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Abstract. As changes to Earth’s polar climate accelerate, the need for robust, long—term sea ice thickness observation datasets
for monitoring those changes and for verification of global climate models is clear. By eoupting-linking a recently developed
algorithm for retrieving snow—ice interface temperature from passive microwave satellite data to a thermodynamic sea ice
energy balance relation known as Stefan’s Law, we have developed a new retrieval method for estimating thermodynamic sea
ice thickness growth from space: Stefan’s Law Integrated Conducted Energy (SLICE). With an initial condition at the beginning
of the sea ice growth season, the method can model basin-wide absolute sea ice thickness by combining the one-dimensional
SLICE retrieval with an ice motion dataset. The advantages of the SLICE retrieval method include daily basin-wide coverage

and a potential for use beginning in 1987.

methed-againstretrieval against measurements from ten ice mass balance buoys using-the-iee-mass-balanee-buey-thickness
as-the-initial-condition-show a mean correlation of 0:994-0.88 and a mean bias of 6:008-0.08 m over the course of an entire

ness-chanees—Validation of the

sea ice growth season. Estima

its simplifications and assumptions relative to models like the Pan-Arctic fee—Oeean-Ice—Ocean Modeling and Assimilation
System (PIOMAS )-The-spatial-distribution-of the-seaiee-thickness-differences-between-theretrievalresults-and-these referenee

basin-wide SLICE performs equally to PIOMAS when compared against CryoSat-2 and Operation IceBridge.

1 Introduction

Observing sea ice concentration and areal extent from satellites is a well established practice (Liu et al., 2016; Meier et al.,

2017; Markus and Cavalieri, 2000; Markus and Cavalieri, 2009; Comiso, 2009; Lavergne et al., 2019). There are methods
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based on data in the visual, infrared and microwave wavelength bands and climate data records produced from these methods
are commonly cited as polar climate indicators (Stroeve et al., 2012; Screen and Simmonds, 2010; Liu et al., 2009).

While sea ice concentration is more readily observed, sea ice thickness provides a more complete characterization of the
state of the climate system because it allows for calculation of sea ice volume and latent heat release. Recent literature has made
clear that reliable long-term observations of basin wide sea ice thickness are needed in order to constrain the representations of
sea ice in global climate models (Mayer et al., 2019). Sea ice thickness based observations of sea ice volume can be used along
with other observations to refine the large range of projected sea ice area and volume across coupled global climate models
(Docquier and Koenigk, 2021). Indeed, the lack of reliable long term sea ice thickness observation constraints is the primary
barrier to reducing the uncertainty in future sea ice area and volume projections (Massonnet et al., 2018).

Sea ice thickness derived from space-based altimetry data collected by satellites like CryoSat-2 and leeSat-2-ICESat-2
stand as the current state of the art but-are-limited-in-spatial-coverage-and-temporal-reselation—(Connor et al., 2009; Kwok
and Cunningham, 2008; Markus et al., 2017, Wingham et al., 2006; Laxon et al., 2013). Though the instruments aboard these
the entire Arctic due to their relatively low spatial coverage (Wang et al., 2016). Other strategies for retrieving sea ice thickness
include the-use-of-a one-dimensional surface energy balance model driven by satellite products (Key et al., 2016) and the
use-of low-frequeney-passive-microwavesatelite-datafor-estimating the thickness of thin sea ice (Meeldenburget-al52612)

Ascimilatine—availableohservational-datainto-aslobale o IR S fo ol ; using low-frequency
sea ice model with assimilated observational

assive microwave satellite data (Mecklenburg et al., 2012). A coupled ocean—

data is also commonly referenced (Zhang and Rothrock, 2003). A newer approach involves correlating sea ice thickness with
sea ice age (Liu et al., 2020). The various available products are discussed and compared against one another both qualitatively
and quantitatively in Wang et al. (2016) and against upward looking sonar (ULS) in Sallila et al. (2019).

Recent efforts to retrieve temperature at the boundary between snow and sea ice, referred to as the snow—ice interface tem-
perature, have opened a new door in polar climate observation (Lee and Sohn, 2015; Lee et al., 2018; Kilic et al., 2019). These
methods take advantage of radiances from the Advanced Microwave Scanning Radiometer (AMSR)-Earth Observing System
(-E), AMSR?2, the Special Sensor for Microwave Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS)
passive microwave instruments using channels whose wavelengths are not significantly absorbed by snow and therefore carry
information from the snow—ice interface. Kang et al. (2021) demonstrated the utility of these snow—ice interface temperature
data by using them to nudge a sea ice model, improving the model’s results. By coupling this newly available snow—ice inter-
face temperature data with Stefan’s Law governing the thermodynamics of sea ice growth (Stefan, 1891; Lepparanta, 1993),
we introduce a promising-new method of estimatingretrieving thermodynamic sea ice thickness growth called Stefan’s Law
Integrated Conducted Energy (SLICE).

As sea ice accretes on the underside of the ice layer, the latent heat of fusion conducts up through the ice to the snow—ice
interface. In Stefan’s Law, that conducted heat and therefore rate of accretion is calculated using a heat conduction equation
with the snow—ice interface temperature as the upper boundary condition and the local freezing temperature of sea water set as

the lower boundary condition (Stefan, 1891; Lepparanta, 1993). By using the satellite retrieved snow—ice interface temperature
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in this relationshipand-with-an-initial-thickness-condition-in-hand, SLICE is able to retrieve daily rate of ice accretion and model
sea ice thickness on a basin-wide scale during the sea ice growth season —With-the-required-passive-microwave-observations
available from 1987 to-current; there is-potential-for-aby integrating these retrieved growth rates from an initial sea ice thickness
time series-of the-same-spancondition. The methodology is applicable beginning in 1987 with the availability of the required
passive microwave observations.

2 Data

The SLICE retrieval method described here utilizes passive microwave brightness temperatures and a passive microwave based

sea ice concentration dataset. Modelling basin-wide sea ice thickness requires motion vectors and a satellite based initial
condition. A preliminary validation of the retrieval method references sea ice thickness from ice mass balance buoy data,

satellite radar-altimeter-data-and-a-and airborne altimeter based sea ice thickness model-reanatysis—
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can-be-found-in-ee-and-Sehn(2015)-sea ice models.
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The AMSR-E and AMSR2 brightness temperatures available from the National Snow and Ice Data Center (NSIDC) were

used in this study (https:/nside-orgidatalAE— versions/3:-https://side.ore/data/AU_— verstons/H—Cavalieri et al., 2014;
Markus et al., 2018). The AMSR-E data is available for June 2002 through October 2011 and the AMSR?2 data is available for
July 2012 to the present. The AMSR2 data has been intercalibrated with the AMSR-E data and the brightness temperatures
105 between these two instruments are treated here as a continuous dataset (Markus et al., 2018). The data is provided on a 25 km
polar stereographic grid, but when needed on a basin-wide scale for use with the sea ice thickness retrieval method described
here, the data were linearly interpolated to a 25 km Equal-Area Scalable Earth (EASE)-Grid 2.0grid—Inteeetal(2048)the
method-is-adapted-for-use-with-the-,_
The NASA Team 2 algorithm is a passive microwave brightness temperature sea ice concentration algorithm (Markus and Cavalieri, 200C

1984; Gloersen and Cavalieri, 1986) in that it

110 . It as an enhancement to the original NASA Team algorithm (Cavalieri et al.,

2

to better account for interference from surface effects. The algorithm utilizes open ocean and 100% ice concentration tie points
115 use with AMSR-E and AMSR2 data. Here we use this AMSR-E and AMSR?2 sea ice concentration data, which is available

from the NSIDC as a part of the same dataset that contains the brightness temperatures used to calculate snow—ice interface

temperature beginning in-1987(Cavalieri et al., 2014; Markus et al., 2018).

120



2.2 Sea ice motion vectors

125 Sea ice is not static, but rather a dynamic collection of variably sized parcels that are each in constant horizontal motion
under the effects of wind, ocean currents and internal stress. In order to treat sea ice in a lagrangian sense, the motion of
these parcels must be understood. Here we use the Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version
4 available from the NSIDC (Tschudi et al,, 2019; Tschudi et al., 2020). The product is available from 1978 to present at
daily and weekly temporal resolution, each with basin-wide coverage and each on the 25 km EASE-Grid. Using an optimal

130 interpolation scheme, ice motion vectors are created from cross correlated satellite brightness temperature data from AMSR-
E, Advanced Very High Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), SSM/2
data—For basin-wide-analysis;_1 and SSMIS, along with International Arctic Buoy Program (IABP) buoy locations and a
National Centers for Environmental Protection (NCEP)/ National Center for Atmospheric Research (NCAR) wind reanalysis
data derived free drift estimate. Each satellite and buoy dataset are included in the polardata-gap-is filled using two-dimensional

135 finearinterpotation—optimal estimation scheme only when available within the life span of the ice motion product. This means
input data sources vary throughout the record. DeRepentigny et al. (2016) found the weekly sea ice motion vectors to have a
1% median error when compared against IABP buoys between 1988 and 2011.

2.3 Airborne and satellite based sea ice thickness products

CryoSat-2 carries the SAR/Interferometric Radar Altimeter-2 (SIRAL-2) instrument (Wingham et al., 2006; Laxon et al., 2013

140 ) and was launched by the European Space Agency (ESA) in 2010. Similar to other satellite altimeters, ice thickness is
determined from CryoSat-2 data by first calculating the thickness of the sea ice above sea level—known as the freeboard—by
determining the distance traveled by the radar signal between the satellite and the the ice surface and subtracting that distance
from the satellite orbit altitude above sea level. An assumed snow loading provides a correction for the reduced propagation
speed of the radar signal through snow. Then, the assumed snow loading and a hydrostatic balance is used to determine

145 sea ice mass which in turn is converted to thickness using an assumed density (Laxon et al., 2013). Gridded ice thickness
products derived from ESA CryoSat-2 Level 1b data are provided by the Centre for Polar Observation and Modelling (CPOM)
(Tilling et al., 2018). the National Aeronautics and Space Agency (NASA) Goddard Space Flight Center (GSFC) (Kurtz et al., 2014a)
»the Alfred Wegener Institute (Ricker et al., 2014; Hendricks and Ricker, 2020; Ricker et al., 2017a), the NASA Jet Propulsion
Laboratory (Kwok and Cunningham, 2015), the ESA Climate Change Initiative (Hendricks et al., 2018) and the Laboratoire

150  d’Etudes en Géophysique et Océanographie Spatiales Center for Topographic studies of the Ocean and Hydrosphere (Guerreiro et al., 2017)
- The primary differences between these datasets relate to averaging period, grid sizing and radar response waveform retracking
procedure.
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The ESA Soil Moisture and Ocean Salinity (SMOS) satellite carries the Microwave Imaging Radiometer using Aperture
Synthesis (MIRAS) instrument which measures 1.4 GHz passive microwave brightness temperatures at 35 to 50+ km resolution

Mecklenburg et al.,

of the 1.4 GHz channel into sea ice allows for retrieval of an ice temperature that when incorporated into a radiative transfer

roach has associated uncertainties in sea ice below

2012). While originally intended for measuring soil moisture and ocean salinity, the high penetration depth

model yields a sea ice thickness estimate (Tian-Kunze et al., 2014). This a

Sea ice thickness observations from SMOS and CryoSat-2 have complementing uncertainties. SMOS has high uncertainties
when measuring thick ice and CryoSat-2 has high uncertainties when measuring thin ice (Ricker et al., 2017b). This creates an
opportunity for synergy between the instruments. The AWI CS2SMOS dataset takes advantage of this synergy. By combining.
the datasets through a weighted averaging scheme, root mean squared errors are reduced from 76 cm with CryoSat-2 alone to
66 cm and the squared correlation coefficient is increased from 0.47 with CryoSat-2 to 0.61 when compared against NASA
Operation Ice Bridge data (Ricker et al., 2017b). The AWI CS2SMOS dataset is available at a weekly time resolution and on a
25 km EASE-Grid 2.0 and was used with the method demonstrated here due to the high spatial coverage.

The NASA Operation IceBridge (OIB) mission is an airborne campaign comprising a series of flights covering the years
2009-2016, bridging the gap between the NASA Ice, Cloud and land Elevation Satellite (ICESat) and NASA ICESat-2 laser
altimeter satellite missions (Kurtz etal., 2013). Among the instruments aboard each OIB flight, of primary importance to
this study are the Airborne Topographic Mapper (ATM) instrument (Krabill et al., 1995) and snow radar (Panzer et al., 2013)
- The ATM is a laser altimeter whose return signal is used along with an aerial photography based sea ice lead (fracture)
discrimination algorithm to retrieve sea ice freeboard height at 40 m spatial resolution, The snow radar return signal is used to
determine snow depth. Sea ice freeboard and snow depth are used in conjunction with a hydrostatic balance to determine sea ice
thickness at the sea ice freeboard resolution of 40 m. We use OIB sea ice thickness from the IceBridge L4 Sea Ice Freeboard,
Snow Depth, and Thickness, Version 1 and its QuicklLooks counterpart as provided by the NSIDC (Kurtz et al., 2015). Figure

1 shows OIB flight paths used in this study.

2.4 Ice Mass Balance Buoys

In order to statistically characterize the sea ice thickness retrieval method described herein, ice mass balance buoy data served
as the reference. The ice mass balance buoys were deployed and maintained by the United States Army Corps of Engineers
Cold Regions Research and Engineering Laboratory (CRREL) (Perovich et al., 2021). Undeformed ice floes are chosen for

buoy sites to ensure the buoy is representative of the surrounding ice (Polashenski et al., 2011).

Data fields used from the buoys were sea ice thickness and geolocation in latitude and longitude. Ice thickness is observed

using two acoustic rangefinder sounders, one positioned above and one positioned below the ice. Each sounder has an accuracy

of 0.005 m (Richter-Menge et al., 2006). An Argos antenna mounted on the buoy transmits the geolocation and other observa-
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tions at minimum twice per day (Richter-Menge et al., 2006). For this study, all data fields were resampled to 1 d resolution by
calculating daily mean values. All buoys from the years 2003 to 2016 showing an entire season of sea ice thickness growth were
used for comparison with the exception of buoys installed in landfast ice and those that show obvious eynamie-ice deformation
effects. Table 1 provides relevant-details pertaining to the buoys used. Buoy 2013F spanned two winter seasons and as such
has been divided into two buoy numbers, 2013F and 2013Fb, with 2013Fb covering the second winter season during which
the buoy was deployed. As such, a deployment date is not listed for 2013Fb. Drift tracks from 1 November to 1 April for the

buoys are shown in Fig. 1. The buoys are concentrated in the Central Arctic and Beaufort Sea.

Buoy tracks 0]]=} fllght tracks

2003C
2005F
2006C
2012G
2012H
2012L
2013G
2015F
2013Fb
2013F

Figure 1. Tracks traveled by a) ice mass balance buoys and b) Operation IceBridge flights used in this study. Initial buoy location is signified

with a left facing triangle and all buoy tracks from 1 November to 1 April.

Efforts to compare satellite based records of sea ice thickness with ground truth are hampered by the scale of the question.
Ground truth measurements of sea ice are necessarily taken from a single point while satellites observe sea ice thickness on
the scale of kilometers. The variability of sea ice across those kilometers leads to uncertainty in the comparison. It has been
shown, however, that while variability in absolute ice thickness may be significant on the scale of a satellite observation, sea
ice growth and melt is-are relatively uniform on the satellite length scale (Polashenski et al., 2011). Therefore, while absolute
comparisons of sea ice thickness between a ground truth and satellite observation may be tenuous, comparisons of growth over

a winter season between single point ground truth and satellite based observations are more robust.
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Table 1. A listing of United States Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) Ice Mass Balance

buoys used in this work. All buoys from 2003 to 2016 containing a full season of sea ice thickness growth are included, excluding those in

landfast ice or showing obvious dynamic effects.

Buoy Region Ice Type Deployment date
2003C Beaufort Sea Multi-year 2002/8/31
2005F Central Arctic Multi-year 2005/9/3
2006C Beaufort Sea Multi-year 2006/9/4
2012G Central Arctic First year 2012/10/1
2012H Beaufort Sea First year 2012/9/10
2012L Beaufort Sea Multi-year 2012/8/27
2013F Beaufort Sea Multi-year 2013/8/25
2013G Beaufort Sea Multi-year 2013/9/4
2013Fb Beaufort Sea Multi-year -
2015F Central Arctic Multi-year 2015/8/13
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Fhe-Sea ice models The Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) is a numerical model reanalysis

product that couples the Parallel Ocean Program (POP) model developed at Los Alamos National Laboratory with a thickness
and enthalpy distribution (TED) model (Zhang and Rothrock, 2003). The TED model includes a viscous—plastic sea ice rheol-

ogy (Hibler, 1979) and a sea ice thickness distribution scheme that accounts for redistribution due to ridging (Thorndike et al.,
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1975). The model isutilizes a generalized orthogonal curyilinear coordinate (GOCC) grid. The northern grid pole is shifted to
be over Greenland where there is no ocean or sea ice, avoiding the need to deal with converging meridians and grid cell areas
the Greenland Sea where the geography is intricate. The model is driven by daily surface forcing and sea surface temperatures
(SSTs) provided by National-CentersforEnvironmental-Protection (NCEP)NCEP/National-Centerfor-Atmospheric Researeh
NCAR--NCAR and NSIDC sea ice concentration in order to produce daily sea ice thickness data-distributions from 1978
to present (Schweiger et al., 2011). Here we use the daily effective sea ice thickness output which converts sea ice thickness

2.5 AMSRSIE

ate-data output from the sea ice model described
in Kang et al. (2021), henceforth K21, was used to provide additional context. As briefly described in Sect. 1, K21 nudged
a one-dimensional sea ice thermodynamic model with satellite retrieved snow—ice interface temperatures. The model itself
is based on Maykut and Untersteiner (1971) and is a multi-layer numerical approximation for the snow and sea ice system.
While the model is driven by European Centre for Medium-Range Weather Forecasts (ECMWE) ERA-Interim reanalysis
data, temperatures at the snow—ice interface are nudged using the same snowice interface temperature retrieval used here
(Lee and Sohn, 2015) in a non-physical correction term. This method was extrapolated to basin-wide results through the use

of lagrangian tracking of individual sea ice parcels. The SLICE model is similar but greatly simplified and driven directl
by the snow—ice interface temperature h i : erstons/3-https://asi : erstonsth;

Cavattert-etal; 2044 Markus-et-al5 2648 )retrieval.

3 Methodology

Sea ice grows thicker through two primary physical mechanisms: thermodynamic phase change and dynamic changes due to

the relative motion of the ice pack. The governing equation for a Eulerian sea ice thickness field can be written as

OH
E:f(taHJ()—v'(UH)? (1)

10
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where H is plane slab sea ice thickness, ¢ is time, f is a function of time, thickness and position vector x describing thermody-
namic sea ice thickness increase, and u is the ice motion vector. This equation is analogous to Eguation-Eq. (3) in (Thorndike
et al., 1975), but does not include the redistribution term in-that-equation-because here we use a plane slab thickness H rather
than a thickness distribution. The second term on the right hand side of Equation—tEq, (1) captures dynamic thickness changes-
following methodology called Stefan’s Law Integrated Conducted Energy (SLICE), we retrieve the first term on the right hand

side of Equation=1Eq. (1) and use a parcel tracking approach to approximate sea ice advection and model basin-wide thickness.

3.1 Snow-Ice Interface Temperature

OQutgoing longwave radiation on the low frequency end of the microwave spectrum is not significantly absorbed by snow on the
Earth’s surface (Mathew et al., 2009). Previous efforts to take advantage of this fact to measure the temperature of sea ice have
relied on infrared (IR) measurements or models to augment the results (Comiso, 1983; Hall et al., 2004; Hewison and English
1999). This process leads to errors and IR data is only available in clear sky conditions. In Lee and Sohn (2015), onl

microwave brightness temperatures are used. The method uses the horizontally and vertically polarized 6.9 GHz channel
brightness temperatures from the passive microwave AMSR-E or AMSR2 instruments along with a combined Fresnel relationship
Sohn and Lee,
temperatures yields the snow—ice interface temperature. In Lee et al. (2018), the method is adapted for use with the SSM/L19.35
GHz channel to allow for retrieval of snow—ice interface temperature beginning in 1987, We have adapted the procedure from
Lee and Sohn (2015) for use in the retrieval method described below.

2013) to determine the local microwave emissivity of sea ice. This emissivity along with the observed brightness

3.1.1 Atmospheric Transmittance

In order to accurately retrieve snow—ice interface temperature using passive microwave brightness temperatures, the effect
of the atmosphere on these satellite observed brightness temperatures must be understood and accounted for. Atmospheric
transmittance at 6.9 GHz was estimated using the Radiative Transfer for TOVS v12 (RTTOV vI12; Saunders et al., 2018)
radiative transfer model driven by ECMWE ERAS reanalysis data (Hersbach et al., 2020, 2018).

The RTTOV model is capable of simulating brightness temperatures and other radiative characteristics of the Earth system as
observed by roughly 90 space-borne sensors, including AMSR-E and bottomof the iee fayer, the dater of whichis ator verynear

5 —epparanta; ; phystca planatiente atto P ha

latentheat-of-freezing-at the-bottom-of the-jee-is-conducted-up-to-AMSR?2. For this study, the RTTOV direct radiative transfer
model Python wrapper was used to simulate atmospheric transmittance for the AMSR-E and AMSR?2 6.9 GHz channels, of
which both vertical and horizontal polarizations yield the same results. The AMSRE and AMSR-2 satellite zenith viewing
angle of 557 was accounted for along with a sea ice surface type. Temperature and humidity profiles at 37 pressure levels along.
with skin temperature, surface pressure, 2 m temperature, 2 m humidity and 10 m winds were provided by ERAS reanalysis

11
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data at monthly temporal resolution and 1° spatial resolution from 2003 through 2020. The result is a dataset of monthly, 1°
atmospheric transmittance for the snow—iee-interface-6.9 GHz AMSR-E and AMSR?2 channels from 2003 to 2020 at monthl
temporal and 1° spatial resolutions. These transmittance values were used in the calculation of snow—ice interface temperature.

3.1.2 Combined Fresnel Equation

Assuming absorption by snow is negligible, the snow—ice interface temperature can be related to satellite observed brightness
temperature from a channel with a weighting function peak at the snow ice interface through the following two relationships:

Ty (1) = tanV)es (V)T @
Ty () = tanV)ey ()T ®

where T} v) and Tp v (v) are satellite observed horizontally and vertically polarized spectral brightness temperatures
respectively, ¢ V) is spectral atmospheric transmittance, ey () and ey () are local snow—ice interface spectral emissivit

for horizontal polarized and vertical polarized emission, respectively, and 7’,; is snow—ice interface temperature.

Egs. (2) and (3) form a system of two equations with three unknowns—e g (), ey (v) and T;. Assuming reflectivity and

emissivity sum to unity in both polarizations, a combined Fresnel relationship closes this system and allows solving for 7%;:

o 1+7rg(v) /2 cos20 ’
L+rg(v)/2cos20 )

o) = (rul) @
where @ is satellite viewing angle, and rg (v). rv(v) are horizontal and vertical polarized spectral reflectance, respectively.
Additional detail can be found in Lee and Sohn (2015).

Liquid water at the emitting layer in the form of open ocean or melt ponds interferes with the snow-ice interface temperature
algorithm (Lee and Sohn, 2015). As such, and in line with Lee and Sohn (2015), the snow—ice interface is only calculated here
in_grid cells with greater than 95% sea ice concentration. A method for calculating snow-ice interface temperature for grid
cells with under 95% sea ice concentration is described in the appendix of Lee and Sohn (2013) but is not implemented here
pending further investigation.

3.2 Thermodynamic sea ice thickness growth

A simple model of one-dimensional thermodynamic sea ice thickness growth is a balance of heat fluxes where phase change
is occurring, i.c., at the interface between the solid sea ice and liquid sea. These heat fluxes are latent heat released during the
phase change of liquid sea water to solid sea ice, £}, basal heat flux from the liquid sea to the solid ice, [, and heat conducted
through the ice and away from the phase change interface, . These three fluxes are balanced at the phase change interface as

follows:

Eigby=F. ©)

12
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Figure 2. Snow—ice interface temperatures on 1 January 2013 derived from AMSR?2 radiances.

When the snow—ice interface temperature drops below the temperature at the bottom of the ice, heat provided by basal flux
and the latent heat of freezing is pulled to the snow—ice interface. In the method described here, a new-satellite observation
of snow-ice interface temperature (Lee and Sohn, 2015) drives the-anatytical-solution—+to-the-this energy balance in order to
determine sea ice thickness growth.

321 Stefan’s Law

By balancing the conductive heat equation with a latent heat of freezing and basal heat flux term, Stefan’s Law relationship-in
order-to-determine relates the rate of thermodynamic sea ice thickness growthincrease to the temperature difference between
the snow-—ice interface and bottom of the ice layer, the later of which is at or very near to the freezing temperature of sea ice
(Stefan, 1891; Lepparanta, 1993).

Just as fluid flows across a pressure difference and electricity flows across a voltage difference, all heat transfer occurs across
a temperature difference. Conduction is the transfer of heat across a solid medium and is always accompanied by a temperature
difference across that medium. The equation governing one-dimensionalone-dimensional, steady state conduction is-through

seaiceis

~~T

FC:;H””ZJ" <T2f—T1%—>/D, (6)

AAASA~
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where ¢-is-heat-per-unit-area-or-heat-fhux;+-is#c s is the thermal conductivity of the-medivm;Fr—and-1y-are-the-boundary
temperatures-and-D-is-the-distance-between-the-boundariessea ice, H is sea ice thickness, T is the freezing point of sea water
and T}; is the snow—ice interface temperature.

A change in the phase of a material must either release or accept energy as the molecular bonds and motion within the
material change. In the case of a phase change from liquid to solid, energy is released as the molecular motion is reduced with

the introduction of molecular bonds. The equation describing the one-dimensionalone-dimensional, latent heat release in-this
seenarto-isas sea water changes phase from liquid to solid is:

dD dH
Iy = s’iL777
= ps O (N

where ¢-is-heatperunitarea-or-heat-fhixpgis-p; is the density of the solid phase of the material, L is the latent heat of fusion

and 42 i i ial-size- 2L i

o s the change in sea ice thickness per unit time.
Egs. (6) and (7) are substituted

In Stefan’s Law,
into Eq. (5) to form

OH Ri  Reff
L= = 2 (T —Ty)—F,,. 8
pil— piLHMIi,\,( ! )= Fy. 8)

rowth rate, we have

8H Keff Fw
— = Ty —Ty) — —=.
o pei T v

Equation (9) defines the thermodynamic growth function, f, found in Eq. (1) and is equivalent to Eq. (1) when dynamic
growth is neglected. There are three assumptions inherent to this relationship (Lepparanta, 1993). First, heat conduction in
the horizontal direction is assumed to be negligible. Second, it is assumed that there is no thermal inertia present in the ice.
This means that the local derivative of temperature with respect to sea ice depth is constant throughout the sea ice layer-and
the-layer—i.e., the temperature profile is linear—and the system is in equilibrium. The spatial derivative of temperature found
in a typical heat equation reduces to the temperature difference between the snew-iee-snow—ice interface temperature and the

freezing point of water due to these first two assumptions. NextThird, it is assumed that there is no internal heat source, such as

the absorption of short wave radiation. This-is-The second and third assumptions are only valid during polar winter and times

egrowth-isneglected-—Equation-Sis-a-differential-equation-Egs. (8) and (9) are differential equations with the following analytieal

W H Wi

14
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. 2K F,
> =H2+a25\/H2+5teff Ty —Ty;) — 6t—2 (10)
_ 0 0 sz ( f ) sz
where a-is-defined-as-
- 2/1,
=\

Hj is the initial sea ice thicknessand-S-is-the-sum-of-negative-degree-days-and-is-defined-as-

§= [T - Tu(r)dr.
/

. The time interval +0¢ chosen for the results shown herein is one day based on the daily availability of snow—ice interface

temperature -

and both snow—ice interface temperature and basal flux are assumed to be constant during each day.
At each time step, the-SLICE determines sea ice thickness after-thermodynamic-growth-is-determined-by-solving Equation

£4by solving Eqg. (10) for H given an H using the snow—ice interface temperature calculated at the nearest AMSR-E or
AMSR? grid cell. Be i i i
thickness at each time step is dependent on initial sea ice thickness. This necessitates this-retrieval-method-SLICE be applied

e-The change in sea ice

in a Lagrangian sense as the sea ice thickness must be tracked and stored in order to accurately calculate the change at the

next time step.

(9), thicker sea ice grows slower than thinner sea ice and thinner sea ice grows faster than thicker ice with a given snow—ice
interface temperature. This means that in the presence of only thermodynamic effects, sea ice that is too thick or too thin will
correct towards the true-thickness-unbiased SLICE thickness profile. This relationship replicates the phenomenon described in

Bitz and Roe (2004), whereby thick ice grows slower than thin ice and vice versa.

322 Basal flux

Observation of basal flux from liquid sea water to solid sea ice is inherently difficult, Typically, basal flux is calculated as
a residual of other more readily observed quantities in the heat budget of a one-dimensional sea ice profile, typically from a
drifting station or buoy. Using this methodology, McPhee and Untersteiner (1982) observed March through May basal fluxes of
less than 2 W m 2 using data from the FRAM I drift station in the Arctic Ocean, Perovich and Elder (2002) report oceanic heat
flux values of just a few W m~? from November to May during the Surface HEat Budget of the Arctic Ocean (SHEBA) field
experiment and Lei et al. (2014) examined Chinese National Arctic Research Expedition (CHINARE) buoy data to discover
relatively high basal ocean heat fluxes of greater than 10 W m~? through December that gradually decreased to near 0 by
mid-February,
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Maykut and Untersteiner (1971) completed a sensitivity analysis using their thermodynamic sea ice model, investigating the
equilibrium mean annual sea ice thickness corresponding to basal flux values ranging from 0 to 8 W m”?, Realistic mean
annual sea ice thickness resulted when basal flux was set between 1.3 W m~ and 2.6 W m~?, They chose a constant basal
flux value of 2 W m~? for their model based on this analysis and available observational data. The coupled ocean—sea ice
model PIOMAS supplies oceanic heat fluxes to the sea ice model component as modeled by the ocean model component.
Zhang and Rothrock (2003) show these modeled ocean heat fluxes in most of the Arctic basin to be near 2 W m~2. K21 also
employed a constant basal heat flux of 2 W m~2,

In keeping with these studies, we apply a constant basal oceanic heat flux £, = 2 W m~? The effect of basal oceanic heat
flux on thermodynamic sea ice growth is independent of thickness and can be easily quantified as the last term of Eq. (10). Fora
given snow—ice interface temperature, the reduction of sea ice thickness growth by inclusion of a basal flux is linearly related
to the basal flux value by a factor of 1/p; L. With a density of 917 kg m~? and a latent heat of fusion of 3.32 x 10° T kg ™!, each
LW m~? of basal flux from the liquid sea water to solid sea ice decreases sea ice thickness growth by 2.84 x 10°! m d”!.
Removal of the 2 W m 2 basal oceanic heat flux would increase sea ice growth by 5.67 x 10°¢ m d" ! and an increase from 2
W m=? to 10 W m~2 would decrease thermodynamic sea ice thickness growth by 2.27 x 10~ m d”. This corresponds to a
0.0857 m increase and a 0.343 m decrease, respectively, when summed from 1 November to 1 April.

3.2.3 Multi-phase properties of sea ice

Sea ice is best described not as a homogeneous solid media but rather as a heterogeneous, multi-phase material including.
solid ice and pockets of liquid brine whose size and salinity change with varying ice temperatures. In turn, these brine pocket
changes significantly affect the bulk thermodynamic properties of the ice layer (Feltham et al., 2000). Equation (10) includes
effective thermal conductivity, fic sz, a property that is subject to this effect. As such, we adopt the parameterization of effective
conductivity described in Feltham et al. (2000).

We begin by defining a constant ocean salinity, S, of 33 ppt. Next, we will assume that the ice is in thermal equilibrium
relative to phase change between liquid brine and solid ice and calculate freezing point temperature (in °C). T, as a function
of salinity (in ppt) per Notz (2005):

T¢(S) = —0.05925 — 9.37 x 10765% — 5.33 x 10775, (11)

The latent heat of fusion for liquid to solid phase change is defined as the difference between the enthalpies of the two states.
In this case, we will use a latent heat of fusion (in J kg~ !), L as calculated as a function of temperature (in °C) by Notz (2005

A

L(Ty) = 333700+ 762.7Ty — 7.92977. (12)
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We then use Eq. (15) from Feltham et al. (2006) to define effective thermal conductivity (in W m~' K~1) as function of sea
ice temperature, T; and sea ice salinity, S;:

(T4 (0) = T¢(Si))
(T4 (0)=T3) °

Keff = Kbi — (Kbi — Kb) (13)

where kp; is the thermal conductivity of bubbly ice and ; is the thermal conductivity of liquid brine and are defined per
Schwerdtfecer (1963), Batrak et al. (2018) and Bailey et al. (2010) (all in W m—! K—1);

s = Ri(26 5 o = 2ValRs ~ Ka))/ (261 4 Ko+ 2Va(: ~ Ka)) (14
fip = 1162045 — 1,08 x 1077 +5.04 X 10 °T7) (15
5 = L162(1,905 — 8,60 x 10777 +2.97 X 107 °T7) (16)
10 =0.03 a7
Vo =0.025, (18)

A first-year sea ice (FYI) density of 917 kg m”? and multi-year sea ice (MYI) density of 882 kg m* was reported by
Alexandroy et al. (2010) and these values have seen use in the sea ice thickness calculations from CryoSat-2 data (Laxon et al.,
2013; Tilling et al., 2018; Hendricks and Ricker, 2020; Kwok and Cunningham, 2015). A sea ice density of 915 ke m~3 is also

data (Kwok and Rothrock, 2009). Choice of sea ice density is a significant source of uncertainty in altimeter-
in sea ice thickness estimates from a 60 cm snow—ice frecboard with 35 cm of snow. The SLICE system of equations uses a
FYI sea ice density of 917 kg m ™. For a given snow—ice interface temperature, basal flux and sea ice thickness, a change to
915 kg m~? would increase sea ice thickness growth rate by at most only 0.2% and a change to 925 kg m™* would decrease
sea ice thickness growth by at most only 0.8%.

based estimates

3.3 Parcel tracking of advection

The divergence term on the right hand side of Eq. (1) represents sea ice dynamics and includes the effects of both advection
and deformation on local sea ice thickness. Advection moves sea ice parcels horizontally and deformation redistributes sea ice
volume vertically through ridging or leading.

The advection effects contained within the divergence term can be approximated using a parcel tracking approach, allowing
for the modelling of basin-wide results. This parcel tracking methodology is initialized with the CS2SMOS data from the first
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week of November and each 25 km x 25 km grid cell is divided into 5 km x 5 km parcels, which are advected daily throughout
the winter using the Polar Pathfinder motion vectors interpolated to their position. This parcel tracking methodology is similar
to the Sea Ice Tracking Utility (SITU, http://icemotion.labs.nsidc.org/SITU/) described by DeRepentigny et al. (2016). Each
parcel adds sea ice thickness thermodynamically using the SLICE thermodynamic model. At any given time step, the parcels
can be gridded to the EASE-Grid 2.0 by taking the mean thickness of parcels within each grid cell. This approach leaves out
deformation effects. While taking the sum of all parcel volume within each grid cell and dividing by grid cell area would be a
more physically sound methodology for this regridding, the results from such a method proved unrealistic. Figure A2 found in
the Appendix shows a comparison between the chosen method using grid cell mean and the method using grid cell sum. New.
parcels are initiated at any grid cell not containing a sea ice parcel but showing 95% or greater sea ice concentration. New ice
parcels are initialized at 0.05 m. Any parcel that is located in a region with less than 95% sea ice concentration at any time
step is removed. The result is a daily gridded Arctic basin-wide sea ice thickness dataset representing thermodynamic sea ice
growth in the 95% sea ice concentration ice pack.

4 Results

The SLICE sea ice thickness retrieval methodology can be applied on a single one-dimensional profile basis or across a large
area. Here we present results comparing one-dimensional profiles to ice mass balance buoy thicknesses and Arctic basin-wide
results compared to OIB and AWI CS2SMOS and-PIOMAS-data.

4.1 One-dimensional Profiles

The SLICE retrieval method results were compared to sea ice thickness from ice mass balance buoys. The retrieval method was

initialized with the buoy observed sea ice thickness on the

d=LFrom-this-timestep-forward,the- November and integrated through 1 April. The retrieval method is dependent only on
the satellite based snow—ice interface temperature. The snow—ice interface temperature used on a given day is taken from the
nearest AMSR-E or AMSR?2 grid cell to the buoy location. The resultant sea ice thickness prefiles-and-buey-prefiles-are-plotted
inFigure-time series are plotted with buoy sea ice thickness in Fig. 3. Itis clear from Figure-Fig. 3 that the SLICE profiles agree
well with the buoy sea ice thickness when initialized with an accurate initial ice thickness. The correlation coefficients ranges
from 6:965-0.37 to 0.999 with a mean of 6:99+-0.88 and standard deviation of 6:04-0.21 across all buoys. The bias, calculated
by taking the mean over the entire profile length of the retrieval method result minus the buoy thickness, ranges from -0-:078
mte-0-132-0.01 m to 0.19 m with a mean of 6:008-0.08 m and standard deviation of 6:659-0.07 m across the buoys. The-bias
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Figure 3. Ice thickness observations from ice mass balance buoys and SLICE for buoys (a) 2003C, (b) 2005F, (c) 2006C, (d) 2012G, (e
2012H 2012L, 2013F, (h) 2013Fb

values have a mean of 0.88 and the biases have a mean of 0.08 m.

i) 2013G and (j) 2015F. Linear correlation (r) and bias values are listed. Across all buoys, the r

4.2

Arctic Basin-wide Comparisons
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Figure 4. i i Sea ice mass-balance-buoys-and-seaiee-thickness on a) 2 November 2012, b) 1 December 2012,
¢) 1 January 2013, d) 1 February 2012, d) 1 March 2013, e) 1 April 2013, f) 30 April 2013 created using SLICE retrieval-method-for-buey

2043Fb-with shading-bounded-by-the retrieval-method-initialized-at+~-0-25-m1 November 2012 AWI CS2SMOS as an initial state. The

higher-changes from month to month represent thermodynamic growth and
profite-with-aeeurate-initial-condition-over-timeadvection.

43 Arctic Basin-wideC .

Next, the SLICE retrieval method was apphied-utilized to model sea ice thickness on a Arctic basin-wide scale. Using the
AWI CS2SMOS data for the first week of November as the initial statefor-one-set-of-integration-and-the PIOMAS-datafrom

1+ Nevember-as-the-initial state-for-anether set-of-integration, the retrieval method was applied daily to the entire Arctic basin
from Nevember-te-1 November to 1 April for the growth seasons beginning in 2012 through 2019. November first was chosen

20



525

530

535

540

545

550

555

to ensure most ice was below the freezing point and there were limited melt ponds to interfere with the snow ice interface

temperature observation.

m-At each time step, the parcel tracking methodolo
described in Sect. 3.3 is applied. The 1 April results are regridded to the 25 km EASE-Grid 2.0 —The AWH-ES2SMOS-data-are

on—the—wame—orid—and—the-PIOMNA datg ara nao —HAater

odfrom—itenative—oridtothe B AQE 420

using the procedure also described in Sect. 3.3. Monthly basin-wide sea ice thickness plots for the sea ice growth season

beginning in fall 2012 using AWI CS2SMOS as the initial state are shown in Figure-Fig. 4. The sea ice thickness data from
SLICE is available daily —Fhe-data-from-but only the first of every month is plotted. The sea ice thickness on-36-Aprit-2043

. ha M N d . on—to—th on Novermbe 0 hecea a 1A nothermoedyvram
ot oW al pattar—G outo O at—o NOV O v, a STOW < oayha atry—od

is increasing and advection is relocating the volume horizontall

throughout the Arctic basin.

eIn order to compare
SLICE with PIOMAS and K21 data, all three datasets were compared with OIB sea ice thickness from-SEICE-to-areferenee

d a he-and-of-each—ore h cagcon-bestnnine—in—-20 hraoneh- 2010 FEiopre oOmBare C oA MO n
ata a a S W a S te 5 oY e a v a

Figure-2*-compares SEICEwith-PIOMAS-dataobservations. OIB data from the month of March for the years 2013 through
2018 (including NSIDC OIB quick looks data) was first binned by 25 km EASE 2.0 grid cell and averaged across each bin to
create an OIB dataset collocated with SLICE. Both PIOMAS and the K21 data were also interpolated to the 25 km EASE 2.0
grid. A comparison between SLICE, PIOMAS and K21 was created and shown in Fig, 5. Linear correlation and bias statistics
were calculated from this data. All three datasets show very similar linear correlations of 0.67, 0.67 and 0.68 for SLICE,
PIOMAS and K21, respectively. The best mean bias is PIOMAS at 0.10 m, followed closely by SLICE at -0.12 and K21 at
-0.24 m. The standard deviation of the bias is 0.68 for both PIOMAS and SLICE and nearly the same for K21 at 0.69. The-end

SLICE was also compared to PIOMAS using AWI CS2SMOS as the reference dataset. Figure 6 shows the differences in
sea ice thickness between SLICE and AWI €S2SMOS-and-30-Apritfor PIOMAS-The AWECS2SMOS and PIOMAS-data-are

esthe differences

between PIOMAS and AWI CS2SMOS on 1 April for the years 2013 through 2020. Figure Al in the Appendix shows plots
of sea ice thickness used in this comparison from all three datasets. The differences are mostly-between—t-m-and-t-almost
all between -1.5 m and 1.5 m and in most cases are near zero. The pattern-exhibited-by-the-differences—is-what-would-be
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Figure 5. OIB thickness versus a) SLICE intilialized with CryoSat-2/SMOS, b) PIOMAS and c) Kang et al., 2021 data including number of

data points, linear correlations and bias (standard deviation). SLICE has the highest linear correlation though all three are virtually equal.

for SLICE and PIOMAS show similar patterns, though PIOMAS overestimates thickness in more areas than SLICE, which

underestimates sea ice thickness in the central Arctic in almost all cases. The differences between SLICE and CS2SMOS are

likely to be due to a lack of expert-oficefrom-thisregion—

AWT CS2SMOS - Following the erowth season-beginning-in-20 H-only-exeeeded-the-AWl-and SLICE are on a 25 km

=) & R}

EASE-Grid 2.0 but in order to compare the AWI CS2SMOS volume-growth-by4-2%-of the-data to PIOMAS, it is interpolated to

each PIOMAS grid point, Linear correlation and bias statistics were calculated from this data, SLICE and PIOMAS have equal
linear correlations with AWI CS2SMOS grewth-butin-mest-years SEICE-exeeeds-the-at 0.77. SLICE shows an improved mean

bias at 0.03 m compared to PIOMAS at 0.10 m. SLICE standard deviation of the difference is also improved at 0.62 compared
to 0.67 m for PIOMAS. Figure 8 shows total daily Arctic sea ice volume from SLICE, PIOMAS and AWI CS2SMOS by-ever
+0%-—FeHowing-the-growth-seasen-beginningin-during the winters from late 2012 -SEICE-exeeeds-to early 2020. The AWI

CS2SMOS is taken from the the weekly data centered on each day. Both SLICE and PIOMAS follow the AWI CS2SMOS
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well. PIOMAS overestimates end of season volume in all years and underestimates initial volume in all cases except 2012-2013
and 2016-2017 leading to an overestimation of sea ice volume growth in all yearswhen-compared-toPIOMAS-though-the
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Again;only grid-eells-with-tee-in-both-datasets-are consideredand ends all seasons closer than PIOMAS to the AWI CS2SMOS
volume except 2014-2015 and 2016-2017. While there are not enough data points for a strong statistical comparison, SLICE
is certainly a viable indicator of sea ice volume growth.

5 Discussion

The SEICE retrieval-method-eaptures-SLICE uses a new retrieval of snow—ice interface temperature (Lee and Sohn, 2013) to
drive a very simple one-dimensional model of sea ice thermodynamics in order to retrieve thermodynamic sea ice thickness
aceretion-very-weth-growth. By applying SLICE to individual parcels whose location throughout the Arctic basin is determined
using a sea ice motion product (Tschudi et al,, 2020), SLICE is able to capture sea ice advection and produce basin-wide results.
In doing so, SLICE functions similarly to much more intricate sea ice models such as PIOMAS (Zhang and Rothrock, 2003)
and a sea ice model that is nudged with retrieved snow-ice interface temperature (Kang et al., 2021). While SLICE is capable
of capturing thermodynamic sea ice growth and advection, it is unable to detect deformation effects—i.e.. thickness changes
due ridging or leading.

Figure 3 shows a comparison between ice mass balance buoy sea ice thickness measurements and the retrieval method
initialized with the buoy data for 10 buoys within the years 2003-2016. The mean correlation coefficient of 6:994-0.88 between

the buoy measurements and the method is high. The bias values are also very encouraging with a mean of 6:068-m-0.08 m.

Buoys 2012L and 2013G have linear correlation values of 0.58 and 0.37, respectively, both significantly lower than the others.
These buoys may have experienced delayed ice growth that begins later than 1 November or perhaps even melting. SLICE
is unable to capture either phenomena, degrading the results from these buoys. The median linear correlation across all buoy
results is 0.992 and the mean linear correlation from all buoys except 2012L and 2013G is 0.985. When sea ice is indeed
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Figure 6. For the sea ice growth seasons ending in a—ea—b) 2013, d—fc—d) 2014, g—te—f) 2015, j~tg-h) 2016, m—ei—j) 2017, p—rk-1) 2018,
s=#m-n) 2019 and v—xo0—p) 2020, a, ¢, e, g, i, k, m, 0) SLICE initiatized-with-sea ice thickness - AWI CS2SMOS sea ice thickness from the
first-week-of November] April and b, d, f, h, j, 1, n, p) PIOMAS sea ice thickness - AWI CS2SMOS sea ice thickness and-their-difference-on
45-from 1 April. Fheir-difh ‘ “The SLICE and are PIOMAS differences show similarities in areas-expected

increasing via thermodynamics, SLICE captures the growth well. Additionally, SLICE has a self-correcting quality by nature
of Equation-8-Eq. (9) whereby sea ice thicknesses that are biased in either direction approach the eorreet-unbiased SLICE sea

ice thickness over timeas—shown-inFigure—22. These points suggest the retrieval method is viable as a basis for estimating
modelling sea ice thickness but is highly dependent on an initial condition, as it calculates thermodynamic sea ice thickness

increase rather than absolute thickness.
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Figure 7. A-comparison-of-volumetrieseaiee-growth-betweenr-AWI CS2SMOS and-SEICE-for-the-years 202 +H-through2019-SEICEexeeeds

AW-ESZSMOS-in—volumetrie-growth-by-—sea ice thickness versus amean—) SLICE sea ice thickness and b) PIOMAS sea ice thickness
including number of +2:6%data points, linear correlations and «bias (standard deviationet5:5%). SLICE has as lower bias at 0.03 m than

PIOMAS at 0.10 m and linear correlation values are equal.
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Arctic basin-wide sea ice volume vs. time
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There are a number of assumptions inherent to Stefan’s Law (Lepparanta, 1993) that must be considered in relation to

SLICE -as introduced in Sect. 3.2. In order to characterize conduction through the ice layer with only the snow—ice interface
650 temperature and an assumed freezing point temperature at the bottom of the ice layer, it must be assumed that heat conduction

in the horizontal is negligible and that the local vertical derivative of temperature throughout the ice layer is constant. These

assumptions are reasonable. The remaining two assumptions are more salient. The first is that there is no internal heat source.

This is untrue when there is significant short wave radiation absorbed within the sea ice. The final assumption is that there-is

no-heat exchange between the sea ice and the ocean is constant in space and time, which is likely to be invalid in some regions.
655  Impacts of this assumption on the sea ice growth are investigated in Sect, 3.2.2.

Another source of uncertainty in SLICE ice thickness is the constraint that it is limited to areas with sea ice concentration
greater than 95%. There is significant growth in areas where the sea ice concentration is low, such as the marginal ice zone
(MIZ). This constraint would likely cause underestimated sea ice growth over those areas. In a supplement to the body of the
paper, Lee and Sohn (2015) suggest a procedure for calculating snow—ice interface temperature in areas with less than 95%

660 but that has not been implemented here, pending further investigation. Further validation of SLICE, particularly in regions
other than the Beaufort Sea and Central Arctic, where all ten-bueys-buoys and OIB flights used here were located, as well as
investigation of the impacts of these assumptions and full characterization of uncertainties is warranted.

The
and-a-Stefan’s Law energy balance relationship and attendant assumptions amounts to a simplification the multi-layer thermodynamic

665 model based on Maykut and Untersteiner (1971) that makes up the foundations of PIOMAS and K21. These assumptions

remove the need for multiple layers. Additionally, whereas the thermodynamics in PIOMAS and K21 are driven by an
atmospheric reanalysis product and nudged by snow—ice interface temperature retrieval-algerithm—(lee-and-Sehn;2045)te

670

temperature. These factors allow for the instantaneous retrieval of thermodynamic thickness growth rate. Whereas PIOMAS

models sea ice motion again using atmospheric reanalysis, SLICE uses a sea ice motion satellite product when used to model
675 basin-wide sea ice thickness i i i i

thermodynamie-effeets—For-thesereasons;—a—. This sea ice motion product and the snow—ice interface temperature product
mean SLICE is heavily observationally constrained. The comparison between SLICE, PIOMAS and K21 show that these
assumptions and simplifications do not degrade resultant sea ice thickness i i ifi

680 for-investigating-thermodynamic-and-dynamic—sea—icephenomena-tha
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to-Antaretiec-seaice-or-freshwaterbodies—values when SLICE thermodynamic growth rate is used to model absolute thickness
on a basin-wide scale, even without a deformation component.

of both-thermodynamieand-dynamie-Figure 8 is encouraging for the capability of SLICE to capture volumetric sea ice
changes on a basin-wide scale. Per the model described by Eq. (1), sea ice volume is only added through thermodynamic
processes—dynamic processes only serve to rearrange the volume already present. Though this statement does invoke the false
assumption that dynamic processes do not change the density of the ice. it seems to be a factor in explaining the volumetric
results. Though dynamic processes do not directly change sea ice volume, their changing of the thickness of ice at a given

location does impact thermodynamic processes by virtue of f being a function of thickness, H, in Eq. (1). Inspection of Eq. (8

indeed shows that H impacts 22 . In regions where deformation increases sea ice thickness, SLICE will overestimate sea ice
thickness increase and in regions where deformation decreases sea ice thicknessgrowth-will-be-ereated—, it will underestimate

sea ice thickness increase. These phenomena, along with any phenomena inherent to either reference dataset, may explain

volumetric differences between SLICE and the reference datasets.

6 Conclusions

New methods for observing snow—ice interface temperature (Lee and Sohn, 2015) have made possible a new strategy for
observing thermodynamic sea ice thickness growth from space during the winter growth season: Stefan’s Law Integrated
Conducted Energy (SLICE). The new strategy involves coupling observed satellite retrieved snow—ice interface temperature
with Stefan’s Law (Stefan, 1891; Lepparanta, 1993). In the Stefan’s Law relationship, latent heat of fusion is conducted from the
bottom of the ice layer where new ice forms to the snow—ice interface and this rate of conduction and accretion is calculated

using the snow—ice interface temperature and an—asstmed-a parameterized freezing point temperature at the bottom of the
ice layer. An-initial-valueis—required-as-SEICE-—ealeulates-The snow—ice interface temperature retrieval algorithm used to
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sourees—and{4)no-heat-flux—from-the-sea—waterequation uses passive microwave brightness temperatures from the AMSR-E
and AMSR?2 instruments (Lee and Sohn, 2015). Gridded brightness temperature data from these instruments are available at
daily temporal resolution in the polar regions (Cavalieri et al., 2014; Markus et al., 2018), meaning modelled daily sea ice

thickness growth is available basin-wide. Lee et al. (2018) provides a method for retrieving snow—ice interface temperatures

using passive microwave brightness temperatures from the SSM/I and SSMIS instruments, allowing for the application of
SLICE to sea ice growth seasons beginning in 1987. SLICE requires an initial sea ice thickness value is required and does not
capture melting.

When SLICE is initialized with an ice mass balance buoy thickness and compared against that buoy’s ice thickness profiles

during the ice growth season, the retrieval method compares extremely-well with the buoy observed sea ice thickness growth.
Using ten buoys from 2003 to 2016, the mean linear correlation value is 6:994-0.88 and the mean bias is 6:008-m—TFwe
sets—of-0.08 m. SLICE can be used to model basin-wide i i '

beginning-in-the-years2012-2020-using-an-initial-state-from-the-sea ice thickness by applying the thermodynamic growth

retrieval to individual sea ice parcels and advected the parcels across the basin using a sea ice motion product. This basin-wide
methodology was applied to the winters between late 2012 and early 2020 using AWI CS2SMOS andPIOMAS-datasets-SEICE

aderactimatad—vohime srowth—in o vhan compared—to-PIOMA S _with moan o O in v ca diffaranca_and

basin-wide sea ice thickness as the initial state. Results show that SLICE

erforms comparably to PIOMAS and K21, despite the assumptions and simplification that allow for the direct retrieval of
instantaneous thermodynamic growth rate.

thermodynamic or dynamic effects, are not capable of this spatial and temporal coverage. They also do not discriminate between
dynamic and thermodynamic effects. For these reasons, a sea ice thickness dataset based on SLICE will be especially qualified
for investigating thermodynamic and dynamic sea ice phenomena that are small scale in space and time. SLICE need not be
initialized at the beginning of the growth season and applied for an entire growth season but can be initialized at any time
during the growth season and applied to any interval of time, allowing for use with case studies or other small time and space
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scale events. Additionally, the high temporal resolution retrieval of thermodynamic effects will allow for creation of useful
datasets of surface energy flux from latent heat of fusion.

Code and data availability. Data used in creation of all figures is available at https://doi.org/10.5281/zenodo.6554832. Code for creation of
data and figures is available at https://doi.org/10.5281/zenodo.6561431 and https://github.com/janheuser/SLICE/releases/tag/1.0.0. The fol-
lowing auxilliary datasets were used and are available at these locations: AMSR-E and AMSR?2 brightness temperatures, https://doi.org/10.
5067/AMSR-E/AE_S125.003 and https://doi.org/10.5067/TRUIAL3WPAUP; AMSR-E and AMSR?2 SIC, https://doi.org/10.5067/AMSR-E/
AE_SI25.003 and https://doi.org/10.5067/TRUIAL3WPAUP; AWI CS2SMOS, https://www.meereisportal.de; sea ice motion vectors, https:
//doi.org/10.5067/INAWUWO7QH7B; OIB, https://doi.org/10.5067/G519SHCKWQV6; CRREL IMB, http://imb-crrel-dartmouth.org; PI-
OMAS, http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly; Kang et al., 2021, https://doi.org/10.1029/2020MS002448.

Appendix A
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2020, a, d, g, j, m, p, s, v) SLICE sea ice thickness for 1 April, c, f, 1, 1, 0, r, u, x) AWI CS2SMOS sea ice thickness from 1 April and b, e, h

k, n, q, t, w) PIOMAS sea ice thickness from 1 April.
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Figure A2. SLICE parcels on March 31 2013 (a) regridded using total parcel volume per grid cell divided by grid area, (b) counts within

rid cell and (c) regridded mean parcel thickness within each grid cell. The volume per grid cell approach is unrealistic and dominated b
erroneous convergence and divergence of parcels within grid cells.
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