
Answer to reviewer 3 
This is a very interesting analysis of a uniquely dense sea ice deployment of seismographs using ambient 
noise guided mode dispersion curves to invert for bulk ice properties (in two propagation 
directions).  With a bit more detail (suggestions below) it’s suitable for publication in its present form 
as an initial analysis of a data set that I strongly suspect has a lot more to offer in more detailed 
analysis.  Will the data be publicly available somewhere (not apparently in the Acknowledgments).  

Most of my comments below address where I suggest that methodological and other points might be 
usefully expanded (including, perhaps, some supplemental figures that could be in a appendix). 

We thank reviewer for the positive feedback and all the suggestions and comments to improve the 
manuscript. Our answers are given thereafter. In accounting for the comments of the reviewers, we have 
added a figure in section 2.2.2 to describe the workflow for recovering the noise correlation function. 
We also added two figures in Appendix A to show the characteristics of the recorded seismic noise, and 
a figure in Appendix B to show the covariance of sea ice parameters. 

The authors have done a good job in fitting analytical expressions to (beamform-selected) 
autocorrelations, with modes decomposed via a SVD method, to extract dispersion curves in EW and 
NS directions.  The size and density of the array used (247 seismographs with interstation spacings as 
close as 1 m) is unprecedented to my knowledge for this type of application.  Additional deployment 
and experimental details would be appreciated.  Were the instruments buried, for example? Were ice 
cores taken for ice-truth measurements during of the experiment?  How long did it take to deploy these 
instruments at this scale (important to know if such experiments might be repeated in other locations).   

Reviewer 2 also requested more practical information about the deployments. Most of these details are 
available in Moreau, Boué, et al. (2019). However, we have added the following text to make the 
manuscript more self-consistent.  

"The type of geophones used for the experiment has a cylindrical geometry of about 17 cm in height 
and 12 cm in diameter, mounted on a detachable spike. The geophones were installed directly in the ice 
without their spike. For accurate positioning, we used taut cords that we attached to each end of the rows 
and columns of the array, and a decameter. To maximize the coupling, a milling tool was specifically 
designed to drill the ice at the diameter of the nodes. The snow was removed prior to drilling holes, and 
geophones were installed in the holes at about half their height. We covered them back with snow to 
insulate them in view of preserving their battery life. At the time of the deployment, the internal 
temperature of several nodes was measured, before and after covering them with snow, showing an 
increase from -21 to -16oC. Deployment took about 2.5 days of work for a team of five people, including 
the time required for their activation. Markers were carefully placed all around the main array and at the 
position of the four antennae, in order to find them back more easily at the end of the experiment." 

Could similar (or at least practically useful) results be obtained with a smaller deployment (this can be 
tested by decimating the data set of NCFs).  This would be valuable to address given the motivations 
expressed in the abstract and paper. 

This is an important point. We have demonstrated in Moreau, Weiss et al. (2019) that results with the 
same accuracy can be obtained by exploiting the waveforms of the icequakes recorded with as few as 
3-5 stations. The methodology differs significantly from that in this manuscript, since it does not require 
to calculate the dispersion curves of the guided modes. A systematic inversion of the thousands of 
icequakes recorded during deployment will provide much more information about the spatial variations 
of sea ice parameters, that will not be limited to lines NS and EW. However, this requires to extract all 
the icequakes from the recordings.  

This is an on-going work where deep learning strategies are being implemented to this end. Here we 
share some exciting upcoming results (see figure below), where part of these icequakes have been 
extracted and inverted for the source position as well as the ice thickness, using 5 stations only. 
Icequakes were recorded for the whole duration of the deployment. 

 



 
Icequakes (colored dots) extracted and inverted for source position and average ice thickness between 
source and the 5 stations used for inversion (shown as black squares). Icequakes were recorded 
between 27 February and 24 March 2019. Note the change in thickness for icequakes coming from 
the same position, which indicates that ice has grown during deployment. The inverted ice thicknesses 
are consistent with those found using the EW and NS array lines and the processing introduced in the 
present paper. The location of the icequakes follow the shore line, where cracks have been visually 
identified. These cracks were likely cause by thermal and tidal forcing.   

 

Complicating methodological or physical factors that may explain the observed variance in the 
parameters were underexplored (e.g., can the dispersion curves be better resolved or meaningfully 
smoothed to improve the data as shown in example in Figure 4?).   

Reviewer 1 also asked if it would be possible to improve the retrieval of the dispersion curves. We have 
elaborated on the SVD-based processing to explain why it is unlikely to obtain better results from 
currently available alternative strategies. This is essentially due to the fact that the SVD already accounts 
for the multiplicity of virtual sources (i.e. the four stations in each of the four linear arrays to the east, 
west, south and north) in an optimal way. We have added the following explanations.  

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix. 
 
2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 
being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters. 
 
3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form !"#$%&'%(), where *+,-+  is the 
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wavenumber to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the 
propagation. Finally, the test vectors are projected onto the singular vectors of the receivers' 
basis. This leads to a scalar product that is maximized when the wavenumber in the test vector 
matches that of the waves in the measured wavefield. In practice, this projection step is 
equivalent to calculating the discrete spatial Fourier transform of each singular vector. 
Step 3 is performed at each frequency resulting from step 1. 
 

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020). 

It was unclear (to me) exactly which stations were being correlated for use in constraining the NCFs 
(e.g., the linear array stations and azimuthally selected stations in the grid (which would mean that only 
stations intersecting a 10-degree cone from the linear array stations were actually utilized, but no stations 
from the corners, for example (?)).  It would seem that a great many potential cross-correlations within 
the experiment were not used.  That’s fine for this initial study, but some additional detail and 
quantification of this geometry and data usage would be appreciated (with 247 stations there are 
potentially around 30,000 potential NCFs that could be calculated, of course; how many total NCFs 
went into the inversions here out of these potential ~30,000 station pairs?).  I’d suspect that a more 
comprehensive subarray strategy might yield improved results, and the ability to assess spatial variations 
(the authors hint that this will be a next step, along with icequake analysis in future work at the end of 
the paper). Structural variation across the study region may explain some of this four-parameter 
estimation experiment (but again it's not clear to me but it would be nice to assess this effect more 
thoroughly; it’s alluded to for example in line 270). 

The reviewer is right, and much more information about the ice could be obtained by using all station-
pair combinations to calculate the correlations. We have added the following explanation to justify why 
we restrict the study to the stations of the dense cross and the linear arrays only.   

In this work, we restrict the study to correlations between (i) the 45 stations of the EW line with the 4 
stations of the LEA and LAW, and (ii) the 45 stations of the NS line with the 4 stations of the LAS and 
LAN. Of course, by using all stations pairs amongst the 248 stations, it will be possible to obtain 30381 
inter-correlations with many different inter-station paths, distances, and directions. With such amount 
of correlations, it becomes possible to apply tomographic inversions over the full array geometry, and 
to obtain a 3D+time map of the sea ice properties with unprecedented spatial and temporal resolution. 
However, this requires a different processing strategy where noise sources have to be selected so that 
their distribution around the array is isotropic. This is an on-going work that will be the matter of a 
future paper. 

The authors employ a simulated annealing strategy to obtain a starting model.  It was unclear to me, at 
least, how this leads to new information regarding determination of the measurement errors, unless this 
was simply evaluated to be consistent with the chi-square value, which is simply consistent).  For this 
reason. I suggest that it is more accurate to indicate that the fit (e.g., line 280) between model and data 
is statistically “consistent”, rather than “excellent”.   

In a way, we are indeed attempting to be consistent with the chi-square value, so we have replaced 
"excellent fit" with "statistically consistent fit". Reviewer 2 also asked about the interest of the simulated 
annealing phase. Here we give the same answer.  

We agree with the reviewer that this may look unclear. The problem when trying to estimate sigma 
comes from the fact that it should account for uncertainties in the dispersion curves, not those in the 
measurements. There is no linear relationship between both, because of the dispersion of the QS mode. 
That is what we had tried to explain in section 2.4.2 when writing: 
"The variance is linked to measurement errors; i.e., a mix between the influence of the SNR and other 
random perturbations of the measure, such as variations in the physics of the problem. In the present 
problem, such perturbations are averaged when going from the time-space to the frequency-wavenumber 



domains, and thus the variance reflects variations of frequency- wavenumber values around ground truth 
values." 
Moreover, depending on the quality of the correlation function, these variations are not the same 
between all sets of dispersion curves. This is why we have chosen to estimate sigma from the simulated 
annealing part.  
In an attempt to make this clearer in the manuscript, we have added the following explanations.  

"However, σ2 is data-dependent. In our approach, we are inverting dispersion curves, so it should 
account for uncertainties in the dispersion curves, not those in the measurements. Unfortunately, there 
is no linear relationship between both, because of the dispersion of the QS mode. Depending on the 
quality of the correlation function, these uncertainties are not the same between all sets of dispersion 
curves. Hence σ2 cannot be set a priori for all of the inversions in this study, or else it would be a coarse 
approximation." 
 

They subsequently use MCMC to obtain a posterior PDF with a uniform (limited) range prior 
distribution for each parameter, but do not show the covariances of the parameters.  A posterior 
illustration of parameter covariances would also be helpful to illustrate the tradeoff space between the 
four parameters.   

The range of prior distribution was chosen so as to include values found in literature for first year ice. 
We have added the following justification: 

For first year ice, in situ measurements of density range from 840 to 910 kg/m3 for the ice above the 
waterline, and 900 to 940 kg/m3 for the ice below the waterline (Timco and Frederking, 1996). Poisson’s 
ratio varies between 0.25 and 0.4, Young’s modulus between 2 and 6 GPa (Anderson, 1958; Timco and 
Weeks, 2010). In particular, in the Van Mijen fjord, Romeyn et al. (2021) reported a Young’s modulus 
around 2.5 GPa with a Poisson’s ratio of 0.33, and Morozov et al (2012) reported a Young’s modulus 
around 3 GPa and a Poisson’s ratio of 0.3. (Moreau et al, 2014c), reported a Young’s modulus around 
4 GPa and a Poisson’s ratio of 0.32 at Vallunden. The slightly higher value of Young’s modulus at 
Vallunden, in comparison with those directly in the Van Mijen fjord, is likely attributable to the 
protected physical setting of the study site, and support from the surrounding shoreline at the moraine. 
Regarding the thickness, ice drillings indicated that it was systematically less than 1 m. Hence, we 
assume for the prior distributions that the model parameters have equal probability over a range of values 
that contains the above-referenced values.  
 
We have added a new figure in Appendix B (see below), which shows the covariance between 
parameters. We have also modified the comments regarding the PDF accordingly: 

Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  
The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 
expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 
be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work. 
 
 
 
 
 
 
 
 



 
 

 
Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

 
It is interesting that the inferred ice thicknesses differ systematically in the NS and EW directions in 
Figure 7.  Can the authors elaborate on this (in line 270 they allude to special variations in the physics 
of the problem, but I believe what they meant to indicate was something like “spatial variations in ice 
model parameters”. 

We meant "spatial variations" indeed. This has been modified. We do not have a clear explanation for 
this. A likely explanation could be related to the elongated geometry of the moraine in the NS direction, 
which could have a mechanical effect to the ice while it is growing. Also, the channel to the north, where 
water current is present could have an effect. However, it is noteworthy that the differences between 
both directions are not statistically significant, since the uncertainties overlap, so it could also be linked 
to the quality of the Green's function retrieval. This remark was added to the manuscript.   

All things considered, this is a significant work with a unique data set that could use a bit more polishing 
to realize its potential, and will no doubt be valuable for further analysis. 

 


