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Abstract. The spatial distribution of snow plays a vital role in sub-Arctic and Arctic climate, hydrology, 
and ecology due to its fundamental influence on the water balance, thermal regimes, vegetation, and carbon 15 
flux. However, the spatial distribution of snow is not well understood, and therefore, it is not well modeled, 
which can lead to substantial uncertainties in snow cover representations. To capture key hydro-ecological 
controls on snow spatial distribution, we carried out intensive field studies over multiple years for two 
small (2017-2019, ~2.5 km2) sub-Arctic study sites located on the Seward Peninsula of Alaska. Using an 
intensive suite of field observations (>22,000 data points), we developed simple models of spatial 20 
distribution of snow water equivalent (SWE) using factors such as topographic characteristics, vegetation 
characteristics based on greenness (normalized different vegetation index, NDVI), and a simple metric for 
approximating winds. The most successful model was the random forest using both study sites and all 
years, which was able to accurately capture the complexity and variability of snow characteristics across 
the sites. Approximately 86% of the SWE distribution could be accounted for, on average, by the random 25 
forest model at the study sites. Factors that impacted year-to-year snow distribution included NDVI, 
elevation, and a metric to represent coarse microtopography (topographic position index, or TPI), while 
slope, wind, and fine microtopography factors were less important. The characterization of the SWE spatial 
distribution patterns will be used to validate and improve snow distribution modelling in the Department of 
Energy’s earth system model, and for improved understanding of hydrology, topography, and vegetation 30 
dynamics in the sub-Arctic and Arctic regions of the globe. 
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Check TWP, precip, check site names, read through. 

1 Introduction 

Covering the land for more than six months each year, snow plays a vital role in the climate, hydrology, 
and ecosystems of the Arctic and sub-Arctic. Snow directly impacts climate through modulation of 40 
atmospheric circulation patterns via the snow-albedo feedback mechanism (Fletcher et al., 2009) and 
atmospheric moisture budgets through its control on the amount of water available for evaporation 
(Callaghan et al., 2011). Thus, snow controls water availability, soil moisture, and temperature, affecting all 
components of ecosystem including vegetation (Evans et al., 1989; Schaefer and Messier, 1995; Scott and 
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Rouse, 1995) animal populations (Forchhammer et al., 2008; Manning and Garton, 2012), microbial 45 
decomposition, and carbon flux (Mauritz et al., 2017; Zona et al., 2016). The distribution of snow and 
timing of its melt is key to understanding how changes in hydrology, soil thermal regimes, and vegetation 
interact across Arctic and sub-Arctic landscapes (Jafarov et al., 2018). Snow distribution, however, is a 
particularly elusive and difficult feature to characterize, leading to challenges in how to quantify snow 
properties over space and understand how snow changes over time, especially in remote, under-monitored 50 
watersheds of the Arctic and sub-Arctic. 
Within the Arctic and sub-Arctic hydrologic cycle, spring snowmelt is the single most important event 
contributing to the annual water budget of high-latitude watersheds (Ford and Bedford, 1987; Stuefer et al., 
2013). The importance of understanding end-of-winter snow distribution and its impact on snowmelt and 
importance in snow modeling has been shown in the previous studies on this topic, including historical 55 
analyses (Homan and Kane, 2015), modeling, and analyses to characterize the spatial pattern of snow 
distribution and investigate how different factors affect the spatial distribution (Mendoza et al., 2020; 
Freudiger et al., 2017; Mott et al., 2018; Revuelto et al., 2014; Trujillo et al., 2007). 
There are two main approaches to identify and quantify the influence of different factors on snow 
distribution: physically-based (dynamical) and statistical (empirical) models (Tarboton et al., 2000; 60 
Grünewald et al., 2013). Physically-based dynamical models including SnowTran-3D (Liston and Sturm, 
1998; Liston et al., 2007; Hirashima et al., 2004), the distributed blowing-snow model (DBSM) (Pomeroy 
et al., 2007; Essery and Pomeroy, 2004), and the 3D snowdrift model (Jaedicke and Sandvik, 2002) have 
been successfully applied to the Arctic. These physically-based models account for both mass and energy 
exchanges and allow for detailed representation of different snow processes such as deposition, 65 
accumulation, redistribution, sublimation and melting (Tarboton et al., 2000; Grünewald et al., 2013). 
However, high-quality meteorology, topography, and vegetation parameterizations are generally required 
as input, and the computational cost can be high for dynamical models (Liston, 2004; Grünewald et al., 
2013). 
In contrast, empirically-based statistical models use the relationships between snow depth or snow water 70 
equivalent (SWE) and topography, vegetation, and wind to predict the snow distribution. Statistical models 
have parsimonious model structures, so they are computationally inexpensive and easy to use, but their 
drawbacks are that they are site-specific and require substantial data for model calibration (Tarboton et al., 
2000). Decision trees (König and Sturm, 1998) and multiple linear or non-linear regression models 
(Wainwright et al., 2017; Dvornikov et al., 2015) are examples of statistical snow distribution models that 75 
have been applied in the Arctic and sub-Arctic regions.  
More recently, machine-learning approaches have been used to quantify snow distribution using a variety 
of different algorithms and remote-sensing methods. Broxton et al. (2019) applied artificial neural networks 
to estimate snow density, which was then combined with aerial lidar snow depth to predict SWE. Revuelto 
et al. (2020) used random forests to predict lidar snow depth distribution from several topographic 80 
predictors. King et al. (2020) used random forests for bias correction of a SWE data assimilation product. 
Other studies have applied machine-learning algorithms using remotely sensed observations as predictors, 
including brightness temperature, fractional snow-covered area, or the normalized difference snow index 
(Liu et al., 2020; Bair et al., 2018). Meloche et al. (2022) used random forests to predict snow depth from 
topography, an up-wind slope index, and ecotypes in an area of Nunavut. While machine-learning 85 
approaches have shown to be an effective method for predicting snow distribution, few studies have 
incorporated vegetation characteristics into the models, and validated models with intensive field 
observations of SWE (Anderton et al., 2004). 
A particular interest of this paper is to investigate the spatial pattern of snow distribution based on intensive 
field snow sampling surveys to identify what factors have control on the snow distribution at the local scale 90 
for two study sites in the southwestern and central Seward Peninsula, Alaska. Our main focus is on 
identifying secondary factors of snow distribution as opposed to the primary variables of temperature and 
precipitation. Specifically, our goal is to build a statistical model to 1) characterize the spatial pattern of the 
end-of-winter snow distribution, 2) identify the key factors controlling the spatial distribution, and 3) 
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predict the snow distribution for the local study sites. We expect our analysis will be useful for the 95 
validation of the physically-based permafrost hydrology models such as the Advanced Terrestrial Simulator 
(ATS), which has been developed at fine spatial scales to understand permafrost dynamics for the region 
(Atchley et al., 2016, 2015; Painter et al., 2016). Further, the statistical snow distribution model will be 
used to validate and improved snow redistribution in Department of Energy (DOE)’s Energy Exascale 
Earth System model (E3SM) land surface model (ELM) and to eventually improve our understanding of 100 
changing hydrology, topography, and vegetation dynamics in the Arctic and sub-Arctic. 
This paper is organized as follows: in data and methodology, we introduce the two study sites used for our 
analysis, describe the field observations of snow, and we outline the site characteristics used as factors in 
the study, including topography, vegetation, and winds. We present the methodology for each modelling 
approach, the results, a discussion of findings, and our next steps in the research. We then summarize the 105 
main conclusions for the study. 

2 Data and Methodology 

2.1 Study Sites 

The Teller watershed (2.3 km2) and Kougarok Hillslope study site (2.5 km2) are located in the southwest 
part of the Seward Peninsula, Alaska (Figure 1). The climate of the Seward Peninsula is characterized by 110 
cool continental conditions, typified by long, cold winters and short, cool summers, and high precipitation 
(Peel et al., 2007). The mean annual air temperature at the Nome Municipal Airport (1980-2018, located 
approximately 35 km from Teller and 78 km from Kougarok) is -2.3 °C, with a mean January temperature 
of -14.4 °C and mean July temperature of 11.2 °C. Annual precipitation is 430 mm with 45 % falling as 
snow (National Centers for Environmental Information, National Oceanic and Atmospheric 115 
Administration, https://www.ncdc.noaa.gov/). At the Nome Municipal Airport (National Centers for 
Environmental Information, National Oceanic and Atmospheric Administration, 
https://www.ncdc.noaa.gov/) average historical (1981-2010) precipitation falling from October to March is 
161 mm, while total annual precipitation (rain and snow) is 425 mm. Snow covers the ground, generally, 
from approximately October through May, dependent on the year.  120 
The Teller watershed, with elevations ranging from 50 m to 300 m, is located nearby the coast and 
underlain by discontinuous permafrost, with near-surface permafrost adjacent to areas with no permafrost 
or deep permafrost table locations overlain by a perennially thawed layer (i.e., talik) (Jorgenson et al., 
2008; Busey et al., 2008; Uhlemann et al., 2021; Léger et al., 2019). Topographic features at the sites 
include terrace and risers, and stream bed (Figure 1). The streams in the Teller watershed connect to the 125 
Sinuk River, about 1 km to the south of the study site (#2, Figure 1). Along the streams, willow shrubs 
grow, while sedge-willow-dryas tundra and mixed shrub-sedge tussock tundra-bog dominate the rest of the 
watershed (U.S. Fish and Wildlife Service, 2015; Konduri and Kumar, 2021).  
The Kougarok Hillslope study site is located inland on the leeward side of the Kigluaik Mountains along a 
minor drainage of the Kuzitrin River, which flows into the Imuruk Basin. The Kougarok Hillslope (referred 130 
to as Kougarok from here on in) is situated on a gently rising upland dome that tops out at an elevation of 
~110 m (#3, Figure 1). The site is overlain by an active soil layer containing organic peat and mineral 
horizons (McCaully et al., 2021), vegetated by alder shrubland, tussock tundra, alder savanna, and rocky 
areas dominated by dwarf shrubs and lichens (Iversen et al., 2019; Salmon et al., 2016). The site is 
underlain by permafrost approximately 15–50 m thick, with average active layer thickness of 56 cm 135 
(Hinzman et al., 2003). 
To obtain spatially consistent and replicable (for different study sites and years) estimates of precipitation 
falling in each separate year of study, the total winter precipitation (TWP) for each year was estimated 
based on the ERA5-Land hourly reanalysis product (Muñoz 2019), accessed via Google Earth Engine. For 
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each winter, we summed the winter (October to March) precipitation and averaged these totals across the 140 
study areas. 

2.2 Field Observations of Snow 

From March 22nd to March 31st, 2017 (Teller watershed), March 26th to April 5th, 2018 (Teller watershed, 
Kougarok Hillslope), and March 31st to April 7th, 2019 (Teller watershed), end-of-winter snow surveys 
were carried out at the study sites to collect snow depth and snow density to calculate SWE. SWE measures 145 
the amount of water contained within the snowpack and characterizes the hydrological and thermal impacts 
of snow cover better than snow depth (Jonas et al., 2009; Sturm et al., 2010; Liston and Elder, 2006), which 
is why we focus on SWE. 
We measured snow characteristics in several different ways. Snow depth was captured every 1-15 m using 
a Snow-HydroTM GPS Snow Depth Probe (Sturm and Holmgren, 2018). When the snowpack was greater 150 
than 130 cm in depth, the length of the snow depth probe, an avalanche probe was used to manually 
measure the snow depth. Snow bulk density was measured with a SWE Coring Tube, also manufactured by 
Snow-HydroTM (reported error of -9% to 11%, Dixon and Boon, 2012; Young et al., 2018; López-Moreno 
et al., 2020). Approximately three to five bulk density samples were taken for each sampling location, with 
an interval of ~200-300 meters between measurements. The snow tube was pressed into the snow until the 155 
ground was hit and the depth of the snowpack in cm (𝑆𝑛𝑜𝑤	𝐷𝑒𝑝𝑡ℎ) was recorded. After the tube was 
removed from the snowpack, the snow in the tube was bagged and weighed in grams (𝑆𝑛𝑜𝑤	𝑊𝑒𝑖𝑔ℎ𝑡). The 
cross-sectional area of the snow coring tube (𝐶𝑜𝑟𝑖𝑛𝑔	𝑇𝑢𝑏𝑒	𝐴𝑟𝑒𝑎) was 30 cm3. Then 
𝑆𝑛𝑜𝑤	𝐷𝑒𝑛𝑠𝑖𝑡𝑦	(g/cm2) was calculated from Equation (1): 
 𝑆𝑛𝑜𝑤	𝐷𝑒𝑛𝑠𝑖𝑡𝑦	 = 	 !"#$	&'()*+

!"#$	,'-+*	×	/#0(")	123'	40'5
 . (1) 

Inverse distance weighting (IDW) was used to assign snow density for each of the observed snow depth 160 
locations, and is a common method for interpolating environmental variables (Franke, 1982; Zimmerman et 
al., 1999). The IDW method added uncertainty to our SWE estimates since we only collected sparse density 
measurements. These sparse density measurements ranged over years (Teller) between 0.27 to 038 kg/m^3, 
with a standard deviation of 0.03 to 0.04 kg/m^3. SWE (cm) was then calculated from the average of the 
snow bulk density measurements using Equation (2), where 𝑊𝑎𝑡𝑒𝑟	𝐷𝑒𝑛𝑠𝑖𝑡𝑦 was 0.997 g/cm3: 165 
 𝑆𝑊𝐸 = 𝑆𝑛𝑜𝑤	𝐷𝑒𝑝𝑡ℎ	 × !"#$	,'"6(+7

&5+'0	,'"6(+7
. (2) 

SWE was then used as the response variable in our statistical models.  

2.3 Site Characteristics 

To model snow redistribution, various landscape factors were estimated for topographic, vegetation, and 
wind characteristics, as described below. An overview of data sources, factors, and descriptions of the 
factors is given in Table 1. 170 

2.3.1 Topography 

To evaluate the effects of topography on SWE distributions, a digital elevation model (DEM) was analyzed 
to estimate elevation, aspect, and slope for each of the study locations. The Teller watershed and Kougarok 
Hillslope DEMs were derived at a 5 m resolution from Interferometric Synthetic Aperture Radar (IfSAR) 
data available from http://ifsar.gina.alaska.edu/. 175 
To consider the effects of topography at different spatial scales on SWE distributions, we included a fine-
scale “microtopography” and a topographic position index (TPI) to capture the range of terrain variability 
across spatial scales. Values are calculated by the difference between the cell and the average elevation of 
all cells in a surrounding square window of 15 m and 155 m width for microtopography and TPI, 
respectively.  180 
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Microtopography in the Arctic can range from sub-meter (e.g., tussocks) to 1-10 m (e.g., hummocks) in 
scale (Sturm and Holmgren, 1994). The 15 m microtopography is the finest scale that can be derived using 
a DEM at 5 m resolution, and is equal to the curvature of the terrain (Jenness, 2006). We also consider 
coarse-scale topographic features defined using TPI, such as terraces and risers, and the stream channel 
(10s to 100s of m). To determine the scale of TPI, we applied a smoothing-average window at a range of 185 
widths, and then picked the optimal width with the best random forest model performance and highest 
feature importance (see Section 4.4, Figure A1). We derived both of the above described products from the 
DEM following Lopez-Moreno et al. (2009) and Weiss (2001). 

2.3.2 Vegetation 

Owing to the importance of shrubs for trapping drifting snow in the Arctic (Sturm et al., 2001a; Essery and 190 
Pomeroy, 2004; Dvornikov et al., 2015; McFadden et al., 2001), we considered different vegetation 
indicators to reflect types and distributions: vegetation type and vegetation greenness.  
Vegetation type was extracted from an updated vegetation map for both study sites (Konduri and Kumar, 
2021) and used as a continuous feature ranked for each year and site according to IDW-interpolated SWE. 
The continuous ranking was applied so that feature importance could be compared across all model features 195 
on a consistent basis. The relative rankings from each year and site were then averaged to produce a final 
ranking used in the models (Table A1). 
As high-resolution vegetation distribution information is not widely available for most of the Arctic, 
Normalized Difference Vegetation Index (NDVI) was used to approximate vegetation characteristics. 
NDVI is indicative of the abundance of photosynthetically active vegetation (Rouse et al., 1974) and is 200 
useful to capture the branch abundance, deciduous canopy cover and maximum height of shrubs in the 
Arctic tundra landscape (Boelman et al., 2011). NDVI was derived from the 8-band WorldView-2 images 
obtained on July 27, 2011 at 1.5m resolution for the Teller watershed, and July 14, 2017 for the Kougarok 
Hillslope. Both images were downloaded from the DigitalGlobe website (https://www.digitalglobe.com/). 
To better understand how vegetation type was related to NDVI, we binned vegetation types that were 205 
present on more than 1% of the total watershed area which resulted in six representative categories that 
encompass the range of wetland species, short shrub, and tall shrub vegetation types. We computed 
statistics and significance to differentiate the NDVI values for those bins using ANOVA and Tukey’s HSD 
test (Table A1). 

2.3.3 Wind 210 

Previous studies showed that snow is usually accumulated on leeward slopes and blown away from 
windward slopes (Evans et al., 1989; Liston and Sturm, 1998; Winstral et al., 2002; Mott et al., 2011), so 
we explored whether the prevailing wind would have an impact on the snow distribution. To understand 
wind patterns, weather stations within the study locations and from the nearby Nome weather station were 
analyzed (Table A2).  215 
Because faster wind speeds have a greater impact on the redistribution of snow, we considered winter 
(October to March) wind speeds greater than 5 m/s (Table A2, Liston and Sturm, 1998; Berg, 1986; Sturm 
and Wagner, 2010; Sturm and Stuefer, 2013). At the weather station at the top of the Teller watershed, the 
prevailing wind direction (wind speeds > 5 m/s) was the average of data from the 2016-2017, 2017-2018, 
and 2018-2019 winters, and at the Kougarok weather station, the prevailing wind direction (wind speeds > 220 
5 m/s) was based on data from the 2018-2019 winter only due to instrument issues in previous years. The 
prevailing wind direction (wind speeds > 5 m/s) for each study site was used to represent the exposure of a 
particular location to wind as a function of aspect (Dvornikov et al., 2015). We divided the prevailing 
winds into the eight cardinal and ordinal directions (N, NE, E, SE, S, SW, W, NW) using 45-degree bins, 
and then derived a unique wind and aspect factor equation for each directional bin. For the Teller 225 



 

6 
 

watershed, the prevailing wind direction was 102° (E), so the wind and aspect factor (𝑊𝑓) was calculated 
using Equation 3: 
 𝑊𝑓 = −	sin	(𝐴) , (3) 

 
where 𝐴 is the aspect (Dvornikov et al., 2015; Evans et al., 1989; Liston and Sturm, 1998). For Kougarok, 
the prevailing wind direction was 45° (NE), so the 𝑊𝑓 was calculated using Equation 4: 230 
 𝑊𝑓 = −cos(𝐴) − sin(𝐴).	 (4) 

 
The wind and aspect factor gives positive values for leeward slopes and negative values for windward 
slopes, since snow is known to blow away from windward slopes and accumulate on leeward slopes 
(Dvornikov et al., 2015). More details on the wind factors as applied in this work are included in the 
Appendix and Figure A2. 235 

3 Methodology 

3.1 Modelling 

We fit three different types of models, linear regression, general additive, and random forests, to quantify 
the impacts of different factors on snow distribution and characterize the spatial pattern of the snow 
distribution.  240 
 
3.1.1 Linear Regression Model 
The linear regression model is shown in Equation (5), 
 𝑦 = 𝛽# + 𝛽8𝑥8 +⋯𝛽-𝑥- + 𝜖, (5) 

where 𝑦	denotes SWE, and 𝛽 are the coefficient of factors expressed by the weighted sum of its p features 
with an error term, ϵ. Linear models are useful in that they produce simple relationships between the 245 
response variable and factors, and the factor rankings are easy to interpret. However, relationships between 
snow distribution and factors may not be linear, and thus linear models may not provide a good result, 
additionally, linear models are susceptible to correlations between parameters. The linear models were 
implemented using the Linear Regression class of the Scikit-learn package in Python (Pedregosa et al., 
2011). 250 
 
3.1.2 Generalized Additive Model 
A generalized additive model, or GAM, is a class of statistical models in which the usual linear relationship 
between the response and predictors are replaced by several nonlinear smooth functions to model and 
capture the non-linearities in the data, i.e., 255 
 𝑔(𝐸9(𝑦|𝑥)) = 𝛽# + 𝑓8(𝑥8) + 𝑓:(𝑥:) + ⋯+ 𝑓-(𝑥-), (6) 

 
where g denotes SWE as a link function that links the expected value to the predictor variables x1 ,… xp, 
which denote smooth, nonparametric functions. This type of model is useful because it allows for non-
linear relationships between SWE and the factors. GAMs are generally easy to interpret, but while they are 
non-linear, GAMs still require a fit to a distribution or shape. The GAMs were implemented using the 260 
LinearGAM class of the pygam package in Python (Servén et al., 2018).  
 
3.1.3 Random Forest Model  
Random forests are based on decision trees, a series of yes/no questions asked about our data eventually 
leading to a predicted class (or continuous value in the case of regression, Breiman, 2001). A random forest 265 
model is defined by a large number of individual decision trees that operate as an ensemble. Each 
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individual tree in the random forest generates a vote for classes (classification) or mean prediction 
(regression) of the individual trees, and the one with the most votes is used for the final prediction (Liaw 
and Wiener, 2002). Random forests are useful in that they are not impacted by correlations in the data, 
generally can protect against over-fitting, and have built-in feature randomization. The drawback of these 270 
models is that they can be difficult to control, if used in black box mode. The random forests were 
implemented using the RandomForestRegressor class of the Scikit-learn package in Python (Pedregosa et 
al., 2011). 
 
3.1.4 Model Implementation 275 
For all three model (linear, GAM, random forest) iterations, SWE, the response variable, was square root 
transformed to ensure its distribution was normal. Model inputs were also normalized to have a mean of 0 
and a standard deviation of 1. We utilized a split sample approach for all models, with a train and test set. 
Performance metrics for all three statistical models were the coefficient of determination (R2) and root 
mean squared error (RMSE) on the test set, which were evaluated on the untransformed (squared) model 280 
output. Due to the decorrelation effects involved in bootstrapping, the predictive accuracy of random 
forests is generally robust to collinearity across features (Dormann et al., 2013). However, feature 
collinearity can still be an issue for determining feature importance (Gregorutti et al., 2017). Prior to 
modelling, we used variance inflation factors as well as pairwise correlation coefficients to assess 
collinearity among features and ensure collinearity was not a significant issue.  285 
We implemented the random forest model using various subsets of the input factors. One implementation, 
labeled the “final model”, was trained on data from all years at the Teller watershed and the Kougarok 
Hillslope combined, with the TWP for each year included as a feature in the model. We also trained the 
model separately for only the Teller watershed using all years combined (2017-2019), with the TWP 
included as a feature. In addition, we implemented individual random forest model runs for each year and 290 
each site, without TWP. The model runs on individual sites and years were also implemented for linear 
regression models and GAMs so that the performance of the three different statistical models could be 
compared.  
Since the random forest performed the best of the three models and has the most comprehensive feature 
importance metrics, all testing for model features and hyperparameters was completed with the random 295 
forest model. The same features were then applied in the linear model and GAM predictions. Model 
hyperparameters (tree density, max depth, max features, min samples split, and min samples leaf) were 
selected using Bayesian Search (using the BayesSearchCV function from the Scikit-Optimize package in 
Python) with 8-fold cross validation on the training set. The training set was a randomly selected 80% of 
full dataset, and the remaining 20% of the dataset was used for validation. A complete list of the 300 
hyperparameters used for the final model and the separate the Teller watershed and the Kougarok Hillslope 
model runs are given in Table A3. 
Using the random forest model, we measured the contribution of each input feature in predicting SWE 
distribution with both impurity feature importance and permutation feature importance (Louppe et al., 
2013). Impurity importance, also known as Mean Decrease in Impurity (MDI) or Gini importance, is 305 
proportional to the total number of splits that each feature divides across all trees in the random forest, 
where features with more splits are more important (Breiman, 2001). While impurity importance is 
computationally cheap, it is biased towards features with many possible split points, and suffers from 
overfitting to the training set. Permutation importance, also known as Mean Decrease in Accuracy (MDA), 
is based on the decrease in model performance when a single feature is randomly shuffled, and more 310 
important features result in larger decreases in performance when permuted (Breiman, 2001). Permutation 
importance is more computationally expensive. We measured permutation importance on the test set. For 
this study, we analyzed both importance metrics (MDI and MDA) to ensure that the relative feature 
importance rankings generally agreed. 
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4 Results 315 

4.1 Meteorological Conditions 

Meteorological stations located in the study sites (Figure 1) recorded temperatures of -7.1°C (the Teller 
watershed, 2017-2019, including the top and bottom meteorological stations) / -8.1°C (the Kougarok 
Hillslope, 2018) during the winter months of October to March, while the Nome airport reported average 
2017-2019 winter temperatures of -8.0°C. From 2017-2019, the Nome Airport reported winter temperatures 320 
that were slightly warmer than the recent (1981-2010) climatological period (-10.5°C). Precipitation 
recorded at the Nome Airport climate station indicated that from October to March, precipitation was 13.3 
cm, 28.0 cm, and 25.0 cm, while precipitation from December to March at the Nome airport was 7.2 cm, 
15.2 cm, and 16.4 cm for 2017, 2018, and 2019, respectively. ERA5 average winter (October to March) 
total precipitation values are 26.3 cm, 40.3 cm, and 44.9 cm for both the Teller watershed and the 325 
Kougarok Hillslope for 2017-2019, respectively. From October to March, the prevailing wind speed and 
direction for the Teller watershed (top station) were predominantly East-Northeast (2017-2019), while 
Kougarok was predominantly Northeast in 2019 (Table A2, Busey et al., 2017). The Kougarok Hillslope 
meteorological station experienced issues with its wind sensor in 2018, thus those values are not reported 
herein. The wind directions experienced at the study sites are similar to that experienced at the Nome 330 
Airport (East-Northeast). Wind speeds ranged from 4.9 to 6.7 m/s, much lower than wind speeds reported 
at the Nome (10.1 to 12.4 m/s) in 2017-2019 (Table A2). 

4.2 Snow Depth, Density and SWE 

Snow depth was collected at thousands of locations (> 22,000 points) while snow bulk density was 
measured at hundreds of locations (Table 2, Figure 2). The number of observations varied from year to 335 
year, with the greatest number of snow depth observations being collected in 2017, followed by 2019, and 
with 2018 having a similar number of observations to 2019 in the Teller watershed. In 2017, the survey was 
not planned for Kougarok, and in 2019, weather concerns prohibited safe travel to the study site. Note that 
while the Teller watershed’s 2017 survey collected the most points, the 2019 survey was the most spatially 
extensive (Figure A3). No snowfall occurred during the any of the 2017-2019 end-of-winter snow surveys. 340 
The average snow depth at the Teller watershed was observed to be lowest in 2017, and similar depths were 
noted in 2018 and 2019 (109.0 cm, 106.7 cm, respectively). The average snow depth at the Kougarok 
Hillslope in 2018 was 75.2 cm. SWE was estimated to be lowest in 2017, lower at the Kougarok Hillslope 
versus Teller in 2018, and the highest SWE values were recorded in 2019 for Teller (Table 2).  
High spatial variability in snow depth was measured (Table 2, Figure 2). Snow depth ranged from 2 to 275 345 
cm (mean 86 cm, standard deviation (SD) 37 cm, coefficient of variation (CV) 0.43). Snow density 
measurements ranged from 0.116 to 0.451 g cm-3 (mean density of 0.288 g cm-3) and CV of . SWE was 
strongly correlated with snow depth, with correlation coefficients ranging from 0.95 to 0.97 (Figure 3a). 
Snow density positively correlated with snow depth with correlation coefficients from 0.51 to 0.59 (Figure 
3b) with higher correlations deeper than 60 cm. SWE was calculated from snow depth and snow density as 350 
described previously. SWE ranged from 0.4 to 86.7 cm (with mean 25.4 cm, SD 12.4 cm).  

4.3 Topographic, Vegetation, and Wind Features 

Topographic features in the study sites illustrate the variation across the landscape (Figure 4a, b). 
Elevational gradients are strongest at the Teller watershed, topping out at 300 m, while Kougarok’s dome-
like feature is approximately 100 m. Slopes at the Teller watershed are steeper in the middle of the basin 355 
and along the stream banks, while at Kougarok Hillslope slopes are shallower on the west and steeper to the 
east, with overall more gentle elevational gradients than Teller. TPI highlights dominant features such as 
the terraces and risers, the stream bank in the Teller watershed, and the top of the dome at the Kougarok 
Hillslope. 
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Wind and aspect factors illustrate that the Teller watershed’s aspects are largely unidirectional (south, south 360 
east facing), while the Kougarok Hillslope’s west hillslope is predominantly S facing, with a north facing 
slope on the east side over the crest of the dome (Figure 4a, b). NDVI patterns in July and August are 
reflective of taller stature shrub patches located across the study sites (Figure 1, Figure 5, Boelman et al., 
2011). Vegetation maps illustrate the differences in the two study sites. The Teller watershed contains low-
to-mid-slope willow-birch and willow shrub complexes, with Ericaceous dwarf shrub tundra and wet 365 
meadows located in the upper slopes. At the Teller watershed, an ANOVA test of NDVI versus vegetation 
type (those with >1% of total land cover) indicate significant differences (p < 0.0001), with the highest 
NDVI values occurring in willow shrubs (Table A1). A Tukey's HSD test showed significant differences 
among all vegetation types (p < 0.0001, Figure 5). The Kougarok Hillslope’s slopes are largely mixed 
shrub-sedge tussock tundra, with patches of alder-willow shrubs, dryas-lichen dwarf shrub tundra, birch-370 
Ericaceous-lichen shrub tundra, and willow-birch shrub on the east slope where no snow measurements 
were taken in 2018 (Konduri and Kumar, 2021).  

4.4 Model Optimization and Testing 

Several different tests were undertaken to determine the optimal features used in the final model; we tested 
this optimization on both sites and for all years. We tested the random forest model to determine the 375 
optimal scale of TPI, with a smoothing-average window from 55 m to 505 m (Figure A1). The TPI at a 
scale of 155 m corresponded to the best model performance. Further, the random forest model was used to 
determine which vegetation features to use in the final model. We tested the model using NDVI, vegetation 
type as twelve one-hot-encoded categorical features, and vegetation type as a continuous feature ranked by 
observed SWE, as well as combinations of these three features (Figure A4). We found that NDVI and the 380 
continuous ranking of vegetation type performed the best so these two features were included in the final 
model. However, while the spatial pattern of vegetation type improved model performance, the relative 
order of the vegetation type ranking did not appear to be important, since other randomized rankings 
performed similarly well (Figure A4). It should be noted that while NDVI and continuous vegetation 
performed the best, the differences across all tests were similar (R2 values between ~0.86-0.87). 385 
The variance inflation factors of the input features are shown in Figure 6. Since the variance inflation 
factors are all well below the accepted threshold of 5 (Karimi et al., 2019) and the largest correlation 
coefficient between two input variables (0.49 for microtopography and TPI) is well below the accepted 
threshold of 0.70, collinearity is not expected to severely distort model estimation and predictions 
(Dormann et al., 2013).  390 

4.5 SWE Prediction 

The SWE prediction model results for the linear regression, GAM, and random forest for the individual 
sites and years are shown in Table 3. In general, linear regression performed the worst (R2 ranging from 
0.29 to 0.44), random forest performed the best (R2 ranging from 0.72 to 0.92), and GAM performed in 
between the other two models (R2 ranging from 0.45 to 0.72). The spatial maps of predicted SWE for the 395 
three different models are shown in Figure A5 for the Teller watershed and Figure A6 for the Kougarok 
Hillslope. Because of the success in simulating SWE for the study sites and years using random forest, we 
focus the remainder of our study on the random forest results to discuss the implications and the driving 
factors that are ranked to be most important for prediction of SWE in the study sites. 
The random forest model results for training and testing data are given in Table 4. The final random forest 400 
model which includes data from all years and sites captures approximately 86 % of the variance in SWE 
and has an RMSE of 5.81 cm on the test set. The scatter plot of predicted and actual SWE measurements of 
the test set from the final model (Figure 7) shows a linear trend. In comparison to the y = x line, the linear 
fit in Figure 7 shows the model slightly overestimates low SWE measurements and underestimates high 



 

10 
 

SWE measurements, which could be due to the tendency of random forests to decrease the variance by 405 
averaging across many trees. 
We also considered the random forest model developed using the individual study sites and years as a 
feature to predict SWE. The iterations of the random forest model where we considered only the Teller 
watershed and all years performed slightly better than the final model, with an R2 of 0.86 and an RMSE of 
5.78 cm for the Teller watershed (Table 4). The random forest models trained on individual years and sites 410 
ranged in model performance, as shown in Table 4.  
In Figure 8, we illustrate the spatially predicted SWE from the final random forest model for the Teller 
watershed (2017-2019) and the Kougarok Hillslope (2018). SWE values across the basin reflect the year-
to-year variability in the amount of precipitation that fell on the study sites. However, we observe that SWE 
is variable across the Teller watershed and the Kougarok Hillslope around major landscape features, such 415 
as the stream bed and terraces and risers within the Teller watershed. Another location where SWE appears 
to be higher is just below the dome on the west hillslope in the Kougarok Hillslope. The SWE patterns in 
SWE also reflect areas of higher NDVI values, where shrubs are identified as darker patches in both the 
Teller watershed and the Kougarok Hillslope (see Figure 4). 
The spatial error, calculated as the predicted minus the observed for the upper and lower quartiles of error 420 
in the random forest SWE prediction is shown in Figure A6 for the Teller watershed for each year, and 
Figure A7 for the Kougarok Hillslope for 2018. In these figures we observe that spatial error varies from 
year to year, but is not spatially systematic. Errors are higher in the years where there was higher SWE in 
the basin, such as in 2018 compared to the lower SWE year of 2017 in the Teller watershed, when the 
survey resolution was similar (Figure A3). In 2019, the survey captured a finer spatial resolution and thus 425 
we expect greater spatial variability and higher error. 

4.6 Feature Importance 

Figure 9 shows the impurity and permutation feature importance results for the final random forest model. 
Both of the importance metrics provide similar results, and the same variable ranking with the exception of 
permutation importance metric ranking elevation as higher than NDVI, and impurity ranking NDVI higher 430 
than elevation. TWP is the key primary factor driving SWE distribution. Overall, NDVI, elevation, and TPI 
are the most important secondary features for predicting SWE distribution at our study sites. Features such 
as slope, vegetation type, wind/aspect factor, and microtopography are ranked as the least important in 
SWE prediction.  

4.7 SWE Correlations between Years 435 

Heatmaps that illustrate significant SWE correlations between years 2017-2019 for the Teller watershed are 
shown in Figure 10, based on random forest modeled SWE trained with data from all years and sites. The 
weakest correlations are for the years with low (2017) and high (2019) SWE (Pearson correlation 
coefficient r = 0.67), with stronger correlations between the two higher SWE years (2018 and 2019, r = 
0.89). These correlations tend highlight the consistency in SWE values for the study site across highly 440 
variable climate conditions. 

5 Discussion 

Changes in snowpack characteristics have important implications for a changing Arctic and are anticipated 
to be a major driver of ecosystem shifts (Bjerke et al., 2015; Cooper, 2014), water and energy balances 
(AMAP, 2019; Pulliainen et al., 2020), and biodiversity changes (Niittynen et al., 2018; Riseth et al., 2011). 445 
Changes in snow have implications for Arctic communities where snow may impact many resources 
(Huntington et al., 2004), and for global climate change (Overland et al., 2019) and carbon cycles (Rogers 
et al., 2011; Arndt et al., 2020). Thus, understanding how to better model snow distribution and the 
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important features involved in snow distribution is fundamental to improving how we interpret, and plan 
for, changing Arctic snow in the future (Zhu et al., 2021; Kouki et al., 2021; Mudryk et al., 2020). 450 

5.1 Snow Depth, SWE, and Density Observations 

Snow depth and snow density observations collected from two small study sites located on the Seward 
Peninsula of Alaska comprise an extensive dataset that provides a reliable and representative estimate of 
the variation in SWE in this region. Snow depth showed high variability at both study sites and years, with 
a medium level of variability compared to the variability range reported for other Arctic regions (Bruland, 455 
Sand, and Killingtveit 2001; Hannula et al. 2016; Dvornikov et al. 2015; Stuefer, Kane, and Liston 2013; 
Homan and Kane 2015; Sturm et al. 2010). Compared to snow depth, snow density showed relatively low 
variability, similar to the findings for other non-forest Arctic areas by Homan and Kane (2015) and 
Hannula et al. (2016). 
Consistent with previous studies (Homan and Kane 2015; Assini and Young 2012; Dvornikov et al. 2015; 460 
Sturm et al. 2010), there was a high correlation between snow depth and SWE in our study, confirming that 
SWE is more closely linked to snow depth than to snow density. Sturm et al. (2010) suggested a nonlinear 
relationship between snow depth and density for a large region of the Northern Hemisphere, while Homan 
and Kane (2016) did not find any relationship between snow depth and density for a 200 by 240 km region 
of Alaska’s Central Arctic Slope. Our study showed an overall positive linear correlation between snow 465 
depth and density, indicating that snow depth has some control on the snow density for the study sites. 
However, snow depth and density showed no relationship for shallow snow (<60 cm), while the linear 
relationship for deeper snow (>60 cm) was strongest at most sites and years (with the exception of 2018 at 
Kougarok), consistent with what has been found for a study region consisting of a variety of landscapes in 
Saskatchewan, Canada (Shook, 1997). The nonlinear relationship between snow depth and density found in 470 
the aforementioned work may be due to the fact that the snow surveys documented were conducted for 
different climate and landscape classes where snow density was largely controlled by climate (wind and 
temperature) and landscape classes (such as taiga, tundra, mountain, coast). Whereas, a linear relationship 
between snow depth and density was observed in this study because the climate and landscape in the small 
study sites are more homogenous. 475 
Finally, when we considered SWE between three study years at the Teller watershed site, we found 
correlations across the years. This is consistent with other research on snow repeat patterns (Sturm and 
Wagner, 2010; Liston, 2004; Kirnbauer and Blöschl, 1994; Deems et al., 2008; Homan and Kane, 2015; 
Woo and Young, 2004; König and Sturm, 1998; Rees et al., 2014; Dozier et al., 2016; Erickson et al., 2005; 
Winstral and Marks, 2014), indicating that there are driving factors that influence snow distribution 480 
consistent across the year-to-year snow variability (i.e., high and lows).  

5.2 SWE Modelling and Prediction 

The patterns of our SWE maps illustrate the power of utilizing random forest tools over linear methods of 
estimating SWE distributions (e.g., Broxton et al, 2019, Revuelto et al. 2020, King et al. 2020). When 
compared to linear and GAM models, we found that random forests significantly outperformed those 485 
models. This is mostly likely due to the fact that SWE distributions are controlled by highly non-linear 
interactions between topography and vegetation characteristics, thus the flexibility offered by the random 
forest model can more accurately account for these interactions. While GAM models have been applied 
successfully to estimate non-linear relationships in snow depth (López-Moreno and Nogués-Bravo, 2005) 
in the Spanish Pyrenees, they were not as successful at predicting SWE in our study compared to the 490 
random forests model. Random forest also allowed us to test different hypotheses of configurations for the 
model, determining clearly the success of those configuration and features combinations. 
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5.3 Features Impacting Snow Distribution 

Two different techniques measuring importance in the random forest model gave similar results, which 
were that the greatest controls on SWE were TWP (i.e., precipitation representing climate variability), 495 
followed by the key secondary factors NDVI, elevation, and TPI. These results in general were consistent 
with those in previous studies in terms of how those factors affected snow distribution in the Arctic, i.e., 
more snow was accumulated in the areas with tall shrubs (Sturm et al., 2001b, a; Sturm and Wagner, 2010; 
Sturm et al., 2005), at higher elevations (Dozier et al., 2016; Homan and Kane, 2015), and within features 
such as the stream bed and at the bottom of terraces and risers (Gisnås et al., 2014; Grünberg et al., 2020).  500 
NDVI in our study tend to reflect the taller shrub patterns present in the landscape. In this work, we applied 
the NDVI estimate from July, near the end of the vegetation growth period, which has been corroborated in 
previous work to be the peak NDVI (Boelman et al., 2011). Although vegetation type in our work was 
slightly less important than NDVI in our modeling overall, we found taller stature shrub types had higher 
NDVI values. Vegetation type has been noted to play a primary role in end-of-winter snow depth patterning 505 
and is also strongly related to variability in winter and spring soil temperatures in the Arctic (Grünberg et 
al., 2020). Because of the strong feedbacks between snow, shrubs, and climate (Boike et al., 2019; Sturm et 
al., 2001a, b), this finding indicates the importance of understanding vegetation dynamics in sub-Arctic 
regions.  
Our results showed that elevation effects are a dominant factor driving snow distributions at our study sites.  510 
We observe an increase in SWE at higher elevations at the Teller watershed due to a slight orographic 
effect, consistent with the study for a small high-arctic glacier Svenbreen (Małecki 2015). However, an 
apparent orographic effect also occurs because wind blows snow from outside the catchment into the upper 
wetland meadow. Homan and Kane (2015) discussed a relationship between snow and elevation below 
specific elevation bands, above which snow is controlled by moisture availability, however the Teller 515 
watershed’s maximum elevation (300 m) is above the value, suggesting that the threshold may change due 
to other local or regional factors. However, we also observed a decrease in SWE at the top of the Kougarok 
Hillslope, where snow is removed completely from the upper windswept top (Assini and Young 2012; 
Shook and Gray 1996; Homan and Kane 2015). 
TPI in our model was found to be the third most important variable, indicating the importance of coarse-520 
scale features in the sub-Arctic landscapes of the Seward Peninsula. These coarse-scale features including 
stream banks and terrace risers are areas of topographic variability where shrubs grow and snow 
accumulates. Thus, they act as hydrology focal points in the basins where higher enhanced soil moistures 
and soil warming, and associated increased ecological productivity, can occur (Westergaard-Nielsen et al., 
2017). These are also features that act to entrain snow distributed by wind. Indeed, recent research into 525 
snowdrift landscape patterns in the Arctic have found that wind transports snow into coarse-scale features 
called drift traps, including stream beds, lake features, outcrop features and more. These drift traps contain 
as much as 40% of SWE found on the landscape and play a significant role in the distribution of snow in 
the Arctic (Parr et al., 2020). Meloche et al. (2022) also found that topographic parameters of TPI and up-
wind slope index were the two most important features in random forest modeling of snow depth 530 
distribution for a low-relief high arctic basin. 
In our study, microtopography was found to be one of the least important factors driving snow. However, 
microtopographic patterns were highly correlated with curvature. In research from Dvornikov et al. (2015), 
curvature was found to have a dominant control on the snow depth at a shrub tundra area in Central Yamal 
and there was a positive correlation between shrub heights and snow depth was observed for convex slopes. 535 
However, research in fine-scale polygonal tundra sites of the high Arctic, microtopography was found to be 
an important control on snow (Wainwright et al. 2017). Our study utilized DEMs with a 5 m resolution, 
with the caveat that microtopography features dominant in this landscape (e.g., drainage paths, terraces) 
range from centimeters to meters in scale. Thus, we require finer scale DEM sources to investigate this in 
more detail (Adams et al., 2018; Harder et al., 2020; Revuelto et al., 2021). 540 
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5.4 Future Work 

The ability to model and predict SWE is important on a number of fronts. First of all, we intend to utilize 
these findings to compare them with physics-based modeling efforts, as well as for future machine-learning 
efforts. Our models are being used for investigation of sub-grid SWE variability in E3SM’s ELM (Caldwell 
et al., 2019; Bisht et al., 2018), along with the investigation of ecosystem-type constructs for upscaling of 545 
SWE. 
Several of our findings require further investigation to clearly understand their importance for snow 
distribution. For example, NDVI was an important parameter in our model predicting snow distribution, but 
we do not know which vegetation characteristics (e.g., shrub height, density, allometry, or wetness) that 
NDVI represents, making it harder to extrapolate the importance of vegetation characteristics for snow 550 
distribution at other sites across the Arctic and sub-Arctic. Further, there are likely relationships between 
TPI and NDVI that should be investigated, including at smaller spatial scales. We are also considering the 
application of more advanced wind functions (Winstral et al., 2002) in our models, and implementing a 
physically-based wind model for comparison and testing against our statistical models (Crumley et al., 
2021; Liston, 2004). 555 
We used multiple study sites with varying characteristics across multiple climate years to develop our snow 
distribution estimates. Because of this unique data set, we were able to develop robust machine-learning-
based models that we hypothesize are representative of broader SWE patterns across time and space. 
However, these theories require additional validation at more locations. This hypothesis testing will be 
incorporated into current and future work that will be carried out using broader observations of SWE and 560 
snow depths that can be compared with other remote sensed SWE data products.  

6 Conclusion 

The extensive snow depth and density dataset from this study is of high value for calibrating and validating 
physically-based models of snow distribution. As the patterns of snow distribution for a given location are 
similar from year to year, the spatial patterns of snow distribution characterized in this study can be used to 565 
represent the typical patterns of snow distribution and model the relative spatial patterns of snow 
distribution for other years for the study sites and across the region. Linear relationships between snow 
depths greater than 60 cm and snow density revealed homogeneity in the study sites. Snow depth, on the 
other hand, varied considerably with strong linear relationship to SWE.  
We found that random forest models could simulate the SWE distribution most accurately when compared 570 
to linear and GAM model approaches, and we were able to simulate the distribution of SWE across the 
landscape of these small sub-Arctic study sites. The results of the statistical model are useful for 
understanding the surface water hydrology during spring snowmelt and explaining differences in 
permafrost distribution and active layer depth, which have an impact on groundwater hydrology. Using the 
machine-learning-based model random forest, we were able to determine which factors—in addition to 575 
precipitation—were most important at these sub-Arctic study sites for SWE distribution. These factors 
were NDVI, followed by two topography indexes, elevation and TPI.  
These factors were NDVI, followed by two topography indexes, elevation, and TPI.  

7 Data Availability 

Snow observations collected for this study are available on a publicly available repository, the NGEE 580 
Arctic data portal accessible at https://ngee-arctic.ornl.gov/ (Wilson et al., 2020b; Bennett et al., 2020; 
Wilson et al., 2020a). Data used as inputs to simulate SWE distribution is available (ifSAR, 
http://ifsar.gina.alaska.edu/), while the vegetation data are also available on the NGEE Arctic portal 
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(Konduri and Kumar, 2021). Python modeling codes for developing linear, GAM, and random forest 
models will be posted on the NGEE Arctic portal. 585 
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Figure 1.  Location and WorldView-2 RGB imagery of the Teller watershed (lower left) and Kougarok Hillslope study site (lower 
right). Teller has two weather stations (red dots), located near the top and bottom of the watershed, and the Kougarok Hillslope has 
one weather station located near the top of the rocky dome. The sites are located on the Seward Peninsula of Alaska, with the HUC12 
basins for the Teller watershed and the Kougarok Hillslope shown in green and the Seward Peninsula road system in red (upper right). 940 
RGB composite from the 8-band WorldView-2 images obtained on July 27, 2011 (Teller) and July 14, 2017 (Kougarok) at 1.5m 
resolution downloaded from the DigitalGlobe website (https://www.digitalglobe.com/) Imagery © 2011/2017 MAXAR. Example of 
features discussed in the text are denoted on the map as 1. terraces and risers, 2. the Teller watershed stream bed, and 3. the Kougarok 
Hillslope dome. 
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Figure 2. Measured snow depth (cm) and snow density (SWE Points) at a.) the Teller watershed (2017-2019) and b.) the 
Kougarok Hillslope (2018). 

 950 
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Figure 3. Scatter plots of (a.) snow depth vs SWE and (b.) snow depth vs snow density. The linear regressions in panel b. 
are for snow depth > 60 cm.  955 
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Figure 5. Teller watershed NDVI by major vegetation type. Mesic gram-herb is short for mesic graminoid-960 
herbaceous tundra. Table A1 details each vegetation type. 
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Figure 6. Variance inflation factors for the model inputs. 
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Figure 7. Random forest results of predicted SWE vs actual SWE for the test set when using all year and site datasets, 
with a test set of 20%. R2 equal to 0.86 and the RMSE is equal to 5.81 cm. The solid blue line is a linear fit to the 985 
scatter points, and the dashed black line is a y=x line.  
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 990 

Figure 8. Spatially predicted SWE for the final model for (a.) Teller 2017, 2018, and 2019 and (b.) Kougarok 2018. 
The gray areas on the Kougarok map are small lakes. Note that the scales change for each year and study location 
across the panels. 
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 995 
Figure 9. Random forest feature importance results (left, impurity and right, permutation) for the final model, with ± 
1 standard deviation shown by the black error bars.  
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 1000 
 

 
Figure 10. Heatmaps of predicted normalized SWE for Teller between 2017, 2018 and 2019 with Pearson correlation 
coefficients (r) showing significant correlations of SWE among years. Random forest was trained with data from all 
years and sites. The color scale represents the density of data points, with dark blue representing areas with the least 1005 
points and light-yellow representing areas with the most points. Areas with fewer than 100 points are not plotted. The 
solid red line is a line of best fit using singular value decomposition. 
 
 
 1010 
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Tables 
 

Table 1. Topography and vegetation data sources. Data sources for the input features are listed on the left, and the description of 
the features are listed on the right. 1015 

Data Sources Features Descriptions 
DEM Elevation Elevation (meters) 
 Slope Slope angle (degrees) 
 Microtopography Difference between elevation of single 5 m cell and the 

average elevation of cells in the surrounding box of 15 m 
width (m) 

 Topographic Position Index 
(TPI) 

Difference between elevation of single 5 m cell and the 
average elevation of cells in the surrounding box of 155 m 
width (m) 

DEM and wind data Wind/Aspect Calculated using wind direction and aspect formula (unitless) 
WorldView-2 imagery NDVI Normalized difference vegetation index (unitless) 
Konduri and Kumar, 
2021 

Vegetation Type Vegetation types: 
(1) Dryas-lichen dwarf shrub tundra, (2) Birch-Ericaceous-
lichen shrub tundra, (3) Ericaceous dwarf shrub tundra, (4) 
Sedge-willow-Dryas tundra, (5) Willow-birch shrub, (6) 
Alder-willow shrub, (7) Tussock-lichen tundra, (8) Wet 
meadow tundra, (9) Wet sedge bog-meadow, (10) Mesic 
graminoid-herb meadow tundra, (11) Mixed shrub-sedge 
tussock tundra, and (12) Willow shrub 

 
 

Table 2. Teller and Kougarok snow depth and density observations and SWE observations and estimates. The coefficient of 
variation (CV) of the observed variables are in brackets following the average value.  

Year Study Site Observations SWE Density Snow Depth SWE 
  Snow depth/SWE 

(SWE groupings) 
Observed, 
cm (CV) 

Observed, 
g/cm3 (CV) 

Observed, cm 
(CV) 

Estimated, cm 

2017 Teller 8469 / 234 (77) 19.33 (0.46) 0.27 (0.15) 73.77 (0.42) 19.37 
2018 Teller 5076 / 150 (49) 32.57 (0.37) 0.31 (0.10) 108.96 (0.31) 34.03 
2018 Kougarok 4655 / 96 (31) 24.20 (0.88) 0.30 (0.21) 75.23 (0.57) 23.15 
2019 Teller 5376 / 199 (69) 38.21 (0.36) 0.38 (0.09) 106.74 (0.38) 39.75 

Total  23481 / 653 (203)     
 1020 
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Table 3. Comparison of model performance for linear regression, GAM, and random forest models that are trained on individual 
years and individual sites. 

Study Site Year Model Train R2 Test R2 Train RMSE Test RMSE 
Teller 2017 Linear Regression 0.34 0.29 7.17 7.66 

  GAM 0.49 0.45 6.27 6.56 

  Random Forest 0.97 0.78 1.47 4.25 

 2018 Linear Regression 0.35 0.30 8.85 9.20 

  GAM 0.53 0.48 7.56 7.92 

  Random Forest 0.97 0.77 1.94 5.28 

 2019 Linear Regression 0.30 0.36 13.58 12.69 

  GAM 0.51 0.52 11.40 10.91 

  Random Forest 0.96 0.72 3.15 8.31 
Kougarok 2018 Linear Regression 0.45 0.44 12.02 13.60 

  GAM 0.70 0.72 8.96 9.68 
    Random Forest 0.98 0.92 2.23 5.16 

 1025 
 
 

Table 4. Random forest results for the training and testing data used to estimate SWE.  

Study Sites Year Train R2 Test R2 Train RMSE 
(cm) 

Test RMSE 
(cm) 

Teller & Kougarok  All 0.98 0.86 2.18 5.81 
Teller All 0.98 0.86 2.17 5.78 
 2017 0.97 0.78 1.47 4.25 
 2018 0.97 0.77 1.94 5.28 
 2019 0.96 0.72 3.15 8.31 
Kougarok 2018 0.98 0.92 2.23 5.20 
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Wind Equations 1035 
 
The two wind equations in the current study were derived similarly to the wind equation found in 
Dvornikov et al., 2015. The purpose of the wind equations is to establish an index using positive and 
negative values based on the topography-wind relationship. First, we used meteorological station data to 
calculate an average prevailing wind direction for the winter months. Second, we used the corresponding 1040 
wind equation to assign positive values to the leeward side of topographical features (where wind loading 
or drifting of snow is likely) and negative values to the windward side of topographical features (where 
wind scour of snow is likely). 
 
To derive our wind equations, we divided the wind rose into eight cardinal directions by +/- 22.5 degree 1045 
increments, N, NE, E, SE, S, SW, W, NW. The eight possible wind equations that correspond to the eight 
cardinal directions are listed below, along with the range of values associated with each equation. We 
determined that the coefficients from Dvornikov et al., 2015, simply added a scaling factor to the wind 
equation values, and were not necessary for our results.  
 1050 
We chose two wind equations (NE and E) for our study area based on the prevailing winter wind direction 
for each year (Figure A2). 
 
N:  Wf(x) = -cos(x); range = -1 to 1 
NE:  Wf(x) = -cos(x) - sin (x); range = -1.414 to 1.414 1055 
E:  Wf(x) = -sin(x); range = -1 to 1 
SE:  Wf(x) = cos(x) - sin (x); range = -1.414 to 1.414 
S:  Wf(x) = cos(x); range = -1 to 1 
SW:  Wf(x) = cos(x) + sin (x); range = -1.414 to 1.414 
W:  Wf(x) = sin(x); range = -1 to 1 1060 
NW:  Wf(x) = -cos(x) + sin (x); range = -1.414 to 1.414  
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Figures 

 1065 
Figure A1. Random forest model performance for model runs using a range of TPI scales. The model 
performance is optimized when the TPI scale is 155 m.  
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 1070 
 

 
Figure A2. The prevailing wind directions (NE, E) calculated from meteorological station data and the 
corresponding wind equations applied in this study.  
  1075 
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Figure A3. Teller snow depth and SWE measurements for each year of the survey. 
 1080 
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 1085 
 

 
Figure A4. Random forest model performance for model runs using various combinations of vegetation 
features. The categorical vegetation uses the vegetation types shown in Figure 3. The continuous 
vegetation is a ranking ordered by which vegetation type has higher SWE. The continuous vegetation 1090 
ranking is also randomized three different ways to determine if the ranking order is important. 
 
 
 
 1095 
 
 
 
 
 1100 
 
 
 
 
  1105 



 

42 
 
 

 
Figure A5. All three statistical models trained on individual years at Teller. The scale of SWE changes 
from year to year depending on the annual snowfall.  
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 1110 
 

 
Figure A6. All three models trained on single year (2018) at Kougarok. 
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Figure A7. Spatial error (predicted minus observed) for the upper-most and lower-most quartiles of 1120 
error in the random forest SWE prediction for Teller.  
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 1125 
Figure A8. Spatial error (predicted minus observed) for the upper-most and lower-most quartiles of 
error in the random forest SWE prediction for the final model at Kougarok. The error is not distributed 
systematically through space. 
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Tables 
Table A1. Vegetation classes ranked by observed SWE from lowest SWE (1) to highest SWE (12) at 
Teller. All binned values are significantly different from each other. 

 

Vegetation Type Rank 
Binned Value 

(Teller) 
Dryas-lichen dwarf shrub tundra 1 2 
Birch-Ericaceous-lichen shrub tundra 2 NA 
Ericaceous dwarf shrub tundra 3 4 
Sedge-willow-Dryas tundra 4 2 
Willow-birch shrub 5 3 
Alder-willow shrub 6 NA 
Tussock-lichen tundra 7 NA 
Wet meadow tundra 8 1 
Wet sedge bog-meadow 9 1 
Mesic graminoid-herb meadow tundra 10 5 
Mixed shrub-sedge tussock tundra 11 NA 
Willow shrub 12 6 

NA in binned values indicate vegetation types comprised <1% of total area at Teller 1135 
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Table A2. Average winter (October-March) wind speed and prevailing direction. 1140 

  Wind 
Speed 

Wind Direction 
(Prevailing) 

Wind Direction 
(Prevailing) > 5 
m/s 

(m/s) (°) (°) 

Nome (measured at 5 m height) 2016-2017 10.14 60.40 (ENE) 65.16 (ENE) 
 2017-2018 12.42 66.11 (ENE) 67.71 (ENE) 
  2018-2019 12.06 76.57 (ENE) 78.27 (ENE) 

Teller (station at top of watershed) 2016-2017 4.99 83.63 (E) 98.17 (E) 
 2017-2018 5.47 94.66 (E) 115.38 (ESE) 
  2018-2019 4.86 76.10 (E) 92.07 (E) 

Kougarok 2018-2019 6.74 60.23 (ENE) 45.00 (NE) 

 

 
Table A3. Hyperparameters for Random Forest Model 
 
  Final Model Teller Kougarok 
Tree density 840 1200 1165 
Max depth 90 100 67 
Max features 4 4 3 
Min samples split 2 2 2 
Min samples leaf 1 1 1 
    

 1145 
 
 
 

 


