
Answer to reviewer 2 
 
The authors present an innovative passive seismic study that monitors the evolution of sea ice thickness 
and mechanical properties using passive seismic noise. The authors combine both array processing with 
ambient noise cross-correlation to produce dispersion curves for guided waves within sea ice. The results 
of these dispersion measurements are used to invert for ice thickness, Young's modulus, Poisson's ratio 
and ice density using a Bayesian framework.  

The manuscript is interesting and merits publication in The Cryosphere. It is concise and well written 
but I think improvements could be made to the clarity of the paper. I have a number of minor comments 
and suggestions which are detailed below. 

We thank the reviewer for the constructive comments. We hope the changes made to the manuscript, 
together with our answers to the comments, will help clarify the paper. In accounting for the comments 
of the reviewers, we have added a figure in section 2.2.2 to describe the workflow for recovering the 
noise correlation function. We also added two figures in Appendix A to show the characteristics of the 
recorded seismic noise, and a figure in Appendix B to show the covariance of sea ice parameters. 

- Section 2.1: Seismic array would benefit from a paragraph describing the deployment of the seismic 
instruments, with details on how the geophones were installed i.e were they mounted prior to 
deployment, burial depth if at all and any challenges or difficulties encountered.  

We have added the following paragraph in section 2.1 to describe the practical aspects of the deployment 

"The type of geophones used for the experiment has a cylindrical geometry of about 17 cm in height 
and 12 cm in diameter, mounted on a detachable spike. The geophones were installed directly in the ice 
without their spike. For accurate positioning, we used taut cords that we attached to each end of the rows 
and columns of the array, and a decameter. To maximize the coupling, a milling tool was specifically 
designed to drill the ice at the diameter of the nodes. The snow was removed prior to drilling holes, and 
geophones were installed in the holes at about half their height. We covered them back with snow to 
insulate them in view of preserving their battery life. At the time of the deployment, the internal 
temperature of several nodes was measured, before and after covering them with snow, showing an 
increase from -21 to -16oC. Deployment took about 2.5 days of work for a team of five people, including 
the time required for their activation. Markers were carefully placed all around the main array and at the 
position of the four antennae, in order to find them back more easily at the end of the experiment." 

- Section 2.2.1 would benefit from a few sentences on the theoretical foundations on the retrieval of 
Green's functions from ambient noise. This section should also include a description of the processing 
steps, parameters used and the justification for their selection e.g., why and how was a 5 minute window 
selected for the noise correlation length. Also, which stations were used and if correlations were made 
across stations components e.g., N with E.   

Theoretical foundations of on the retrieval of Green's functions from ambient noise can be found in [P. 
Roux, K. G. Sabra, W.A. Kuperman and A. Roux (2005)”Ambient noise cross-correlation in free space: 
theoretical approach”, J. Acoust. Soc. Am. 117(1), pp. 79-84] and [Campillo and Roux, “Seismic 
imaging and monitoring with ambient noise correlations”, Treatise on Geophysics, second Edition, Vol. 
1, Edited by B. Romanowicz and A. Dziewonski, Elsevier-Amsterdam, 256-271, 2014], which have 
been added to the reference list.  

As written in the paper (lines 120-125), a homogenized wave field illuminating the propagation medium 
in all directions is a prerequisite for obtaining an accurate Green’s function estimation. For seismic data 
recorded on glaciers, this condition imposes strong limitations on Green’s function convergence because 
of minimal seismic scattering in homogeneous ice and limitations in network coverage. 

We have added the following text to section 2.2.1 

Recent work provides a catalogue of methods to tackle the challenge of applying passive seismic 
interferometry to glaciers in the absence of isotropic source distribution Sergeant et al. (2020). 



The remark concerning the 5-minutes window cannot be treated lightly and requires additional figures. 
We have added an Appendix to the manuscript to include these figures (see figures A1 and A2 below). 
We have also added the following text to section 2.2.1  

"Figures A1 and A2 show the seismic wavefield recorded on 11 March 2019, during the night (figure 
A1-a) and during the day (figure A2-a) when some fieldwork occurred about 500 m N-E of the main 
array. The corresponding short-time Fourier transforms are shown in figures S1-b and S2-b, as well as 
the estimated power spectral densities (figures A1-c and A2-c). These figures show that seismicity can 
be dominated by noise sources with very different characteristic time. For example, in presence of 
human activity the characteristic time is a few minutes (see figure A1-a between 16:00 and 16:35). When 
there is no human activity, noise sources can be impulsive when icequakes occur (there are also periods 
of time where many icequakes occur every minute), or they can have a characteristic time of a few 
minutes (see for example figure S1-a between 2:00 and 2:15).  

Therefore, it is necessary to correlate noise segments with a length that accounts for the characteristic 
time of the various noise sources. After some preliminary tests, we concluded that a 5-minutes window 
is adequate. Moreover, impulsive events, human activity and other noise sources have different levels 
of energy. To prevent bias due to the dominant noise sources, spectral whitening was applied to the 
noise segments prior to calculate the correlations. Three sets of correlations were calculated:  

 - correlations between the recordings from the vertical displacement component 

 - correlations between the recordings from the north displacement component 

-correlations between the recordings from the east displacement component 

In this work, we restrict the study to correlations between (i) the 45 stations of the EW line with the 4 
stations of the LEA and LAW, and (ii) the 45 stations of the NS line with the 4 stations of the LAS and 
LAN. Of course, by using all stations pairs amongst the 247 stations, it will be possible to obtain 30381 
inter-correlations with many different inter-station paths, distances, and directions. With such amount 
of correlations, it becomes possible to apply tomographic inversions over the full array geometry, and 
to obtain a 3D+time map of the sea ice properties with unprecedented spatial and temporal resolution. 
However, this requires a different processing strategy where noise sources have to be selected so that 
their distribution around the array is isotropic. This is an on-going work that will be the matter of a 
future paper." 

 
Figure A1 - a) One hour of seismic wavefield at night, on 11 March 2019, with b) the corresponding 
short time Fourier transform, and c) Welch Power Spectral density of the recording.  



 
Figure A2 – Same as figure A1, but in the afternoon, with human activity.  

 

- Section 2.2.2: In this section, it is unclear as to which of the seismic instruments (1C or 3C) is used in 
the beamforming and subsequent calculation of the noise correlation function. I assume that the authors 
beamform seismic noise using the 1C stations before using noise directed within 10 degrees of the 2 3C 
lines to compute the correction function using the 3C stations. 

Actually, beamforming was performed with all stations that are equally spaced within the main array, 
which also includes 3C stations. To clarify that, we have added the following sentence in this section. 

"Beamforming was performed using all 1C and 3C stations of the main array that are equally spaced". 

We have also added, in section 2.2.1 (see the answer of your previous question), more details about which 
stations are being used for the correlations.  

- Section 2.2: A flow chart summarizing the beamforming and noise correlation function workflow 
should be included to improve the clarity of this section. 

We have added a flow chart as requested. It is now in figure 4.  

 

- Section 2.3: The authors should expand upon the SVD methodology used to compute the dispersion 
curves.  

Reviewer 1 also requested more details about the SVD-based dispersion curves extraction. We have 
added more details to describe the method, without going too much into the mathematical details, which 
are given in Minonzio et al. (2010). The following description was included.  

This processing consists in the following steps:  

1. The matrix of transmit-receive signals has three-dimensions: sources (M = 2 or 4), receivers 
(N), and time. The first step is the application of the Fourier transform to the temporal dimension 
of this matrix. 
 



2. At each frequency, the resulting Fourier-domain matrix is sliced into 2D transmit-receive 
matrices. These matrices are then decomposed into singular values. The singular vectors define 
an orthonormal basis of the space dimensions along the transmitters (left-singular vector) and 
receivers (right-singular vector). The underlying idea behind this processing step is that the 
different levels of modal energy are distributed onto the singular vectors, the energy information 
being contained in the singular values. This allows a heuristic separation of the noise and signal 
subspaces, in a classical way for singular value-based filters. 
 
3. The last step consists of defining test vectors that are representative of the wave propagation 
problem. In the present case, we use plane waves of the form !"#$%&'%(), where *+,-+  is the 
wavenumber to be tested, and xn (n = 1,2,...,N) is the coordinate of receiver n along the 
propagation. Finally, the test vectors are projected onto the singular vectors of the receivers' 
basis. This leads to a scalar product that is maximized when the wavenumber in the test vector 
matches that of the waves in the measured wavefield. In practice, this projection step is 
equivalent to calculating the discrete spatial Fourier transform of each singular vector. 
Step 3 is performed at each frequency resulting from step 1. 
 

Once steps 1-3 are performed, the resulting frequency-wavenumber spectrum significantly enhances the 
identification of the dispersion curves, for two reasons: (i) it is possible to separate signal from noise by 
applying a threshold to the singular values; and (ii) modal amplitude stands out at all frequencies and 
for all modes with the same spectral intensity (Fig. 4), despite their different relative amplitude in the 
wavefield, because singular vectors have a unit norm. The dispersion curves can therefore be identified 
on a larger bandwidth and with less SNR-related uncertainties than with conventional beamforming 
techniques (Moreau, Boué et al, 2020). 
 

 
Figure 4. Workflow to calculate the noise correlation function from seismic noise. 
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- Section 2.4.2: In the inversion, why haven't the author's used uncertainties from their measurements 
for the estimate of sigma in equation 6? It is unclear from the text why this isn't possible. I'm also unsure 
as to why the Simulated Annealing method is used instead of the burn-in phase of the MCMC. Could 
this not affect the sampling of the posterior distribution? 

We agree with the reviewer that this may look unclear. The problem when trying to estimate sigma 
comes from the fact that it should account for uncertainties in the dispersion curves, not those in the 
measurements. There is no linear relationship between both, because of the dispersion of the QS mode. 
That is what we had tried to explain in section 2.4.2 when writing: 
"The variance is linked to measurement errors; i.e., a mix between the influence of the SNR and other 
random perturbations of the measure, such as variations in the physics of the problem. In the present 
problem, such perturbations are averaged when going from the time-space to the frequency-wavenumber 
domains, and thus the variance reflects variations of frequency- wavenumber values around ground truth 
values." 
Moreover, depending on the quality of the correlation function, these variations are not the same 
between all sets of dispersion curves. This is why we have chosen to estimate sigma with the simulated 
annealing algorithm. In an attempt to make this clearer in the manuscript, we have added the following 
explanations.  
"However, σ2 is data-dependent. In our approach, we are inverting dispersion curves, so it should 
account for uncertainties in the dispersion curves, not those in the measurements. Unfortunately, there 
is no linear relationship between both, because of the dispersion of the QS mode. Depending on the 
quality of the correlation function, these uncertainties are not the same between all sets of dispersion 
curves. Hence σ2 cannot be set a priori for all of the inversions in this study, or else it would be a coarse 
approximation." 
 

The posterior distribution is actually approximated after the burn-in phase, when the MCMC algorithm 
has sufficiently explored the solution space. The quality of the estimated posterior distribution depends 
essentially on the number of samples generated. It does not depend on the position where the algorithm 
is initialized (which also determines the burn-in phase). Figure 6 shows that the posterior distributions 
are well-estimated over the whole range of values in the search space.  

- Results and Discussion: This section would benefit from comparisons between the retrieved parameters 
and previous estimates in past studies e.g., How does the Young's modulus compare with other 
estimates? Likewise, how does the estimated value of density compare with meteoric ice and sea ice?  

We have added the following discussion regarding values found in the literature for sea ice properties. 
This discussion appears after Eq. (6) to justify the choice of the parameters space.  

For first year ice, in situ measurements of density range from 840 to 910 kg/m3 for the ice above the 
waterline, and 900 to 940 kg/m3 for the ice below the waterline (Timco and Frederking, 1996). Poisson’s 
ratio varies between 0.25 and 0.4, Young’s modulus between 2 and 6 GPa (Anderson, 1958; Timco and 
Weeks, 2010). In particular, in the Van Mijen fjord, Romeyn et al. (2021) reported a Young’s modulus 
around 2.5 GPa with a Poisson’s ratio of 0.33, and Morozov et al (2012) reported a Young’s modulus 
around 3 GPa and a Poisson’s ratio of 0.3. (Moreau et al, 2014c), reported a Young’s modulus around 
4 GPa and a Poisson’s ratio of 0.32 at Vallunden. The slightly higher value of Young’s modulus at 
Vallunden, in comparison with those directly in the Van Mijen fjord, is likely attributable to the 
protected physical setting of the study site, and support from the surrounding shoreline at the moraine. 
Regarding the thickness, ice drillings indicated that it was systematically less than 1 m. Hence, we 
assume for the prior distributions that the model parameters have equal probability over a range of values 
that contains the above-referenced values.  
We also refer to this discussion in the "Results and discussion" section.  

The estimations are consistent with the values reported in the literature for first year ice, which are given 
in section 2.4.2. 
 
Additionally, the inversion appears to be insensitive to density. Why do you think this is the case? How 
could the inversion be improved to account for the insensitivity to density? 

Reviewer 1 also requested a discussion about the density. We have added the following discussion.  



Interestingly, the covariance of the parameters (see figure B1 in Appendix B) indicates that Poisson’s 
ratio, despite being well-constrained, seems rather uncorrelated from the other parameters. On the other 
hand, Young’s modulus, density and thickness appear to be strongly correlated, despite the density being 
not very well-constrained.  
The observations seem to indicate that density having a flatter PDF reflects the limits of our forward 
model more than it is an indicator of the limits of the methodology. The model is only sensitive to the 
effective properties of the {ice+snow} system, because it cannot account for the snow layer (about 40 
cm thick, on average), which modifies the effective properties. The weight of the snow layer modifies 
the density of the {ice+snow} system more than it does its rigidity (Young’s modulus) and 
expansion/contraction (Poisson’s ratio). Presumably, a forward model able to account for snow would 
be a significant improvement, which should constrain the density in a better way. The development of 
such a forward model is therefore an important follow up of this work. 
 

 
Figure B1. Covariance between Young’s modulus, thickness, density and Poisson’s ratio, with the associated correlation coefficient 

 
- Figure 1: A map of Svalbard and the location of Lake Vallunden highlighted should be included. 

A small map has been added in Figure 1a to show the position of the experiment in Svalbard 

- Figure 6: The histograms should be normalized such that the area under each graph is 1 in order to 
show the PDF for each of the parameters. It is difficult to see the blue line indicating the maximum of 
each distribution and this should be changed to black or the shading of the histograms should be changed 
to grey or white.  

These modifications have been made in Figure 6.  

- Lines 78 - 81: A schematic diagram illustrating the displacements of the different modes of the 
waveguides would be beneficial.  

We are showing this figure here, in response to the reviewer. However, we believe that it is not necessary 
for the manuscript to be self-consistent. It would be difficult to add such a figure in the manuscript 
without significantly modifying its structure, because this would require to elaborate on the theory of 
guided waves. This was already made in Moreau, Boué et al (2020), and we would rather build up from 
this work than to repeat it. 



 
a) Displacement field generated by the QS mode (top) and the QS0 mode (bottom) in a floating ice layer 
of thickness h=50 cm at a frequency of 100Hz, with E= 4.5 GPa, .= 0.33, and /= 910km/m3. b) 
Wavenumber-thickness versus frequency-thickness dispersion curves of the ice layer. Black dots show the 
theoretical values and red lines the approximation of the QS and QS0 modes by the flexural and axial 
waves (Stein et al, 1998), which is valid when the frequency-thickness product is less than 50 Hz·m.  

 

- Lines 280 - 281: Please include more detail on how the distribution is fitted to the posterior 
distribution.  

We have added the following description 

After the MCMC algorithm has completed, a PDF is generated for E, h, ν, and ρ. Figure 6 shows an 
example of PDF obtained on March 10, from line EW. The ice properties are determined by computing 
the histograms of the parameters, to which we fit with a kernel-type distribution density estimator. The 
kernel estimation method creates a smooth, continuous curve to represent the probability distribution of 
the data from the data samples by estimating locally the normal distribution function centered in each 
sample (the kernel functions). Summing these local smoothing functions for each sample produces the 
resulting continuous fit. We use the maximum of this fit to determine the estimate of the parameters. 
 
- Lines 284 - 285: Since the distributions are not Gaussian, I'm unsure how relevant it is quoting 
uncertainties for the results using the standard deviation. The interquartile range would be a more 
relevant measure of uncertainty.  
 
One may argue that it would also be possible to fit a gaussian to the posterior distributions. We have 
chosen a kernel-type fit only for more accurate values around the maxima. For this reason, we would 
rather keep a standard deviation as a measure of the dispersion of the PDF. This also allows us to remain 
consistent with the definition of the likelihood function.  
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