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Abstract. The statistics of tee-ridgingsignatures—was-ice-ridging signatures were studied using high (1.25 m) and medium

(20 m) resolution SAR images over the Baltic sea ice cover, acquired in 2016 and 2011, respectively. Ice surface profiles
measured by the 2011 airborne campaign was-were used as validation data. The images did not delineate well the individual
ridges as linear features. This was assigned to the random occurrence of such ridge rubble arrangements that generate bright
SAR retarareturns. Instead, the ridging signatures were approached in terms of the local density of bright pixetsreturns selected
by a variable-variably bright pixel percentage (BPP). Den51ty was quantlﬁed by countlng br1ght pixel numbers (BPN) in plxel
blocks with variable side length L. As-ash

SAR-images-inice-informationpreduetion—A statistical model for BPN distributions was determined by considering how the

BPN values change with the BPP and was found to apply over a wide range of values for BPP and L. The statistical approach

was also able to simulate a higher BPP image when seeded by a low BPP image. It was also found to apply to surface profile
data analysed by counting ridge sail numbers in profile segments of variable length L. This provided a statistical connection
between the bright pixel density and the ridge density. The connection was studied for the 2011 data in terms of surface rubble
coverage estimated both from the mediumresohitton-medium-resolution image and from the surface profiles. Apart from a
scaling factor, both were found to follow the same distribution.

Keywords: sea ice, ice ridges, ridging parameters, Synthetic Aperture Radar (SAR), X-band, TerraSAR-X, statistical analysis,

simulation.

1 Introduction

surrounded-by—iee-and-they—ports of the northern Baltic Sea are kept accessible by icebreakers during severe wintersalse-

v.—,_and there exists a demand for accurate
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ns—, especially on ice ridging.

Ridge fields increase collision and besetting risks and reduce the predictability of shipping operations. In the Finnish-Swedish
ice chartsthis-information—, ridging is coded by the degree of ice ridging (DIR), which is a numeral that-seeks—net-onty-to

observations and manually interpreted SAR images.

Due to the qualitative nature of DIRthe-need-for-truly-quantitativeridgingstatisties—, a need for SAR methods to retrieve
uantitative ridging parameters persists. The usual surface parameters to-deseriberidging-are-ridge-are ridge sail height and

ridge densityer-the-number-of ridgesails-perkm-along-alineartrack—Thesurfacesta an-be-tinked-to-the-sts 0

arameterise associated statistical models. Ridge sail height and ridge density are also related to the fraction of the surface area

covered by ridge rubble, a parameter whieh-that contributes to the magnitude of #%-¢° in SAR images

variation-of-density-of pixels—chosentorepresent-. The surface statistics can be linked to the subsurface ridge keel statistics
with cross-sectional models, providing an estimate of the total mass of ridged ice. An-extensive-set-of Baltie-surfaceprofile

al fa dee-densitv—Two-differentTerraS AR band-SAR-imaee
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SAR research has approached ridging from two main
directions. Physics ba%edﬁppfeaehe%havemedﬁbased approaches seek to determine the microwave backscattering propertles
of ridged icety

, while image -based approaches seek to develop-metheds
to-retrieve-degrees-of ridgingusingretrieve ridging with image segmentation methodologies, supported-trained and validated
by field data.

in ridging. Backscatterlng from faffeéiee%fammﬂgiﬂnd»efheﬁe&gh—suffaee&rou h surfaces like brash and sastrugi may
overwhelm the ridging ﬁgﬁamfe% and changes in temperature, moisture and snow cover may alter the-diseernibilityof

he-their

discernibility. Air temperatures around 0 degrees reduce the penetration depth of microwaves into the snow layer, decreasing
the backscattering. For high frequencies, volume backscattering may exceed surface backscattering and-significantly-change
the-o>—Afeature-speetfie-to-(Albert, 2012). For low-salinity iceis-the-importance-of seattering-, the scattering is dominated
by volume inhomogeneities in the uppermost part-layers of the ice—As-verified-by(Dierking; 1999)-thispartly-, which in part
explains the high variation in-of X-band o° values for the northern Baltic Sea ice for-which-the-salinity-rangesfrom-0:2-to

operative-SAR-satellite-modes-has-been-too-low(Dierking, 1999). As the resolution of operative SAR data is usually not better
than 100 m %Hese}ve—mdiwdﬂal—ﬂdges—hﬁtea&the o°

resolution)-forfirst-yearpackiee—values come from varying assemblages of ridge rubble and other surface types. Correlations
between SAR signature and ridged ice volume emerge, as shown in the Beaufort Sea study of (Melling, 1998), but quantitative

estimates are hard to obtain.
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19905, This included models taking the sail block angle distributions into account, According to the 3D-backseattering modet
mmwmmm%mmwwmwwhe most important ice properties in the C-band
e t&g&%ﬁmnm% € microscale sur-

geometry. The main difference between ridged and level ice is-was that backscattering from ridge blocks has a broad range
of incidence angles, whereas level ice has a very-narrow range. On the other hand, using a 2D model describing the sail as a
are dominant. Both models predict rather similar results for-first-yearridgesin-C-band-SAR-imagery-due to the broad distribu-
tions of ridge-bleckridge block orientations and dimensions. Ridge backscatter has also been observed to be slightly sensitive

to the radar azimuth angle by (Johansson et al., 1992). We—nete%%he—medel}mgﬁfeehe&eﬂ&ba%edﬂﬂﬁﬁfumeawfem

density-was-propesed-with-Baltic image-based research has mostly used nonlinear regression and Bayesian methods to classif
ridged ice types. (Simild et al., 1992) found reasonable results using surface profile data and tail-to-mean ratio as-a-predictor-
TFail-to-mean-—ratio-is-a-funetion-of-computed from the SAR pixel value distribution tt-yielded-reasonable-resultsfor-the-test
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cover, a correspondence between freeboard and C-band SAR can be found if the dominant ice thickness is known.

In (Mékynen and Hallikainen, 2004) the o°, distributions were computed for several ice deformation categories with-different

—and incidence angles from
scatterometer campaign data. Only small differences were noticed between the X- and C-band results-or-using-or different

polarisations with the exception of HV- polanzatlon The-resultsagree-with-these-obtained-in(Eriksson-et-al-2010)Part-of

This agrees with the results of (Eriksson et al., 2010
._The same scatterometer data was utilised in the hierarchical Bayesian model in—~(Simiti-etal 200 with—improved-DIR

ef—Bethﬂw—Theaﬂalyﬁ%haéof Simild et al., 2001). (Gegiuc et al., 2018) assessed automated determination of DIR numerals

in three stages: segmentation of a SAR image, computing a feature vector to each segmentand-then—, and classifying the

segments. Training data consisted of

elasses-however—Gulf of Bothnia DIR numerals from ice charts. In addition, a clear correlation between DIR numerals and

A A A A A R A A A A A R A N A A N A N A N A AN A N N AN R AN N N A N N N A AN N N AN AN AN N N AN R N N A AN R A N A N N R A AN AN AN A A A A AN A AN AN A

deformed ice volume was demonstrated using surface profile data.
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Figure 1. The profiling measurement lines during the 2011 field campaign.
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2 Data Sets-and Preeessingmethods

2.1 SAR-dataData

The-German-Two modes of TerraSAR-X (TSX) satellite was

Stripmap-or-SeanSAR-mode(Fritz-and Eineder, 2643)—The-SeanSAR-data were used. The medium -resolution HH-polarized
ScanSAR image was acquired on 28 February 2011 over the nerthern-part-of-the-Sea-of BothniaGulf of Bothnia. The high
~resolution HH-polarized Stripmap image was acquired on 5 March 2016 near the Quark-Ithasswath-width-of Hailuoto island

WMOO km and aﬂmufhﬂHeﬂgfhﬂfMi\m}ljh@Llﬁvn\gﬂlg\ﬁ\ilso km-The-SeanSAR-mede-consists

) georectification-and-tand-masking:,
while in the studies, a 106x94 km subimage was used, Fig. 12. The image was fee&ﬁedﬁ&fh&@ggm

to Mercator projection with

%e—madeﬂeeﬁmg}ewaﬂe%and ixel size 20 m. As the incidence angle range from 29.5° to 38.7° —Beeause-the-ineidence

tor-1S narrow, no incidence angle

corrections were done, (Mikynen et al., 2002), only the calibration of the backscattering coefficients o°.
The equ

of-Bothnia—The-aequired-produet-Stripmap image is a Geocoded Ellipsoid Corrected (GEC) product without any terrain
correction —Jtis-alse-and a Spatially Enhanced Product (SE) designed for the highest possible square ground resolution. The

HH-polarization-image was rectified into 1.25 m resolution in the Mercator projection. The covered area is about 33.6 x 42km>
(width x length)—, from which a 19 x 19km? km subimage was used in the analyses, Fig. 2.
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surface-Only the LIDAR surface profile data is used here—Fhe-thickness-data—, while the electromagnetic (EM) ice thickness
has been addressed in (Ronkainen et al., 2018)

. The analySIS of taser-LIDAR data followed standard proceduresdesenbeﬂa—fEtekare&al%@G%—"er&em%eve}—was
. After a

reference-level determination, the local maxima were identified by Rayleigh-eriterion-demanding-that-the Rayleigh criterion
that demands that for two successive maxima, the minimum elevation between them must be less than half from either maxi-

mum. Otherwise, the shallower one is not counted. The elevation distribution of Rayleigh-separated-maxima-has-maxima has a
negative exponential tail for values higher than 0.4 mthat-, which was selected as eutoff-elevation—the cutoff elevation, Fig. 1.
Above the cutoff, the maxima are assumed to be predominantly-ridge sails. The average ridge-height-and-density-sail height
and ridge densities are 0.65 m and 11.7 1/km, respectively.

2.2  Weather and Ice Conditions

2.1.1 Winter2010201

The—wm{ef%@}é)/%gi—l—pﬂeﬁﬂie—ﬁekkThe winter prior to the ScanSAR acquisition and profiling campaign was colder than

average.

S-m/s-During the campaign, SW winds up to 18 m/s ’fepeateeﬂy—mggefed—dﬂfk Wmd deformation perlods and
opening-in-the-southern-part-ofin the bast o o o

Finnish-tee-Serviceice-charts-thelevelHeethicknessnearthe-eoast-Bay of Bothnia, and the drift speed of the research vessel
Aranda serving as the campaign base was typically 0.1-0.4 knots. The ice thickness varied from 30 to 70-emand-from30-to

60 cm in the-m
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The-air-temperatare-began-to-inerease-from-below-pack ice. The air temperature increased from -10 C° {on 24 February )-to
-1.5 C° {on 27 February). When the TSX-ScanSAR image was acquired, T, was -2.3 C° in-the-icestation—

hort snow-lines-were-measured-during 2-4-March—The-mean-thickness-was-at the Aranda base. Snow lines measured durin,
2—-4 March had a mean thickness of 8 cm and the-standard-deviation(STD)-a standard deviation of 11 cm. About 50 emr-thiek
cm-thick snow accumulations were often found by ridges, sometimes covering the-ridge-sailshallower sails. On 3 Marchthe

snow-had-already-some-meoisture-, the snow already had some moisture, and the density varied from 0.2 -6:3to .3 kg/m3 on
level ice and 0.3-0.4 kg/m3 near ice ridges. We-ean—assumeIt can be assumed that during the FSX—image-acquisition—the

ScanSAR acquisition prior to the campaign, the snow was still dry and it-did-not-affeetsignificantly-did not significantly affect
the backscattering.

The 1

2.1.1 Winter20152016

Fhe-winter-in-winter of 2016 was mild, and only the Bay of Bothnia had an ice concentration of 100%. Recurrent periods of
mostly SW winds induced cycles of deformation, opening and freezeup-and-only-freeze-up. Only in the beginning of March
the-basin-attained-did the basin attain a more persistent ice cover consisting of ridged and rafted ice types. On 5 March, the
fast ice thickness in the NE quadrant of the basin was 56-6550-65 cm, the level of ice thickness in the ridged ice pack was
30-50 cm ;-and the air temperature was from -1 to -4-4 degrees. The temperature stayed below zero, and no snowfall occurred
during the 10 days before the Stripmap SAR image acquisition date -when the snow thickness on mainland-being-the mainland

was about 30 cm.

3 Hiel Jution SAR i s

2.1 Approach
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Figure 2. Full high-resolution Stripmap image with the 7000x7000 and 1024x1024 subimages indicated (upper panel). The 1024x1024
subimage and further 200x200 closeup from the upper left corner (lower panel).

From the backscattering viewpoint, the principal quantity to describe ridging is the relative area of ice surface covered by ridge
rubble (rubble coverage). Curvilinear ridge sails are often visible, having a roughly triangular cross-section and a typical scale

10
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Figure 3. The categorised Stripmap 1024x1024 subimage and further 200x200 closeup from the upper left corner (lower right image).
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Figure 4. Full-high-reselution-Stripmap-The contextual images and corresponding category images derived from the full image with the
7066x7000-BPP 20% and +624x+024-subimages-indicated-L=121 (upper panel)—Fhe+624x1024-subimage-, and further 206x200-¢closeup
from the uppertefteorner-1024x1024 subimage with BPP 20% and L=21 (Lower-panetower panels).
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direction and tens to hundreds of metres in along sail direction. However, less well-defined block accumulations are also
understood here as ridging as they contribute to the rubble coverage. Their signatures in surface profiles are also similar to
those of curvilinear ridges.

sait-may faitto-be-elearly distinet from the surrounding leveliee It appears clear that the returns from the ridge rubble dominate
the brighter end of the backscattering intensity histogram. The brightness statistics involve a certain uncertainty, however. The
histogram depends on the processing of the image aimed at a good visual appearance. A change in ambient conditions may.
result in quite different intensity histograms for an otherwise unchanged ice cover. Still, an ice charting expert can typically
recognise in both cases the same ridging signatures as these appear persistent and symptomatically nonhomogeneous. The
persistence shows up clearly in binary images comprising a certain percentage of bright pixels from the intensity histogram
tail. If the percentage is reduced, the ridging signatures become more sparse but tend to retain structural congruence with the

non-reduced signatures.

To-proceed-following the-approach-outlined-in-Seetion2-Hn a way, the objective of the present approach is to provide a
statistical foundation for the assessment that the ridging signatures in two SAR images ‘look the same’. Towards this end,
a certain bright pixel percentage (BPP) is selected a i image—wi 3% h g i is—gen
predominantly returns from ridge rubble. The spatial variation related to the ridging signatures is described in terms of densities
the bright pixel number (BPN) in pixel blocks with vartable-sidetength-Eside length L, or equivalently in terms of brightpixet
numbers(BPNthe bright pixel coverage (relative area, density) in the blocks. Fhis-is-done-as-a-shiding-operation-for-the-binary

< n oy 2

originalimage—The side length L and the BPP are variable parameters of the BPN approach.

aYaYoA e hlo de lonoh —
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2.2 Sensitivity-of eontextual-images

Fhe pixelbloekside Proper validation data for the BPN approach would consist of ridge rubble topography in square areas with
a comparable side length, for example, scanning LIDAR data over snow-free ice. The extent of such data is limited, however.
The yalidation data, therefore, consists of linear surface profiles from which ridge sails are identified. The profiles are divided
into segments of length L, and the ridge sail numbers (RSN) in the segments are counted. Only those sails are counted that

exceed a certain height threshold. The ridge rubble coverage will inherit the RSN statistics that can then be parametricall
compared with BPN statistics for concurrent datasets. The segment length L affects-the resolution-of detail-in-the-contextual

are formally analogical, a more theoretical validation exercise seeks to show that they follow the same statistical model. The
model is derived by considering how BPN and RSN values change with threshold changes (threshold process). High-resolution
1.25 m) images resolving individual ridge sails are used.

13
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2.2 Estimating ridge rubble coverage

Ridge rubble coverage can be estimated along a linear profile from ridge sail height and ridge density. To provide realistic

the-intensity-average-image-are-9-—15-profile analysis must be assessed, as well as the application of results reported on the

sail width/height ratio, which is noted as R = w/h. Considering first the ridge width, the effect of oblique angles of sail

crossings must be taken into account. For randomly oriented ridges, the average width is 7/2 times the perpendicular width
(Mock, 1972). The reported 12 ratios for perpendicular width are usually around 4. However, the measurements typically refer
to the highest point of some sail section, while aerial imagery shows that the sail width does not vary as much as the sail height
but is rather constant. The results of (Lensu, 2003) indicate that the highest point of a sail section is typically 2.5 times the
average sail height, and . . .

with-maximum-value 2 beeomes-definedfor-thus the average value of R random sail crossings is about 10. To add, the BPN-A

BPP-changesRayleigh criterion counts as singular ridges certain wider multiple peaked formations. Deformed ice fields also
include scattered rubble and other diffuse roughness not accounted for in the estimates. To include the contribution of these
the value R = 13 is adopted.

i The cutoff sail height affects both ridge density and ridge height. To
estimate the cutoff effect, the extrapolation model by (Lensu, 2003) is applied. It is assumed that the average sail height is

set and only the variation of ridge density is at issue. For the present LIDAR profile data with a cutoff height of 0.4 m and an
average sail height 0.65 m, the model provides estimates that the true average height is h, — 0.48 m and that the true densities
are 2.0 times the observed density.

14
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ridgesTaken together, the ridge rubble coverage RRC along a profile is:

RRC s
Ta 7 g rfrhea N
- % x 13 % 0.00048 x 2 x lambda, @)

where all quantities are in kilometres (h,=average height, A=observed ridge density). A unit increase in the observed ridge

density for 0.4 m cutoff data increases the along profile rubble coverage by 1.96%. However, as the interpolation factors are
rough estimates, the value 2% is used instead.

RSN)—Segmentlength-L-and-If the profiling flights have crossed an area multiple times in different directions, which for our
data was the case for coastal ridge fields near the flight base, the estimate is representative of areal rubble coverage. For a

singular crossing, the - ,
the-pixel-intensity threshotd-for SAR-images-relationship involves randomness and is generally the more reliable the larger
the considered area is, provided that homogeneity of ridging conditions persists. On the other hand, independent estimates of
rubble coverage from SAR or other data can be converted to ridge density interpreted either as an average of multiple crossings
or as the probability to find the said density in a singular random crossing.

15
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2.1 Threshold process

For an idealised SAR image with accurate real-valued intensities, the pixel values can be arranged into strictly increasing order.

startingfrom-Starting from an empty image matrix and from the brightest pixel, the pixels of the ordered series are-added

one-by-one-can then be added to the matrix one by one. It can then be studied how the probability for the BPN to increase

by one depends on the pixel block state <L,BPN,...> of-the-bloek-as-defined-by-side-length-by L, BPN, and possibly by other
descriptors. These-inerease-The probablhtles can then be used to formulate recurrence relations fh&%(:—&lﬂrbeﬂseéfe—geﬂemfe

ggggggy&ﬁmte BPN distributions.

For integervalued-SAR-imagesthe process-is—realised-by-starting-integer-valued SAR images, the process starts from the
BPN values for maximum intensity ﬂsua}}y%é—madﬂddmgﬁephkﬁep and proceeds in unit integer steps by adding pixels

of subsequent lower intensity. This mearn

here-as-is designated as the threshold process. The inerease-increased probabilities are replaced by inerease-increased rates, that
is, the relative number of events of unit BPN increase. For RSN, an analogical process decreases the sail height threshold with
by small values, starting from a threshold equalling the highest ridge. The increase rates are-then-intepreted-as-inerease-of the
threshold process are then interpreted as increased probabilities of an idealised process. Strietly-taken-thisrequires-that-This is
legitimate if the number of increase events larger than unity is relatively small for each step. In-praetice-the-steps-are-timited

the statistical model is based on the following observation. The targetthreshetd-beingset;the-SAR-intensity or ridge sail height
values higher than or equal to the target threshold can be randomly permuted. This changes the increase rates, generating
another threshold process. However, the end-result;-or-the-BPN or RSN distribution observed on the target threshold level 5

is the same for both processes. Thus, the new increase rates can be used to generate the observed distribution. The random

permutation has the merit thatitremoves—of removing the spatial correlations of intensities or sail heights —Fhe-threshold

16
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proeessreduees—so that the threshold process is reduced to a random deposition processthat-dees-not-depend-on-intensities-or
L heiohts.

2.2 Scale system of distributions

The threshold process and the distribution model are presented for ridge—sail-numbersRSN statistics. The case for bright
pixelnumbers-BPN is conceptually analogical - 5 isties— g i i

uppermost-part-ofiee-but involves complications not present in RSN statistics: discreteness of integer data, resolution set by
pixel size, and the-timit-L2 as the maximum BPN value.

In RSN analysis, surface profile data is divided into segments, and the numbers n of sails in the segments are counted.
Segmentlength-Lis-a-variable-parameter—A discrete distribution k(n;) for sail number n; becomes defined for each scale L;.
If L; < L, is a shorter segment, a conditional distribution k(n|n,;) becomes defined. This can be interpreted as the conditional
probability to find n; sails in an L ;-segment nested inside an L;-segment containing n; sails. The k(n;|n;) can be also called
downscaling probabilities as they can be used to derive distribution k() from k(n;). Fhis-The approach can be extended to a

cascade of scales, constituting a scale system of distributions.

In an idealised-threshold-proeesses-ideal threshold process, the sail heights ean-be-are arranged into strictly increasing order
and added one by one to the segmented profile. Two nested segments with lengths L; > L; are considered and-the-shorter

segment-L-is-divided-further-so that the longer segment L; is divided into segments with length L; and L; — L;. If the sail
is added in the process to £ L;-segment, it has a certain probability te-beeome-of getting added to each subsegment. This
probability must satisfy the additivity condition P(L;) = P(L;)+ P(L; — L;). In-general-the-probabilities-depend-ontocal

condition is P(L;) ~n; +al;

simplest assumption satisfying the

which leads to the hypergeometric distribution (Lensu, 2003):

(aLj+nj71) (aLifaLjflJrnifnj)
k(ﬂj |ﬂz) = L (aLi_i_m_nf)inj , Ny = 0,1,...,n;. 3)

uz

If L;/L; > 1, then the finite and discrete distribution k(n;|n;) is approximated by k(n;) and k(n;) is approximated by the

negative binomial distribution

al;+n;—1 , ) aL.
k(n:) = J J al; 1—p) h — J 4
() ( n; )p (1—p)™, where p Lt <m > )
and-further, and furthermore, if < n; > is large, the continuous approximation of Eq. 4 is the gamma distribution:
1 —1_fn;betan, al;
) — o, o njbetan; , =al ;S — . 5
f(n]) F(Oé)ﬂ n e A~~~ a a J <nj> ( )

17
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It is convenient to assume that £-is-L; is a regional scale where the-variation-inridging-conditionsisridging statistics are
described by the negative binomial k(n;), as approximated by the gamma distribution. The hypergeometric k(n;|n;) ean-is

then be used to describe local variation.
The seale-system-is-validated-alongstatistical model is validated in two stages. Fhe-First, the additivity condition is first-vali-
dated by conducting a threshold process for selected scales and target thresholds and observing whether the increase rates have

a linear dependence on the ¢

~RSN or BPN. In the next stage, the distribution models are

fitted to the data. In the sections to followthis-is-made-by-, this is done by the observed mean and variance, and the goodness of

fit is checked. The parameter a is obtained from the variance

var(njln;) = = (Lz(aL-—)l—(l) 1) (6)

and

(ni)?

aLj

)

var(n;) = (n;) +

for the hypergeometric and negative binomial models, respectively. We-remark-that-the-The variance for the negative binomial
distribution is larger than the mean, which ensures that a is positive in Eq. 7. The parameter a quantifies in-the-threshold-proeess
the-the relative strength of the component process of the random spatial deposition of sails, that is, the Poisson process. If the

validation results agree for test cases selected from a certain scale range, it can be concluded that the scale system is applicable

over the scale rangeand-for-any-combination-ofseales.

2.3 Observedrates-and-distributionsforridgesailnumberSimulation of SAR texture by the threshold process

data-consisting of To analyse the BPN threshold process in full detail requires that bright pixels are added one by one in process
steps. For integer-valued images, this cannot be attained. On the other hand, it is possible in a validation approach where the
generative hypotheses are tested by simulating the generative process. The simulation commences from a certain stage of the
observed threshold process. New bright pixels are added one by one following the assumed probabilities and possibly other
conditions. The simulated result is then compared with the observed one._

A binary image with value 1 (white) for an observed low percentage of brightest pixels is used to seed the process. The
simulation changes the value of black (zero) pixels into white, one at a time. This is done by a scale cascade, which is assumed
here to follow the linear generative hypothesis. The first step divides the image into four rectangles along randomly chosen
vertical and horizontal lines. To each rectangle is assigned weight a/NO + V1, where N0 is the number of pixels, V1 is the
number of white pixels, and a < 1 is a parameter that controls the relative strength of a random spatial placement (Poisson
process). One of the rectangles is selected for the next step with a probability defined as the ratio of rectangle weight to the
sum of weights. The selected rectangle is divided further into four, and the cascade is continued until the rectangle contains
only one black pixel that is changed to a white pixel. The process repeats until a preset number of white pixels is reached.

18
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The simulation approach can also be applied to other generative hypotheses. Imposed maps of spatially distributed weights
can be used to include spatial aspects of the generative process, like correlations, homogeneity, gradients and support, i.e. the
subregion outside of which the process is not active.

3 Results

3.1 Observed threshold process rates and distributions for ridge sail number

From the profile data set described in Section 2.1, profiles exceedmg 5 km in length was-were selected and truncated to be
divisible into 1.6 km, in total 2256 km. sths-For RSN analysis
the segment length L the birary-cascade [50,100,200,400,800] (meters) was used. The threshold process was-set-to-deerease

decreased in 0.01 m steps from 2.5 meters —Whiehwa}ue—se}ee%(lo ﬂdgeﬂ}&ffem&e%%e}&dmaset—ﬂ}heﬂveighfﬂf—eases

results-significantly-for-thresholds-smaller-than-0-5-m-—Theridges). The target threshold was set therefore-to 0.5 m sseleeting
(18638 ridges;and-the-number-of-threshold-proeesssteps-was264-).

The increase rates per step were determined as the mean value of RSN increases, including zero increase—The-, and the
presented results are for the pooled data comprising all steps to the 0.5 m target threshold. Hewever,theresults-were-essentially
similarif-a-higher-target-thresheld-wasused-The increase rates were calculated both for the original data and for the-data-with

randomly permuted sail heights. The results are

values-for-which-the fewRSN-inerease-instanees-show-shown in Fig. 5 disregarded the tail part with an excessive variation. In

the right panel of Figure-22-Fig. 5, the highest RSN already-correspends-values correspond to ridge density 160/km, a value
characteristic to-rubble-fields-of rubble fields with no level ice visible. The increase rates were generally-linearfor-the randomly

pefmu{ed—da&i%efe—r&hnear with a slight superhnear bendwheﬁbeﬂafbﬂﬁd—KSN—have—lﬂghefva%ues
The in

non-randomised data deviate after beginning from linear to sublinear increase. For other scales, the behaviour was similar,
and for long L, the rate more or less settled to a constant value in its tail part. Satt-height-eerrelations-are-the-tikelyreason
mm&mm@gmmm naturally as the-thickness-of-parentiece

block thickness (a parameter controlling ridge sail height) vary spatiall
during the course of the ice season. Clear-cerrelations-were-alse-Correlations were indeed found between RSN and the average

sail heightfer-a-segment.

The hypergeometric and negative binomial distributions were fitted to_the data with observed parameters-(mean and vari-
ance). The negative binomial k(n;) agrees well with the empirical distributions derived from the full dataset in Figure—22-
Fig. 6. Only the number of empty segments is overestimated for 200 m and 400 m segment lengths. Figure-22-Fig. 7 shows
the hypergeometric distributions k(n;|n;) for the conditioning scale L; = 1600 m and for the range [50,100,200,400] of the
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subsegment scale L;. Results-The results for two values of conditioning RSN, n; = 16 and n; = 72, are shown. These are
equivalent to ridge densities 10/km and 45/km for the segments ;. The agreement is good, considering that the subset size is
limited by fixed value n;. Similar results are found for other combinations of L;, L;, and n;. The hypergeometric model was
derived from the assumption that the rate of the RSN increase for the segment length is proportional to n + a L.

The parameter a is obtained from the mean and variance and is generally found to decrease with L following a-the power law.
For the shown-hypergeometric-ease-hypergeometric case shown, the exponent has about the same value of 0.5 for all values

of the conditioning n; ranging-from 16 to 72. The parameter a ean-be-interpreted-as-was interpreted as the relative Poisson
intensitythat-, which also provides the rate of sail appearances to empty segments in the threshold process. Fhe-threshold

If there is no rubble present in the segment, it can be said
to consist of level ice and cannot experience a change of RSN from O to 1, either. The Poisson parameter of level ice segments

is zero, and the observed Poisson parameter a is obtained by multiplying the true Poisson parameter of rubble seements b
their relative coverage. Thus the power law suggests that the area covered by ridge rubble has fractal geometry. This-pointis
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Figure 5. Sail number increase rate for in a threshold process with target threshold 0.5 m. Left: Rate for observed sail heights and randomised
sail heights for segment length L, = 100 m . Right: Rates for randomised sail heights for different segment lengths.

3.2 Observedrates-and-distributionsfor BPNCharacteristics of high-resolution SAR

For-the BPN-thresheld-process—analyses-the-highreselution-The pixel size of the March 2016 Stripmap image is 1.25 m

which resolves backscattering signatures from individual ridges. The size of the image (Fig.

rincipally 7000x7000 (8.7x8.7 km) and 1024x1024 subimages with
representative ridging signatures. To proceed following the approach outlined in Section 2.1, a certain bright pixel percentage

BPP) is selected and a binary image with unit values for the bright pixels is generated. The variation of bright pixel densit

and visualisation, different subimages were also used,

described in terms of bright pixel numbers (BPN) in pixel blocks with variable side length L.
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Figure 6. Negative binomial fits to the RSN distribution for the full dataset and for different segment lengths.
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Figure 7. Hypergeometric fits for distributions k(n;|n;) conditioned by L; = 1600 m and n; = 16 (left panel group) and n; = 72 (right
panel group). The scales L; belong to [50,100,200,400].

Two_derivative image types are also presented. Following the BPN approach, the first derivative replaces (as a sliding
operation) pixel values with BPN values calculated for pixel blocks centred at the target pixel. This is accomplished by a
convolution with a Lz L all-ones kernel. The result is termed "contextual image’, as the visibility of ridging signatures and their
effective resolution depend on BPP and block side length L, which can be chosen to suit the application context. The other
derivative is "category image’, which divides the brightest 30% of pixels into three 10% classes, either for the original or the

contextual image.
In the category-image version of the Stripmap image, fig. 3, ridging features appear to be visually delineated by the brightest

20
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These observations agree with the results by (Manninen, 1992) and (Carlstrém and Ulander, 1995) that indicate that bright
returns from ridge rubble depend on random factors like a favourable orientation of blocks, while the returns from the remaining.
sail may fail to be clearly distinct from the surrounding level ice. The apparent randomness also corroborates the assumption
that the density of the bright pixels in the image is proportional to the coverage of ridge rubble.

In the contextual image and its category image rendering, Fig. 17, the sliding block side length is L = 101 (126 m), and the
BPP is chosen to be 20% or comprising the red and yellow pixels of Fig. 17. It is seen that the ridging signatures are enhanced

and their connectedness improved in the contextual images (Fig. 17).

3.3 Observed threshold process rates and distributions for high-resolution BPN

For the analyses of 7000 x 7000subimag

image-was-, the upper left corner subimage of the Stripmap image was used in order to avoid the refrozen lead visible in
Fig. 3. The image was divided into non-overlapping pixel blocks with varying-side length L, measured in pixels. The intensity
threshold was decreased by unit integer steps, starting from 255, and the rate of BPN increase as a function of BPN was
obtained for each step. In the presented results, the rate data comprises all steps down to the target threshold. In the subimage,
1.2% of the highest intensities are saturated to 255. This percentage is equal to that for the intensity band [218,254] and would
correspond to the extending of the exponential tail of the intensity histogram beyond 255 to 350. This somewhat affects the
results for the initial steps of the thresheld-easeadeprocess.

Analogically to the RSN analysis, the pixel intensities above and including the target threshold were randomly permuted.

the-same-was-done-for-varying-In Fig. 8, the block side length and-for-a-fixed-target-threshold—Thefirst-test-case-ispresented
corresponding to BPP values [5,10,20,40]cerrespond-to-intensity-thresholds 182,149, 118;86-Similarly-as-, As for the RSNthe
abselute-, the magnitude of the rates is not relevant, enly-their-pessible-linearity—For presentation-purpeses-the-rates-and they
have been scaled so that the sum rate equals L? or 1024. The different degrees of saturation then separate the point clouds in
Figure-27-Lineardependence-of rateson- BPN-Fig. 8. Linearity is observed unless the saturation of the pixel block is felt —Fhis
oeceurs-after 3/4 of the block capacity is filledand-affects-significantly-only-cases BPP20%and-40%.

TFhe-In the other test case is-presented-for BPP-80%inFigure 2?-where-in Fig. 9, the BPP is set to 20% (target intensit
threshold 118), and the block side length increases in-binary—fashion-from 4 to 128. In addtion—to-the-addition to the same

scaling of rates deseribed-above-the-as in the first test case, the BPN range [0, L?] has been scaled to [0,1]. The results are
similar as-aboveto the first test case. For comparison, the same result is shown for the original data where the pixel intensities
are not randomised. For higher L, the relationship is then approximately linear for small relative BPN values, but otherwise, it
is quadratican it te-withi

alseﬂﬁﬁgﬁfe—‘L‘L Intensity correlations are the apparentreason] m but no further conclusions are attempted Also

o
D
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5 The agreement of the proposed distribution system with the data is again good. Empirical-distributions-Distributions were
calculated from block tiling of the 9216 x 9216 (11.5 x 11.5 km) upper left corner subimage. Figure-22-Fig. 10 shows negative
binomial distributions k(n) fitted by observed mean and variance —BPP-is-for BPP 10%and-the-resultsfor-, and three scales
are shown. The fourth subplot shows the model parameter a as obtained from the mean and variance for the binary cascade of
scales L = 8,16, ...,256 --and for three BPP values. The power law exponents varies-vary from -0.37 to -6:45-0.45 and are thus

10 close to but somewhat smaller than the values obtained in the RSN analysis. Also, the negative hypergeometric model k(7 |n;)
conditioned by scale L; and BPN value n; applies well. Figure-2?-show-Fig. 10 shows the results for selected combinations of
Li, Lj and n;. The conditioning scale cannot exeeed-mueh-much exceed the value L; = 16 as the number of instances n; for

conditioning pairs (L;,n;) deerease-decreases as L.

* BPP 40% Sl

* BPP20% k' :
BPP 10%

* BPP5%

Relative rate of BPN increase
w

0 200 400 600 800 1000

Figure 8. The BPN increase rates for pixel block side length 36 and BPP increasing from 5% to 40% in binary fashion.

3.4 Simulatien-ef Simulated high-resolution SAR texture by-the-threshold-proeess
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Figure 10. In the left panels BPN distributions and their negative binomial fits for BPP 10% and three different pixel block side lengths
L. The parameter a is also shown for a scale cascade 8,16, ...,256 and for three different BPP. In the right panel hypergeometric fits for

conditional BPN distributions for different combinations of conditioning scale L; and conditioning BPN n;.

proeesssimulation algorithm was applied to the 1024x1024 subimage indicated in Fig. 3. The white pixels of the initial binar
image correspond to BPP 3%. The simulation changes-the-value-of zero-pixelsinto-oneone-at-atime—This-is-done-by-ascale
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added 10% so that the resulting BPP is 13%. If a/NO > N1, the Poisson process dominates the simulation step, but overallthe
proeess-inevitably-, the process gravitates towards image areas with a higher density of nenzero-white pixels. However, if the
fraction of nonzero-white pixels is initially low, the Poisson component process tends to add nonzero pixels into larger empty
areas, ereating-firstfirst creating dispersion and then spurious clusters. To reduce this, an additional condition requires that the
nenzere-in a process step, a white pixel cannot be added within a rectangle if its fraction of nonzero pixels is below a threshold
Co and the rectangle size is within certain limits [N'1, N2]. This effectively means restricting the support of the process.

The st

parameters were a = 1/20, Co=1/100 +-and
[N1,N2] =[100,20000], and the results are shown in Figure-22-Fig. 11. Although not matching exactly on pixeHevel-the
pixel level, both 13% images exhibit the same pixel density variations. Convolving-with-24-<21kernel-the-and-generating

For contextual and category images simitar-to-thoseshown-inFigure-22-for L = 21, the results for the real and simulated
13% images match almost exactly, that is, they contain the same information at scale L = 21. The results provide additional

corroboration for the soundness of the generative hypothesis. They provide-also-also provide the insight that certain parts
of “non-deformed—"non-deformed’ ice should be left outside the ridging statistics, a feature suggested-also—previousty-also
previously suggested by the emergence of power law exponents for the parameter a in the distribution fits. The parameters of
this demonstration were determined by simple experimentation, but more systematic approaches can be conceived. Especially,

the-intensity values could be incorporated, which would introduce spatial intensity correlations, and the fractality suggested b
the distribution analysis could be encoded into the simulation steps.

Figure 11. BPP 3% binary image, BPP 13% image, and the BPP 13% image generated from the BPP3% image by the simulation algorithm.
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4 B bsis f " lution SAR

3.1 SAR and FASER-LIDAR comparison for the 2011 image

Fo-analyse-The analysis of ridged areas in the FSX-SeanSAR-image-of resolution-20 m we-proceedresolution TSX ScanSAR
Wln a similar manner than-in-as the analysis of htgl%fese}ﬁﬂeﬂ—SAR—d&Eaabeve—As—fﬁ%ahdafed»exteﬂswelyfhe

We-examine-the-high-resolution SAR data. The basic SAR tools are the bright pixel percentage (BPP) and the counting of
bright pixel numbers (BPN) in pixel blocks. The target is distributions f(z )dﬁfﬂbﬁﬁeﬂwhef&fheﬂfgﬁmeﬂ% where x has-the

vard O c O a—a a G P 010 W n—are-aporeviatea a € ana1Tuoo OV ag afna t

tonis the estimated ridge rubble coverage (RRC) in pixel blocks (SAR
RRCQ) or their ground truth counterparts as determined from LIDAR surface profiling flights (LIDAR RRC).

are that LIDAR RRC can be estimated from profile data, Section 2.2, that the bright pixel number can be used as a proxy.
for SAR RRC and also for 20 m resolution data, and that both RRC concepts inherit their statistics from the model for RSN
and high-resolution SAR BPN, sections ?? and_3.3. It is noted that the 20 m resolution can still detect much of the ridging
signature in Fig, 12 and that the simulation method described in Section 2.3 works.

The first-step-in-the-analysisis-to-extract the-bright pixel-set-with-the BPP is set to 20%threshold-there—14-4-dB)-from-the

In-the-seed-image-the-bright pixels-in-the-set-5-The exact BPP value is not essential, but the chosen one is expected to
comprise most of the ridging signatures and not too much level ice. Similarly, as for the high-resolution image, the bright pixels
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at the pixel. As the target is rubble coverage, the BPN values are changed to percentage points. The convolution operation acts
similarly as in the eriginal-SAR-image-(20-m)—
M%M%%%MQWWMW s the ridged areas —TFhe-spatial

ridge—and-the—ice—channel structures—which-one—ecan—deteet—visnallyridging structures that are only vaguely discernible in

the original SAR imagery.

20 km #§

60 km p

Pixel itensity [0-255]

80 km

Bright Pixel Number [0-225]

100 km

20 km 40 km 60 km 80 km 20 km 40 km 60 km 80 km

Figure 12. The test area covered by the TSX SAR imagery with resolution of 20 m. On the right is the contextual image with BPP 80%.

For comparisons between the SAR RRC and LIDAR RRC, the resolution of the contextual image is weakened to 1 km?. Ta

image Fig. ?? is called an analysis image—The-pixel-value-in-the-analysis-image-, and its pixel value is the mean of all the
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eontextual-image-pixels inside the +-km? resolution-pixel-and-is-given-in-percentage-pointscorresponding contextual image
ixel block. These pixels af&wthe SAR RRC (SARJeaseéﬁdgeandﬂﬂab}&ewef&ge}ﬁ*e}s—

n=—and are compared with LIDAR
RRC values determined in grid cells matching the pixels with respect to size and location. The LIDAR data were assigned to
10 the grid cells in Fig. ?? using the coordinates included in the data. If the LIDAR grid cell contains data, its value is #/2-times

15
20
25 %&V = X R X hg XA

x 13 x 0.00048 x 2,

o3 (o] 3

30 ferasingleridge-the ridge density detected in it, and the RRC in Eq—23f-theprefilingflightshaveerossed-an-area-multiple

28



10

15

20

25

30

multiplying the countof ridges percentage points is estimated by multiplying the density by 2%-Alt-the grid-celis-with-amount
of 50-ridges-or-more-were-indieated-to-, Eq. 5. Ridge densities larger or equal than 50 then have 100% RRCbased-on-theridged
area-estimates—About-, This was the case for about 2% of all the cells where-one-or-more-ridges-occurred-had100%RRE
coverage—These-eells-situated-near-eoast-with nonzero ridge density and occurred only in the rubble field zone —Jtis-possible

ﬂr&jﬁﬂfyﬁfﬁﬂ%EMﬂtghtﬂaeg&n—see%g—ﬂngggwﬂleeMm
As was pointed out in Section 22-2.1, ice drift and additional-deformation-after-the-acquirement-deformation occurred durin
the profiling campaign week after the acquisition of the SAR 1mageafepfeseﬁf+n—fhepfeﬁ4&data—b%dmaeﬁhewaﬁﬂﬁhe»s%

distribution-of RRE based-on-the HEM-data-was-computed-(As the ice drift could have been well over 10 km during the time
gap, and the flights are from several days, it is not possible to establish a one-to-one correspondence between the RRC estimates
for the SAR analysis pixel LIDAR grid cells, and the comparison was made regionally. All LIDAR data in the area covered
by the SAR image was used for the RRC values in the LIDAR grid, Fig. 213(right). The SAR baseéaﬂahfsrs«xmagefs—frhewﬁ

#-RRC analysis image Fig. 2?
The-extent-13(left) includes all pixels outside the mask (N=7549 pixels).
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Figure 13. The analysis image over the test area presented as a SAR RRC image on the right and the corresponding LIDAR RRC image.

The units are percentage points in both images.

5 have%he&&mefese}uﬁﬁﬂ—WefeﬂﬁdeﬁhetﬁﬁmﬁaﬁtyLﬂﬁﬂg—fheThe two datasets are compared in terms of a quantile-quantile
(Q-Q) plot for the € espective distributions. This can be

viewed as a nonparametric approach to comparing their underlying distributions.

10

importantfeature-inthe-Q-Q-plot(Fig—22)is-thatthe- There is also no need to compare the grid values pairwise or have equall
sized datasets. The quantile pairs are largely located along a line —This-implies-thatthe-distributions-are-linearly-related-which

in-turn-implies-thatthe-with a ratio of 1.34 between the quantiles (Fig. 14, the left panel). This indicates that the shapes of the
distributions are similar -—Beeause-the HEM-RRCfellows-and that they may belong to the same distribution family. As LIDAR

15 RRCis expected to follow a gamma distribution (Eq.

20 From-the-generaltrend-ofthe-), this is then also expected for SAR RCC. For two gamma distributions, the linearity of the Q-Q
lot entails that the shape parameters are equal, which also holds for the model Eq. 5 if the scale L ; and the process parameter
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a are the same for both. The slope of the Q-Q plot we
constant-here-aboutthen equals the ratio of the scale parameters, suggesting that a value of 1.34 en-theinterval-from0-to-75%

We-examined-how distributions of the SAR and LIDAR RRC are with and without the scaling coefficient of 1.34, Fig. 14.
The original SAR and LIDAR RRC densities show the same basic shape but do not match well. When SAR RRC is scaled
by 1.34, the match is improved, and the obtained mean values are very close to each other: 26.2% for the scaled SAR RRC
and 25.9% for the LIDAR RRC. Converting the mean values to the number of ridges yields about 13 ridges per km” for both
data sets. Gamma distributions were also fitted to both data sets. The maximum likelihood estimates for the shape parameter

of the scaled SAR RRC gamma density is 1.7 and the scale parameter 15.5. The respective values for LIDAR data are 1.4 and
18.2. Thus, although the parameters of the fits are close to each otherthe-distributions-of-the-SAR-and HEM-RRC-are-with

distributions-itHustrate-that, they are not equal.

The problems with the fit and agreement with gamma distribution mostly concern the tail part of the distribution. The
linearity of the Q-Q plot was no longer valid for SAR RRC over 50 % and for LIDAR RRC over 75 % RRC. The SAR RRC
values over 50% are relatively rare in the data, and highly ridged areas form proportionally a much larger fraction in the HEM

datathan LIDAR data. Especially the rubble field hump seen by the end of the LIDAR distribution is not present in the SAR
e-HEM-distribution. As the LIDAR flights

frequently flew over the large coastal rubber-field-zone-rubble field zone (see Fig. 2?-Consequently-a-significantly-13), a larger
proportlon of the HEM-LIDAR data was collected from this area than was the case with the SAR RRC data. The difference

the HEM-flights-were-located-mere-uniformly-scaling coefficient was found to increase with the area of SAR included in the
comparison and varied from 1.3 to 1.6. With a spatially more uniform coverage of the LIDAR flights over the SAR image, the
we}ghkeeefﬁekeﬂt—weu}ébeﬁ:—leseﬁe&—a reement would probably have been better for the tail part.

in-As expected, decreasing the BPP value increases the scaling coefficient when the SAR image extent and the LIDAR data
stay fixed. Three cases were examined: For BPP 10 %, the scaling is 2.22, for 15 %, itis 1.61 and in the above analysis with
BPP 20 %, itis 1.34. In all three cases, the QQ plot linear for its main part and the mean of the scaled SAR RRC distribution
are always close to the LIDAR RRC mean.
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Figure 14. The quantile-quantile plot for the SAR and LIDAR data sets (left). The SAR and LIDAR RRC distributions overlaid (middle).
The scaled SAR and original LIDAR RRC distributions (right).

3.2 Contextual images as ridging information

Although in SAR images from a ridged ice cover the bright returns are predominantly from ridge rubble, the step to quantitative

methods has proved hard. The bright pixels do not typically connect well to ridging features. This was found here also for

high-resolution SAR and was assigned to the random occurrence of favourable rubble block arrangements.

The randomness problem can partly be bypassed by the BPN approach as the ratios of BPN values do not change much
even in large changes in BPP. Thus, the appearance of contextual images that enhance the ridging signature by a BPN sliding.
operation (Fig. *?(the-right-paneb17 or Fig. 12) also does not change much. This appears more strikingly in the category
versions of the contextual images (Fig. 17), which provide an application-oriented way to delineate ridged ice.

image and its BPP 20%, L = 21 contextual derivative are presented as category images. However, for the BPP range from 2%
ixels with value 255) to 95%, er right panel (mihin kuvaan viitataan?
Fig02??). The same result is found for several alternative methods to generate a contextual image, like the I = 21 sliding block
average of intensity. More strikingly, the information of the contextual image is essentially retained in different randomising
transformations. In Fig. 22 in the lower left panel, the 1024x1024 image has been multiplied eight times by a random matrix
that erodes the ridging signature beyond visual recognition. However, the contextual category image still emerges essentially.
unchanged in its main features in the right panel.

the category image is almost identical to that in the u
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The-essential-featurefound-in-The observed behaviour is due to the fact that changes in BPP, changes in method, or
randomising operations on the average preserve the order of values in the contextual images. This feature is enhanced in
the category versions as the flux of values across category boundaries is then relatively small. This can be studied in detail by
pixel-to-pixel mapping between two contextual images. For example, mapping for the 1024x1024 subimage with L = 21 and
BPP 20% the BPN values to matching L = 21 sliding intensity averages the relationship is monotonous on the average. For each

BPN value, the mapped intensity averages have a normal distribution with a standard deviation in the range of 3.5-4.5. On the

80% — 90% and 90% — 100% categories for the intensity average are 9, 15 and 102, respectively. Thus, the highest class, in

articular, retains its delineation in this method change. More importantly, if the change in BPN values induced by a change in
ambient conditions preserves the order on the average, the category images can be consistently used in the daily production of

BPP-inereases-and-The pixel block side length [, affects the resolution of detail in the contextual images, and its value may be
chosen to suit the context, hence the term. Including a pragmatic viewpoint, L = 21 of Fig. ?? and L = 101 of Fi
kuviin viitataan?) correspond to the width and length scales of icebreaking ships so that the BPN values of contextual images
provide the number of bright scatterers that the ship bow or the whole ship interacts with at a time. As BPN has been shown
to be a proxy of ridge rubble coverage, the contextual images have direct pertinence to navigability. The categorised versions
can be interpreted as classes of navigational difficulty, or as delineation of areas that a ship should not enter. They can be used
in tactical navigation or in route optimisation that only seeks to avoid difficult ice types. More advanced route optimisation is
based on physical models for the added resistance from the ridges. The ice-going speed and the probability of besetting can
then be obtained in simulations that take the ice conditions along alternative tracks as input, specifically ridge density and ridge
height (Kuuliala et al., 2016). As the contextual images provide only relative ridge density estimates, the amount-of bright

aroghtad AR RR

. 22 (mihin

datasets-it-is-notrestricted-only-to-the BPP-value used-in-the-analysisscaling to true values, as well as ridge height, must be
determined by other means. These may include observations from ships, measurements, or satellite data, especially ICESat-2
profiles. Another possibility is to use a ship’s response, observed remotely from AIS data, to classify the contextual image
signatures directly in terms of ice cover resistance (Simild and Lensu, 2018).
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Figure 15. Results for 1024x1024 image multiplied 8 times by a random matrix. Left column: The 200x200 subimage (upper left)
randomised contextual image obtained by BPP 20% and 21x21 convolution kernel (lower left). Right column: Categorisation of the original

image (upper right), Categorisation of the randomised image (lower right).

4 Discussion and conclusions

Ice charting experts are usually able to recognise the same signatures-in—ridging signatures in SAR images that have different

resolutions or are taken in different ambient conditions. One-way-to-to-make-this-observationmere-preeise o-consider-binary

34



90-100%

1 80-90%

1 70- 80%

Percentile classes

0- 70%

0 400 800 1200 [m]

Figure 16. The contextual images (left) and corresponding category image (right) derived from the 1024x1024 subimage with BPP 20% and

L=21,
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Figure 17. The contextual images (left) and corresponding category image (right) derived from the 1024x1024 subimage with BPP 20% and

L=21.
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The-present-approach-proceedsfrom-these-observations-The present approach proceeded from this observation by analysing
SAR images in terms of the local density of bright pixels chosen by a certain percentage (BPP). The tail intensity vartation;

that-is-variations, which are often relied on in SAR ice type classification approaches, is-were left to a secondary role. The

quantification is in terms of bright pixel numbers (BPN) counted in pixel blockswith-variable-sidetength-I—The-development

considersfirst-high-resolationimages—. First, high-resolution images were investigated for which the brlght returns can be
assumed to come from individual ridge sails. Thi A § § sating i

apply also to ridge sail numbers (RSN) determined for surface profile segments. A validation study using a medium-resolution
SAR image with near concurrent ground truth data demonstrated that the method can be used to derive ridge density up to the
The hypergeometrie-distribution model was derived with a threshold process where {he%ﬂghkpﬁel%bgg/@mm%

sail were deposited sequentially to the image canvas

o—or surface profile. The probability for
the deposition to end in a certain pixel block or profile seement was proportional to the corresponding BPN or RSN value.
This raises the question of the role of the physical ridge formation events that manifest as the formation of new sails to profile

Wemﬁ%w&eemmew%eaeh%e&p&ﬂ&k&m%%&ﬂ%&e&m&mef—or as the appearance of new bright scatterers in
a SAR image time series. An alternative approach to sail statistics considers sail spacings or sail-to-sail distancesneeds—be

considered—The-formation-of-a-, A new sail cuts the spacing into two, and the-process-is-analogical-to-asequentiaHragmentation
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process—I-the-if the probability for this to happen does not depend on the spacing, the spacing distribution is asymptotlcally
lognormala&eﬁgmalbh as shown by (Kolmogorov, 1941)

As the RSN and the number of spacings
are about equal for ridge segments, the probability that a new ridge appearing in the profile ends in a certain segment is then
roportional to the RSN of the segment. This indicates that the applicability of lognormal and hypergeometric models have the

same generative-origin—

seales-of-the-present-analysis—For-thisreason-the BPN-seale-system-physical origin. The lognormal has also been found to
apply to sail spacings in the Baltic since (Lewis et al., 1993). Another hint of the background physical process is that the BPN
statistics is parameterlsable by pixel block side length Irfaeheﬁfhaﬁ%}eekﬂfea—ﬁseﬂweweﬂwdeefeas&eﬂhe%msseﬁ

L rather than area L2, The length of ridge sails typically exceeds L, and thus a ridge formation event does not add bright
MWMWMM the high-resolution SAR, it was likely that forsmal-BPP
s-most bright pixels indicate ridge rubble. Their statistics
titensi images, and no
attempt was made to interpret the intensity variations for-of the bright pixels, although it may be noted they-foHow-exponentiat

distributiontike-the-ridge-sail-heightthat they followed exponential distribution. It was observed that the BP-texture-in-bright
pixel texture in dense ridge fields was not much different from that of ship channels that are flat rubble beds. Furthermore;

were studied using binary

values-are-more-oftenreturnsfrom-highestridges—All studied BPP values generated more or less the same contextual images.
This suggests that the correlation between sail height and SAR intensity is weak. As-no-profile-data—were-availableforthe
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high-resolution-image-itIt remains to be investigated whether connectedness, curvature and other measures may provide ridge

height estimates.

7 l-.e Sy D)

ridging featuresand-appeared-in High-resolution SAR data provide a kind of baseline for the proeessing chain-simitarty-to-the

ig ' i ' i i nostty-investigations on ridge parameter retrieval as the
returns have a connection both with ground truth ridging statistics and with the backscattering models by (Manninen, 1992) and
(Carlstrom and Ulander, 1995). The hypergeometric model provides a scale connection tool that can be used to study how lower
resolution intensities relate to the pixel statistics in higher resolution matching pixel blocks. Our high- and medium-resolution
images did not have the required spatiotemporal overlap, unfortunately. However, the medium-resolution image did not appear
much different in binary BPP versions, which mostly consisted of disconnected pixels and the-contextual-image-generated
contextual images that enhanced the ridging features in a similar way for a wide range of BPP valuesas-in-the-high-reselution
images. Also, the simulation algorithm applied to the medium-resolution image as well as the Gamma distribution asymptotics
of the hypergeometric model.

Relying on the results obtained in (Mdkynen and Hallikainen, 2004) for the scatterometer data at X- and C-band
and (Dierking, 2010) for L-band SAR imagery, it can be hypothesised that the results for C-band and L-band would follow
similar lines. A possible obstacle to the presented analysis occurs when the air temperature is warm enough to make the snow.
cover wet. As shown by (Mikynen and Hallikainen, 2004), this essentially decreases the contrast between level and deformed
ice, and thus it is uncertain whether the proposed method applies in the wet snow conditions. However, for this not to happen,
any change in ambient conditions should severely overturn the order of BPN values, otherwise the persistence of contextual
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category images demonstrated in Section 3.2 would prevail. In addition, higher ridges are often snow-free and less affected b
wet conditions. Further studies applying matching multiplatform data with different resolutions and varying ambient conditions
are needed to clarify this and other unanswered issues left open.

Data availability. The taserLIDAR data is available at PANGAEA under the following DOI: https://doi.pangaea.de/10.1594/PANGAEA.930545 (Haas et al.,
5 2021).
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