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Abstract. The spatial distribution of snow plays a vital role in sub-Arctic and Arctic climate, hydrology,
and ecology due to its fundamental influence on the water balance, thermal regimes, vegetation, and carbon
flux. However, the spatial distribution of snow is not well understood, and therefore, it is not well modeled,
which can lead to substantial uncertainties in snow cover representations. To capture key hydro-ecological
controls on snow spatial distribution, we carried out intensive field studies over multiple years for two
small (2017-2019, ~2.5 km?) sub-Arctic study sites located on the Seward Peninsula of Alaska. Using an
intensive suite of field observations (>22,000 data points), we developed simple models of spatial
distribution of snow water equivalent (SWE) using factors such as topographic characteristics, vegetation
characteristics based on greenness (normalized different vegetation index, NDVI), and a simple metric for
approximating winds. The most successful model was the random forest using both study sites and all
years, which was able to accurately capture the complexity and variability of snow characteristics across
the sites. Approximately 86% of the SWE distribution could be accounted for, on average, by the random
forest model at the study sites. Factors that impacted year-to-year snow distribution included NDVI,
elevation, and a metric to represent coarse microtopography (topographic position index, or TPI), while
slope, wind, and fine microtopography factors were less important. The characterization of the SWE spatial
distribution patterns will be used to validate and improve snow distribution modelling in the Department of
Energy’s earth system model, and for improved understanding of hydrology, topography, and vegetation
dynamics in the sub-Arctic and Arctic regions of the globe.

Keywords: Snow Distribution, Random Forests, Spatial Patterns, Topography, Vegetation, Alaska, sub-
Arctic

Check TWP, precip, check site names, read through.

1 Introduction

Covering the land for more than six months each year, snow plays a vital role in the climate, hydrology,
and ecosystems of the Arctic and sub-Arctic. Snow directly impacts climate through modulation of
atmospheric circulation patterns via the snow-albedo feedback mechanism (Fletcher et al., 2009) and
atmospheric moisture budgets through its control on the amount of water available for evaporation
(Callaghan et al., 2011). Thus, snow controls water availability, soil moisture, and temperature, affecting all
components of ecosystem including vegetation (Evans et al., 1989; Schaefer and Messier, 1995; Scott and
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Rouse, 1995) animal populations (Forchhammer et al., 2008; Manning and Garton, 2012), microbial
decomposition, and carbon flux (Mauritz et al., 2017; Zona et al., 2016). The distribution of snow and
timing of its melt is key to understanding how changes in hydrology, soil thermal regimes, and vegetation
interact across Arctic and sub-Arctic landscapes (Jafarov et al., 2018). Snow distribution, however, is a
particularly elusive and difficult feature to characterize, leading to challenges in how to quantify snow
properties over space and understand how snow changes over time, especially in remote, under-monitored
watersheds of the Arctic and sub-Arctic.

Within the Arctic and sub-Arctic hydrologic cycle, spring snowmelt is the single most important event
contributing to the annual water budget of high-latitude watersheds (Ford and Bedford, 1987; Stuefer et al.,
2013). The importance of understanding end-of-winter snow distribution and its impact on snowmelt and
importance in snow modeling has been shown in the previous studies on this topic, including historical
analyses (Homan and Kane, 2015), modeling, and analyses to characterize the spatial pattern of snow
distribution and investigate how different factors affect the spatial distribution (Mendoza et al., 2020;
Freudiger et al., 2017; Mott et al., 2018; Revuelto et al., 2014; Trujillo et al., 2007).

There are two main approaches to identify and quantify the influence of different factors on snow
distribution: physically-based (dynamical) and statistical (empirical) models (Tarboton et al., 2000;
Griinewald et al., 2013). Physically-based dynamical models including SnowTran-3D (Liston and Sturm,
1998; Liston et al., 2007; Hirashima et al., 2004), the distributed blowing-snow model (DBSM) (Pomeroy
et al., 2007; Essery and Pomeroy, 2004), and the 3D snowdrift model (Jaedicke and Sandvik, 2002) have
been successfully applied to the Arctic. These physically-based models account for both mass and energy
exchanges and allow for detailed representation of different snow processes such as deposition,
accumulation, redistribution, sublimation and melting (Tarboton et al., 2000; Griinewald et al., 2013).
However, high-quality meteorology, topography, and vegetation parameterizations are generally required
as input, and the computational cost can be high for dynamical models (Liston, 2004; Griinewald et al.,
2013).

In contrast, empirically-based statistical models use the relationships between snow depth or snow water
equivalent (SWE) and topography, vegetation, and wind to predict the snow distribution. Statistical models
have parsimonious model structures, so they are computationally inexpensive and easy to use, but their
drawbacks are that they are site-specific and require substantial data for model calibration (Tarboton et al.,
2000). Decision trees (Konig and Sturm, 1998) and multiple linear or non-linear regression models
(Wainwright et al., 2017; Dvornikov et al., 2015) are examples of statistical snow distribution models that
have been applied in the Arctic and sub-Arctic regions.

More recently, machine-learning approaches have been used to quantify snow distribution using a variety
of different algorithms and remote-sensing methods. Broxton et al. (2019) applied artificial neural networks
to estimate snow density, which was then combined with aerial lidar snow depth to predict SWE. Revuelto
et al. (2020) used random forests to predict lidar snow depth distribution from several topographic
predictors. King et al. (2020) used random forests for bias correction of a SWE data assimilation product.
Other studies have applied machine-learning algorithms using remotely sensed observations as predictors,
including brightness temperature, fractional snow-covered area, or the normalized difference snow index
(Liu et al., 2020; Bair et al., 2018). Meloche et al. (2022) used random forests to predict snow depth from
topography, an up-wind slope index, and ecotypes in an area of Nunavut. While machine-learning
approaches have shown to be an effective method for predicting snow distribution, few studies have
incorporated vegetation characteristics into the models, and validated models with intensive field
observations of SWE (Anderton et al., 2004).

A particular interest of this paper is to investigate the spatial pattern of snow distribution based on intensive
field snow sampling surveys to identify what factors have control on the snow distribution at the local scale
for two study sites in the southwestern and central Seward Peninsula, Alaska. Our main focus is on
identifying secondary factors of snow distribution as opposed to the primary variables of temperature and
precipitation. Specifically, our goal is to build a statistical model to 1) characterize the spatial pattern of the
end-of-winter snow distribution, 2) identify the key factors controlling the spatial distribution, and 3)
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predict the snow distribution for the local study sites. We expect our analysis will be useful for the
validation of the physically-based permafrost hydrology models such as the Advanced Terrestrial Simulator
(ATS), which has been developed at fine spatial scales to understand permafrost dynamics for the region
(Atchley et al., 2016, 2015; Painter et al., 2016). Further, the statistical snow distribution model will be
used to validate and improved snow redistribution in Department of Energy (DOE)’s Energy Exascale
Earth System model (E3SM) land surface model (ELM) and to eventually improve our understanding of
changing hydrology, topography, and vegetation dynamics in the Arctic and sub-Arctic.

This paper is organized as follows: in data and methodology, we introduce the two study sites used for our
analysis, describe the field observations of snow, and we outline the site characteristics used as factors in
the study, including topography, vegetation, and winds. We present the methodology for each modelling
approach, the results, a discussion of findings, and our next steps in the research. We then summarize the
main conclusions for the study.

2 Data and Methodology
2.1 Study Sites

The Teller watershed (2.3 km?) and Kougarok Hillslope study site (2.5 km?) are located in the southwest
part of the Seward Peninsula, Alaska (Figure 1). The climate of the Seward Peninsula is characterized by
cool continental conditions, typified by long, cold winters and short, cool summers, and high precipitation
(Peel et al., 2007). The mean annual air temperature at the Nome Municipal Airport (1980-2018, located
approximately 35 km from Teller and 78 km from Kougarok) is -2.3 °C, with a mean January temperature
of -14.4 °C and mean July temperature of 11.2 °C. Annual precipitation is 430 mm with 45 % falling as
snow (National Centers for Environmental Information, National Oceanic and Atmospheric
Administration, https://www.ncdc.noaa.gov/). At the Nome Municipal Airport (National Centers for
Environmental Information, National Oceanic and Atmospheric Administration,
https://www.ncdc.noaa.gov/) average historical (1981-2010) precipitation falling from October to March is
161 mm, while total annual precipitation (rain and snow) is 425 mm. Snow covers the ground, generally,
from approximately October through May, dependent on the year.

The Teller watershed, with elevations ranging from 50 m to 300 m, is located nearby the coast and
underlain by discontinuous permafrost, with near-surface permafrost adjacent to areas with no permafrost
or deep permafrost table locations overlain by a perennially thawed layer (i.e., talik) (Jorgenson et al.,
2008; Busey et al., 2008; Uhlemann et al., 2021; Léger et al., 2019). Topographic features at the sites
include terrace and risers, and stream bed (Figure 1). The streams in the Teller watershed connect to the
Sinuk River, about 1 km to the south of the study site (#2, Figure 1). Along the streams, willow shrubs
grow, while sedge-willow-dryas tundra and mixed shrub-sedge tussock tundra-bog dominate the rest of the
watershed (U.S. Fish and Wildlife Service, 2015; Konduri and Kumar, 2021).

The Kougarok Hillslope study site is located inland on the leeward side of the Kigluaik Mountains along a

(Deleted: about 80 km outside of Nome, AK,

minor drainage of the Kuzitrin River, which flows into the Imuruk Basin. The Kougarok Hillslope (referred
to as Kougarok from here on in) is situated on a gently rising upland dome that tops out at an elevation of
~110 m (#3, Figure 1). The site is overlain by an active soil layer containing organic peat and mineral
horizons (McCaully et al., 2021), vegetated by alder shrubland, tussock tundra, alder savanna, and rocky
areas dominated by dwarf shrubs and lichens (Iversen et al., 2019; Salmon et al., 2016). The site is
underlain by permafrost approximately 15-50 m thick, with average active layer thickness of 56 cm
(Hinzman et al., 2003).

To obtain spatially consistent and replicable (for different study sites and years) estimates of precipitation
falling in each separate year of study, the total winter precipitation (TWP) for each year was estimated
based on the ERAS5-Land hourly reanalysis product (Mufioz 2019), accessed via Google Earth Engine. For
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each winter, we summed the winter (October to March) precipitation and averaged these totals across the
study areas.

2.2 Field Observations of Snow

From March 22" to March 31%, 2017 (Teller watershed), March 26™ to April 5%, 2018 (Teller watershed,
Kougarok Hillslope), and March 31% to April 7", 2019 (Teller watershed), end-of-winter snow surveys
were carried out at the study sites to collect snow depth and snow density to calculate SWE. SWE measures
the amount of water contained within the snowpack and characterizes the hydrological and thermal impacts
of snow cover better than snow depth (Jonas et al., 2009; Sturm et al., 2010; Liston and Elder, 2006), which
is why we focus on SWE.

We measured snow characteristics in several different ways. Snow depth was captured every 1-15 m using
a Snow-Hydro™ GPS Snow Depth Probe (Sturm and Holmgren, 2018). When the snowpack was greater
than 130 cm in depth, the length of the snow depth probe, an avalanche probe was used to manually
measure the snow depth. Snow bulk density was measured with a SWE Coring Tube, also manufactured by
Snow-Hydro™ (reported error of -9% to 11%, Dixon and Boon, 2012; Young et al., 2018; Lépez-Moreno
et al., 2020). Approximately three to five bulk density samples were taken for each sampling location, with
an interval of ~200-300 meters between measurements. The snow tube was pressed into the snow until the
ground was hit and the depth of the snowpack in cm (Snow Depth) was recorded. After the tube was
removed from the snowpack, the snow in the tube was bagged and weighed in grams (Snow Weight). The
cross-sectional area of the snow coring tube (Coring Tube Area) was 30 cm®. Then

Snow Density (g/cm?) was calculated from Equation (1):
Snow Weight (])

Snow Depth x Coring Tube Area ’

Inverse distance weighting (IDW) was used to assign snow density for each of the observed snow depth
locations, and is a common method for interpolating environmental variables (Franke, 1982; Zimmerman et
al., 1999). The IDW method added uncertainty to our SWE estimates since we only collected sparse density

Snow Density =

measurements. These sparse density measurements ranged over years (Teller) between 0.27 to 038 kg/m”3
with a standard deviation of 0.03 to 0.04 kg/m”3, SWE (cm) was then calculated from the average of the

snow bulk density measurements using Equation (2), where Water Density was 0.997 g/cm?:
SWE = Snow Depth X Snow Density 2
Water Density
SWE was then used as the response variable in our statistical models.

2.3 Site Characteristics

To model snow redistribution, various landscape factors were estimated for topographic, vegetation, and
wind characteristics, as described below. An overview of data sources, factors, and descriptions of the
factors is given in Table 1.

2.3.1 Topography

To evaluate the effects of topography on SWE distributions, a digital elevation model (DEM) was analyzed
to estimate elevation, aspect, and slope for each of the study locations. The Teller watershed and Kougarok
Hillslope DEMs were derived at a 5 m resolution from Interferometric Synthetic Aperture Radar (IfSAR)
data available from http://ifsar.gina.alaska.edu/.

To consider the effects of topography at different spatial scales on SWE distributions, we included a fine-
scale “microtopography” and a topographic position index (TPI) to capture the range of terrain variability
across spatial scales. Values are calculated by the difference between the cell and the average elevation of
all cells in a surrounding square window of 15 m and 155 m width for microtopography and TPI,
respectively.

4

snow density for each of the observed snow depth locations, which
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Microtopography in the Arctic can range from sub-meter (e.g., tussocks) to 1-10 m (e.g., hummocks) in
scale (Sturm and Holmgren, 1994). The 15 m microtopography is the finest scale that can be derived using
a DEM at 5 m resolution, and is equal to the curvature of the terrain (Jenness, 2006). We also consider
coarse-scale topographic features defined using TPI, such as terraces and risers, and the stream channel
(10s to 100s of m). To determine the scale of TPI, we applied a smoothing-average window at a range of
widths, and then picked the optimal width with the best random forest model performance and highest
feature importance (see Section 4.4, Figure A1). We derived both of the above described products from the
DEM following Lopez-Moreno et al. (2009) and Weiss (2001).

2.3.2 Vegetation

Owing to the importance of shrubs for trapping drifting snow in the Arctic (Sturm et al., 2001a; Essery and
Pomeroy, 2004; Dvornikov et al., 2015; McFadden et al., 2001), we considered different vegetation
indicators to reflect types and distributions: vegetation type and vegetation greenness.

Vegetation type was extracted from an updated vegetation map for both study sites (Konduri and Kumar,
2021) and used as a continuous feature ranked for each year and site according to IDW-interpolated SWE.
The continuous ranking was applied so that feature importance could be compared across all model features
on a consistent basis. The relative rankings from each year and site were then averaged to produce a final
ranking used in the models (Table Al).

As high-resolution vegetation distribution information is not widely available for most of the Arctic,
Normalized Difference Vegetation Index (NDVI) was used to approximate vegetation characteristics.
NDVI is indicative of the abundance of photosynthetically active vegetation (Rouse et al., 1974) and is
useful to capture the branch abundance, deciduous canopy cover and maximum height of shrubs in the
Arctic tundra landscape (Boelman et al., 2011). NDVI was derived from the 8-band WorldView-2 images
obtained on July 27, 2011 at 1.5m resolution for the Teller watershed, and July 14, 2017 for the Kougarok
Hillslope. Both images were downloaded from the DigitalGlobe website (https:/www.digitalglobe.com/).

To better understand how vegetation type was related to NDVI, we binned vegetation types that were (Deleted: assessed
present on more than 1% of the total watershed area which resulted in six representative categories that
encompass the range of wetland species, short shrub, and tall shrub vegetation types. We computed (Deleted: , and then

statistics and significance to differentiate the NDVI values for those bins using ANOVA and Tukey’s HSD
test (Table Al).

2.3.3 Wind

Previous studies showed that snow is usually accumulated on leeward slopes and blown away from
windward slopes (Evans et al., 1989; Liston and Sturm, 1998; Winstral et al., 2002; Mott et al., 2011), so
we explored whether the prevailing wind would have an impact on the snow distribution. To understand
wind patterns, weather stations within the study locations and from the nearby Nome weather station were
analyzed (Table A2).

Because faster wind speeds have a greater impact on the redistribution of snow, we considered winter
(October to March) wind speeds greater than 5 m/s (Table A2, Liston and Sturm, 1998; Berg, 1986; Sturm
and Wagner, 2010; Sturm and Stuefer, 2013). At the weather station at the top of the Teller watershed, the
prevailing wind direction (wind speeds > 5 m/s) was the average of data from the 2016-2017, 2017-2018,
and 2018-2019 winters, and at the Kougarok weather station, the prevailing wind direction (wind speeds >
5 m/s) was based on data from the 2018-2019 winter only due to instrument issues in previous years. The
prevailing wind direction (wind speeds > 5 m/s) for each study site was used to represent the exposure of a
particular location to wind as a function of aspect (Dvornikov et al., 2015). We divided the prevailing
winds into the eight cardinal and ordinal directions (N, NE, E, SE, S, SW, W, NW) using 45-degree bins,
and then derived a unique wind and aspect factor equation for each directional bin. For the Teller
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watershed, the prevailing wind direction was 102° (E), so the wind and aspect factor (W f) was calculated
using Equation 3:
Wf = —sin (4), 3)

where A is the aspect (Dvornikov et al., 2015; Evans et al., 1989; Liston and Sturm, 1998). For Kougarok,
the prevailing wind direction was 45° (NE), so the W was calculated using Equation 4:
Wf = —coscAy — sinc4y. 4)

The wind and aspect factor gives positive values for leeward slopes and negative values for windward
slopes, since snow is known to blow away from windward slopes and accumulate on leeward slopes
(Dvornikov et al., 2015). More details on the wind factors as applied in this work are included in the
Appendix and Figure A2.

3 Methodology
3.1 Modelling

We fit three different types of models, linear regression, general additive, and random forests, to quantify
the impacts of different factors on snow distribution and characterize the spatial pattern of the snow
distribution.

3.1.1 Linear Regression Model
The linear regression model is shown in Equation (5),

y2ﬁ0+/g1x1+"'ﬁpxp+€’ (5)
where y denotes SWE, and S are the coefficient of factors expressed by the weighted sum of its p features
with an error term, €. Linear models are useful in that they produce simple relationships between the
response variable and factors, and the factor rankings are easy to interpret. However, relationships between
snow distribution and factors may not be linear, and thus linear models may not provide a good result,
additionally, linear models are susceptible to correlations between parameters. The linear models were
implemented using the Linear Regression class of the Scikit-learn package in Python (Pedregosa et al.,
2011).

3.1.2 Generalized Additive Model

A generalized additive model, or GAM, is a class of statistical models in which the usual linear relationship
between the response and predictors are replaced by several nonlinear smooth functions to model and
capture the non-linearities in the data, i.e.,

9Ey Y10y = Bo + fi(x1) + fo(x2) + -+ f (%), (6

where g denotes SWE as a link function that links the expected value to the predictor variables x, ,... xp,

which denote smooth, nonparametric functions. This type of model is useful because it allows for non-
linear relationships between SWE and the factors. GAMs are generally easy to interpret, but while they are
non-linear, GAMs still require a fit to a distribution or shape. The GAMs were implemented using the
LinearGAM class of the pygam package in Python (Servén et al., 2018).

3.1.3 Random Forest Model

Random forests are based on decision trees, a series of yes/no questions asked about our data eventually
leading to a predicted class (or continuous value in the case of regression, Breiman, 2001). A random forest
model is defined by a large number of individual decision trees that operate as an ensemble. Each
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individual tree in the random forest generates a vote for classes (classification) or mean prediction
(regression) of the individual trees, and the one with the most votes is used for the final prediction (Liaw
and Wiener, 2002). Random forests are useful in that they are not impacted by correlations in the data,
generally can protect against over-fitting, and have built-in feature randomization. The drawback of these
models is that they can be difficult to control, if used in black box mode. The random forests were
implemented using the RandomForestRegressor class of the Scikit-learn package in Python (Pedregosa et
al., 2011).

3.1.4 Model Implementation

For all three model (linear, GAM, random forest) iterations, SWE, the response variable, was square root
transformed to ensure its distribution was normal. Model inputs were also normalized to have a mean of 0
and a standard deviation of 1. We utilized a split sample approach for all models, with a train and test set.
Performance metrics for all three statistical models were the coefficient of determination (R?) and root
mean squared error (RMSE) on the test set, which were evaluated on the untransformed (squared) model
output. Due to the decorrelation effects involved in bootstrapping, the predictive accuracy of random
forests is generally robust to collinearity across features (Dormann et al., 2013). However, feature
collinearity can still be an issue for determining feature importance (Gregorutti et al., 2017). Prior to
modelling, we used variance inflation factors as well as pairwise correlation coefficients to assess
collinearity among features and ensure collinearity was not a significant issue.

We implemented the random forest model using various subsets of the input factors. One implementation,
labeled the “final model”, was trained on data from all years at the Teller watershed and the Kougarok
Hillslope combined, with the TWP for each year included as a feature in the model. We also trained the
model separately for only the Teller watershed using all years combined (2017-2019), with the TWP
included as a feature. In addition, we implemented individual random forest model runs for each year and
each site, without TWP, The model runs on individual sites and years were also implemented for linear

(Deleted:

regression models and GAMs so that the performance of the three different statistical models could be
compared.

Since the random forest performed the best of the three models and has the most comprehensive feature
importance metrics, all testing for model features and hyperparameters was completed with the random
forest model. The same features were then applied in the linear model and GAM predictions. Model
hyperparameters (tree density, max depth, max features, min samples split, and min samples leaf) were
selected using Bayesian Search (using the BayesSearchCV function from the Scikit-Optimize package in
Python) with 8-fold cross validation on the training set. The training set was a randomly selected 80% of
full dataset, and the remaining 20% of the dataset was used for validation. A complete list of the
hyperparameters used for the final model and the separate the Teller watershed and the Kougarok Hillslope
model runs are given in Table A3.

Using the random forest model, we measured the contribution of each input feature in predicting SWE
distribution with both impurity feature importance and permutation feature importance (Louppe et al.,
2013). Impurity importance, also known as Mean Decrease in Impurity (MDI) or Gini importance, is
proportional to the total number of splits that each feature divides across all trees in the random forest,
where features with more splits are more important (Breiman, 2001). While impurity importance is
computationally cheap, it is biased towards features with many possible split points, and suffers from
overfitting to the training set. Permutation importance, also known as Mean Decrease in Accuracy (MDA),
is based on the decrease in model performance when a single feature is randomly shuffled, and more
important features result in larger decreases in performance when permuted (Breiman, 2001). Permutation
importance is more computationally expensive. We measured permutation importance on the test set. For
this study, we analyzed both importance metrics (MDI and MDA) to ensure that the relative feature
importance rankings generally agreed.
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4 Results
4.1 Meteorological Conditions

Meteorological stations located in the study sites (Figure 1) recorded temperatures of -7.1°C (the Teller
watershed, 2017-2019, including the top and bottom meteorological stations) / -8.1°C (the Kougarok
Hillslope, 2018) during the winter months of October to March, while the Nome airport reported average
2017-2019 winter temperatures of -8.0°C. From 2017-2019, the Nome Airport reported winter temperatures
that were slightly warmer than the recent (1981-2010) climatological period (-10.5°C). Precipitation
recorded at the Nome Airport climate station indicated that from October to March, precipitation was 13.3
cm, 28.0 cm, and 25.0 cm, while precipitation from December to March at the Nome airport was 7.2 cm,
15.2 cm, and 16.4 cm for 2017, 2018, and 2019, respectively. ERAS average winter (October to March)
total precipitation values are 26.3 cm, 40.3 cm, and 44.9 cm for both the Teller watershed and the
Kougarok Hillslope for 2017-2019, respectively. From October to March, the prevailing wind speed and
direction for the Teller watershed (top station) were predominantly East-Northeast (2017-2019), while
Kougarok was predominantly Northeast in 2019 (Table A2, Busey et al., 2017). The Kougarok Hillslope
meteorological station experienced issues with its wind sensor in 2018, thus those values are not reported
herein. The wind directions experienced at the study sites are similar to that experienced at the Nome
Airport (East-Northeast). Wind speeds ranged from 4.9 to 6.7 m/s, much lower than wind speeds reported
at the Nome (10.1 to 12.4 m/s) in 2017-2019 (Table A2).

4.2 Snow Depth, Density and SWE

Snow depth was collected at thousands of locations (> 22,000 points) while snow bulk density was
measured at hundreds of locations (Table 2, Figure 2). The number of observations varied from year to
year, with the greatest number of snow depth observations being collected in 2017, followed by 2019, and
with 2018 having a similar number of observations to 2019 in the Teller watershed. In 2017, the survey was
not planned for Kougarok, and in 2019, weather concerns prohibited safe travel to the study site. Note that
while the Teller watershed’s 2017 survey collected the most points, the 2019 survey was the most spatially
extensive (Figure A3). No snowfall occurred during the any of the 2017-2019 end-of-winter snow surveys.
The average snow depth at the Teller watershed was observed to be lowest in 2017, and similar depths were
noted in 2018 and 2019 (109.0 cm, 106.7 cm, respectively). The average snow depth at the Kougarok
Hillslope in 2018 was 75.2 cm. SWE was estimated to be lowest in 2017, lower at the Kougarok Hillslope
versus Teller in 2018, and the highest SWE values were recorded in 2019 for Teller (Table 2).

High spatial variability in snow depth was measured (Table 2, Figure 2). Snow depth ranged from 2 to 275
cm (mean 86 cm, standard deviation (SD) 37 cm, coefficient of variation (CV) 0.43). Snow density
measurements ranged from 0.116 to 0.451 g cm™ (mean density of 0.288 g cm™). SWE was strongly
correlated with snow depth, with correlation coefficients ranging from 0.95 to 0.97 (Figure 3a). Snow
density positively correlated with snow depth with correlation coefficients from 0.51 to 0.59 (Figure 3b)
with higher correlations deeper than 60 cm. SWE was calculated from snow depth and snow density as
described previously. SWE ranged from 0.4 to 86.7 cm (with mean 25.4 cm, SD 12.4 cm).

4.3 Topographic, Vegetation, and Wind Features

Topographic features in the study sites illustrate the variation across the landscape (Figure 4a, b).
Elevational gradients are strongest at the Teller watershed, topping out at 300 m, while Kougarok’s dome-
like feature is approximately 100 m. Slopes at the Teller watershed are steeper in the middle of the basin
and along the stream banks, while at Kougarok Hillslope slopes are shallower on the west and steeper to the
east, with overall more gentle elevational gradients than Teller. TPI highlights dominant features such as
the terraces and risers, the stream bank in the Teller watershed, and the top of the dome at the Kougarok
Hillslope.
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Wind and aspect factors illustrate that the Teller watershed’s aspects are largely unidirectional (south, south
east facing), while the Kougarok Hillslope’s west hillslope is predominantly S facing, with a north facing
slope on the east side over the crest of the dome (Figure 4a, b). NDVI patterns in July and August are
reflective of taller stature shrub patches located across the study sites (Figure 1, Figure 5, Boelman et al.,
2011). Vegetation maps illustrate the differences in the two study sites. The Teller watershed contains low-
to-mid-slope willow-birch and willow shrub complexes, with Ericaceous dwarf shrub tundra and wet
meadows located in the upper slopes. At the Teller watershed. an ANOVA test of NDVI versus vegetation
type (those with >1% of total land cover) indicate significant differences (p < 0.0001), with the highest
NDVI values occurring in willow shrubs (Table A1). A Tukey's HSD test showed significant differences
among all vegetation types (p < 0.0001, Figure 5). The Kougarok Hillslope’s slopes are largely mixed

shrub-sedge tussock tundra, with patches of alder-willow shrubs, dryas-lichen dwarf shrub tundra, birch-
Ericaceous-lichen shrub tundra, and willow-birch shrub on the east slope where no snow measurements
were taken in 2018 (Konduri and Kumar, 2021).

4.4 Model Optimization and Testing

Several different tests were undertaken to determine the optimal features used in the final model; we tested
this optimization on both sites and for all years. We tested the random forest model to determine the
optimal scale of TPI, with a smoothing-average window from 55 m to 505 m (Figure A1). The TPI at a
scale of 155 m corresponded to the best model performance. Further, the random forest model was used to
determine which vegetation features to use in the final model. We tested the model using NDVI, vegetation
type as twelve one-hot-encoded categorical features, and vegetation type as a continuous feature ranked by
observed SWE, as well as combinations of these three features (Figure A4). We found that NDVI and the
continuous ranking of vegetation type performed the best so these two features were included in the final
model. However, while the spatial pattern of vegetation type improved model performance, the relative
order of the vegetation type ranking did not appear to be important, since other randomized rankings
performed similarly well (Figure A4). It should be noted that while NDVI and continuous vegetation
performed the best, the differences across all tests were similar (R? values between ~0.86-0.87).

The variance inflation factors of the input features are shown in Figure 6. Since the variance inflation
factors are all well below the accepted threshold of 5 (Karimi et al., 2019) and the largest correlation
coefficient between two input variables (0.49 for microtopography and TPI) is well below the accepted
threshold of 0.70, collinearity is not expected to severely distort model estimation and predictions
(Dormann et al., 2013).

4.5 SWE Prediction

The SWE prediction model results for the linear regression, GAM, and random forest for the individual
sites and years are shown in Table 3. In general, linear regression performed the worst (R? ranging from
0.29 to 0.44), random forest performed the best (R? ranging from 0.72 to 0.92), and GAM performed in
between the other two models (R? ranging from 0.45 to 0.72). The spatial maps of predicted SWE for the
three different models are shown in Figure A5, for the Teller watershed and Figure AG for the Kougarok
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values that are significantly different than all other vegetation types,

as indicated by the results of an ANOVA and Tukey’s HSD test
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Hillslope. Because of the success in simulating SWE for the study sites and years using random forest, we
focus the remainder of our study on the random forest results to discuss the implications and the driving
factors that are ranked to be most important for prediction of SWE in the study sites.

The random forest model results for training and testing data are given in Table 4. The final random forest
model which includes data from all years and sites captures approximately 86 % of the variance in SWE
and has an RMSE of 5.81 cm on the test set. The scatter plot of predicted and actual SWE measurements of
the test set from the final model (Figure 7) shows a linear trend. In comparison to the y = x line, the linear
fit in Figure 7 shows the model slightly overestimates low SWE measurements and underestimates high
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SWE measurements, which could be due to the tendency of random forests to decrease the variance by
averaging across many trees.

We also considered the random forest model developed using the individual study sites and years as a
feature to predict SWE. The iterations of the random forest model where we considered only the Teller
watershed and all years performed slightly better than the final model, with an R? of 0.86 and an RMSE of
5.78 cm for the Teller watershed (Table 4). The random forest models trained on individual years and sites
ranged in model performance, as shown in Table 4.

In Figure 8, we illustrate the spatially predicted SWE from the final random forest model for the Teller
watershed (2017-2019) and the Kougarok Hillslope (2018). SWE values across the basin reflect the year-
to-year variability in the amount of precipitation that fell on the study sites. However, we observe that SWE
is variable across the Teller watershed and the Kougarok Hillslope around major landscape features, such
as the stream bed and terraces and risers within the Teller watershed. Another location where SWE appears
to be higher is just below the dome on the west hillslope in the Kougarok Hillslope. The SWE patterns in
SWE also reflect areas of higher NDVI values, where shrubs are identified as darker patches in both the
Teller watershed and the Kougarok Hillslope (see Figure 4).

The spatial error, calculated as the predicted minus the observed for the upper and lower quartiles of error

in the random forest SWE prediction is shown in Figure A6, for the Teller watershed for each year, and (Deleted: 5
Figure A7, for the Kougarok Hillslope for 2018. In these figures we observe that spatial error varies from (Deleted: ¢
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year to year, but is not spatially systematic. Errors are higher in the years where there was higher SWE in
the basin, such as in 2018 compared to the lower SWE year of 2017 in the Teller watershed, when the

survey yesolution was similar (Figure A3). In 2019, the survey captured a finer spatial yesolution and thus (Deleted= extent

we expect greater spatial variability and higher error. (Deleted: larger
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4.6 Feature Importance

Figure 9 shows the impurity and permutation feature importance results for the final random forest model.
Both of the importance metrics provide similar results, and the same variable ranking with the exception of
permutation importance metric ranking elevation as higher than NDVI, and impurity ranking NDVI higher
than elevation. TWP is the key primary factor driving SWE distribution. Overall, NDVI, elevation, and TPI
are the most important secondary features for predicting SWE distribution at our study sites. Features such
as slope, vegetation type, wind/aspect factor, and microtopography are ranked as the least important in
SWE prediction.

4.7 SWE Correlations between Years

Heatmaps that illustrate significant SWE correlations between years 2017-2019 for the Teller watershed are
shown in Figure 10, based on random forest modeled SWE trained with data from all years and sites. The
weakest correlations are for the years with low (2017) and high (2019) SWE (Pearson correlation
coefficient r = 0.67), with stronger correlations between the two higher SWE years (2018 and 2019, r =
0.89). These correlations tend highlight the consistency in SWE values for the study site across highly
variable climate conditions.

5 Discussion

Changes in snowpack characteristics have important implications for a changing Arctic and are anticipated
to be a major driver of ecosystem shifts (Bjerke et al., 2015; Cooper, 2014), water and energy balances
(AMAP, 2019; Pulliainen et al., 2020), and biodiversity changes (Niittynen et al., 2018; Riseth et al., 2011).
Changes in snow have implications for Arctic communities where snow may impact many resources
(Huntington et al., 2004), and for global climate change (Overland et al., 2019) and carbon cycles (Rogers
etal., 2011; Arndt et al., 2020). Thus, understanding how to better model snow distribution and the
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important features involved in snow distribution is fundamental to improving how we interpret, and plan
for, changing Arctic snow in the future (Zhu et al., 2021; Kouki et al., 2021; Mudryk et al., 2020).

5.1 Snow Depth, SWE, and Density Observations

Snow depth and snow density observations collected from two small study sites located on the Seward
Peninsula of Alaska comprise an extensive dataset that provides a reliable and representative estimate of
the variation in SWE in this region. Snow depth showed high variability at both study sites and years, with
a medium level of variability compared to the variability range reported for other Arctic regions (Bruland,
Sand, and Killingtveit 2001; Hannula et al. 2016; Dvornikov et al. 2015; Stuefer, Kane, and Liston 2013;
Homan and Kane 2015; Sturm et al. 2010). Compared to snow depth, snow density showed relatively low
variability, similar to the findings for other non-forest Arctic areas by Homan and Kane (2015) and
Hannula et al. (2016).

Consistent with previous studies (Homan and Kane 2015; Assini and Young 2012; Dvornikov et al. 2015;
Sturm et al. 2010), there was a high correlation between snow depth and SWE in our study, confirming that
SWE is more closely linked to snow depth than to snow density. Sturm et al. (2010) suggested a nonlinear
relationship between snow depth and density for a large region of the Northern Hemisphere, while Homan
and Kane (2016) did not find any relationship between snow depth and density for a 200 by 240 km region
of Alaska’s Central Arctic Slope. Our study showed an overall positive linear correlation between snow
depth and density, indicating that snow depth has some control on the snow density for the study sites.
However, snow depth and density showed no relationship for shallow snow (<60 cm), while the linear
relationship for deeper snow (>60 cm) was strongest at most sites and years (with the exception of 2018 at
Kougarok), consistent with what has been found for a study region consisting of a variety of landscapes in
Saskatchewan, Canada (Shook, 1997). The nonlinear relationship between snow depth and density found in
the aforementioned work may be due to the fact that the snow surveys documented were conducted for
different climate and landscape classes where snow density was largely controlled by climate (wind and
temperature) and landscape classes (such as taiga, tundra, mountain, coast). Whereas, a linear relationship
between snow depth and density was observed in this study because the climate and landscape in the small
study sites are more homogenous.

Finally, when we considered SWE between three study years at the Teller watershed site, we found
correlations across the years. This is consistent with other research on snow repeat patterns (Sturm and
Wagner, 2010; Liston, 2004; Kirnbauer and Bloschl, 1994; Deems et al., 2008; Homan and Kane, 2015;
Woo and Young, 2004; Konig and Sturm, 1998; Rees et al., 2014; Dozier et al., 2016; Erickson et al., 2005;
Winstral and Marks, 2014), indicating that there are driving factors that influence snow distribution
consistent across the year-to-year snow variability (i.e., high and lows).

5.2 SWE Modelling and Prediction

The patterns of our SWE maps illustrate the power of utilizing random forest tools over linear methods of
estimating SWE distributions (e.g., Broxton et al, 2019, Revuelto et al. 2020, King et al. 2020). When
compared to linear and GAM models, we found that random forests significantly outperformed those
models. This is mostly likely due to the fact that SWE distributions are controlled by highly non-linear
interactions between topography and vegetation characteristics, thus the flexibility offered by the random
forest model can more accurately account for these interactions. While GAM models have been applied
successfully to estimate non-linear relationships in snow depth (Lopez-Moreno and Nogués-Bravo, 2005)
in the Spanish Pyrenees, they were not as successful at predicting SWE in our study compared to the
random forests model. Random forest also allowed us to test different hypotheses of configurations for the
model, determining clearly the success of those configuration and features combinations.
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5.3 Features Impacting Snow Distribution

Two different techniques measuring importance in the random forest model gave similar results, which
were that the greatest controls on SWE were TWP (i.e., precipitation representing climate variability),
followed by the key secondary factors NDVI, elevation, and TPI. These results in general were consistent
with those in previous studies in terms of how those factors affected snow distribution in the Arctic, i.e.,
more snow was accumulated in the areas with tall shrubs (Sturm et al., 2001b, a; Sturm and Wagner, 2010;
Sturm et al., 2005), at higher elevations (Dozier et al., 2016; Homan and Kane, 2015), and within features
such as the stream bed and at the bottom of terraces and risers (Gisnas et al., 2014; Griinberg et al., 2020).

NDVTI in our study tend to reflect the taller shrub, patterns present in the landscape. In this work, we applied (Deleted: s

the NDVI estimate from July, near the end of the vegetation growth period, which has been corroborated in
previous work to be the peak NDVI (Boelman et al., 2011). Although vegetation type in our work was
slightly less important than NDVI in our modeling overall, we found taller stature shrub types had higher
NDVI values. Vegetation type has been noted to play a primary role in end-of-winter snow depth patterning
and is also strongly related to variability in winter and spring soil temperatures in the Arctic (Griinberg et
al., 2020). Because of the strong feedbacks between snow, shrubs, and climate (Boike et al., 2019; Sturm et
al., 2001a, b), this finding indicates the importance of understanding vegetation dynamics in sub-Arctic
regions.

Our results showed that elevation effects are a dominant factor driving snow distributions at our study sites.
We observe an increase in SWE at higher elevations at the Teller watershed due to a slight orographic
effect, consistent with the study for a small high-arctic glacier Svenbreen (Matecki 2015). However, an
apparent orographic effect also occurs because wind blows snow from outside the catchment into the upper
wetland meadow. Homan and Kane (2015) discussed a relationship between snow and elevation below
specific elevation bands, above which snow is controlled by moisture availability, however the Teller
watershed’s maximum elevation (300 m) is above the value, suggesting that the threshold may change due
to other local or regional factors. However, we also observed a decrease in SWE at the top of the Kougarok
Hillslope, where snow is removed completely from the upper windswept top (Assini and Young 2012;
Shook and Gray 1996; Homan and Kane 2015).

TPI in our model was found to be the third most important variable, indicating the importance of coarse-
scale features in the sub-Arctic landscapes of the Seward Peninsula. These coarse-scale features including
stream banks and terrace risers are areas of topographic variability where shrubs grow and snow
accumulates. Thus, they act as hydrology focal points in the basins where higher enhanced soil moistures
and soil warming, and associated increased ecological productivity, can occur (Westergaard-Nielsen et al.,
2017). These are also features that act to entrain snow distributed by wind. Indeed, recent research into
snowdrift landscape patterns in the Arctic have found that wind transports snow into coarse-scale features
called drift traps, including stream beds, lake features, outcrop features and more. These drift traps contain
as much as 40% of SWE found on the landscape and play a significant role in the distribution of snow in

the Arctic (Parr et al., 2020). Melogche et al. (2022) also found that topographic parameters of TPI and up- (Deleted: s

wind slope index were the two most important features in random forest modeling of snow depth
distribution for a low-relief high arctic basin.

In our study, microtopography was found to be one of the least important factors driving snow. However,
microtopographic patterns were highly correlated with curvature. In research from Dvornikov et al. (2015),
curvature was found to have a dominant control on the snow depth at a shrub tundra area in Central Yamal
and there was a positive correlation between shrub heights and snow depth was observed for convex slopes.
However, research in fine-scale polygonal tundra sites of the high Arctic, microtopography was found to be
an important control on snow (Wainwright et al. 2017). Our study utilized DEMs with a 5 m resolution,
with the caveat that microtopography features dominant in this landscape (e.g., drainage paths, terraces)
range from centimeters to meters in scale. Thus, we require finer scale DEM sources to investigate this in
more detail (Adams et al., 2018; Harder et al., 2020; Revuelto et al., 2021).
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5.4 Future Work

The ability to model and predict SWE is important on a number of fronts. First of all, we intend to utilize
these findings to compare them with physics-based modeling efforts, as well as for future machine-learning
efforts. Our models are being used for investigation of sub-grid SWE variability in E3SM’s ELM (Caldwell
et al., 2019; Bisht et al., 2018), along with the investigation of ecosystem-type constructs for upscaling of
SWE.

Several of our findings require further investigation to clearly understand their importance for snow
distribution. For example, NDVI was an important parameter in our model predicting snow distribution, but
we do not know which vegetation characteristics (e.g., shrub height, density, allometry, or wetness) that
NDVI represents, making it harder to extrapolate the importance of vegetation characteristics for snow
distribution at other sites across the Arctic and sub-Arctic. Further, there are likely relationships between
TPI and NDVI that should be investigated, including at smaller spatial scales. We are also considering the
application of more advanced wind functions (Winstral et al., 2002) in our models, and implementing a
physically-based wind model for comparison and testing against our statistical models (Crumley et al.,
2021; Liston, 2004).

We used multiple study sites with varying characteristics across multiple climate years to develop our snow
distribution estimates. Because of this unique data set, we were able to develop robust machine-learning-
based models that we hypothesize are representative of broader SWE patterns across time and space.
However, these theories require additional validation at more locations. This hypothesis testing will be
incorporated into current and future work that will be carried out using broader observations of SWE and
snow depths that can be compared with other remote sensed SWE data products.

6 Conclusion

The extensive snow depth and density dataset from this study is of high value for calibrating and validating
physically-based models of snow distribution. As the patterns of snow distribution for a given location are
similar from year to year, the spatial patterns of snow distribution characterized in this study can be used to
represent the typical patterns of snow distribution and model the relative spatial patterns of snow
distribution for other years for the study sites and across the region. Linear relationships between snow
depths greater than 60 cm and snow density revealed homogeneity in the study sites. Snow depth, on the
other hand, varied considerably with strong linear relationship to SWE.

We found that random forest models could simulate the SWE distribution most accurately when compared
to linear and GAM model approaches, and we were able to simulate the distribution of SWE across the
landscape of these small sub-Arctic study sites. The results of the statistical model are useful for
understanding the surface water hydrology during spring snowmelt and explaining differences in
permafrost distribution and active layer depth, which have an impact on groundwater hydrology. Using the
machine-learning-based model random forest, we were able to determine which factors—in addition to
precipitation—were most important at these sub-Arctic study sites for SWE distribution. These factors
were NDVI, followed by two topography indexes, elevation and TPIL.

These factors were NDVI, followed by two topography indexes, elevation, and TPL

7 Data Availability

Snow observations collected for this study are available on a publicly available repository, the NGEE
Arctic data portal accessible at https://ngee-arctic.ornl.gov/ (Wilson et al., 2020b; Bennett et al., 2020;
Wilson et al., 2020a). Data used as inputs to simulate SWE distribution is available (ifSAR,
http://ifsar.gina.alaska.edu/), while the vegetation data are also available on the NGEE Arctic portal
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(Konduri and Kumar, 2021). Python modeling codes for developing linear, GAM, and random forest
models will be posted on the NGEE Arctic portal.
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Figure 1. Location and WorldView-2 RGB imagery of the Teller watershed (lower left) and Kougarok Hillslope study site (lower
right). Teller has two weather stations (red dots), located near the top and bottom of the watershed, and the Kougarok Hillslope has
one weather station located near the top of the rocky dome. The sites are located on the Seward Peninsula of Alaska, with the HUC12
basins for the Teller watershed and the Kougarok Hillslope shown in green and the Seward Peninsula road system in red (upper right).
RGB composite from the 8-band WorldView-2 images obtained on July 27, 2011 (Teller) and July 14, 2017 (Kougarok) at 1.5m
resolution downloaded from the DigitalGlobe website (https://www.digitalglobe.com/) Imagery © 2011/2017 MAXAR. Example of
features discussed in the text are denoted on the map as 1. terraces and risers, 2. the Teller watershed stream bed, and 3. the Kougarok
Hillslope dome.

24



¥ SWE Points
Snow Depth (cm)
0-50

50 - 60

©® 60-75

@® 75-100

@ 100-300
= Seward Roads
——Rivers

Kougarok

970  Figure 2. Measured snow depth (cm) and snow density (SWE Points) at a.) the Teller watershed (2017-2019) and b.) the
Kougarok Hillslope (2018).

25



a w |b.
8 ' g1 :
g
8 _ oS |
s 8 |
-~ o | 2 o
£ < =)
S £ o a
R § S
n @7 [a]
o | an © g
N < (=<
0 2017 Teller 9 | o Df% @ 0 2017 TL, r = 0.603
° © 2018 Teller S o © 2018 TL,r=0.494
= 2019 Teller o | ° 2019 TL, r = 0.446
o < 2018 Kougarok el 5 < 2018 KG, r = 0.866
T T T T T T T
50 100 150 50 100 150 200
Snow Depth (cm) Snow Depth (cm)

975
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Figure 5. Teller watershed NDVI by major vegetation type. Mesic gram-herb is short for mesic graminoid-
herbaceous tundra. Table A1 details each vegetation type.
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Figure 7. Random forest results of predicted SWE vs actual SWE for the test set when using all year and site datasets,
with a test set of 20%. R? equal to 0.86 and the RMSE is equal to 5.81 cm. The solid blue line is a linear fit to the
scatter points, and the dashed black line is a y=x line.
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Figure 8. Spatially predicted SWE for the final model for (a.) Teller 2017, 2018, and 2019 and (b.) Kougarok 2018.
015 The gray areas on the Kougarok map are small lakes. Note that the scales change for each year and study location

across the panels.
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Figure 10. Heatmaps of predicted normalized SWE for Teller between 2017, 2018 and 2019 with Pearson correlation
coefficients (r) showing significant correlations of SWE among years. Random forest was trained with data from all
years and sites. The color scale represents the density of data points, with dark blue representing areas with the least
points and light-yellow representing areas with the most points. Areas with fewer than 100 points are not plotted. The
solid red line is a line of best fit using singular value decomposition.
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Tables

Table 1. Topography and vegetation data sources. Data sources for the input features are listed on the left, and the description of

the features are listed on the right.

Data Sources Features Descriptions
DEM Elevation Elevation (meters)
Slope Slope angle (degrees)
Microtopography Difference between elevation of single 5 m cell and the

Topographic Position Index

(TP

DEM and wind data ‘Wind/Aspect

WorldView-2 imagery  NDVI

Konduri and Kumar, Vegetation Type

2021

average elevation of cells in the surrounding box of 15 m
width (m)

Difference between elevation of single 5 m cell and the
average elevation of cells in the surrounding box of 155 m
width (m)

Calculated using wind direction and aspect formula (unitless)
Normalized difference vegetation index (unitless)
Vegetation types:

(1) Dryas-lichen dwarf shrub tundra, (2) Birch-Ericaceous-
lichen shrub tundra, (3) Ericaceous dwarf shrub tundra, (4)
Sedge-willow-Dryas tundra, (5) Willow-birch shrub, (6)
Alder-willow shrub, (7) Tussock-lichen tundra, (8) Wet
meadow tundra, (9) Wet sedge bog-meadow, (10) Mesic
graminoid-herb meadow tundra, (11) Mixed shrub-sedge
tussock tundra, and (12) Willow shrub

040
Table 2. Teller and Kougarok snow depth and density observations and SWE observations and estimates. The coefficient of
variation (CV) of the observed variables are in brackets following the average value.
Year Study Site Observations SWE Density Snow Depth SWE
Snow depth/SWE Observed, Observed, Observed, cm  Estimated, cm
(SWE groupings) cm (CV) g/em® (CV) (CV)
2017 Teller 8469 /234 (77) 19.33(0.46)  0.27(0.15)  73.77(0.42) 19.37
2018 Teller 5076 /150 (49) 32.57(0.37)  0.31(0,10) 108.96 (0.31) 34.03 (l‘ I 24
2018 Kougarok 4655/96 (31) 24.20(0.88)  0.30(0.21)  75.23 (0.57) 23.15
2019 Teller 5376 /199 (69) 38.21(0.36)  0.38(0.09) 106.74 (0.38) 39.75
Total 23481 /653 (203)
045
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Table 3. Comparison of model performance for linear regression, GAM, and random forest models that are trained on individual
years and individual sites.

Study Site Year Model Train R? Test R? Train RMSE  Test RMSE
Teller 2017 Linear Regression 0.34 0.29 7.17 7.66
GAM 0.49 0.45 6.27 6.56
Random Forest 0.97 0.78 1.47 4.25
2018 Linear Regression 0.35 0.30 8.85 9.20
GAM 0.53 0.48 7.56 7.92
Random Forest 0.97 0.77 1.94 5.28
2019 Linear Regression 0.30 0.36 13.58 12.69
GAM 0.51 0.52 11.40 10.91
Random Forest 0.96 0.72 3.15 8.31
Kougarok 2018 Linear Regression 0.45 0.44 12.02 13.60
GAM 0.70 0.72 8.96 9.68
Random Forest 0.98 0.92 2.23 5.16
050
Table 4. Random forest results for the training and testing data used to estimate SWE.
Study Sites Year Train R? Test R? Train RMSE Test RMSE
(cm) (cm)
Teller & Kougarok All 0.98 0.86 2.18 5.81
Teller All 0.98 0.86 2.17 578
2017 0.97 0.78 1.47 425
2018 0.97 0.77 1.94 5.28
2019 0.96 0.72 3.15 8.31
Kougarok 2018 0.98 0.92 2.23 5.20
055
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Wind Equations

The two wind equations in the current study were derived similarly to the wind equation found in
Dvornikov et al., 2015. The purpose of the wind equations is to establish an index using positive and
negative values based on the topography-wind relationship. First, we used meteorological station data to
calculate an average prevailing wind direction for the winter months. Second, we used the corresponding
wind equation to assign positive values to the leeward side of topographical features (where wind loading
or drifting of snow is likely) and negative values to the windward side of topographical features (where
wind scour of snow is likely).

To derive our wind equations, we divided the wind rose into eight cardinal directions by +/- 22.5 degree
increments, N, NE, E, SE, S, SW, W, NW. The eight possible wind equations that correspond to the eight
cardinal directions are listed below, along with the range of values associated with each equation. We
determined that the coefficients from Dvornikov et al., 2015, simply added a scaling factor to the wind
equation values, and were not necessary for our results.

We chose two wind equations (NE and E) for our study area based on the prevailing winter wind direction
for each year (Figure A2).

CDeIeted: 1

N: WI(x) = -cos(x); range = -1 to 1

NE:  WIf(x) =-cos(x) - sin (x); range = -1.414 to 1.414
E: Wi(x) = -sin(x); range = -1 to 1

SE:  WI(x) = cos(x) - sin (x); range = -1.414 to 1.414
S: WH(x) = cos(x); range = -1 to 1

SW:  WI(x) = cos(x) + sin (x); range = -1.414 to 1.414
W: WH(x) = sin(x); range = -1 to 1

NW:  WIf(x) = -cos(x) + sin (x); range = -1.414 to 1.414
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Figure A1. Random forest model performance for model runs using a range of TPI scales. The model
performance is optimized when the TPI scale is 155 m.
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NE: Wf(x) = -cos - sin(x)
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Figure A2. The prevailing wind directions (NE, E) calculated from meteorological station data and the
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Figure A4. Random forest model performance for model runs using various combinations of vegetation

115 features. The categorical vegetation uses the vegetation types shown in Figure 3. The continuous
vegetation is a ranking ordered by which vegetation type has higher SWE. The continuous vegetation
ranking is also randomized three different ways to determine if the ranking order is important.
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Linear Regression

SWE (cm)

Figure AS. All three statistical models trained on individual years at Teller. The scale of SWE changes
from year to year depending on the annual snowfall.
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Linear Regression GAM Random Forest

2018

Figure A6. All three models trained on single year (2018) at Kougarok.
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Error for Top and Bottom Quartiles (cm)

Figure A7. Spatial error (predicted minus observed) for the upper-most and lower-most quartiles of
error in the random forest SWE prediction for Teller.
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150

2018

o
Error for Top and Bottom Quartiles (cm)

Figure A8. Spatial error (predicted minus observed) for the upper-most and lower-most quartiles of
error in the random forest SWE prediction for the final model at Kougarok. The error is not distributed
systematically through space.
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Tables

Table Al. Vegetation classes ranked by observed SWE from lowest SWE (1) to highest SWE (12) at
Teller. All binned values are significantly different from each other.

160
Binned Value
Vegetation Type Rank (Teller)

Dryas-lichen dwarf shrub tundra 1 2
Birch-Ericaceous-lichen shrub tundra 2 NA
Ericaceous dwarf shrub tundra 3 4
Sedge-willow-Dryas tundra 4

Willow-birch shrub 5 3
Alder-willow shrub 6 NA
Tussock-lichen tundra 7 NA
Wet meadow tundra 8 1
Wet sedge bog-meadow 9 !
Mesic graminoid-herb meadow tundra 10 5
Mixed shrub-sedge tussock tundra 11 NA
Willow shrub 12 6

NA in binned values indicate vegetation types comprised <1% of total area at Teller
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165
Table A2. Average winter (October-March) wind speed and prevailing direction.

Wind Wind Direction ~ Wind Direction
Speed (Prevailing) (Prevailing) > 5
m/s
(m/s) ©) ©)
Nome (measured at 5 m height) 2016-2017 10.14 60.40 (ENE) 65.16 (ENE)
2017-2018 12.42 66.11 (ENE) 67.71 (ENE)
2018-2019 12.06 76.57 (ENE) 78.27 (ENE)
Teller (station at top of watershed) 2016-2017 4.99 83.63 (E) 98.17 (E)
2017-2018 5.47 94.66 (E) 115.38 (ESE)
2018-2019 4.86 76.10 (E) 92.07 (E)
Kougarok 2018-2019 6.74 60.23 (ENE) 45.00 (NE)
Table A3. Hyperparameters for Random Forest Model
170
Final Model Teller Kougarok
Tree density 840 1200 1165
Max depth 90 100 67
Max features 4 3
Min samples split 2 2
Min samples leaf 1 1
175
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