
Answer to reviewer 1 

This paper presents a novel seismic approach aiming to temporally monitor the formation of sea ice 
through the deployment of a dense nodal seismic network. Thorough processing of ambient noise 
through beamformed cross-correlations resulted in the recovery of waveguided modes that were 
subsequently used as the basis for a Bayesian inverse scheme.  

The paper is well written and constructed, as are most coming out of this group, and is suitable for 
publication upon very minor revisions. My few questions/comments are as follow.  

We thank the reviewer for the constructive feedback. We have answered the comments below, and 
carefully reviewed our manuscript. In accounting for the comments of the reviewers, we have added a 
figure in section 2.2.2 to describe the workflow for recovering the noise correlation function. We also 
added two figures in Appendix A to show the characteristics of the recorded seismic noise, and a figure 
in Appendix B to show the covariance of sea ice parameters.  

1) On paragraph 165: consider describing a bit better in math the procedure related to the SVD 
decomposition of the FK transform.  

We have added a more detailed description of the processing. However, it is complicated to add more 
mathematical details without going into the full description of the method. Those details can be found 
in Minonzio et al. (2010).  

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix.  
 

2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 
being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters.  
 

3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form 𝑒"#$%&'%(),	 𝑘+,-+ 	 	 is the 
wavenumber to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the 
propagation. Finally, the test vectors are projected onto the singular vectors of the receivers' 
basis. This leads to a scalar product that is maximized when the wavenumber in the test vector 
matches that of the waves in the measured wavefield. In practice, this projection step is 
equivalent to calculating the discrete spatial Fourier transform of each singular vector.  
Step 3 is performed at each frequency resulting from step 1.  

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020).  

2) Could additional dispersion information have been retrieved by simply picking the maximum 
of the beamformer at every frequency?  



This is a good question, because beamforming is known to be very robust to SNR. However, it is limited 
by spatial sampling. To apply beamforming, the full 2D array should be used. In the 2D array, spatial 
sampling is 4 meters, which allows to beamform the data without aliasing only up to 16 Hz (Moreau, 
Boué et al, 2020). Moreover, the SVD processing accounts for the multiplicity of sources with much 
more sensitivity (see figure B1 in Moreau, Boué et al, 2020). Hence, no additional information could be 
retrieved from beamforming, it is actually the opposite.  

We have added the following sentence in section 2.2.2.  

“Applying beamforming at frequencies higher than 16 Hz would cause aliasing problems, which 
prevents dispersion information to be extracted beyond 16 Hz. “ 

We have also added a statement after the more detailed description of the SVD-based dispersion curves 
extraction:  

“The dispersion curves can therefore be identified on a larger bandwidth and with less SNR-related 
uncertainties than with conventional beamforming techniques (Moreau, Boué et al, 2020) .” 

3) Why pose as an MCMC instead of a full grid search? In your case, your forward model is purely 
analytical unless I am mistaken, which means that a quick parallel implementation of a grid 
search should be quite feasible.  

We understand from this question that the reviewer is asking about the efficiency of parallelized 
computation versus that of MCMC, which is sequential and thus cannot be parallelized. There are three 
main reasons why we have chosen to use MCMC:  

1. When using a standard grid search, accuracy depends on the grid size. When using MCMC, the 
steps in the Markov Chain depend on the likelihood of the position in the parameters space. 
Typically, positions with high likelihood will be scanned with a much finer resolution than 
positions with low likelihood. For example, to achieve the same resolution with a grid search, 
one should use a grid size of 0.01 m for the thickness, 0.02 GPa for the Young's modulus, 0.02 
for the Poisson's ratio and 40 kg for the density. This would require about 240 000 combinations 
to search through a parameters space of the same dimension as the one in the manuscript. With 
MCMC we require half this amount. Of course, a parallelized implementation of the grid search 
would still be much faster, but the carbon footprint of the inversion would be at least twice.  

2. The main interest for Bayesian inference instead of a grid search is to obtain statistical 
information about the inverted parameters. The MCMC output is the joint probability density 
function of the parameters.  

3. The simulated annealing part of our MCMC implementation allows the variance of the 
measurement errors to be estimated, which is a useful information when trying to identify the 
origin of potential discrepancies in the results. For example, in the present case the pattern 
shown in figure 5 tends to indicate that ice properties might vary over time more quickly in the 
NS direction than they do in the EW direction.  

4) I’m curious as to why things seem to be generally insensitive to density, since this is an 
important stated objective of your study. I would recommend you explaining what you mean by 
“The inversions give a value that is very stable, at around 910±82 kg.m−3 for the EW direction, 
and 908 ± 80 kg.m−3 for the NS direction” on 320, and a second (perhaps unintentionally 
repeated) time: “Nevertheless, the actual uncertainty is probably much smaller, as all of the 
inversions give a very stable value” on 325, and again . The posterior density is more or less 
flat, and thus the mean value here, regardless of its consistency across lines, should probably 
not be treated as a constrained parameter.  
 
Perhaps an added statement as to why you think the inversion fails to robustly constrain density 
might be helpful, or in what ways it could be accounted for.  



We agree that density is not well-constrained. We believe that the larger standard deviation reflects the 
limits of our forward model more than it is an indicator of the limits of the methodology. The fact that 
the estimated density remains constant through days and directions is an indicator that this assumption 
is very likely.  

The model is only sensitive to the effective properties of the {ice+snow} system, because it cannot 
account for the snow layer (about 40 cm thick, on average), which modifies the effective properties. 
Intuitively, it appears that the weight of the snow layer modifies the density of the {ice+snow} system 
more than it does its rigidity (Young's modulus) and expansion/contraction (Poisson's ratio). 
Presumably, a forward model able to account for snow would be a significant improvement, which 
should constrain the density in a better way.  

We have added the following statement at the end of section 2.4.2.  

Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  

The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 
expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 
be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

 



Answer to reviewer 2  

The authors present an innovative passive seismic study that monitors the evolution of sea ice thickness 
and mechanical properties using passive seismic noise. The authors combine both array processing with 
ambient noise cross-correlation to produce dispersion curves for guided waves within sea ice. The results 
of these dispersion measurements are used to invert for ice thickness, Young's modulus, Poisson's ratio 
and ice density using a Bayesian framework.  

The manuscript is interesting and merits publication in The Cryosphere. It is concise and well written 
but I think improvements could be made to the clarity of the paper. I have a number of minor comments 
and suggestions which are detailed below.  

We thank the reviewer for the constructive comments. We hope the changes made to the manuscript, 
together with our answers to the comments, will help clarify the paper. In accounting for the comments 
of the reviewers, we have added a figure in section 2.2.2 to describe the workflow for recovering the 
noise correlation function. We also added two figures in Appendix A to show the characteristics of the 
recorded seismic noise, and a figure in Appendix B to show the covariance of sea ice parameters.  

- Section 2.1: Seismic array would benefit from a paragraph describing the deployment of the seismic 
instruments, with details on how the geophones were installed i.e were they mounted prior to 
deployment, burial depth if at all and any challenges or difficulties encountered.  

We have added the following paragraph in section 2.1 to describe the practical aspects of the deployment  

"The type of geophones used for the experiment has a cylindrical geometry of about 17 cm in height 
and 12 cm in diameter, mounted on a detachable spike. The geophones were installed directly in the ice 
without their spike. For accurate positioning, we used taut cords that we attached to each end of the rows 
and columns of the array, and a decameter. To maximize the coupling, a milling tool was specifically 
designed to drill the ice at the diameter of the nodes. The snow was removed prior to drilling holes, and 
geophones were installed in the holes at about half their height. We covered them back with snow to 
insulate them in view of preserving their battery life. At the time of the deployment, the internal 
temperature of several nodes was measured, before and after covering them with snow, showing an 
increase from -21 to -16oC. Deployment took about 2.5 days of work for a team of five people, including 
the time required for their activation. Markers were carefully placed all around the main array and at the 
position of the four antennae, in order to find them back more easily at the end of the experiment."  

- Section 2.2.1 would benefit from a few sentences on the theoretical foundations on the retrieval of 
Green's functions from ambient noise. This section should also include a description of the processing 
steps, parameters used and the justification for their selection e.g., why and how was a 5-minute window 
selected for the noise correlation length. Also, which stations were used and if correlations were made 
across stations components e.g., N with E.  

Theoretical foundations of on the retrieval of Green's functions from ambient noise can be found in [P. 
Roux, K. G. Sabra, W.A. Kuperman and A. Roux (2005)”Ambient noise cross-correlation in free space: 
theoretical approach”, J. Acoust. Soc. Am. 117(1), pp. 79-84] and [Campillo and Roux, “Seismic 
imaging and monitoring with ambient noise correlations”, Treatise on Geophysics, second Edition, Vol. 
1, Edited by B. Romanowicz and A. Dziewonski, Elsevier-Amsterdam, 256-271, 2014], which have 
been added to the reference list.  

As written in the paper (lines 120-125), a homogenized wave field illuminating the propagation medium 
in all directions is a prerequisite for obtaining an accurate Green’s function estimation. For seismic data 
recorded on glaciers, this condition imposes strong limitations on Green’s function convergence because 
of minimal seismic scattering in homogeneous ice and limitations in network coverage.  

We have added the following text to section 2.2.1  



Recent work provides a catalogue of methods to tackle the challenge of applying passive seismic 
interferometry to glaciers in the absence of isotropic source distribution Sergeant et al. (2020).  

The remark concerning the 5-minutes window cannot be treated lightly and requires additional figures. 
We have added an Appendix to the manuscript to include these figures (see figures A1 and A2 below). 
We have also added the following text to section 2.2.1  

"Figures A1 and A2 show the seismic wavefield recorded on 11 March 2019, during the night (figure 
A1-a) and during the day (figure A2-a) when some fieldwork occurred about 500 m N-E of the main 
array. The corresponding short-time Fourier transforms are shown in figures S1-b and S2-b, as well as 
the estimated power spectral densities (figures A1-c and A2-c). These figures show that seismicity can 
be dominated by noise sources with very different characteristic time. For example, in presence of 
human activity the characteristic time is a few minutes (see figure A1-a between 16:00 and 16:35). 
When there is no human activity, noise sources can be impulsive when icequakes occur (there are also 
periods of time where many icequakes occur every minute), or they can have a characteristic time of a 
few minutes (see for example figure S1-a between 2:00 and 2:15).  

Therefore, it is necessary to correlate noise segments with a length that accounts for the characteristic 
time of the various noise sources. After some preliminary tests, we concluded that a 5-minutes window 
is adequate. Moreover, impulsive events, human activity and other noise sources have different levels 
of energy. To prevent bias due to the dominant noise sources, spectral whitening was applied to the 
noise segments prior to calculate the correlations. Three sets of correlations were calculated:  

- correlations between the recordings from the vertical displacement component 
 

- correlations between the recordings from the north displacement component 
 

- correlations between the recordings from the east displacement component  

In this work, we restrict the study to correlations between (i) the 45 stations of the EW line with the 4 
stations of the LEA and LAW, and (ii) the 45 stations of the NS line with the 4 stations of the LAS and 
LAN. Of course, by using all stations pairs amongst the 247 stations, it will be possible to obtain 30381 
inter-correlations with many different inter-station paths, distances, and directions. With such amount 
of correlations, it becomes possible to apply tomographic inversions over the full array geometry, and 
to obtain a 3D+time map of the sea ice properties with unprecedented spatial and temporal resolution. 
However, this requires a different processing strategy where noise sources have to be selected so that 
their distribution around the array is isotropic. This is an on-going work that will be the matter of a 
future paper."  



 

Figure A1 - a) One hour of seismic wavefield at night, on 11 March 2019, with b) the corresponding 
short time Fourier transform, and c) Welch Power Spectral density of the recording. 

 

 

Figure A2 – Same as figure A1, but in the afternoon, with human activity. 

 



- Section 2.2.2: In this section, it is unclear as to which of the seismic instruments (1C or 3C) is used in 
the beamforming and subsequent calculation of the noise correlation function. I assume that the authors 
beamform seismic noise using the 1C stations before using noise directed within 10 degrees of the 2 3C 
lines to compute the correction function using the 3C stations.  

Actually, beamforming was performed with all stations that are equally spaced within the main array, 
which also includes 3C stations. To clarify that, we have added the following sentence in this section.  

"Beamforming was performed using all 1C and 3C stations of the main array that are equally spaced." 

We have also added, in section 2.2.1 (see the answer of your previous question), more details about 
which stations are being used for the correlations.  

- Section 2.2: A flow chart summarizing the beamforming and noise correlation function workflow 
should be included to improve the clarity of this section.  

We have added a flow chart as requested. It is now in figure 4.  

- Section 2.3: The authors should expand upon the SVD methodology used to compute the dispersion 
curves.  

Reviewer 1 also requested more details about the SVD-based dispersion curves extraction. We have 
added more details to describe the method, without going too much into the mathematical details, which 
are given in Minonzio et al. (2010). The following description was included.  

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix.  
 

2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 
being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters.  
 

3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form	𝑒"#$%&'%() , where 𝑘+,-+ 	is the 
wavenumber to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the 
propagation. Finally, the test vectors are projected onto the singular vectors of the receivers' 
basis. This leads to a scalar product that is maximized when the wavenumber in the test vector 
matches that of the waves in the measured wavefield. In practice, this projection step is 
equivalent to calculating the discrete spatial Fourier transform of each singular vector.  
Step 3 is performed at each frequency resulting from step 1.  

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020).  



 

Figure 4. Workflow to calculate the noise correlation function from seismic noise. 

 

- Section 2.4.2: In the inversion, why haven't the author's used uncertainties from their measurements 
for the estimate of sigma in equation 6? It is unclear from the text why this isn't possible. I'm also unsure 
as to why the Simulated Annealing method is used instead of the burn-in phase of the MCMC. Could 
this not affect the sampling of the posterior distribution?  

We agree with the reviewer that this may look unclear. The problem when trying to estimate sigma 
comes from the fact that it should account for uncertainties in the dispersion curves, not those in the 
measurements. There is no linear relationship between both, because of the dispersion of the QS mode. 
That is what we had tried to explain in section 2.4.2 when writing:  

"The variance is linked to measurement errors; i.e., a mix between the influence of the SNR and other 
random perturbations of the measure, such as variations in the physics of the problem. In the present 
problem, such perturbations are averaged when going from the time-space to the frequency-
wavenumber domains, and thus the variance reflects variations of frequency- wavenumber values 
around ground truth values."  

Moreover, depending on the quality of the correlation function, these variations are not the same 
between all sets of dispersion curves. This is why we have chosen to estimate sigma with the simulated 
annealing algorithm. In an attempt to make this clearer in the manuscript, we have added the following 
explanations.  
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"However, σ2 is data-dependent. In our approach, we are inverting dispersion curves, so it should 
account for uncertainties in the dispersion curves, not those in the measurements. Unfortunately, there 
is no linear relationship between both, because of the dispersion of the QS mode. Depending on the 
quality of the correlation function, these uncertainties are not the same between all sets of dispersion 
curves. Hence σ2 cannot be set a priori for all of the inversions in this study, or else it would be a coarse 
approximation."  

The posterior distribution is actually approximated after the burn-in phase, when the MCMC algorithm 
has sufficiently explored the solution space. The quality of the estimated posterior distribution depends 
essentially on the number of samples generated. It does not depend on the position where the algorithm 
is initialized (which also determines the burn-in phase). Figure 6 shows that the posterior distributions 
are well-estimated over the whole range of values in the search space.  

- Results and Discussion: This section would benefit from comparisons between the retrieved 
parameters and previous estimates in past studies e.g., How does the Young's modulus compare with 
other estimates? Likewise, how does the estimated value of density compare with meteoric ice and sea 
ice?  

We have added the following discussion regarding values found in the literature for sea ice properties. 
This discussion appears after Eq. (6) to justify the choice of the parameters space.  

“For first year ice, in situ measurements of density range from 840 to 910 kg/m3 for the ice above the 
waterline, and 900 to 940 kg/m3 for the ice below the waterline (Timco and Frederking, 1996). Poisson’s 
ratio varies between 0.25 and 0.4, Young’s modulus between 2 and 6 GPa (Anderson, 1958; Timco and 
Weeks, 2010). In particular, in the Van Mijen fjord, Romeyn et al. (2021) reported a Young’s modulus 
around 2.5 GPa with a Poisson’s ratio of 0.33, and Morozov et al (2012) reported a Young’s modulus 
around 3 GPa and a Poisson’s ratio of 0.3. (Moreau et al, 2014c), reported a Young’s modulus around 
4 GPa and a Poisson’s ratio of 0.32 at Vallunden. The slightly higher value of Young’s modulus at 
Vallunden, in comparison with those directly in the Van Mijen fjord, is likely attributable to the 
protected physical setting of the study site, and support from the surrounding shoreline at the moraine. 
Regarding the thickness, ice drillings indicated that it was systematically less than 1 m. Hence, we 
assume for the prior distributions that the model parameters have equal probability over a range of values 
that contains the above-referenced values. “ 

We also refer to this discussion in the "Results and discussion" section.  

The estimations are consistent with the values reported in the literature for first year ice, which are given 
in section 2.4.2.  

Additionally, the inversion appears to be insensitive to density. Why do you think this is the case? How 
could the inversion be improved to account for the insensitivity to density?  

Reviewer 1 also requested a discussion about the density. We have added the following discussion.  

Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  

The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 
expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 



be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work.  

 

 
Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

- Figure 1: A map of Svalbard and the location of Lake Vallunden highlighted should be included.  

A small map has been added in Figure 1a to show the position of the experiment in Svalbard  

- Figure 6: The histograms should be normalized such that the area under each graph is 1 in order to 
show the PDF for each of the parameters. It is difficult to see the blue line indicating the maximum of 
each distribution and this should be changed to black or the shading of the histograms should be changed 
to grey or white.  

These modifications have been made in Figure 6.  

- Lines 78 - 81: A schematic diagram illustrating the displacements of the different modes of the 
waveguides would be beneficial.  

We are showing this figure here, in response to the reviewer. However, we believe that it is not necessary 
for the manuscript to be self-consistent. It would be difficult to add such a figure in the manuscript 
without significantly modifying its structure, because this would require to elaborate on the theory of 
guided waves. This was already made in Moreau, Boué et al (2020), and we would rather build up from 
this work than to repeat it.  

 
 
 
 
 



 

a) Displacement field generated by the QS mode (top) and the QS0 mode (bottom) in a floating ice layer 
of thickness h=50 cm at a frequency of 100Hz, with E= 4.5 GPa, .= 0.33, and /= 910km/m3. b) 
Wavenumber-thickness versus frequency-thickness dispersion curves of the ice layer. Black dots show 
the theoretical values and red lines the approximation of the QS and QS0 modes by the flexural and axial 
waves (Stein et al, 1998), which is valid when the frequency-thickness product is less than 50 Hz·m.  

- Lines 280 - 281: Please include more detail on how the distribution is fitted to the posterior distribution.  

We have added the following description  

After the MCMC algorithm has completed, a PDF is generated for E, h, ν, and ρ. Figure 6 shows an 
example of PDF obtained on March 10, from line EW. The ice properties are determined by computing 
the histograms of the parameters, to which we fit with a kernel-type distribution density estimator. The 
kernel estimation method creates a smooth, continuous curve to represent the probability distribution of 
the data from the data samples by estimating locally the normal distribution function centered in each 
sample (the kernel functions). Summing these local smoothing functions for each sample produces the 
resulting continuous fit. We use the maximum of this fit to determine the estimate of the parameters.  

- Lines 284 - 285: Since the distributions are not Gaussian, I'm unsure how relevant it is quoting 
uncertainties for the results using the standard deviation. The interquartile range would be a more 
relevant measure of uncertainty.  

One may argue that it would also be possible to fit a gaussian to the posterior distributions. We have 
chosen a kernel-type fit only for more accurate values around the maxima. For this reason, we would 
rather keep a standard deviation as a measure of the dispersion of the PDF. This also allows us to remain 
consistent with the definition of the likelihood function.  

 

 

 

 



Answer to reviewer 3  

This is a very interesting analysis of a uniquely dense sea ice deployment of seismographs using ambient 
noise guided mode dispersion curves to invert for bulk ice properties (in two propagation directions). 
With a bit more detail (suggestions below) it’s suitable for publication in its present form as an initial 
analysis of a data set that I strongly suspect has a lot more to offer in more detailed analysis. Will the 
data be publicly available somewhere (not apparently in the Acknowledgments).  

Most of my comments below address where I suggest that methodological and other points might be 
usefully expanded (including, perhaps, some supplemental figures that could be in a appendix).  

We thank reviewer for the positive feedback and all the suggestions and comments to improve the 
manuscript. Our answers are given thereafter. In accounting for the comments of the reviewers, we have 
added a figure in section 2.2.2 to describe the workflow for recovering the noise correlation function. 
We also added two figures in Appendix A to show the characteristics of the recorded seismic noise, and 
a figure in Appendix B to show the covariance of sea ice parameters.  

The authors have done a good job in fitting analytical expressions to (beamform-selected) 
autocorrelations, with modes decomposed via a SVD method, to extract dispersion curves in EW and 
NS directions. The size and density of the array used (247 seismographs with interstation spacings as 
close as 1 m) is unprecedented to my knowledge for this type of application. Additional deployment and 
experimental details would be appreciated. Were the instruments buried, for example? Were ice cores 
taken for ice-truth measurements during of the experiment? How long did it take to deploy these 
instruments at this scale (important to know if such experiments might be repeated in other locations).  

Reviewer 2 also requested more practical information about the deployments. Most of these details are 
available in Moreau, Boué, et al. (2019). However, we have added the following text to make the 
manuscript more self-consistent.  

"The type of geophones used for the experiment has a cylindrical geometry of about 17 cm in height 
and 12 cm in diameter, mounted on a detachable spike. The geophones were installed directly in the ice 
without their spike. For accurate positioning, we used taut cords that we attached to each end of the rows 
and columns of the array, and a decameter. To maximize the coupling, a milling tool was specifically 
designed to drill the ice at the diameter of the nodes. The snow was removed prior to drilling holes, and 
geophones were installed in the holes at about half their height. We covered them back with snow to 
insulate them in view of preserving their battery life. At the time of the deployment, the internal 
temperature of several nodes was measured, before and after covering them with snow, showing an 
increase from -21 to -16oC. Deployment took about 2.5 days of work for a team of five people, including 
the time required for their activation. Markers were carefully placed all around the main array and at the 
position of the four antennae, in order to find them back more easily at the end of the experiment."  

Could similar (or at least practically useful) results be obtained with a smaller deployment (this can be 
tested by decimating the data set of NCFs). This would be valuable to address given the motivations 
expressed in the abstract and paper.  

This is an important point. We have demonstrated in Moreau, Weiss et al. (2019) that results with the 
same accuracy can be obtained by exploiting the waveforms of the icequakes recorded with as few as 
3-5 stations. The methodology differs significantly from that in this manuscript, since it does not require 
to calculate the dispersion curves of the guided modes. A systematic inversion of the thousands of 
icequakes recorded during deployment will provide much more information about the spatial variations 
of sea ice parameters, that will not be limited to lines NS and EW. However, this requires to extract all 
the icequakes from the recordings.  

This is an on-going work where deep learning strategies are being implemented to this end. Here we 
share some exciting upcoming results (see figure below), where part of these icequakes have been 



extracted and inverted for the source position as well as the ice thickness, using 5 stations only. 
Icequakes were recorded for the whole duration of the deployment.  

 

Icequakes (colored dots) extracted and inverted for source position and average ice thickness between 
source and the 5 stations used for inversion (shown as black squares). Icequakes were recorded between 
27 February and 24 March 2019. Note the change in thickness for icequakes coming from the same 
position, which indicates that ice has grown during deployment. The inverted ice thicknesses are 
consistent with those found using the EW and NS array lines and the processing introduced in the present 
paper. The location of the icequakes follow the shore line, where cracks have been visually identified. 
These cracks were likely cause by thermal and tidal forcing.  

Complicating methodological or physical factors that may explain the observed variance in the 
parameters were underexplored (e.g., can the dispersion curves be better resolved or meaningfully 
smoothed to improve the data as shown in example in Figure 4?).  

Reviewer 1 also asked if it would be possible to improve the retrieval of the dispersion curves. We have 
elaborated on the SVD-based processing to explain why it is unlikely to obtain better results from 
currently available alternative strategies. This is essentially due to the fact that the SVD already accounts 
for the multiplicity of virtual sources (i.e. the four stations in each of the four linear arrays to the east, 
west, south and north) in an optimal way. We have added the following explanations.  

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix.  

2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 



being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters.  

3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form 𝑒"#$%&'%(), where 𝑘+,-+ 	is the 
wavenumber to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the 
propagation. Finally, the test vectors are projected onto the singular vectors of the receivers' 
basis. This leads to a scalar product that is maximized when the wavenumber in the test vector 
matches that of the waves in the measured wavefield. In practice, this projection step is 
equivalent to calculating the discrete spatial Fourier transform of each singular vector.  
Step 3 is performed at each frequency resulting from step 1.  

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020).  

It was unclear (to me) exactly which stations were being correlated for use in constraining the NCFs 
(e.g., the linear array stations and azimuthally selected stations in the grid (which would mean that only 
stations intersecting a 10-degree cone from the linear array stations were actually utilized, but no stations 
from the corners, for example (?)). It would seem that a great many potential cross-correlations within 
the experiment were not used. That’s fine for this initial study, but some additional detail and 
quantification of this geometry and data usage would be appreciated (with 247 stations there are 
potentially around 30,000 potential NCFs that could be calculated, of course; how many total NCFs 
went into the inversions here out of these potential ~30,000 station pairs?). I’d suspect that a more 
comprehensive subarray strategy might yield improved results, and the ability to assess spatial variations 
(the authors hint that this will be a next step, along with icequake analysis in future work at the end of 
the paper). Structural variation across the study region may explain some of this four-parameter 
estimation experiment (but again it's not clear to me but it would be nice to assess this effect more 
thoroughly; it’s alluded to for example in line 270).  

The reviewer is right, and much more information about the ice could be obtained by using all station- 
pair combinations to calculate the correlations. We have added the following explanation to justify why 
we restrict the study to the stations of the dense cross and the linear arrays only.  

In this work, we restrict the study to correlations between (i) the 45 stations of the EW line with the 4 
stations of the LEA and LAW, and (ii) the 45 stations of the NS line with the 4 stations of the LAS and 
LAN. Of course, by using all stations pairs amongst the 248 stations, it will be possible to obtain 30381 
inter-correlations with many different inter-station paths, distances, and directions. With such amount 
of correlations, it becomes possible to apply tomographic inversions over the full array geometry, and 
to obtain a 3D+time map of the sea ice properties with unprecedented spatial and temporal resolution. 
However, this requires a different processing strategy where noise sources have to be selected so that 
their distribution around the array is isotropic. This is an on-going work that will be the matter of a 
future paper.  

The authors employ a simulated annealing strategy to obtain a starting model. It was unclear to me, at 
least, how this leads to new information regarding determination of the measurement errors, unless this 
was simply evaluated to be consistent with the chi-square value, which is simply consistent). For this 
reason. I suggest that it is more accurate to indicate that the fit (e.g., line 280) between model and data 
is statistically “consistent”, rather than “excellent”.  

In a way, we are indeed attempting to be consistent with the chi-square value, so we have replaced 
"excellent fit" with "statistically consistent fit". Reviewer 2 also asked about the interest of the simulated 
annealing phase. Here we give the same answer.  



We agree with the reviewer that this may look unclear. The problem when trying to estimate sigma 
comes from the fact that it should account for uncertainties in the dispersion curves, not those in the 
measurements. There is no linear relationship between both, because of the dispersion of the QS mode. 
That is what we had tried to explain in section 2.4.2 when writing:  

"The variance is linked to measurement errors; i.e., a mix between the influence of the SNR and other 
random perturbations of the measure, such as variations in the physics of the problem. In the present 
problem, such perturbations are averaged when going from the time-space to the frequency-
wavenumber domains, and thus the variance reflects variations of frequency- wavenumber values 
around ground truth values." 
 
Moreover, depending on the quality of the correlation function, these variations are not the same 
between all sets of dispersion curves. This is why we have chosen to estimate sigma from the simulated 
annealing part.  
In an attempt to make this clearer in the manuscript, we have added the following explanations.  

"However, σ2 is data-dependent. In our approach, we are inverting dispersion curves, so it should 
account for uncertainties in the dispersion curves, not those in the measurements. Unfortunately, there 
is no linear relationship between both, because of the dispersion of the QS mode. Depending on the 
quality of the correlation function, these uncertainties are not the same between all sets of dispersion 
curves. Hence σ2 cannot be set a priori for all of the inversions in this study, or else it would be a coarse 
approximation."  

They subsequently use MCMC to obtain a posterior PDF with a uniform (limited) range prior 
distribution for each parameter, but do not show the covariances of the parameters. A posterior 
illustration of parameter covariances would also be helpful to illustrate the tradeoff space between the 
four parameters.  

The range of prior distribution was chosen so as to include values found in literature for first year ice. 
We have added the following justification:  

For first year ice, in situ measurements of density range from 840 to 910 kg/m3 for the ice above the 
waterline, and 900 to 940 kg/m3 for the ice below the waterline (Timco and Frederking, 1996). Poisson’s 
ratio varies between 0.25 and 0.4, Young’s modulus between 2 and 6 GPa (Anderson, 1958; Timco and 
Weeks, 2010). In particular, in the Van Mijen fjord, Romeyn et al. (2021) reported a Young’s modulus 
around 2.5 GPa with a Poisson’s ratio of 0.33, and Morozov et al (2012) reported a Young’s modulus 
around 3 GPa and a Poisson’s ratio of 0.3. (Moreau et al, 2014c), reported a Young’s modulus around 
4 GPa and a Poisson’s ratio of 0.32 at Vallunden. The slightly higher value of Young’s modulus at 
Vallunden, in comparison with those directly in the Van Mijen fjord, is likely attributable to the 
protected physical setting of the study site, and support from the surrounding shoreline at the moraine. 
Regarding the thickness, ice drillings indicated that it was systematically less than 1 m. Hence, we 
assume for the prior distributions that the model parameters have equal probability over a range of values 
that contains the above-referenced values.  

We have added a new figure in Appendix B (see below), which shows the covariance between 
parameters. We have also modified the comments regarding the PDF accordingly:  

Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  
The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 



expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 
be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work  

.  

 

Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

It is interesting that the inferred ice thicknesses differ systematically in the NS and EW directions in 
Figure 7. Can the authors elaborate on this (in line 270 they allude to special variations in the physics 
of the problem, but I believe what they meant to indicate was something like “spatial variations in ice 
model parameters”.  

We meant "spatial variations" indeed. This has been modified. We do not have a clear explanation for 
this. A likely explanation could be related to the elongated geometry of the moraine in the NS direction, 
which could have a mechanical effect to the ice while it is growing. Also, the channel to the north, where 
water current is present could have an effect. However, it is noteworthy that the differences between 
both directions are not statistically significant, since the uncertainties overlap, so it could also be linked 
to the quality of the Green's function retrieval. This remark was added to the manuscript.  

All things considered, this is a significant work with a unique data set that could use a bit more polishing 
to realize its potential, and will no doubt be valuable for further analysis.  

 

 

 

 



Answer to editor 
 
I am pleased to accept this paper for publication following the recommendations from all three 
referees. I am excited to see this work yield such promising results and I am looking forward 
to more applications of this exciting work. I would like to request in addition to the referees' 
recommendations that the authors consider providing a bit more information on what made the 
choice of this site optimal and how they anticipate similar experiments could be or not tested 
in other environments (perhaps over fast ice, open ocean or closer to more dynamics ocean - 
ice wave interactions).  
 

We thank the editor for his comments on our manuscript. We hope that the changes made to the 
manuscript, together with our responses to the referees, will grant publication in The Cryosphere. 
Considering the editor's comments, we have added the following paragraph in section 2.1 to explain 
why the choice of this site is optimal for our experiment and how it could be applied to other 
sites. 

 

“The experiment was meant to deliver a proof of concept for passive seismic monitoring of sea 
ice, so this place was ideal for several reasons: 

- it is close to the facilities of Sveagruva, and easy to access by snowmobile (10 mn drive) 

- it is off the main snowmobile travelling routes frequently encountered in the frozen fjords of 
Svalbard  

- despite being surrounded by a moraine, it is subject to tidal forcing and currents, like any other 
parts with fast ice in Svalbard. 

With new processing methods, currently under investigation, that combine deep learning for 
automatic clustering of the waveforms, with different inversion approaches, it is expected that 
the same information about sea ice properties can be monitored by deploying only 3-5 stations 
instead of a dense array, thus significantly easing the logistics associated with transport and 
deployment of the geophones. The other inversion strategy has recently been tested on drifting 
pack ice (Moreau et al., 2020b). New deployments on fast ice and on pack ice are being planned 
to monitor sea ice in the Lincoln sea and in the Nares Strait in 2023 and 2024.” 

 


