
Answer to reviewer 1 
 
This paper presents a novel seismic approach aiming to temporally monitor the formation of sea ice 
through the deployment of a dense nodal seismic network. Thorough processing of ambient noise 
through beamformed cross-correlations resulted in the recovery of waveguided modes that were 
subsequently used as the basis for a Bayesian inverse scheme. 

The paper is well written and constructed, as are most coming out of this group, and is suitable for 
publication upon very minor revisions. My few questions/comments are as follow. 
 

We thank the reviewer for the constructive feedback. We have answered the comments below, and 
carefully reviewed our manuscript. In accounting for the comments of the reviewers, we have added a 
figure in section 2.2.2 to describe the workflow for recovering the noise correlation function. We also 
added two figures in Appendix A to show the characteristics of the recorded seismic noise, and a figure 
in Appendix B to show the covariance of sea ice parameters. 

1) On paragraph 165: consider describing a bit better in math the procedure related to the SVD 
decomposition of the FK transform. 

We have added a more detailed description of the processing. However, it is complicated to add more 
mathematical details without going into the full description of the method. Those details can be found 
in Minonzio et al. (2010). 

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix. 
 
2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 
being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters. 
 
3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form 𝑒"#$%&'%(), 𝑘+,-+  is the wavenumber 
to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the propagation. Finally, 
the test vectors are projected onto the singular vectors of the receivers' basis. This leads to a 
scalar product that is maximized when the wavenumber in the test vector matches that of the 
waves in the measured wavefield. In practice, this projection step is equivalent to calculating 
the discrete spatial Fourier transform of each singular vector. 
Step 3 is performed at each frequency resulting from step 1. 
 

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020). 
 

2) Could additional dispersion information have been retrieved by simply picking the maximum 
of the beamformer at every frequency? 



This is a good question, because beamforming is known to be very robust to SNR. However, it is limited 
by spatial sampling. To apply beamforming, the full 2D array should be used. In the 2D array, spatial 
sampling is 4 meters, which allows to beamform the data without aliasing only up to 16 Hz (Moreau, 
Boué et al, 2020). Moreover, the SVD processing accounts for the multiplicity of sources with much 
more sensitivity (see figure B1 in Moreau, Boué et al, 2020). Hence, no additional information could be 
retrieved from beamforming, it is actually the opposite.   

We have added the following sentence in section 2.2.2. 

"Applying beamforming at frequencies higher than 16 Hz would cause aliasing problems, which 
prevents dispersion information to be extracted beyond 16 Hz."  

We have also added a statement after the more detailed description of the SVD-based dispersion curves 
extraction: 

"The dispersion curves can therefore be identified on a larger bandwidth and with less SNR-related 
uncertainties than with conventional beamforming techniques (Moreau, Boué et al, 2020)." 

3) Why pose as an MCMC instead of a full grid search? In your case, your forward model is purely 
analytical unless I am mistaken, which means that a quick parallel implementation of a grid 
search should be quite feasible. 

We understand from this question that the reviewer is asking about the efficiency of parallelized 
computation versus that of MCMC, which is sequential and thus cannot be parallelized. There are three 
main reasons why we have chosen to use MCMC: 

1- When using a standard grid search, accuracy depends on the grid size. When using MCMC, the 
steps in the Markov Chain depend on the likelihood of the position in the parameters space. 
Typically, positions with high likelihood will be scanned with a much finer resolution than 
positions with low likelihood. For example, to achieve the same resolution with a grid search, 
one should use a grid size of 0.01 m for the thickness, 0.02 GPa for the Young's modulus, 0.02 
for the Poisson's ratio and 40 kg for the density. This would require about 240 000 combinations 
to search through a parameters space of the same dimension as the one in the manuscript. With 
MCMC we require half this amount. Of course, a parallelized implementation of the grid search 
would still be much faster, but the carbon footprint of the inversion would be at least twice.  

2- The main interest for Bayesian inference instead of a grid search is to obtain statistical 
information about the inverted parameters. The MCMC output is the joint probability density 
function of the parameters. 

3- The simulated annealing part of our MCMC implementation allows the variance of the 
measurement errors to be estimated, which is a useful information when trying to identify the 
origin of potential discrepancies in the results. For example, in the present case the pattern 
shown in figure 5 tends to indicate that ice properties might vary over time more quickly in the 
NS direction than they do in the EW direction.  

4) I’m curious as to why things seem to be generally insensitive to density, since this is an important 
stated objective of your study. I would recommend you explaining what you mean by “The inversions 
give a value that is very stable, at around 910±82 kg.m−3 for the EW direction, and 908 ± 80 kg.m−3 
for the NS direction” on 320, and a second (perhaps unintentionally repeated) time: “Nevertheless, the 
actual uncertainty is probably much smaller, as all of the inversions give a very stable value” on 325, 
and again . The posterior density is more or less flat, and thus the mean value here, regardless of its 
consistency across lines, should probably not be treated as a constrained parameter. 
 
Perhaps an added statement as to why you think the inversion fails to robustly constrain density might 
be helpful, or in what ways it could be accounted for. 

We agree that density is not well-constrained. We believe that the larger standard deviation reflects the 
limits of our forward model more than it is an indicator of the limits of the methodology. The fact that 
the estimated density remains constant through days and directions is an indicator that this assumption 
is very likely. 



The model is only sensitive to the effective properties of the {ice+snow} system, because it cannot 
account for the snow layer (about 40 cm thick, on average), which modifies the effective properties. 
Intuitively, it appears that the weight of the snow layer modifies the density of the {ice+snow} system 
more than it does its rigidity (Young's modulus) and expansion/contraction (Poisson's ratio). 
Presumably, a forward model able to account for snow would be a significant improvement, which 
should constrain the density in a better way.  
We have added the following statement at the end of section 2.4.2. 
 
Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  
The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 
expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 
be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work. 
 

 
Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

 
  


