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Abstract. Data assimilation is an essential procedure in hydrological forecasting systems. it aims to incorporate some obser-

vations from the film when they become available in order to correct the states of the model prior starting the forecasting

phase. By this way, the forecast uses an initial state of the model that is closer to reality. Among assimilation methods, the use

of particle filters is increasingly popular because of its minimal assumptions. The baseline idea is to produce an ensemble of

scenario (i.e. the particles) using pertubation fot the forcing variables and/or state variables of the model. The different particles5

are weighted using the observations when they become available. Nevertheless, implementing a particle filter over domains of

large spatial dimensions remains challenging: the number of required particles rises exponentially as domain size increases.

Such situation is referred to as the curse of dimensionality, or a dimensionality limit. A common solution to overcome this

issue is to localize the particle filter, which consists in dividing the large spatial domain into smaller portions ("blocks") and

applying the particle filter separately for each block. Although this solution can solve the above mentionned dimensionality10

problem because it reduces the spatial scale on which each particle filter must be applied, it can also create some spatial dis-

continuities when reassembling the blocks to form the whole domain. This issue can become even more problematic when

additional data is assimilated. The purpose of this study is to test the possibility of remedying the spatial discontinuities of the

particles by locally reordering the particles.

We implement a spatialized particle filter to estimate the snow water equivalent (SWE) over a large territory in eastern15

Canada by assimilating local SWE observations from manual snow surveys. We apply two reordering strategies based on 1)

a simple ascending order sorting and 2) the Schaake Shuffle and evaluate their ability to maintain the spatial structure of the

particles. To increase the amount of assimilated data, we investigate the inclusion of a second data set (SR50), in which SWE is

indirectly estimated from automatic measurements of snow depth using sonic sensors. The two reordering solutions maintain

the spatial structure of the individual particles throughout the winter season, which significantly reduces the spatial random20

noise in the distribution of the particles and decreases the uncertainty associated with the estimation. The Schaake Shuffle

proves to be a better tool for maintaining a realistic spatial structure for all particles, although we also found that sorting

provides a simpler and satisfactory solution. The assimilation of the secondary data set improved SWE estimates in ungauged

sites when compared with the deterministic model, but we noted no significant improvement when both snow courses and the

SR50 data were assimilated.25
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1 Introduction

The accumulation and melting of snow dominate the hydrology of Nordic and mountainous regions (Doesken and Judson,

1997; Barnett et al., 2005; Hock et al., 2006). In these regions, accurate information about snow water equivalent (SWE) is

crucial for streamflow forecasting (Li and Simonovic, 2002) and reservoir management (Schaefli et al., 2007). Over large30

territories or catchments, the spatial distribution of SWE can be assessed using remote sensing (Goïta et al., 2003) or snow

modeling (Marks et al., 1999; Ohmura, 2001; Essery et al., 2013). The advantages of snow modeling include the possibility to

generalize over large territories and ensure a complete temporal coverage with a resolution determined by the user. However,

as with any kind of model, snow modeling is subject to uncertainty and inaccuracy stemming from errors in the inputs or the

model structure itself (structural uncertainty). The origin of structural uncertainty includes both epistemic uncertainty and one’s35

perceptual model (Beven, 2012). Those factors, in addition to tradition (or "legacy", see for instance Addor and Melsen, 2019)

influence one’s choice of model algorithmic structure, level of complexity and process description (e.g., Clark et al., 2011)

Given that SWE is a cumulative variable, these errors obviously increase in importance throughout the winter, making SWE

estimates highly uncertain at the beginning of the melting season. Nonetheless, a correct assessment of the spatial distribution

of SWE over large domains is often required for diverse applications, including flood forecasting in large catchments. There-40

fore, any data assimilation technique for snow that can be applied to such a large spatial domain with satisfactory results is

of very high practical importance for operational hydrology, as it could potentially improve flood forecasting and reservoir

management.

Data assimilation can be used to limit the accumulation of uncertainty and error from input data and models. The general

idea is to correct the state variables of the model using the observations when they become available. Several elaborate data as-45

similation schemes have been proposed in the literature to deal with these limitations, including optimal interpolation (Burgess

and Webster, 1980), ensemble Kalman filtering (Evensen, 2003), and particle filtering (Gordon et al., 1993; Moradkhani et al.,

2005). The latter relies on fewer hypotheses than the other schemes in relation to the nonlinearity and non-normality of the

uncertainty distributions of the model’s input variables, state variables, and outputs. The particle filter (PF) is based on the

simulation and weighting of different scenarios (particles) rather than modifying the state variables of the model; thus, the50

physical consistency of state variable is ensured and the disruption of cross-correlations between state variables is avoided.

These scenarios are generated within the range of the uncertainty of the input data and/or the model structure. Assessing or

defining the range of uncertainty for each variable is not a trivial task, but it is also not unique to the particle filter (see, for

instance, Thiboult and Anctil, 2015). The particles are weighted using the observations when they become available. These

weights can be used to build the distribution of the variable of interest (model output).55

A common limitation of the PF is the risk of particle degeneracy. After a certain number of time steps, the evolution of

most particles brings them so far from the observation that they are associated with a weight close to zero. This can be seen

as an impoverishment of the filter with fewer and fewer useful particles. At some point, a single particle concentrates all the
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weight, and a distribution can no longer be built. This degeneracy can be avoided using some kind of particle resampling; the

particles with the lowest weights are discarded, whereas the better ones are duplicated. Several resampling algorithms have60

been proposed in the literature, such as those of Gordon et al. (1993); Douc and Cappe (2005); Leisenring and Moradkhani

(2011).

The PF has been successfully used for the local (onsite) assimilation of snow data (Leisenring and Moradkhani, 2011;

Magnusson et al., 2017). The application of PF over large territories, however, remains challenging. The number of particles

must grow exponentially with the dimension of the observed space to avoid filter degeneracy (Snyder et al., 2015). This “curse65

of dimensionality” (Bengtsson et al., 2008) is a severe drawback for the application of the PF over large spatial domains with

a consequent number of observations.

Several procedures have been proposed to overcome the curse of dimensionality. A first approach, known as error inflation

(Larue et al., 2018), consists of increasing the error associated with the observation to make the filter more tolerant. Cluzet et al.

(2020) proposed a generalization of this approach to apply it over large domains. The most common approach to overcome the70

curse of dimensionality is localization (Farchi and Bocquet, 2018). This family of methods assumes that points separated by a

sufficiently large distance are independent. Then, given this independence, the assimilation is performed locally, that is to say

only observation close enough to a given site of interest are considered. This can be achieved with techniques such as spatially

limited block (where the space is divided in fixed spatial tiles) or localisation radius (where the selection of observation is

proper to each site of interest). In this way, the impact of each observation is limited in space, and the assimilation is performed75

on several subregions of lower spatial dimensions.

Recent work involving spatialization or the PF for assimilating SWE over large spatial domains includes that of Cluzet

et al. (2020) who developed the k-local framework to select the appropriate data set to be assimilated for each site of interest;

this selection is based on the cross-correlation between observations and ensemble values. Cantet et al. (2019) proposed a

spatialized particle filter using the localization approach. They used spatially structured perturbations to generate the particles,80

computed the weights of the particles locally for each observation site, then interpolated the weights in space. The underlying

assumption of their method is that for any spatially coherent particle (i.e., model simulation), sites that are close to each other

in space should be characterized by similar weights. The method was successfully applied to the assimilation of SWE data

from manual snow surveys in the snow module of the HYDROTEL model (Turcotte et al., 2007) over the province of Quebec

in eastern Canada. The spatialized particle filter from Cantet et al. (2019) is now fully operational for SWE assimilation in the85

context of flood forecasting in Quebec. This approach is then considered as the baseline one from an operational perspective

in Quebec.

Although localization is an effective means of circumventing the curse of dimensionality, this approach can create physically

unrealistic spatial discontinuities because of the local resampling implemented independently at different sites and because of

the resulting noise (Farchi and Bocquet, 2018). This can occur when a global particle is formed (post-resampling) with a given90

particle on block a and with a different particle on the adjacent block b. The apparition of these discontinuities can be mitigated

by improving the resampling algorithm. For instance, Farchi and Bocquet (2018) proposed the use of the optimal transport

theory to minimize the movements of local particles during resampling. Such a technique aims to prevent the apparition of
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discontinuities, nevertheless when resampling must be performed frequently, it cannot prevent every discontinuities. Rather

than (or in addition to) preventing the discontinuities, it is possible to mitigate them. Such a process can be called particle95

gluing. Some authors suggest smoothing out the discontinuities by space averaging the resampled fields (Penny and Miyoshi,

2016). This appears to be an effective but rather subjective way to remove the discontinuities, as this smoothing is not related

to the underlying spatial structure of the physical variable. A solution for gluing the particles back together and solving the

spatial discontinuities becomes necessary when the number of observation sites or the temporal frequency of the observations

increases. Whereas being able to assimilate more data is always appealing to better capture the spatial and temporal variability100

of the snowpack properties, a greater amount of resampling is expected when more observations are used to evaluate the

particles of the PF. A greater number of resamplings is likely to create new spatial discontinuities.

In Cantet et al. (2019), only the data from manual snow surveys were assimilated in the snow model. The fact that this

type of measurement is not available continuously in time reduces the risk of spatial discontinuities appearing because of

resampling. However, a large number of SR50 sonic sensors, which measure snow depth at an hourly frequency, have been105

deployed across Quebec since 2000. Furthermore, Odry et al. (2020) recently proposed a machine-learning model to evaluate

SWE from snow depth, temperature, and precipitation indicators in Quebec. On the one hand, there is potential added value in

including multiple types of snow data in the particle filter. Those advantages include the addition of new observation sites, but

also a finer consideration of the temporal variation of the snowpacks (snowfall, detection of the beginning of the snowmelt,...).

On the other hand, including data that are available continuously ans reducing the assimilation time step increases the risk of110

spatial discontinuity appearing.

In a context where snow observations are increasingly automated, it becomes crucial to remedy the dimensionality curse.Here

we present an innovative means of gluing the particles of a localized particle filter back together using the Schaake Shuffle

(Clark et al., 2004). The Schaake Shuffle was introduced to rebuild the spatial structure in forecasted ensemble meteorological

fields. It uses a set of spatial observations of the variable to reorganize the members of an ensemble cell by cell over a spatial115

grid to bring their spatial structures closer to the observations. It is an actual shuffling of the members, and there is no alteration

in the distribution of the local ensemble. Considering a localised setting of particle filter is necessary to overcome the curse

of dimensionality, and considering that spatial discontinuities can arise from this localised setting. We hypothesize that the

Schaake Shuffle can be used within a localized particle filter to glue back the resampled particles together and restore the

spatial correlation. To rebuild the short range correlation among the particles using an alternative and simpler solution, we also120

implement a simple sorting, in ascending order, of the particles’ SWE.

To verify this hypothesis, we propose using the spatial particle filter developed by Cantet et al. (2019) and implement the

Schaake Shuffle after each resampling of the particles. For comparison purposes, we use a study area that includes that of

Cantet et al. (2019) and the same model. The reference set of the Schaake Shuffle is simulated over a historical period using a

deterministic run of the model without any assimilation, as no reliable spatial observation of snow is available for this region.125

The availability of SR50 data provides a great opportunity to test both particle reordering when the amount of data is in-

creased and the ability of our approach to assimilate other types of data having different uncertainties in the spatial particle filter

(SPF). In this context, and as a secondary objective of this study, we also hypothesize that the assimilation of this secondary
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SWE data set improves the estimates of SWE compared with the deterministic simulation and that the addition of data in the

assimilation scheme improves the overall quality of the SWE estimates in ungauged sites.130

The next section describes the study area and the data. The methodology is outlined in a third section, and the results and

related discussion are presented in the fourth part.

2 Experimental setup

2.1 Study area and snow data

Quebec is a province in eastern Canada. For most catchments, the hydrology of rivers within the province is largely influenced135

by the marked accumulation of snow during the winter, with an annual maximum peak flow occurring during the spring freshet.

For this reason, the Quebec government has put much effort into monitoring and simulating SWE across the province. Our

research form a part of this strategy.

Historically, SWE monitoring has occurred through manual snow surveys using standard Federal Snow Samplers. The

measurements are undertaken manually at various sites along predetermined snow lines at differing temporal frequencies140

(monthly to bi-weekly). This sampling strategy provides information regarding SWE, snow depth, and snow bulk density.

Since the beginning of the 2000s, automated snow sensors have been installed across Quebec. These automatic sonic sensors

(SR50) measure snow depth continuously at an hourly time step. Although the temporal continuity of these snow depth series

is a clear advantage, the absence of information regarding SWE is a drawback. This limitation is overcame by deriving daily

time series of SWE from the SR50 data using an artificial neural network model developed for this purpose and trained and145

validated against the manual snow survey data set (Odry et al., 2020). Because this is an indirect estimation of SWE, it is

assumed that this second SWE data set is characterized by greater uncertainty than the data from the manual snow surveys. To

be able to make use of both data sets, we focus on the 2011–2015 period for which both data sets have a relatively higher and

more stable number of SR50 sensors.

All snow data used in this research was provided by the Réseau de surveillance du climat du Québec (MELCC, 2019),150

operated by the Quebec Ministère de l’Environnement et de la Lutte contre les Changements Climatiques (MELCC), from the

other private and public sectors members of the Réseau météorologique coopératif du Québec (RMCQ) and from their partners

outside Quebec. The spatial distribution of observation sites is presented in Figure 1.

Figure 2 provides the observed SWE values from the whole manual snow survey dataset averaged by month or by year, for

the individual sites and the whole area. This information has to be taken with caution as the number of observation per site155

and year as well as the date of observations can change throughout the period. Nevertheless, it is possible to appreciate that the

maximum SWE value is reached in March for most station (i.e. the south of the province) while it is in April for the Station

with the most SWE (i.e. the northern part). No general trend is visible in the evolution of the monthly average. Nevertheless, it

is possible to see the the mean April SWE appears to be higher in the 70s which is a known reality in Quebec hydrology.
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Figure 1. Snow observation sites in and around Quebec (Canada)

This research focuses on a portion of the province located south of 53◦N, where most of the population is concentrated.160

Northern Quebec differs markedly from the more southern region in terms of the amount of available snow data and snow

characteristics; therefore, its inclusion would require a separate study.

2.2 Snow model and meteorological forcing

We use the HYDROTEL snowpack model (HSM) in this study (Turcotte et al., 2007), which is used operationally for real-time

SWE estimation at the MELCC. HSM is a temperature index–based model and therefore provides a simplified representation165

of the water and energy budgets of the snowpack. It is a rather simple snow model that only requires daily precipitation and

minimum and maximum temperatures as inputs. The implementation and parameterization of the model are those proposed by

Cantet et al. (2019). More detailed specifications about the model structure and physics can be found in Turcotte et al. (2007).

To force the HSM, daily grids of precipitation and minimum and maximum temperatures are used. They are produced by

the MELCC by kriging in situ measurements from local meteorological ground stations (Bergeron, 2017) on a regular 0.1°170

resolution grid. Along with the interpolated variables, the corresponding kriging variances are also produced. They cover the

entire 1961–2018 period.
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Figure 2. Averaged SWE observations in the study area

3 Methodology

3.1 Spatialized particle filter

The particle filter implemented in this study is the one developed and tested by Cantet et al. (2019). This method was developed175

to assimilate at-site snow data into a large-scale modeling framework. The main feature is to generate particles characterized

by a realistic temporal and spatial correlation so that each particle can be seen as a reasonable scenario. The observations are

then used to weight different particles when and where they are available. In this context, it is hypothesized that the weights

should be spatially correlated, given that the particles are also spatially correlated. In a second step, the weights estimated at

observation sites are interpolated in space. To avoid filter degeneracy, Cantet et al. (2019) implemented the sampling importance180

resampling algorithm from Gordon et al. (1993).

7



One can notice that the spatialized particle filter proposed by Cantet et al. (2019), differs from more traditional approaches

such as the ones described by Farchi and Bocquet (2018). In Cantet et al. (2019)’s approach, the likelihood of the particles

is evaluated locally at each observation sites. The likelihood is then multiplied by the prior weights to derives the posterior

weights. The posterior weights at observation sites are then interpolated (i.e. averaged) in space. In traditional localized ap-185

proach, the likelihood is evaluated over a certain area (block or radius around an observation), and the posterior weights are

directly derived for this area but multiplying the the prior by the likelihood. The interpolation step in Cantet et al. (2019)’s

approach could tend to make it less selective and too keep particles as long as one observation one observation provides it with

a sufficiently high weight.

Following Cantet et al. (2019), we generated 500 particles using perturbations of the meteorological input data and the190

predicted SWE. Perturbations of the precipitation and temperature inputs should represent the uncertainty associated with

the forcing. Given that these inputs are created through a spatial interpolation, they are perturbed using an additive noise

following a Gaussian distribution for which variance is set to the interpolation variance. The simulated SWE is perturbed

with a multiplicative uniform noise proposed by Clark et al. (2008) and used in Leisenring and Moradkhani (2011); this

perturbation process represents the structural uncertainty associated with the snow model. The temporal correlation of the195

noise is maintained using the formulation (Evensen, 1994):

st = αst−1 +
√
1−α2ηt, with s0 ∼N (0,1), (1)

where st is the random noise at time t, α represents the temporal correlation and is set at 0.95, and ηt is a random white noise

following a standard normal distribution.

The spatial correlation of the noise is built up using the exponential model (Uboldi et al., 2008):200

r = exp
−d2

L2
, (2)

where r is the spatial correlation between two points separated by a distance d, and L is the range of the correlation, set at

200 km (Cantet et al., 2019).

In our study, local particle filters are implemented at the observation sites. The weight of a given particle at an observation

site at a specific time when an observation is available depends on the likelihood of the measured SWE value given the SWE205

associated with this particle. This likelihood is represented by a Gaussian process:

yt|xit ∼N (yt−xit,σ2), (3)

where yt represents the observed SWE at time t, xit is the SWE simulated by the ith particle, and σ is the standard deviation

of the Gaussian process and is related to the uncertainty associated with each type of SWE observation and is expressed in

SWE units. For manual snow surveys, σ should represent both the uncertainty of the measurement itself and the error of210

spatial representativeness, i.e., how well a local measurement can represent the SWE averaged over a grid cell. σ is tuned to

a ∗ (0.1 ∗ yt +1), where a is a unitless parameter set at 3 (set by trial and error by Cantet et al. (2019)). for the snow survey
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observations and to be determined for the SR50. In the case of SWE estimated from the SR50 snow depth measurements, σ

should also represent the structural uncertainty of the artificial neural network model (Odry et al., 2020) used to estimate SWE.

Moreover, although manual snow surveys average 10 measurements along a 100–300 m snow line, SR50 sensors provide a215

purely at-point measurement. As a consequence, the error for spatial representativity should be larger for SR50 than for manual

snow surveys.

Under these hypotheses, when a given observation becomes available at time t, the weight xit associated with the ith particle

at the observation site can be updated as:

wi
t =

wi
t−1p(yt|xit)

NP∑
i=1

wi
t−1p(yt|xit)

, (4)220

where NP is the number of particles. One can notice that the weight of a particle at a given time step depends on the weight

at the previous time step. Therefore, the assimilation of continuous data with a time correlation can lead to assimilating the

same information several times and to give too much weight to this information. Here, it is chosen to assimilate the SR50

at a weekly frequency. In operational real-time simulations, the model is restarted each day from seven days in the past to

include all observations obtained over that one-week period. It would thus be possible to assimilate only the most recent SR50225

observation and have an assimilation frequency close to weekly.

At a given time step, the weights are updated for any newly available observation using Equation 4. The weights at the

observation sites are spatially interpolated using a simple inverse distance-weighted method to estimate weights for each grid

cell. This process makes it possible to include different observations obtained inside the same grid cell.

Once the weights have been updated and interpolated, it is possible to investigate the risk of filter degeneracy. Degeneracy230

occurs when a few particles concentrate all the weight. For each observation site and grid cell, Neff
t , the effective sample size

at time t is computed as:

Neff
t =

1
NP∑
i=1

(wi
t)

2

. (5)

If the effective sample size falls below the 0.8NP threshold (Magnusson et al., 2017), the particles are then locally resampled.

It is important to highlight that whereas the particles are generated with a spatial structure, they are evaluated and resampled235

locally. The resampling is performed using the SIR algorithm (Gordon et al., 1993) and consists of deleting the particles with

the lowest weights and duplicating those with the largest weights. The objective of this resampling is to obtain a set of particles

associated with equal weights of 1
NP

that describe the same distribution as the weighted particles before resampling. Through

this process, the filter retains a large number of meaningful particles, while the posterior distribution of SWE is marginally

affected (the resampling algorithm should be selected to limit the impact on the posterior distribution). Moreover, the SWE240

values and other state variables of the different particles are not modified.
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Although the resampling aims to preserve the filter from degeneracy, it is also responsible for the risk of spatial discontinuity,

as it is performed independently for each site and grid cell. The risk of discontinuity is managed using a reordering of the

particles.

3.2 Recovering the spatial structure by reordering the particles245

We implemented two alternative procedures to maintain the spatial structure of each particle despite resampling: the Schaake

Shuffle, proposed by Clark et al. (2004), and a simple sorting of the particles at each site.

The Schaake Shuffle is a reordering method that aims to recover the space–time structure in an ensemble of precipitation or

temperature forecast fields. In the original application of the Schaake Shuffle, the spatial structure of the ensemble members

is lost during a downscaling procedure. The idea behind the Schaake Shuffle is to rank the members of the ensemble and250

match these ranks with those of past observations selected randomly from similar dates in the historical records. Although the

Schaake Shuffle was not initially developed to be applied to the field of snow or data assimilation, there is no technical difficulty

in transferring its application from an ensemble of meteorological forecasts to a set of particles describing a snowpack.

For a given time and location, let X be the vector of length NP of SWE values for all the particles. A vector of equal size Y

is built from historical record at the same location and similar date. Considerations about the construction of Y are provided255

in the following sections. The vectors χ and γ are the sorted versions of X and Y, respectively:

X= (x1,x2, ...,xNP
), (6)

χ= (x(1),x(2), ...,x(NP )), where x(1) ≤ x(2) ≤ ...≤ x(NP ), (7)

Y = (y1,y2, ...,yNP
), (8)

γ = (y(1),y(2), ...,y(NP )), where y(1) ≤ y(2) ≤ ...≤ y(NP ). (9)260

Moreover, B is taken as the vector of indices describing the positions of the elements of γ in the original vector Y. That is

to say the ith element of B describes where to find the ith element of γ in Y. Finally, if Z is the reordered version of X, then:

Z= (z1,z2, ...,zNP
), with (10)

zq = x(r), (11)

q =B[r], and (12)265

r = 1, ...,NP . (13)

This reordering must be applied at each site or grid cell. A more detailed procedure and a visual example are provided in

(Clark et al., 2004).

As it appears in equations 7–13, the main limitation to the application of the Schaake Shuffle is the availability of historical

records for the construction of vector Y. It is necessary to have records covering each site (observation sites and grid cells) and270
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be of sufficient length to be able to draw NP values from similar periods for each site. Given that an extensive data set does not

exist for SWE in Quebec, we propose to use a record of simulations using the HSM in its deterministic configuration without

assimilation. This selection relies on the assumption that the model without data assimilation can correctly estimate the spatial

structure of SWE. This is a fairly strong assumption, nevertheless in the absence of a spatially distributed SWE product covering

the whole study area for a long period of time, and considering the spatial structure in the HSM deterministic simulation is275

controlled by the meteorological inputs and not a pre-imposed apstial structure, this choice is considered reasonable One can

notice that the actual SWE values in the historical records are not used in the Schaake Shuffle, only their respective rank is

used to reorder the particles, so the estimation errors and bias from the model are not of prime importance. In our application,

the vector Y is constructed from a reference set of simulations produced with a deterministic run of the HSM for the years

1961 to 2004. It is assumed that the overall spatial structure of SWE remains the same during this period. This assumption is280

difficult to verify as there is no spatial observation of SWE covering the whole area and period, but Figure 2 does not seem to

show strong tendency over the period. Following Clark et al. (2004), only values associated with a date within a window of ±
7 days around the assimilation date (but with different years) are used. Vector Y is built by randomly drawing 500 values from

the 660 available records.

As a simpler alternative to the Schaake Shuffle, we also implemented a sorting of the particles. In this case, at each site, all285

500 particles are sorted in ascending order of SWE values. The idea is to rebuild the correlation between the sets of particles

in neighboring sites—in the sense of the rank correlation. Although the sorting procedure is much simpler to implement and

does not require any reference record, it also removes the possibility to consider each particle as a reasonable snow scenario

at a large scale. Compared to the Schaake-Shuffle, the sorting can be seen as a way of trading the large-scale structure for a

short-scale one.290

3.3 Validation procedure and metrics

To evaluate the impact of the different reordering strategies on the spatial structure of the particles and the final SWE estimation,

we use experimental variograms. These plots provide the evolution of the variance between the sites as a function of the

separating distance. Because the variograms are only computed for a single date, the Pearson correlation between the 500 SWE

values (from each particle) at two nearby sites is also used and computed at each time step so that the temporal evolution of the295

spatial structure can also be assessed. When investigating the spatial structure, all snow survey sites are used for assimilation.

To assess the ability of the overall method to estimate SWE, we compute two deterministic scores, the root mean squared

error (RMSE) and the mean bias error (MBE), as well as two ensemble-based scores, the continuous ranked probability score

(CRPS, Matheson and Winkler, 1976) and the skill-to-spread ratio (Fortin et al., 2014). These metrics are summarized in Table

1. As the spatial particle filter intends to produce estimates at ungauged sites, only 50% of the manual snow survey sites are300

used for assimilation; the other half is kept as a validation subset. This sub-sampling strategy is presented in Figure 1. All

provided scores are computed only on the validation subset.
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Table 1. Performance metrics

Metric Focus Perfect value Formula

RMSE Predictive accuracy 0 RMSE =

√√√√ 1
n

n∑
k=1

(ŷk − yk)
2

MBE Systematic bias 0 MBE = 1
n

n∑
k=1

(ŷk − yk)

CRPS Global ensemble evaluation 0 CRPS = 1
n

n∑
k=1

+∞∫
−∞

(F e
k (u)−F o

k (u))
2du

Skill-to-spread ratio Adequacy of spread and skill 1 r = RMSE√√√√√√ 1
n

n∑
k=1

vark

n is the number of points, xk and x̂k are respectively the estimated and observed SWE values, vark is the variance of the particles of the kth point,

F e
k is the cumulative distribution function described by the weighted particles of the kth point, and F o

k is the Heaviside function associated with the

observation.

4 Results and discussion

4.1 Spatial structure of the particles

The variograms of the estimated SWE for February 28th, 2012, for the different configurations (deterministic run, ensemble305

open loop, assimilation without reordering, assimilation with sorting of the particles, and assimilation with Schaake Shuffle)

are provided in Figure 3. We selected February 28th because February is considered to be the last month of the accumulation

season. The deterministic run corresponds to the deterministic simulation of HSM without any assimilation, whereas the three

other curves correspond to the weighted average of the 500 particles. The five variograms are very similar, which demonstrates

that the HSM in the deterministic configuration and the different assimilation strategies provide final SWE estimates with310

comparable spatial structures. In particular, the variograms have a semivariance below 1 cm2 at a short-range. The semi-

variance at null distance (also called nugget effect) is important, as it describes the spatial roughness or local noise. The

presence of spatial discontinuities would create a nugget effect. As expected the deterministic model is characterized by the

lowest nugget effect (around 0 cm2), which means an absence of local random noise, whereas it is interesting to note that

the assimilation without reordering has the largest nugget effect, with a value around 1 cm2. This large nugget effect can be315

a symptom of some noise affecting the correlation between neighboring sites. Finally, it can be seen, that the ensemble open

loop has a larger long distance semi variance which is a result of a larger dispersion of the particle expected in the absence of

assimilation. Despite those differences, one can conclude that the different configurations build comparable spatial structures.

The maps corresponding to the variograms in Figure 3 are provided in Figure 4. The five maps exhibit a similar spatial

pattern, although the map from the deterministic simulation (panel a) is most distinct from the other ones. This was expected320

because there is no assimilation involved in this simulation. The deterministic simulation also provides a smoother map com-
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Figure 3. Variograms of the estimated snow water equivalent (SWE) on February, 28, 2012

pared with the other three, which is compatible with what is observed in the variograms.The overall similarities of the different

maps was expected considering they are characterized by similar variograms. Figure 4 evidences that the assimilation process

as well as the different reordering do not impact the spatial structure of the final SWE estimate. The behaviour was expected as

the overall structure is driven by the forcing data and the spatially correlated perturbations. Figure 4 shows that the reordering325

process does not affect the overall spatial structure of the estimated SWE.

Nevertheless, although it is important to assess the spatial structure of the final SWE estimates, the spatial particle filter relies

on the assumption that the weights of the particles can be interpolated in space; therefore, the spatial structure of each particle

must be preserved. To verify this, we assess the variograms of the 500 particles for the three reordering options (Figure 5). In

Figure 5, the thin gray curves represent the variograms of the individual particles, whereas the bold colored lines are identical330

to those in Figure 3. Note that the vertical axes do not share the same scale. Moreover, the maps corresponding to two particles

(number 250 and number 500) are provided in Figure 6 to illustrate the link between the variogram and spatial pattern. First,

in the cases of ensemble open loop and whithout reordering (Figure 5a and b), it is clear that the particles have a very different

spatial structure from their weighted average. More specifically, all particles are characterized by a much greater nugget effect,

ranging from approximately 100 cm2 to around 600 cm2; therefore, there is much short-range random variability. These nugget335

effects can be observed on Figure 6a and b as well as c and d, where the maps have a very granular aspect. That the individual

particles exhibit a large nugget effect, whereas their weighted average does not exhibit this effect, indicates the presence of a

large amount of random noise in each particle, which appears to be incompatible with the underlying assumption of the spatial

particle filter.
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Figure 4. Estimated snow water equivalent (SWE) maps for February, 28, 2012; (a) deterministic run, (b) ensemble open loop (c) no

reordering, (d) sorting, (e) Schaake Shuffle; points represents local measurement on this day

Figure 5. Variograms of the particles for the different reordering strategies for February, 28, 2012; (a) ensemble open loop; (b) no reordering;

(c) sorting; (d) Schaake Shuffle

Figure 5c presents the variograms of the individual particles when the sorting of the particles is used after each resampling.340

The sorting strongly attenuates the random noise in the particles. Most particles fall around the final estimate; nevertheless,

some still exhibit a very large nugget effect. With the reordering by ascending order, we expected that some particles would

show a disturbed spatial structure. Figure 6e and f provide more insight regarding this expectation. The two particles present

very different patterns. This difference was expected, as one particle is located in the middle of the ensemble, whereas the

particle 500 gathers all the highest SWE values. Such differences illustrate that with sorting, the individual particles cannot345

be considered as potential SWE map scenarios. The sorting can rebuild the short-range correlation, which is necessary for the

spatial particle filter, but the sorting can jeopardize the long-range correlation and the general spatial pattern.

Reordering the particles with the Schaake Shuffle appears to be a better option to fix the spatial structure of the particles.

Figure 5d illustrates that all particles have a near-zero nugget effect, and their variograms lie around that of the final estimate.
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Figure 6. Snow water equivalent (SWE) for two particles for February, 28, 2012. Particle #250 (a,c,e,g) and Particle #500 (b,d,h,h); ensemble

open loop (a and b), no reordering (c and d), sorting (e and f), and Schaake Shuffle (g and h)

This is compatible with the idea that the particles are alternative SWE scenarios, each providing a reasonable spatial structure.350

The same conclusions can be drawn from Figure 6h and g.

As a summary, Figures 5 and 6 demonstrate that the individual particles in ensemble open loop and assimilation without

reordering configurations are characterized by a non relistic spatial structure. In both cases, the particles have a strong nugget
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effect synonym to a large granularity on the map. The behavior is uncompatible with underlying assumption of the spatialized

particle filter. On the contrary, reordering methods both exhibit more realistic spatial structure of the individual particles, but the355

simple reordering procedure produce some problematic particles. Only the Schaake Shuffle is able to maintain an acceptable

spatial structure for all individual particles.

To evidence the temporal evolution of the spatial structure, we refer to Figure 7, which shows the evolution of the correlation

coefficient between the sets of particles at two given neighboring sites for winter 2011–2012. On this figure, the vertical dotted

lines represent the time steps when local weights from observation sites are interpolated to grid cells and both resampling and360

reordering are performed when necessary. Due to the proximity of the two sites, it is expected to have a strong correlation

between both sets of particles as SWE actually is correlated in space at short distance in reality. In addition, in the absence of

correlation between two sets of particles, the interpolation of weights in the spatial particle filter would make no sense.

Here, the case of data assimilation without resampling is also plotted, allowing us to observe the impact of resampling

and the spatial structure. Correlation decreases continuously with time for the cases without resampling (nor reordering) and365

without reordering. The main difference between the two options is a sudden drop of correlation values in March for the case

of resampling without reordering. This drop is associated with a resampling. Whereas resampling can be associated with a

large and immediate drop in correlation because of a disassociation of particles in the different sites, resampling cannot explain

the continuous decrease in correlation. This decrease can be explained, however, by the cumulative nature of the snowpack

and the perturbations. In this study and following Cantet et al. (2019), precipitation, temperature, and SWE itself are perturbed370

independently. The perturbations are generated with a spatial structure, meaning that perturbations applied to neighboring sites

are strongly correlated but are not identical. The simulated snowpack accumulates these differences throughout the winter, thus

explaining the continuous decrease in correlation. Therefore, it appears that the assumption used to justify the interpolation of

particle weights is not supported after a certain number of time steps without reordering, and resampling only aggravates the

problem.375

In Figure 7, the two reordering strategies maintain a very high correlation between neighboring sites. Some momentary

correlation losses are observed in April, which can be associated with the disappearing snow (some grid cells and particles

having no snow).

As a consequence, it appears that both reordering strategies can maintain the spatial structure of the particles. In the present

context, such a reordering is necessary to verify the underlying assumption of the spatial particle filter and makes it reasonable380

to interpolate the weights of the particle. From a more general point of view, reordering the particle appears to be an effective

way to deal with the spatial discontinuity created by the resampling in the case of localization of the particle filter. Reordering

by sorting is easier to implement, as it does require an additional data set, but in this case, the individual particles cannot be

seen as scenarios having a reasonable long-range correlation. In contrast, the Schaake Shuffle preserves the idea of each particle

being a potential scenario. Because the spatial particle filter relies largely on the spatially structured perturbations and particles,385

the Shaake Shuffle appears to be a better solution to remain in a situation where the assumption necessary to interpolate the

weight of the particles remains true over the short and long range. Nonetheless, the Shaake Shuffle requires a long spatialized

record to build the reference set. Here, we demonstrate that a historical deterministic run simulation can be used rather than
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Figure 7. Evolution of the correlation between between two adjacent grid cells over the winter 2011–2012

spatialized observations if we assume that the model can simulate a realistic spatial structure. In situations where a reference

set cannot be acquired or created, the reordering by particle sorting can be an acceptable alternative to maintain the short-range390

correlation inside the particles.

4.2 Snow water equivalent estimation

In this and the following sections, all scores are computed solely on the validation subset (see Figure 1); the SWE data from the

validation sites are never assimilated. The calculated scores intend to show the ability of the spatialized PF to estimate SWE in

ungauged sites.395

Figure 8 presents the cumulative distribution of the different performance metrics over the validation sites when only manual

snow surveys are assimilated. The data assimilation sensibly reduces the RMSE (panel a) and the MBE (panel b) relative to

the deterministic run simulation. The ensemble open loop simulation is characterized by as muche bias as the the assimilation

ones, but the RMSE values remains higher when using the assimilation. Nonetheless, these two deterministic scores are very

comparable for the three assimilation and reordering strategies. There is only a slight decrease in RMSE when using the400

Schaake Shuffle. Differences are more noticeable using the ensemble-based metrics. First and foremost, Figure 8c exhibits

a large decrease in CRPS when using one of the reorderings. As the RMSE are comparable, this improvement of the CRPS

is necessarily associated with a narrowing of the posterior distribution described by the particles. The CRPS considers two,

sometimes competing, aspects of ensemble quality. The first aspect is resolution. An ensemble has a good resolution (or

sharpness) when it discriminates events. For instance, a climatological ensemble that covers the whole range of possibilities,405

has no resolution. A deterministic simulation series that follows the observed series very closely has an excellent resolution. The
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Figure 8. Cumulative distribution of the scores calculated for the 50% validation snow courses

second aspect is reliability. Reliable ensembles display exactly the good amount of variability. For instance, a 95% confidence

interval computed from the daily ensemble is reliable if it contains the observation 95% of the time on average. The RMSE

is a measure of accuracy, which is related to resolution. If two different series of ensemble simulations have the same level

of resolution (similar RMSE) but different reliabilities, the more reliable one will have a lower (better) CRPS. This result410

can be linked with the reduced amount of random noise associated with the reordering of the particles (see Section 4.1). The

reduction of the ensemble spread is also apparent in Figure 8d. Because the skill (evaluated using RMSE) is not sensitive to

the reordering, the increase in the skill-to-spread ratio can only be explained by a drop in terms of spread. The ratio is also

systematically higher with the Schaake Shuffle than with the sorting, meaning that the Schaake Shuffle makes the spread of

the ensemble of particles even narrower. In the case of the simple sorting, 80% of the sites have a ratio below 1; thus, the415

particles are overspread. The situation improves slightly with use of the Schaake Shuffle. As expected, the ensemble open loop

simulation is characterised by the worst ensemble scores. In the absence of assimilation, the particles are free to evolve, and

the dispersion of the ensemble become very large.

Figure 8 show that even if the gain in deterministic error reduction from particle reordering is very limited. Nevertheless,

reordering the particle largely improve the ensemble scores, which mean that the posterior distribution of the particle is a better420

estimate of the actual uncertainty estimation. Considering data assimilation techniques in hydrology are mainly use for forecast

application, a better quantification of the uncertainty is very important achievement.
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4.3 Inclusion of the data from the SR50 sensors within the assimilation scheme

The inclusion of the SR50 in the experiment aims to provide a better spatio-temporal coverage by the observation as this

new dataset include new observation sites as well as continuous time-series. The first step before including the SR50 data is425

to estimate the uncertainty associated with the indirect observations. The total uncertainty is composed of the measurement

uncertainty, the depth-to-SWE conversion error, and the spatial representativeness error. Here, the spatial representativeness

error represents the difference between the local in situ observation and the simulated value, which is averaged over a 0.1°

resolution grid cell.

We assume that the uncertainty associated with the SR50 data follows specifications profided in section 3.1. Figure 9 displays430

the cumulative distribution of the performance metrics on validation sites when only the SR50 data is assimilated for different

a values. The first observation is that the lowest (worst) scores are achieved for an a-value of 4. Higher (better) scores are

attained at higher a-values, which confirms that the uncertainty associated with the SR50 must be greater than that for the snow

surveys. It also appears that if a is greater than 4, there are no large differences in the distribution of RMSE, MBE, or CRPS.

Thus, the performances are not very sensitive to the a-value as long as it is sufficiently high (greater than 4). In Figure 9d,435

the skill-to-spread ratio increases with the a-values of the uncertainty associated with the observations from the SR50. This

result indicates that greater uncertainty for these observations creates a larger spread of the particle, which is expected as a

higher observation uncertainty provides greater flexibility to the particle around the observation and gives more weight to the

prior distribution. Here, in the end and considering the observations above, we selected an a-value of 10 for the SR50 data as a

reasonable compromise.440

Figure 10 displays the cumulative distributions of the performance metrics over the validation sites, according to the type of

data that is assimilated: snow surveys only, SR50 only, or both. First, all assimilation schemes significantly reduce the RMSE

(panel a) for most sites compared to the deterministic run. These results, similar to those of Cantet et al. (2019), demonstrate

that the spatialized particle filter can assimilate local observations and use them to improve the global estimation of SWE. On

panel b, the assimilation schemes increase the MBE values in all sites relative to those of the deterministic simulation, which445

confirms that assimilation tends to correct the underestimation of the deterministic simulation. When comparing the RMSE

(panel a) and CRPS (panel c), depending on the type of data that is assimilated, improved results are obtained when only the

snow surveys are assimilated. The assimilation of SR50 observations only or of both types of observations simultaneously

displays comparable performances, although still higher (better) than that of the deterministic run. Thus, in absence of snow

surveys, it is possible and even desirable to assimilate estimated SWE data from SR50 observations to improve the simulation450

of SWE. Nonetheless, at this point, the validation process reaches its limitations. In our study, 50% of the snow survey sites

are used in validation; therefore, it is assumed that these observations represent the actual amount of SWE. Nevertheless, the

model simulates SWE over a grid having a 0.1° resolution, thus local observations may not be representative. Moreover, SR50

sensors and snow survey sites tend to not be installed in the same environment; SR50 sensors are generally installed as part of

ground meteorological stations, which are located in a more open environments as per the World Meteorological Organization’s455

guidelines, whereas snow surveys are almost always conducted in a forested environment. According to the official guidelines,
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Figure 9. Cumulative distribution of the scores for the validation sites when assimilating SR50 data, according to the applied uncertainty

model

a radius of 3m around each sampling point must be cleared from trees and other vegetation. Therefore, while manual snow

survey sampling points are not directly under the canopy, they are protected from the wind. Consequently, the validation of

snow survey sites only may produce a bias. Finally, in Figure 10d, we note that the type of assimilated data has a large effect on

the skill-to-spread ratio. The assimilation of SR50 greatly increases the ratio compared with the assimilation of snow surveys460

alone, whereas the assimilation of both types of data produces the highest values of skill-to-spread ratio. Given that the level

of skill (RMSE in panel a) cannot explain this difference, the assimilation of SR50 only or of both types of data therefore

decreases the ensemble spread. These results may be explained by the amount of assimilated data, as the more observations

are assimilated, the more the particles are constrained. The number of assimilated snow survey sites and SR50 are similar, but

even with a weekly frequency, the number of observations is much higher for the SR50, which explains the decrease in spread.465

Obviously, the number of observations is even higher when assimilating both types of observations.

5 Conclusions

In this study, we propose an improvement of the spatial particle filter introduced by Cantet et al. (2019). The reordering of

particles using the Schaake Shuffle technique or a sorting procedure can help maintain the spatial structure of the particles

20



Figure 10. Cumulative distribution of the scores for the validation sites according to the nature of the assimilated data

within the ensemble. The Schaake Shuffle appears to be more effective in recreating the overall spatial structure of all particles.470

This solution makes it more reasonable to hypothesize that it is possible to spatially interpolate the weight of the particles; this

is the basic assumption behind the spatialized particle filter. In cases where a sufficiently long reference record necessary to

implement the Shaake Shuffle cannot be acquired, a reordering by particle sorting can provide a good alternative. In a more

general context, particle reordering is a good remedial solution to solve spatial discontinuity problems arising from resampling

and localization when applying a particle filter to large spatial areas. Particle reordering may then be a new solution to the475

curse of dimensionality for particle filtering. To confirm this result, integration of the reordering procedures in different kind

of localized particles filter should be considered. While it has, been shown that the spatialized particle filter described in this

paper improved SWE estimation and provided better uncertainty estimates that previous versions or open loop simulation, it

would be beneficial to undertake a more general comparison of different localized particles filters (such as the ones described

by Farchi and Bocquet (2018) or Cluzet et al. (2020)).480

This research was also an opportunity to test the possibility of assimilating SWE estimates derived from automatic snow

depth observations (SR50) and an ensemble of artificial neural networks (Odry et al., 2020). We demonstrated that the assim-

ilation of this additional data set alone outperforms the deterministic simulation. This observation confirms the relevance of

this new SWE data set. However, the assimilation of both data from the SR50 and from snow surveys did not improve the

simulation when compared with the assimilation of only the manual snow surveys. We attribute this result to the lower quality485
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of the SWE estimates from the SR50 and also to the validation process itself, which involves a portion of snow survey sites

kept for validation. Nevertheless, the exercise demonstrated the possibility of assimilating different types of data together in the

spatial particle filter, the uncertainty associated with each kind of data being used to weight the relative influence of each type

of observation. In this context, the current ongoing deployment in Quebec of automatic sensors capable of measuring SWE

(rather than snow depth) by using natural gamma radiation constitutes a great opportunity. Not only could this third source490

of information be assimilated into the particle filter, but alternatively, it could also be used as an improved validation set, as

these new gamma ray–based sensors provide sub-daily observations, and the added value of the SR50 in terms of temporal

representativeness may be better captured. The ability of the spatialized particle filter to assimilate different type of data could

also be compared to other operational assimilation framework such as the one decribed by Zhang and Yang (2016).

Code and data availability. The code for the SWE simulation using the spatialized PF with particle reordering is provided on Github https:495

//github.com/TheDroplets/Snow_spatial_particle_filter (Odry, 2021). The data set used in this study, including the meteorological data and

a part of the snow data that we are authorized to share can be accessed though the Harvard Dataverse, at https://dataverse.harvard.edu/

dataverse/Odry_etal2021_largeScaleSpatialStructure. (Boucher, 2021a, b, c, d). There is a mandatory form to fill to access the data, and this

form can also be found in the same Dataverse.
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