in expected pixel number in the segment corresponds to block BPN

increase by some value kL. This has its physical counterpart as the along sail scale of ridge formation events exceeds the block

scales of the present analysis. For this reason the BPN scale system
:::::::
physical

::::::
origin.

::::
The

:::::::::
lognormal

:::
has

::::
also

::::
been

::::::
found

::
to

::::
apply

:::
to

:::
sail

:::::::
spacings

::
in

:::
the

:::::
Baltic

:::::
since

::::::::::::::::
(Lewis et al., 1993)

:
.
:::::::
Another

:::
hint

::
of
:::
the

::::::::::
background

::::::::
physical

::::::
process

::
is

:::
that

:::
the

:::::
BPN20

:::::::
statistics is parameterisable by

::::
pixel

:
block side length L rather than block area . Also the power law decrease of the Poisson

parameter a with L has exponent close to that found in RSN analysis. The power law itself suggests that the distributions

have fractal support. If a is effective only within support, its value decreases with the increasing scale L of the block coverage

approximating the support. Also in the simulation procedure in Section 2.3, it was found that better results were obtained by

reducing the effect of a in areas with low bright pixel density.25

:
L
::::::
rather

::::
than

::::
area

:::
L2.

::::
The

:::::
length

:::
of

::::
ridge

::::
sails

::::::::
typically

:::::::
exceeds

::
L,

::::
and

::::
thus

:
a
:::::
ridge

:::::::::
formation

::::
event

:::::
does

:::
not

:::
add

::::::
bright

::::::::
scatterers

::::::::
pixelwise

:::
but

:::
as

:
a
:::::

chain
::::::::

crossing
:::
the

:::::
pixel

::::::
block. In the high-resolution SAR,

:
it was likely that for small BPP

most bright returns are from ridge rubbleand the spatial statistics was
::::
most

:::::
bright

::::::
pixels

:::::::
indicate

::::
ridge

::::::
rubble.

:::::
Their

::::::::
statistics

::::
were studied using binary BPP images, without using the intensities above the intensity threshold. No further

::::::
images,

:::
and

:::
no

attempt was made to interpret the intensity variations for
:
of

:
the bright pixels,

:
although it may be noted they follow exponential30

distributionlike the ridge sail height
:::
that

::::
they

::::::::
followed

::::::::::
exponential

:::::::::
distribution. It was observed that the BP texture in

:::::
bright

::::
pixel

::::::
texture

::
in
::::::

dense ridge fields was not much different from that of ship channels that are flat rubble beds. Furthermore,

very small BPP values did not delineate better ridges as curvilinear signatures which would occur if the highest intensity

values are more often returns from highest ridges. All studied BPP values generated more or less the same contextual images.

This suggests that the correlation between sail height and SAR intensity is weak. As no profile data were available for the35
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high-resolution image it
:
It remains to be investigated whether connectedness, curvature and other measures may provide ridge

height estimates.

For the medium (20 m) resolution image a regional comparison of sail and image statistics was possible and the same

gamma distribution, apart from a scaling constant, was found for both. It is to be noted that the QQ plot used in the analysis

is linear for gamma distributions only if the parameter α is equal for both . Thus the result corroborates the statistical model5

for which α= aLj occurs in the gamma asymptotics. The medium resolution image was still able to capture larger individual

ridging features and appeared in
:::::::::::::
High-resolution

::::
SAR

::::
data

:::::::
provide

:
a
::::
kind

::
of

:::::::
baseline

:::
for

:
the processing chain similarly to the

high-resolution, that is, the binary BPP image consisted of clouds of mostly
:::::::::::
investigations

::
on

:::::
ridge

::::::::
parameter

::::::::
retrieval

::
as

:::
the

::::::
returns

::::
have

:
a
:::::::::
connection

::::
both

::::
with

::::::
ground

::::
truth

:::::::
ridging

:::::::
statistics

:::
and

::::
with

:::
the

::::::::::::
backscattering

::::::
models

::
by

::::::::::::::::
(Manninen, 1992)

:::
and

:::::::::::::::::::::::::
(Carlström and Ulander, 1995).

::::
The

:::::::::::::
hypergeometric

:::::
model

:::::::
provides

:
a
:::::
scale

:::::::::
connection

::::
tool

:::
that

:::
can

::
be

::::
used

::
to

:::::
study

::::
how

:::::
lower10

::::::::
resolution

:::::::::
intensities

:::::
relate

::
to

:::
the

::::
pixel

:::::::
statistics

::
in
::::::

higher
:::::::::
resolution

::::::::
matching

::::
pixel

::::::
blocks.

::::
Our

:::::
high-

:::
and

::::::::::::::::
medium-resolution

::::::
images

:::
did

:::
not

::::
have

:::
the

:::::::
required

::::::::::::
spatiotemporal

:::::::
overlap,

::::::::::::
unfortunately.

::::::::
However,

:::
the

::::::::::::::::
medium-resolution

:::::
image

:::
did

:::
not

::::::
appear

::::
much

::::::::
different

::
in

::::::
binary

::::
BPP

::::::::
versions,

::::::
which

::::::
mostly

::::::::
consisted

::
of

:
disconnected pixels and the contextual image

::::::::
generated

::::::::
contextual

::::::
images

::::
that

:
enhanced the ridging features in a similar way for a wide range of BPP valuesas in the high-resolution

images.
:::::
Also,

:::
the

:::::::::
simulation

::::::::
algorithm

::::::
applied

::
to

:::
the

::::::::::::::::
medium-resolution

:::::
image

::
as

::::
well

::
as

:::
the

:::::::
Gamma

::::::::::
distribution

::::::::::
asymptotics15

::
of

:::
the

:::::::::::::
hypergeometric

:::::
model.

Ideal data for the present approach would consist of SAR data with different resolutions, acquisition parameters and ambient

conditions over same ridged ice areas, and matching ice surface topography data from laser scanning, visual wavelength

images and other methods. In the present study the ground truth data was available only for the medium resolution data with

some temporal separation and approximate spatial matching. This leaves several linesof study unpursued. Perhaps the most20

important is the relationship of ridging signature in SAR images with a different resolutions. In the high-resolution (1.25 m)

image the bright returns can be related to the presence of ridge rubble and to what is known about backscattering from block

accumulations. For discussion purposes, a bright pixel in the medium resolution (20 m) image can be thought of as a Lj = 16

pixel block consisting of 256 high-resolution pixels. Fixing the intensity threshold for bright pixels, a certain number nj of

pixels in the block are bright returns from ridge rubble and the remaining are non-bright returns both from ridge rubble and25

other surface types. As these returns contribute to the aggregated return of the medium-resolution SAR, the distribution k(nj)

of bright returns, Eq. 5, is certain to have pertinence to the ridging intensity variation. Further, the downscaling distribution

k(nj |ni), Eq. 3, provides connection to any longer scales Li > Lj . Thus the hypergeometric scale system can provide tools

for linking different SAR resolutions and for anchoring the observed intensities to the physical backscattering returns from

ridge rubble
::::::
Relying

:::
on

:::
the

::::::
results

:::::::
obtained

::
in

::::::::::::::::::::::::::::
(Mäkynen and Hallikainen, 2004)

:::
for

:::
the

:::::::::::
scatterometer

::::
data

::
at

:::
X-

:::
and

:::::::
C-band30

:::
and

::::::::::::::
(Dierking, 2010)

:::
for

::::::
L-band

:::::
SAR

:::::::
imagery,

::
it
::::
can

::
be

:::::::::::
hypothesised

::::
that

:::
the

::::::
results

:::
for

::::::
C-band

::::
and

::::::
L-band

::::::
would

::::::
follow

::::::
similar

::::
lines.

:
A
:::::::
possible

:::::::
obstacle

:::
to

::
the

:::::::::
presented

:::::::
analysis

:::::
occurs

:::::
when

:::
the

:::
air

::::::::::
temperature

::
is

:::::
warm

::::::
enough

::
to

:::::
make

:::
the

:::::
snow

::::
cover

::::
wet.

:::
As

::::::
shown

::
by

::::::::::::::::::::::::::::
(Mäkynen and Hallikainen, 2004),

::::
this

:::::::::
essentially

::::::::
decreases

:::
the

:::::::
contrast

:::::::
between

::::
level

::::
and

::::::::
deformed

:::
ice,

:::
and

::::
thus

::
it

::
is

::::::::
uncertain

::::::
whether

:::
the

::::::::
proposed

:::::::
method

::::::
applies

::
in

:::
the

:::
wet

:::::
snow

:::::::::
conditions.

:::::::::
However,

::
for

::::
this

:::
not

::
to

:::::::
happen,

:::
any

::::::
change

::
in

:::::::
ambient

:::::::::
conditions

::::::
should

:::::::
severely

::::::::
overturn

:::
the

:::::
order

::
of

::::
BPN

:::::::
values,

::::::::
otherwise

:::
the

::::::::::
persistence

::
of

:::::::::
contextual35
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:::::::
category

::::::
images

:::::::::::
demonstrated

::
in

:::::::
Section

:::
3.2

:::::
would

:::::::
prevail.

::
In

:::::::
addition,

::::::
higher

:::::
ridges

:::
are

:::::
often

::::::::
snow-free

::::
and

:::
less

:::::::
affected

:::
by

:::
wet

:::::::::
conditions.

::::::
Further

::::::
studies

::::::::
applying

::::::::
matching

:::::::::::
multiplatform

::::
data

::::
with

:::::::
different

:::::::::
resolutions

::::
and

::::::
varying

:::::::
ambient

:::::::::
conditions

::
are

:::::::
needed

::
to

:::::
clarify

::::
this

:::
and

:::::
other

::::::::::
unanswered

:::::
issues

:::
left

:::::
open.

:

Data availability. The laser
:::::
LIDAR data is available at PANGAEA under the following DOI: https://doi.pangaea.de/10.1594/PANGAEA.930545 (Haas et al.,

2021).5
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