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Abstract. Snow on land surface plays a vital role in the interaction between land and atmosphere in the state-of-the-art land

surface models (LSMs) and the real world. Since the snow cover affects the snow albedo and the ground and soil heat fluxes,

it is crucial to detect snow cover changes accurately. It is challenging to acquire observation data for snow cover, snow albedo,

and snow depth; thus, an excellent alternative is to use the simulation data produced by the LSMs that calculate the snow-5

related physical processes. The LSMs show significant differences in the complexities of the snow parameterizations in terms

of variables and processes considered. Thus, the synthetic intercomparisons of the snow physics in the LSMs will help the

improvement of each LSM. This study revealed and discussed the differences in the parameterizations among LSMs related to

snow cover fraction, snow albedo, and snow density. We selected the most popular and well-documented LSMs embedded in

the Earth System Model or operational forecasting systems. We examined single layer schemes, including the Unified Noah10

Land Surface Model (Noah LSM), the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL), the

Biosphere-Atmosphere Transfer Scheme (BATS), the Canadian Land Surface Scheme (CLASS), and multilayer schemes of

intermediate complexity including the Community Noah Land Surface Model with Multi-Parameterization Options (Noah-

MP), the Community Land Model version 5 (CLM 5), the Joint UK Land Environment Simulator (JULES), and the Interaction

Soil-Biosphere-Atmosphere (ISBA). First, we identified that BATS, Noah-MP, JULES, and ISBA reflect the snow depth and15

roughness length to parameterize snow cover fraction, and CLM 5 accounts for the standard deviation of the elevation value

for the snow cover decay function. Second, CLM 5 and BATS are relatively complex, so that they explicitly take into account

the solar zenith angle, black carbon, mineral dust, organic carbon, and ice grain size for the determinations of snow albedo.

Besides, JULES and ISBA are also complicated model which concerns ice grain size, solar zenith angle, new snow depth, fresh

snowfall rate, and surface temperature for the albedo scheme. Third, HTESSEL, CLM 5, and ISBA considered the effects of20

both wind and temperature in the determinations of the new snow density. Especially, ISBA and JULES considered internal

snow characteristics such as snow viscosity, snow temperature, and vertical stress for parameterizing new snow density. The

future outlook discussed geomorphic and vegetation-related variables for the further improvement of the LSMs. Previous

studies clearly show that spatio-temporal variation of snow is due to the influence of altitude, slope, and vegetation condition.

Therefore, we recommended applying geomorphic and vegetation factors such as elevation, slope, time-varying roughness25
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length, vegetation indexes, or optimized parameters according to the land surface type to parameterize snow-related physical

processes.

1 Introduction

Physical processes related to snow play an essential role in interacting with the heat and moisture flux between the atmosphere

and the land surface and between the land surface and soil. The snow’s spatial and temporal heterogeneity causes difficulties30

in observation, understanding, and modeling (Webster et al., 2018). Changes in snow cover and snow albedo are challenging

to measure directly from the ground observation system. Moreover, snow depth is not easy to measure spatially. Therefore,

Hedrick et al. (2015) used regional-scale lidar-derived measurements, Fernandes et al. (2018) measured the change of snowpack

using lightweight unoccupied vehicle videos, and López-Moreno et al. (2011) discussed sampling strategies and average depth

measurements related to snow depth data acquisition. Various land surface models (LSMs) have the advantage of grasping35

changes in snow elements through modeling variables related to snow because ground observation cannot directly measure

these snow elements.

Snow cover plays a vital role in surface albedo, which leads to the exchange of energy and water flux between land and

atmosphere. If the snow cover fractions are estimated lower, the land surface albedo will be underestimated (Roesch et al.,

2001). In the spring, when solar radiation is at its most intense, snow cover significantly affects the global radiation balance, and40

snow cover change significantly impacts nature and human systems. Snow is a crucial water source in rivers and groundwater,

and it is a more critical resource especially in semi-arid regions (Armstrong and Brun, 2008). Since snow cover is valuable

for use as a leisure and travel resource in mid-latitude mountainous regions, it is crucial to monitor snow cover changes

accurately. Besides, snow albedo is an important physical property that causes energy interactions between the land surface

and the atmosphere, along with the thermal barrier properties of snow and the possibility of phase changes due to latent heat45

(Armstrong and Brun, 2008). In particular, albedo—the reflectivity of the ground during incident solar radiation—is vital for

the land surface’s energy balance (Warren and Wiscombe, 1981). Wiscombe and Warren (1980) and Warren and Wiscombe

(1980) created early models of snow albedo, and Zhong et al. (2017) improved the snow albedo simulation. Since snow depth

is a concept that directly expresses the amount of snowfall, it is imperative to predict or observe accurately to prevent accidents

caused by snow. Snow causes delays for both ground and air traffic and heavy snow disasters for crops and livestock. In50

addition, it causes accidents, injuries, and deaths due to snowfall or snow avalanches (Armstrong and Brun, 2008). Therefore,

LSM’s parameterization method to determine snow depth using other atmospheric variables as input variables can be essential

information to prevent snow-related disasters in areas with no observed snow depth.

As a result of analyzing previous studies, there were studies related to model development or improvement for one or two

LSM models. For example, there were snow cover studies (Brun et al., 1992; Yang et al., 1997; Roesch et al., 2001; Brown55

et al., 2006; Roesch and Roeckner, 2006; Brun et al., 2008; Dutra et al., 2009; Ma et al., 2019), and snow albedo studies

(Roesch and Roeckner, 2006; Mölders et al., 2007; Dutra et al., 2009; Wang and Zeng, 2010; Malik et al., 2014; Bartlett and

Verseghy, 2015; Zhong et al., 2017; Wang et al., 2020), and studies related to snow depth (Gottlib, 1980; Longley, 1960; Dutra
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et al., 2009; Dawson et al., 2017). As a study that directly compared the snow model, Pedersen and Winther (2005) compared

and verified the snow albedo parameterization method, and Voordendag et al. (2021) mainly made a simulation comparison of60

the snow depth change and sublimation process. Mott et al. (2018) reviewed seasonal changes in wind-induced snow cover at

three different scales. He et al. (2020) conducted a review on the possibility of improvement by comparing models, including

the land surface model for soil thermal conductivity parameterization schemes.

Large-scale projects that conducted model comparison experiments on snow include the Program for Intercomparison of

Land-Surface Parameterization Schemes (PILPS) Phase 2d (Pitman and Henderson-Sellers, 1998; Slater et al., 2001), Phase65

2e (Bowling et al., 2003), Phase 1 of the Snow Model Intercomparison Project (SnowMIP1; Etchevers et al., 2004), and Phase

2 (SnowMIP2; Essery et al., 2009; Rutter et al., 2009). These projects have shown that large errors occur in warmer winters or

warmer regions concerning the time of snow melting in the simulation of snow cover changes (Krinner et al., 2018). In addition,

they suggested that more temporal and spatial data could improve their understanding of the snow model and reduce uncertainty

about the climate feedback process (Menard et al., 2021). The Earth System Model–Snow Model Intercomparison Project70

(ESM-SnowMIP; Krinner et al., 2018) is an extension of the Land Surface, Snow and Soil Moisture Model Intercomparison

Project (LS3MIP; van den Hurk et al., 2016) at a local scale. The aim was to evaluate snow models and quantify snow-related

climate feedback (Krinner et al., 2018). Menard et al. (2021) compared 27 models of ESM-SnowMIP and compared the model

ranking through the Normalized Root Mean Square Error (NRMSE) of Snow Water Equivalent (SWE) and surface temperature

and the bias of SWE, surface temperature, albedo, and soil temperature.75

Although the above projects have performed model verification and performance evaluation, systematic analysis of the types

and complexity of variables used in the parameterization of the snow physics process remains insufficient. Menard et al. (2021)

gave a summarized comparison of snow-related characteristics and their references briefly. However, they did not present

a thorough representation of snow-related parameterization for twenty-seven models from 22 modeling teams. Since each

model’s documentation in ESM-SnowMIP is not perfect or even not provided, we decided to review the following LSMs that80

have comprehensive and informative documentation for analyzing the snow-related parameterization: 1) the Community Land

Model version 5 (CLM 5; Lawrence et al., 2018) – the land model for the Community Earth System Model (CESM; Danaba-

soglu et al., 2020); 2) the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL; Dutra et al., 2009)

– the operational land model for the European Centre for Medium-Range Weather Forecasts (ECMWF); 3) the Canadian Land

Surface Scheme (CLASS; Verseghy, 2012) – the land surface schemes in the Canadian Earth system model (CanESM; Swart85

et al., 2019) developed by the Environment and Climate Change Canada (ECCC); 4) the Joint UK Land Environment Simula-

tor (JULES; Best et al., 2011) – the land surface schemes in both the physical climate model HadGEM3-GC3 (Menary et al.,

2018) and the United Kingdom’s Earth System Model (UKESM; Sellar et al., 2019); and 5) the Interaction Soil-Biosphere-

Atmosphere (ISBA; Decharme et al., 2016), which constitutes the ‘nature’ tile of the platform SURFEX (SURFace EXter-

nalisée; Masson et al., 2013) as the externalized land surface scheme in the Centre National de Recherches Météorologique90

Coupled global climate Model (CNRM-CM; Voldoire et al., 2012). Additionally, we examined the LSMs that are not included

in the ESM-SnowMIP: 1) the Unified Noah Land Surface Model (Noah LSM; Koren et al., 1999) – the operational land surface

model of the National Centers for Environmental Prediction (NCEP); 2) the Community Noah Land Surface Model with Multi-
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Parameterization Options (Noah-MP; Niu et al., 2011); and 3) the Biosphere-Atmosphere Transfer Scheme (BATS; Dickinson

et al., 1993). The Noah LSM and Noah-MP are the current and future generations of Korean Integrated Model (KIM; Hong95

et al., 2018) operational forecasting systems of the Republic of Korea, respectively. We need to select representative mod-

els to derive ideas for future model improvement and concretely compare and analyze for the parameterization of the snow

physics process. we analyzed BATS model because albedo parameterization of the Common Land Model (CoLM; Li et al.,

2017), JSBACH (Reick et al., 2021), and JSBACH3-PF (Ekici et al., 2014) as well as Noah-MP is adapted from BATS method

(Dickinson et al., 1986).100

Therefore, this study attempts to understand the variables and parameters considered in each land surface model’s current

situation by looking at the parameters of three significant snow-related variables—snow cover, snow albedo, and snow den-

sity—through eight LSMs: Noah LSM, HTESSEL, BATS, CLASS, Noah-MP, CLM 5, JULES, and ISBA. In addition, we

intend to provide insights into variables that may be considered in different models through a comparison of parameterization

methods. Sections 2, 3, and 4 compare and analyze eight LSMs in relation to the parameterization of snow cover, snow albedo,105

and snow density, respectively. We focused on the new snow density in the snow density part because snow compaction due to

destructive metamorphism or overburden, melting, and drifting snow is too complicated. Section 5 provides insights for LSM

improvement by discussing the comparison results and significant variables in other previous studies and presents summaries

in Section 6.

2 Snow cover parameterization in LSMs110

Model studies show that snow cover changes significantly influence the land surface energy balance and ground temperature

(Thomas and Rowntree, 1992; Viterbo and Betts, 1999). Since the snow-covered ground albedo is much higher than the snow-

free ground albedo, accurate prediction of the presence or absence of snow is crucial for understanding near-surface energy

balance. Snow cover can change grassland albedo by approximately 3–4 and mountain albedo by 2–3 (Thomas and Rowntree,

1992; Betts and Ball, 1997; Jin et al., 2002; Barlage et al., 2010). Armstrong and Brun (2008) presented snow depth, snow115

density, and SWE as fundamental properties when describing snow cover.

Table 1 expressed the variables considered in the eight LSMs, including the main variables such as snow depth, snow density,

roughness length and SWE. All LSMs except BATS, JULES, ISBA used the SWE to parameterize snow cover. The snow cover

parameterization of Noah LSM and CLM 5 considered the threshold of SWE. The Noah LSM’s snow cover formula reflects

the land surface type through the SWE threshold parameter. CLM 5 also considers the land surface type when using the SWE120

threshold, and it especially takes into account sub-grid geomorphic variation, the main difference among LSMs. HTESSEL

is the simplest of the eight LSMs and considers only the SWE and snow density. The CLASS model used the snow depth

and the snow depth threshold instead of the SWE and the SWE threshold, and the snow depth is calculated from SWE and

snow density. The BATS, JULES, ISBA and Noah-MP model are different from the others in that it utilizes snow depth and

roughness length to parameterize snow cover. Besides, they used different values of roughness length according to the land125

surface type.
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Table 2 presents the different formulations for snow cover fraction in the eight LSMs. The SWE, the SWE threshold value

(Wmax) when the snow cover is 1, and the distribution shape parameter (Ps) determine the snow cover parameterization of the

Noah LSM (Eq. (a) in Table 2) (Koren et al., 1999). If the SWE exceeds Wmax, the snow cover is assumed to be 1. Anderson

(1973) considered the range of Ps as a value between 2 and 4 in the empirical equation for snow cover fraction, and the Noah130

LSM applied a fixed value of 2.6. The primary empirical values—the Wmax and the Ps—affect the land surface albedo because

the snow cover fraction variation controls the snow albedo. The Noah LSM provides Wmax values according to the land surface

types based on the modified International Geosphere-Biosphere Program (IGBP) MODIS Noah classification. The Noah LSM

designate Wmax values as 0.08 m, 0.04 m, 0.025 m, 0.02 m, and 0.01m for forests, short vegetation, tundra, low vegetation

areas such as snow, glacial areas, and water bodies, respectively. Wang and Zeng (2010) showed that the Wmax value for135

grassland and forest tend to have similar simulation results to the observed values when adjusted to 0.01 m and 0.2 m instead

of 0.04 m and 0.08 m for each vegetation type. Livneh et al. (2010) improved the Wmax value to 0.02 m for non-forest and

0.04 m for the forest, reflecting the study area’s vegetation properties. Therefore, we need to find an appropriate Wmax value

that can guide the snow cover fraction following its observation value depending on the land surface type.

HTESSEL parameterized the snow cover fraction using a formulation of SWE and low and high densities of snow, which140

showed a different route for the snow cover parameterization. The existing HTESSEL snow cover was calculated only as an

SWE function (Eq. (b)). However, the new scheme introduced snow density in addition to the SWE (Eq. (c)). The existing

parameterization method was expressed as extreme values of both snow densities, while the modified parameterization method

was improved to reflect the changing snow density. The new scheme is straightforward, but it reflects the variability of snow

cover between the beginning of a cold season (low snow density) and the end of an ablation season (high snow density) (Dutra145

et al., 2009). At the beginning of the cold season, it is easy to cover the entire grid even if there is a small SWE. On the other

hand, since snow melting that creates non-snow patches at the snow depletion period, more SWE is required for snow cover to

be 1 in one grid. HTESSEL introduced snow density to the simulation of seasonal snow cover variation, thus devising a snow

cover parameterization scheme that could reflect the physical process of snow.

In BATS, the snow cover fraction is measured in terms of the snow depth, so it changes over time by subtracting the150

sublimation rate and snow melting from the snowfall rate. BATS parameterized the snow cover fraction, divided into areas

with and without vegetation (Dickinson et al., 1993). For land surfaces without vegetation, it was parameterized with 0.1 m

and snow depth (Eq. (d)), while for land surface with vegetation, it was parameterized as a function of the snow depth and the

roughness length multiplied by 10 (Eq. (e)). Yang et al. (1997) described the total fraction of the grid square covered by snow

(fs) as155

fs = fs,g(1−σf ) + fs,vσf , (1)

where σf is green vegetation fraction, fs,g and fs,v are fraction of ground covered by snow and fraction of vegetation covered

by snow, respectively. Eq. (d) from Table 2 clarified as

fs,g = Dsn/(10z0g + Dsn), (2)
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where Dsn is snow depth and z0g is roughness length for bare soil and the value is designated as 0.01 m (Yang et al., 1997).160

The formation of equation (2) is same as Eq. (e) in Table 2.

Yang et al. (1997) upgraded the snow cover fraction scheme using different roughness lengths according to the land surface

type and snow depth (Eq. (f)). This new scheme reflects the aspect from Jordan et al. (2008) that snow cover and albedo are

related to the vegetation and roughness length. Yang et al. (1997) showed that the simulated snow cover fraction and surface

albedo has a close agreement with the observed, especially in short vegetation. Figure 1 demonstrates the comparison of BATS165

formulation (Eqs. (d), (e), (f)) for snow cover fraction in the case of short grass land cover. Eq. (f) may be appropriate for

grasses and agricultural lands (Yang et al., 1997) because it illustrates that the higher the snow depth, the faster cover the short

grass. BATS focused on the snow-ground process and did not distinguish between the soil temperature and the lowest layer of

snow. Geothermal heat can reach the upper surface of the snow by conduction. Nevertheless, it was assumed to ignore snow

melting at the bottom of the snowpack (Dickinson et al., 1993).170

CLASS parameterized the snow cover fraction using the snow depth (Dsn) and the threshold value of snow depth (Dsn,lim)

(Eq. (g)) (Verseghy, 2012). The threshold of the snow depth (Dsn,lim) applied to 0.1 m. If the snow depth (Dsn) is >0.1 m,

the snow cover is considered 1. When the snow depth is <0.1 m, parameterization for snow cover fraction uses Eq. (g) in

Table 2. At this time, CLASS calculates the snow depth by dividing the SWE by the snow density (Eq. (h)). Melton et al.

(2019) recently suggested another parameterization for snow cover with the exponential form (Eq. (i)) proposed by Brown175

et al. (2003). In CLASS, the snow depth threshold was assumed to be the same value regardless of the land surface type, so

there could be a limitation in that it cannot follow the variability of the snow cover fraction according to the land cover type.

Noah-MP parameterizes the snow cover fraction using roughness length, snow depth as well as snow density. Yang et al.

(1997) proposed the Hyperbolic Tangent(tanh) formulation (Eq. (f)) because they need to reflect two stages of snow depth

and snow albedo relationship: sharply increasing albedo stage and slowly increasing albedo stage per changing snow depth.180

This formulation has a limitation of too fast covering snow, so Eq. (f) does not consider the seasonal variation of snow cover

patterns. Niu and Yang (2007) perceived this limitation of Eq. (f) which is fit for shorter vegetation, and revised formulation

Eq. (j) using a melting factor for snow cover fraction (Fmelt). Fmelt (Eq. (k)) calculates using fresh snow density, 100 kg m−3,

and current snow density (Eq. (l)) with determining melting curves parameter M which can be adjustable.

CLM 5 parameterizes the accumulation and depletion of snow cover fraction separately (Lawrence et al., 2018). The param-185

eterization of the snow cover fraction during the snow accumulation phase (Eq. (m)) reflects the new snow amount (qsnow∆t),

a constant (kaccum) whose default value is 0.1, and the snow cover fraction (fn
s ) from the previous time step. The snow cover

fraction parameterization during the snow ablation phase (Eq. (n)) shows similarity with Noah LSM in that SWE and SWE

thresholds influence the depletion curve. Swenson and Lawrence (2012) developed the empirically derived expression Eqs.

(m) and (n). Significantly, CLM 5 newly incorporates a parameter Nmelt that changes depending on the geomorphic variability190

within the grid cell as shown in Eq. (o) in Table 2 (Swenson and Lawrence, 2012; Lawrence et al., 2018). Nmelt controls the

shape of the snow-covered area (Figure 2). If Nmelt values are low, the topographic variability of regions are high. CLM 5

calculates Nmelt from the standard deviation of the 1 km-resolution DEM elevation within a grid cell. However, in the glacier

region, Nmelt implemented a direct value of 10 because the terrain there could be very flat. This new parameterization scheme
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roughly demonstrates the results of Jordan et al. (2008) in that the topographic variation of the ground causes changes in the195

snow cover depth.

Snow cover fraction parameterization in JULES (Eq. (p)) is identical with BATS snow cover fraction for vegetation (Eq.

(e)). JULES adopted only snow cover fraction using snow density and roughness length for bare soil (Best et al., 2011) and

ignored the vegetation fraction for calculating the snow cover fraction. ISBA separates snow cover fraction parameterization

for bare soil (Eq. (q)) and vegetation (Eq. (r)) similarly to BATS (Table 2). ISBA formulation of snow cover fraction for bare200

soil is similar to CLASS using snow depth and snow depth thresholds. Besides, the ISBA formulation structure of snow cover

fraction for vegetation is the same as BATS; the coefficient is different between ISBA and BATS as 2 and 10, respectively. The

vegetation roughness length in ISBA designated as specific value depending on each vegetation type(Decharme et al., 2019).

In particular, ISBA used equation (1) with GVF for the average between the snow cover fraction in the vegetated (fs,v) and

non-vegetated (fs,g) as a part of a grid cell concept similar to BATS (Decharme et al., 2016). Among the eight LSMs, only205

BATS and ISBA consider GVF directly for snow cover parameterization, and BATS, Noah-MP, JULES, and ISBA account for

roughness length.

3 Snow albedo parameterization in LSMs

Snow albedo is the rate of reflection of incident radiation on snowpack, which plays an essential role in the energy balance of

the land surface over snow during the melting season (Warren and Wiscombe, 1980; Wiscombe and Warren, 1980). One of the210

land surface model’s main objectives is the accurate distribution of incident radiation into radiation, sensible heat, and latent

heat fluxes. Net radiation is a concept that includes both upward & downward shortwave radiation and upward & downward

longwave radiation in the surface energy balance. The surface albedo—the ratio of reflected solar radiation to the incident solar

radiation—determines the energy transfer between the air and land surface. Typical albedo values are as high as 80–90 % on

a non-melting snow surface (Armstrong and Brun, 2008) and are expressed as various values according to the state of snow215

surface (fresh, dry snow; old, dry snow; wet snow; melting ice/snow) or the land surface type (snow-covered forest, snow-free

vegetation/soil, water) (Table 3).

One of the most rapid changes in land surface albedo is the presence or absence of snow cover. Noah LSM, CLM 5, and

JULES use the snow cover fraction as a significant variable in the albedo parameterization (Table 4). Thus, they calculate

snow albedo by summing the snow-free albedo and snow-covered albedo according to the snow cover ratio. In Jordan et al.220

(2008), the interception of radiation by vegetation strongly changes the albedo in the snow-covered area. The vegetation type,

vegetation density, snow accumulation on the canopy, and incident radiation can affect snow albedo alteration (Jordan et al.,

2008). For instance, Noah LSM, HTESSEL, BATS, and CLM 5 consider the vegetation effects on snow albedo parameterization

indirectly by using the maximum snow albedo for each vegetation type or applying the green vegetation fraction value. The

albedo for each grid point can be calculated by linearly weighting the snow-free albedo and snow and vegetation albedo in225

the snow-covered area. In particular, BATS, CLM 5, and JULES were relatively complex land surface models because they
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identify direct & diffuse albedo, visible & near-infrared albedo separately, taking into account all the effects of the solar zenith

angle, and ice grain size. Additionally, BATS and CLM 5 considers dust and carbon.

Table 5 presents snow albedo parameterization in eight different LSMs. In the Noah LSM, the albedo is parameterized by

a weighted average of the snow-free albedo and the snow-covered albedo (Eq. (a) in Table 5). The snow albedo is closely230

related to the snow cover fraction (Brun et al., 2008). The snow-covered patch can be distributed differently due to the slope

or altitude, the spatial direction of a snowdrift, and the snow melting period. Moreover, the snow albedo on the surface can

increase noticeably as the vegetation rate decreases. When there is short or large vegetation, the snow-covered area may exist

in the form of a patch. The surface albedo is parameterized to account for this vegetation effect, as shown in Eq. (b), using the

green vegetation fraction (σf ) value.235

Noah LSM treated the maximum new snow albedo parameterization for fresh snow by calculating the satellite-based snow

albedo (αmax,sat), the maximum snow albedo coefficient (αmax,CofE), and the proportionality coefficient (C) as shown in

Eq. (c). The proportionality coefficient is fixed at 0.5, but Livneh et al. (2010) adjusted it to 1. The maximum snow albedo

coefficient, 0.85, determines the maximum albedo value of newly fallen snow. The new maximum snow albedo equal to 0.85

in Noah LSM was the same value used in the Distributed Hydrology Soil Vegetation Model (DHSVM; Wigmosta et al., 1994)240

and Variable Infiltration Capacity Macroscale Hydrologic Model (VIC; Andreadis et al., 2009). SnowModel default (Liston

and Elder, 2006), CLASS model (Verseghy, 1991) was set to 0.8, while SnowModel (Sproles et al., 2013) used the maximum

albedo value after new snowfall as 0.8 in unforested and 0.6 in forested areas. According to the snow melting condition, the

new maximum snow albedo used in the SNOWPACK (Bartelt and Lehning, 2002) was 0.95 in the non-melt condition and 0.7

in the melt condition. In the case of BATS (Dickinson et al., 1993), it was set to 0.85/0.65 (visible/near-infrared area) in the245

non-melt condition and 0.75/0.15 in the melt condition.

Livneh et al. (2010) adapted the albedo-decay parameterization proposed by Wigmosta et al. (1994) for the DHSVM. The

albedo-decay scheme can change the coefficient over time depending on whether the snow is accumulated (slow decay) or

ablated (fast decay) (Eq. (d)). The albedo decay scheme in Noah LSM reflects the snow accumulation season as a default

setting. At the snow accumulation, the snow temperature is < 273.16 K, and A and B are set to 0.94 and 0.58 in Eq. (d),250

respectively. When the snow decays, the snow temperature is ≥ 273.16 K, A and B are set to 0.82 and 0.46 in Eq. (d),

respectively. Storck (2000) calculated A’s values in the albedo-decay scheme as 0.92 and 0.7 for the accumulation and ablation

seasons, respectively, based on observations of the shelterwood site. Sun et al. (2019) showed that the A value at the time of

snow accumulation could be in the possible range 0.87–0.99 in the same formula (Eq. (d)) as the Noah LSM. They derived

0.9–0.96 as the optimal value ranges for snow accumulation phase for different areas. While the possible range for the A value255

at the time of snowfall ablation season was set to 0.82–0.91, the optimal value was almost the same range at 0.83–0.91 (Sun

et al., 2019). In addition, Malik et al. (2014) suggested improved values only for the time of snow accumulation, and A was in

the range 0.9–0.94, and B was in the range 0.5–0.66 for different areas.

The original scheme of the snow albedo for HTESSEL follows the formulation of Baker et al. (1990), Verseghy (1991),

Douville et al. (1995) and separates into melting and non-melting cases. Its formulation structure is the same as the past version260

of ISBA parameterization (Mölders et al., 2007). If the snow does not melt, the albedo uses a linearly decaying coefficient
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(γa = 0.008). When the snow melting exceeds 0 or when the snow surface temperature is > 2 K lower than the freezing point

temperature, HTESSEL parameterized the albedo as Eq. (e) in Table 5 with the exponential decay factor (γf = 0.24) and the

minimum albedo (αmin,H = 0.5). In other words, the higher the temperature, the more quickly the snow albedo decreases.

When the amount of new snowfall exceeds 1 kg m−2 hr−1, the maximum snow albedo is set to 0.85. However, Pedersen and265

Winther (2005) and Mölders et al. (2007) pointed out that the original scheme has a disadvantage of too low threshold value

when used for numerical forecasting in snow albedo parameterization. The parameterization was improved as shown in Eq.

(f), so the snow albedo was continuously reset. HTESSEL assumed that 10 kg m−2 of new snowfall is required to reset the

maximum snow albedo to 0.85 consistently.

The original scheme uses a fixed value of 0.15 for albedo under a canopy regarding the vegetation’s influence. However, this270

is insufficient to describe the variability of snow albedos according to the vegetation characteristics. As a result of observa-

tions in a forest area with snow intercepted by vegetation, the albedo appeared to be 0.3 immediately after heavy snowfall and

changed to 0.2 after a few days according to the forest type (Betts and Ball, 1997; Viterbo and Betts, 1999). The snow inter-

cepted by vegetation disappears due to wind blowing in cold temperatures or snow melting in warm temperatures. Therefore,

HTESSEL set the albedo for each vegetation condition differently according to the 16 types of IGBP vegetation. HTESSEL275

used the white-sky albedo climate values (2000–2004) in the 0.3–5 µm band of the northern hemisphere with snow on the

ground suggested by Moody et al. (2007).

BATS calculates the snow albedo by classifying the diffuse and direct radiation and parameterizes each albedo by separating

it into visible and near-infrared regions. Concerning the diffuse radiation, when the solar zenith angle is less than 60°, the new

snow albedo for visible radiation incident is 0.95, and the new snow albedo for near-infrared solar radiation is 0.65. The albedo280

decay parameterization method applies over time (Dickinson et al., 1993) (Eqs. (g) and (h) in Table 5). As a factor associated

with snow decay, BATS calculates the decreasing term Fage through equations (3)–(11) (Wang et al., 2020): Fage give the

fractional reduction of snow albedo due to growth of snow grain size and accumulation of dirt and soot by

Fage =
tausst

(tausst + 1)
,

(3)

where tausst is a nondimensional age of snow, defined as285

tausst =





0, for swet = 0 or swet > 800;

max(0,sget) , for others,
(4)

with swet representing the snow water equivalents of the current time step. The nondimensional age of snow sget depends on

a model prognostic variable δa as follows

sget =
(
tausst−1 + δa

)
× (1− δs) , (5)

where δs is expressed as290

δs =
max(0,swet− swet−1

)

swec
.

(6)
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Here, swet− swet−1 is the change of snow water equivalent (in mm or kg m−2) in one time step ∆t, and swec indicates the

critical value of new snow water equivalent to fully cover the old snow, assumed to be 1 mm; and δa is parameterized as

δa = 10−6×∆t× (Age1 + Age2 + Age3) . (7)

In (7), Age1 represents the effect of growing snow particle size by vapor diffusion which is formulated as295

Age1 = exp(arg) (8)

where

arg = 5000
(

1
Tf
− 1

Tg

)
,

(9)

with Tf the freezing temperature (273.16 K) and Tg the ground temperature (K); Age2 reflects the effect of recrystallization of

melting moisture or close to it and is represented as300

Age2 = min[1,exp(10× arg)]; (10)

and Age3 represents the effects of dust and soot as follows:

Age3 =





0.01 over Antarctica;

0.3 elsewhere.
(11)

BATS designated Age3 as 0.01 for Antarctica and 0.3 for other areas (Dickinson et al., 1993).

Concerning the direct radiation, BATS parameterizes the new snow albedo using factors such as the diffuse snow albedo and305

the solar zenith angle (Eqs. (i) and (j) in Table 5). Fzenith is a factor to account for solar zenith angle impact, calculated as

Fzenith =
1
b

{
b + 1

[1 +2bcos(zen)]
− 1

}
,Fzenith = 0 if cos(zen) > 0.5,

(12)

where b can be adjustable to best available data, and it is designated b = 2.0 in BATS (Dickinson et al., 1993). Equation (12)

has the property for all b that it vanishes at cos(zen) = 0.5, so Fzenith values equal to 0. The value of b is unity at cos(zen) = 0

which is the same as the solar zenith angle in the horizontal plane, so Fzenith is equal to 1. In Wang et al. (2020), the method310

of parameterizing Fzenith was further simplified as follows:

Fzenith = max
{

1.5
[1 + cos(zen)]

− 0.5,0
}

,
(13)

where Fzenith is a value between 0 and 1; for example, when the solar zenith angle exceeds 60 degrees, the snow albedo for

visibility area increases.
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CLASS assumes a single snow albedo for direct and diffusive radiation. If the snow depth is over 1 cm, the new snow315

albedo is supposed to be 0.84 in the original CLASS. CLASS calculated the new snow albedo as the weighted average of 0.84

and the ground albedo before snowfall. Fresh snowfall albedo in CLASS (Eq. (k)) has the same structure as HTESSEL’s new

snowfall albedo parameterization (Eq. (f)). However, there is a difference in that CLASS assigned a value of 1 mm for the

SWE threshold of 100% snow cover. In addition, CLASS assumed that the snow albedo in the current time step is over 0.55

(Eq. (l)).320

Recently, Melton et al. (2020) described the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC;

v.1.0) as the coupled model framework of the CLASS (Verseghy, 2017) and the Canadian Terrestrial Ecosystem Model (CTEM;

Melton and Arora, 2016). CLASSIC model parameterized snow albedo decay based on the data of Aguado (1985), Robinson

and Kukla (1984), and Dirmhirn and Eaton (1975). Melton et al. (2019) showed that it is the same as empirical exponential

decay functions applied to CLASS-CTEM by Verseghy (2017). The background old snow value was 0.55 in the original325

CLASS (Eq. (l)). However, the background old snow value (αsn,total,old) applied as 0.5 if the snow melting ratio was >0

(melting snow condition) unless it applied as 0.7 in the case of dry snow in the updated CLASS in CLASSIC (Eq. (m)). The

CLASSIC classified three categories: total albedo, visible albedo, and near-infrared albedo that have typical values for fresh

snow, old dry snow, and melting snow as shown in Table 6 (Aguado, 1985; Robinson and Kukla, 1984; Dirmhirn and Eaton,

1975). CLASSIC calculated the albedos of visible and near-infrared as Eqs. (n) and (o) for dry snow and Eqs. (p) and (q) for330

melting snow, respectively.

Noah-MP implemented two options for parameterizing snow albedo from BATS and CLASS schemes. The BATS scheme

of snow albedo accounts for fresh snow albedo, variation in snow age, solar zenith angle, snow grain size growth, and dirt or

soot on snow (Niu et al., 2011). The CLASS scheme of snow albedo considers fresh snow albedo and snow age (Niu et al.,

2011). Noah-MP uses an old version of the CLASS scheme as Eqs. (k) and (l), so it does not distinguish the wet and dry snow335

conditions as well as snow albedo of the visible and near-infrared area. Niu et al. (2011) describes that the CLASS scheme

tend to decrease snow surface albedo easily compared to the BATS scheme due to the strong aging factor.

CLM 5 calculates the ground albedo by a weighted average of the overall direct beam albedo and diffuse albedo. The albedo

value in CLM 5 adapted MODIS MCD43B3 v5 data for 2001–2015 (Lawrence et al., 2019). It parameterizes the direct and

diffuse albedos using the fraction of the ground covered with snow as in Eqs. (r) and (s) in Table 5, respectively (Lawrence et al.,340

2018). In addition, the direct beam albedo and diffuse albedo are various according to the land surface type. The representative

types are glaciers, unfrozen lakes, frozen lakes, and soil surfaces. Glacier albedos have a prescribed value depending on the

range of visible and near-infrared (Cuffey, 2010), so the visible albedo is 0.6 and near-infrared albedo is 0.4 regardless of

direct or diffuse albedo (Eqs. (t) and (u) in Table 5). Frozen lake albedos have the same fixed value as glacier albedo (Bonan,

1996), direct and diffusive albedos of an unfrozen lake are parameterized following the cosine of the solar zenith angle (Eq.345

(v)) (Lawrence et al., 2018).

Soil albedo depends on the soil color and varies with the moisture content of the first soil layer (Bonan, 1996). Soil albedo is

calculated differently according to the change in soil moisture content (∆ = 0.11− 0.40θ1 > 0) based on the saturated albedo

and dry albedo determined according to the soil color (Eq. (w)). The soil color of the CLM 5 is pre-specified for the CLM
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grid using the method of Lawrence and Chase (2007). The soil color is adjusted to one of 20 averaging the fitted monthly soil350

colors over all snow-free months and compared with the MODIS monthly local solar noon all-sky surface albedo described in

Strahler et al. (1999) and Schaaf et al. (2002).

CLM 5 simulates the snow albedo and solar absorption within the snow layer with the Snow, Ice, and Aerosol Radiative

Model (SNICAR), which was implemented in CLM version 3 (Flanner, 2005; Flanner et al., 2007). SNICAR includes the two-

stream radiative transfer solution of Toon et al. (1989) and uses the theory of Wiscombe and Warren (1980). The albedo and the355

vertical absorption profile depend on the solar zenith angle, the albedo of the surface under the snow, the mass concentration

of atmospheric-deposited aerosols (black carbon, mineral dust, and organic carbon), and the ice effective grain size (Lawrence

et al., 2018).

JULES has two types of scheme: the diagnostic albedo scheme and the prognostic albedo scheme. The diagnostic albedo

calculates snow albedo as Eq. (x1) in Table 5 using surface temperature (Tg), snow aging parameter (k1), snow albedo threshold360

temperature (Tc), and cold deep snow albedo depending on the vegetation type (αcds) (Best et al., 2011). JULES derives the

weighted average of surface albedo as Eq. (x2) considering snow depth (Dsn) and surface masking snow depth (Dm). The

prognostic albedo in JULES calculates total surface albedo by using snow cover fraction, snow albedo, and snow-free albedo

like Eq. (a) of Noah LSM. The prognostic albedo scheme calculates both diffuse visible and near-infrared areas as Eqs. (y1)

and (y2), respectively (Best et al., 2011). The diffuse scheme includes timely changing grain size (r) and fresh snow grain size365

(r0). For the direct radiation albedo, r in Eqs. (y1) and (y2) need to be replaced by effective grain size (re) as

re = [1 +0.77(µ− 0.65)]2r, (14)

calculated using the cosine of the zenith angle (µ) and grain size (r). The current state of grain size is calculated every time

step with snowfall rate Sf by

r(t + δt) = [r(t)2 +
Gr

π
δt]1/2− [r(t)− r0]

Sfδt

d0
,

(15)370

where d0 is fresh snow depth and r0 is 50µm for fresh snow (2.5 kg m−2 fresh snow mass required to refresh the albedo) and

Gr is the empirical growth rate of snow grain area expressed as

Gr =





0.6 Tg = Tm (melting snow);

0.06 Tg < Tm, r < 150µm (cold fresh snow);

Asexp(−4550/Tg) Tg < Tm, r > 150µm (cold aged snow).

(16)

In Equation (16), As is set to 0.23 ∗ 106µ m2 S−1. The prognostic albedo scheme in JULES consider direct and diffuse albedo

from visible and near-infrared area same as BATS and CLM5. This scheme incorporates ice grain size affected by surface375

temperature and snowfall rate as the significant factor to calculate snow albedo.

ISBA calculates snow albedo from 3 distinct bands (Eqs. (z1), (z3), and (z5) in Table 5), the first band with the ultraviolet and

visible range (0.3–0.8 µm), the second and the third band with near-infrared ranges (0.8–1.5 and 1.5–2.8 µm) following Brun
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et al. (1992). For the first snow layer, snow albedo account for snow optical diameter, the near surface atmospheric pressure,

and the age of the first snow layer in days (Eq. (z1)). Only first snow layer considers atmospheric pressure and time of snow380

albedo decay ratio by impurities. The albedo scheme for the second and the third snow layer take into account snow grain size.

The optical diameter of snow (dopt(i)) is parameterized as

dopt(i) = min[dmax,g1 + g2× ρs(i)4 + g3×min(15,Asn(i))] (17)

where dmax is the maximum snow diameter value, and g1 (1.6×10−4 m), g2 (1.1×10−13 m13 kg−4) are coefficients calculated

from Anderson et al. (1976). g3 (0.5× 10−4 m day−1) is the increase rate of the optical diameter of snow with snow age in385

Equation (17). βsn is the extinction coefficient of snow affected by snow density and optical diameter of snow (Eqs. (z2), (z4),

and (z6) in Table 5). Bohren and Barkstrom (1974) used a constant 3.8× 10−3 m5/2 kg−1 for the snow extinction coefficient,

but it changed to 0.00192 and 0.01098 for the first and the second snow layers (Eqs. (z2) and (z4)).

4 Snow density parameterization in LSMs

Snowfall amounts are measured with the snow depth and SWE when the snow melts. Typical snow rates are 1 cm h−1 or 0.8390

mm h−1. The LSMs normally calculate snow depth by dividing the SWE by the snow density. The density of newly fallen snow

is approximately 20–300 kg m−3, and the dry snow density is about 60–120 kg m−3 with the condition of low-to-moderate

winds, while it increases with the condition of wet snow, sleet, and wind-packed snow. When precipitation mixes snow and

rain, the new snow density exceeds 300 kg m−3. When snow falls by strong winds, the snow particles become fragmented and

small-grained. As the wind speed of 1 m s−1 increases, the density gradually increases to 20 kg m−3 (Jordan et al., 1999).395

Therefore, snow characteristics (dry/wet) and wind conditions in addition to temperature affect the new snow density.

The LSMs considered different variables for calculating the snow density and snow depth (Table 7). Noah LSM, HTESSEL,

CLM5, ISBA, and Noah-MP used air temperature to calculate the new snow density. Among these LSMs, HTESSEL, CLM 5,

and ISBA had in common that they considered both the temperature and wind effects when calculating the new snow density.

Jordan et al. (2008) also recognized the effect of wind speed, and the variation of wind speed caused by air pressure affects400

the snow depth on the slope, leading to snow erosion on the slope’s upwind side and snow deposition on its lee side. BATS

includes complex snow physics such as SWE, snow grain size, and the effects of dust and soot for calculating snow density

changes. CLASS parameterizes the snow density updated over time with the maximum snow density calculated by the snow

depth and the empirical constant according to the snow temperature. The time tendency of snow density in ISBA is affected

by the snow density, vertical stress, snow viscosity, and wind-driven compaction rate in each layer. The snow density over a405

timestep in JULES is updated by compactive viscosity, ice and liquid water contents for the mass of snow above the layer,

snow density, and the temperature of the k-th snow layer.

The LSMs parameterize the new snow density differently to estimate the snow depth as in Table 8. The new snow depth in

Noah LSM is calculated by dividing the new SWE by the new snow density (Eq. (a)). If the sum of the existing and the new

snow depth is < 1.0E−3, the LSM took the higher value of the snow density between the new and the existing snow density.410
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If the sum of the existing and the new snow depth is ≥ 1.0E−3, the snow density is parameterized by dividing the existing and

new SWE by the sum of the existing and the new snow depth. Noah LSM uses the equation of Gottlib (1980) for calculating

the new snow density (Koren et al., 1999). The density of new snow is a function of 2 m temperature above the ground when

the 2 m temperature exceeds -15◦C. The density of fresh snow is 0.05 g cm3 when the 2 m air temperature is ≤−15◦C (Eq.

(b) in Table 8). According to the parameterization method, Figure 3 illustrates the relationship between temperature and new415

snow density. The minimum value of density of new snowfall is 0.05 g cm3, and the density of new snowfall tends to increase

as the temperature increases.

In HTESSEL, the snow depth value is inversely proportional to the snow density and snow cover fraction and is proportional

to SWE (Dutra et al., 2009) (Eq. (c)). When calculating the snow depth, using the snow density and snow mass (similar to the

SWE) is similar to those of Noah LSM, and the consideration of the snow cover fraction is similar to that in CLM 5. Eq. (d)420

shows the equation for obtaining the new snow density in HTESSEL. This equation is converted from a constant value to an

equation using the equation of CROCUS (Brun et al., 1989, 1992) and is a parameterization method that expresses the new

snow density as a function of the temperature and wind speed (Dutra et al., 2009). In Eq. (d), asn is 109 kg m−3, bsn is 6 kg

m−3, and csn is 26 kg m−7/2s1/2. At this time, the snow density is limited to the range 50–450 kg m−3.

The BATS model calculates the snow depth as shown in Eq. (e) in Table 8 by dividing the snow mass by the snow density425

(Dickinson et al., 1993; Yang et al., 1997). The snow density is parameterized as (Eq. (f)) with a snow aging factor according

to the snow model and data of Anderson et al. (1976). The change of the snow aging factor is affected by the growth of snow

particle size and accumulation of dust and soot (Dickinson et al., 1993; Yang et al., 1997). The snow aging factor explained in

section 3 with Eq. (3) to (11).

CLASS also derives snow depth dividing SWE by snow density (Eq. (g) in Table 8). In the case of the maximum snow430

density, CLASS 2.7 used 300 kg m −3 as a fixed value, whereas CLASS 3.6 parameterized as a function of the snow depth

(Brown et al., 2006; Verseghy, 2012). If snow temperature below 0◦C, snow density decreases exponentially with time from

the maximum mean density which is the calculated background snow density (Eq. (h)). The equation is derived from field

measurements of Longley (1960) and Gold (1958) and express similarly to the albedo. Bartlett et al. (2006) found that the

modified formula produced good results in the Boreal Ecosystem Research and Monitoring Sites (BERMS) (Old Aspen, Old435

Jack Pine, and Old Black Spruce). In the equation of the maximum snow density, the empirical constant (As) is 450 for cold

snow case (Tsnow < 0◦C), and 700 for snow close to the melting point (Tsnow = 0◦C) according to Tabler et al. (1990) (Eq.

(i)). This empirical constant is consistent with the results of Wakahama (1968) and Colbeck (1973), which both showed a

tendency to increase the compression rate of snow density with wet snow (Brown et al., 2006).

Noah-MP calculates snow density or snow depth considering destructive metamorphism by temperature change, compaction440

by the weight of the overlying snow layers, and snow melting metamorphism according to Anderson et al. (1976). Noah-MP’s

snow layer determines by the total snow depth (Yang and Niu, 2003). If the snow depth is <0.045 m, snow layer does not exists.

If the snow depth is ≥ 0.045 m, the first snow layer has a layer thickness as the total snow depth. When snow depth is ≥ 0.05

m, two layers produces, and when snow depth is ≥ 0.15 m, a third layer is created. The third snow layer is thick due to the

compaction following Sun et al. (1999) (Niu et al., 2011). Snow depth is dividing snow on the ground by bulk density snowfall445
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which is set to 120 when fresh snow density is smaller than 120 and parameterized as the following fresh snow density (Eqs.

(j) and (k)). Fresh snow density in Noah-MP is calculated according to the Hedstrom and Pomeroy (1998) by Eq. (l) in Table

8. Fresh snow density mainly account for the surface air temperature and freezing temperature.

CLM 5 calculates the snow depth next time, adding new snow depth to the snow depth at the current time (Lawrence et al.,

2018). CLM 5 parameterizes the new snow depth as the rate of change (∆zsno, m), which is a function of the bulk density of450

newly fallen snow (ρsn, kg m−3), the snow cover fraction (fs), and the rate of solid precipitation reaching the ground (qgrnd,ice,

kg m−2 s−1) (Eq. (m)). In particular, CLM 5 considers the snow cover for estimating snow depth, like HTESSEL. The density

of newly fallen snow parameterization incorporates summing the fresh snow density according to the temperature and wind

(Eq. (n)). Eq. (o) shows the fresh snow density according to the temperature (ρT ) in CLM 5 (Anderson et al., 1976; van

Kampenhout et al., 2017), and the equation has a similar structure to that of the Noah LSM. However, CLM 5 has a difference455

in that it added the critical temperature, the freezing temperature of water (in K) + 2 K. Besides, the lowest air temperature

parameterized in CLM 5 does not use a constant value like -0.05. CLM 5 utilized wind dependent term for the new snowfall

density (ρw) as Eq. (p) from van Kampenhout et al. (2017) who considers both wind and temperature.

JULES have multi-layer snow model, snow density on k-th layer over a time step of length δt can be parameterized as Eq. (q)

in Table 8. Snow density scheme in JULES account for the reference snow temperature (ks = 4000 K), the snow melting point460

(Tm = 273.15 K), the temperature of the k-th snow layer (Tk, K), reference snow density (ρ0 = 50 kg m−3), snow density of

the k-th snow layer (ρk, kg m−3), and compactive viscosity (η0 = 107 Pa s), and the mass of snow above the middle layer

(Mk = 0.5(Ik + Wk)+
∑k−1

i=1 (Ii + Wi)), where Ik (kg m−2) and Wk (kg m−2) are an ice content and a liquid water content,

respectively (Best et al., 2011). The layer thickness (dk, m) which have the relationship with density and mass expressed by

ρkdk = Ik + Wk. This formulation is identical meaning with Noah LSM, BATS, CLASS, and Noah-MP.465

The newly fallen snow density in ISBA is identical with fresh snow density scheme in HTESSEL (Eq. (d) in Table 8).

ISBA expresses the time tendency of snow density as Eq. (r) like JULES, but the specific terms are different. The snow

density changes by snow compaction due to vertical stress, the snow viscosity change (Brun et al., 1989), and wind-induced

densification of snow layers (Brun et al., 1997). Especially, compaction rate of wind-driven snow densification parameterized

as τW(i) which describes precisely in Appendix B (Wind-induced densification of near-surface snow layers) from Decharme470

et al. (2016), and it is unique consideration of ISBA. The vertical stress in each layer can be parameterized as Eqs. (s) and (t)

and vertical stress is also considered in JULES. It accounts for layer snow depth changes per time step (∆z), layer snow density

(ρsn) and the acceleration of gravity (g) in every snow layer, but only the first snow layer used half mass of the uppermost layer

as vertical stress effect. The snow viscosity in Eq. (u) is calculated by reference snow viscosity (η0 = 7622370 Pa s), reference

snow density (ρ0 = 250 kg m−3), snow density in i-th layer (ρsn(i)), snow temperature in i-th layer (Tsn(i)), and the constants475

(aη = 0.1 K−1, bη = 0.023 m3 kg−1, and ∆Tη = 5 K). The decrease of viscosity with the presence of liquid water (fW(i))is

calculated by Eq. (v), where Wlmax(i) (kg m−2) and Wl(i) (kg m−2) refer to the maximum liquid-water-holding capacity and

liquid water content in i-th layer.
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5 Future outlook

We visualized the current state of the art of snow cover fraction parameterization as Figure 4 by checking all significant vari-480

ables of snow models in the supplementary table from Menard et al. (2021). Figure 4 shows that only a few LSMs used specific

variables to discern the snow cover fraction, so snow model developers can easily compare differences among LSMs. The eight

land surface models examined in this study calculate the snow cover fraction through “the threshold of the SWE and the SWE,”

for Noah LSM, and HTESSEL, “the critical value of the snow depth and snow depth,” for CLASS. In addition, BATS, ISBA,

JULES and Noah MP considers “the snow depth and roughness length” for deriving snow cover fraction (Figure 4). Noah MP485

additionally concerned snow density as the melting factor, and BATS and ISBA used the vegetation fraction separating the bare

soil ground and vegetation covered ground for applying different roughness length according to the vegetation type and snow

depth. Therefore, it is crucial to properly set the parameter values for “the threshold of snow depth or SWE” and the roughness

length depending on the land surface type.

It is significant to derive an optimal parameter value that can reflect the local characteristics based on the same land type490

from the observation data. For instance, accurate snow cover estimation is crucial because snow cover fraction affects snow

sublimation, soil heat flux, surface emissivity, and albedo in Noah LSM. That is why parameter improvements were attempted

in Livneh et al. (2010) and Wang and Zeng (2010). The parameter values according to the land cover type provided in Noah

LSM were set differently according to the height of the vegetation. The current version of the Noah LSM reflects the SWE for

snow cover parameterization but does not consider the snow depth, snow density, roughness length, and green vegetation frac-495

tion. Therefore, considering snow depth (CLASS, RUC, ORCHIDEE-I, SPONSOR in Figure 4) or snow density (HTESSEL,

EC-EARTH, Noah-MP, CoLM in Figure 4) for snow cover fraction parameterization could be better because these variables

have timely varying characteristics due to the temperature. In addition, current state-of-the-art LSMs considers fixed rough-

ness length value according to the vegetation cover (JULES, BATS, ISBA, and Noah MP). Therefore, a seasonal variation of

roughness length needs to calculate snow cover fraction for reflecting vegetation effect.500

Point-specific or 100% snow cover means that LSMs assume they do not express subgrid heterogeneity and inform ground

conditions with or without snow (Figure 4). Since most LSMs have been developed for the atmospheric model, the representa-

tion of snow-covered and snow-free areas is significant for energy flux as the lower boundary condition. CABLE-SLI, CRHM,

Crocus, ESCIMO, JSBACH, JSBACH3-PF, MATSIRO, SMAP, SNOWPACK, SWAP, VEG3D, SURFEX-ISBA, JULES-GL7,

JULES-UKESM, and JULES-I impose complete snow cover or switch off their subgrid parameterizations, according to Menard505

et al. (2021). Among them, however, we identified the parameterization of snow cover fraction in SURFEX-ISBA, JULES-

GL7, JULES-UKESM, and JULES-I, which concerns specific variables and illustrated appropriate location in the diagram in

Figure 4.

The land surface model’s newly added snow cover parameterization method reflects the sub-grid topography variation in

CLM 5. Ma et al. (2019) used this method which considers the sub-grid unit’s terrain characteristics to calculate the snow510

cover fraction. However, this method has a limitation due to only taking a variable called “elevation” into account as the

standard deviation for the feature of the geomorphic setting. Roesch and Roeckner (2006) also measured snow cover fraction
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in the ECHAM climate model using the standard deviation of the sub-grid elevation and SWE. Douville et al. (1995) proposed

a formula with the irregular snow cover distribution for the mountainous areas, including snow depth, roughness length, and

the standard deviation of the subgrid orography (m).515

Clark et al. (2011) presented a list of predictors related to the cause of spatial variation in snow depth according to spatial

scale, as shown in Table 9. The list included both the elevation and slope among the significant predictors for snow temporal

and spatial distribution. Since the spatial variation of snow depth is highly relevant with snow cover, we can apply essential

predictors to the snow cover fraction parameterization. Anderson et al. (2014) also provided insights into the snow physics

process that regulates the relationship between snow distribution and topographic characteristics and argued that snow cover520

correlates with altitude, aspect, canopy density, and snow accumulation/ablation. Besides, Mott et al. (2018) suggested that

the characteristics of snow cover change according to the mountain range scale, the ridge, and the slope scale may differ.

This idea provides worth variables considering when applying scales to interesting areas in LSMs. First, snow accumulation

depends on the climate, elevation, and vegetation at the mountain-range scale (López-Moreno et al., 2008; Clark et al., 2011;

Anderson et al., 2014). Especially, elevation is the most significant variable for precipitation pattern at the mountain range scale525

(Mott et al., 2018). Second, snow deposition patterns at the ridge-scale reveal more considerable spatial variability of snow or

enhanced snow deposition over leeward slopes by preferential deposition of snowfall (Mott and Lehning, 2010; Gerber et al.,

2017). Third, at the slope scale, the highest model resolutions show the snow redistribution processes such as saltation and

turbulent suspension (Mott et al., 2018).

Noah LSM, CLM 5, and JULES calculates the land surface albedo by summing the ground albedo without snow and the530

snow albedo using the snow cover fraction. Other LSM models using the Noah LSM’s snow albedo decay scheme were VIC

and DHSVM. Livneh et al. (2010) introduced the parameter value of albedo decay parameterization. Storck (2000), Sun et al.

(2019), and Malik et al. (2014) also enhanced this parameter to fit the characteristics of the study area. Furthermore, maximum

snow albedo was approximately 0.6–0.95 in other LSMs and journal articles (Sproles et al., 2013; Verseghy, 1991; Wigmosta

et al., 1994; Andreadis et al., 2009; Yang et al., 1997; Bartelt and Lehning, 2002). In Noah LSM, snow albedo is affected by535

snow cover; it affects the latent heat of the freezing rain, the heat flux of the snow surface, and the phase change heat flux for

snow melting. Therefore, the maximum snow albedo is the main parameter of snow albedo parameterization, so setting the

maximum snow albedo’s optimal value is essential.

In addition to the HTESSEL, BATS, and CLASS models, ISBA includes a prognostic albedo scheme in which the previous

snow albedo value affects the current snow albedo value. At first, CLASS did not consider the snow albedo changes according540

to the spectral range, similar to HTESSEL (Eqs. (k) and (l) in Table 5). Noah-MP also used this scheme (Wang et al., 2020).

After that, CLASS applied the difference between visible and near-infrared snow albedo according to spectral range like CLM

5, BATS, JULES, and ISBA; it used an empirical formulation that has the difference between dry snow (Eqs. (n) and (o) in

Table 5) and melting snow (Eqs. (p) and (q) in Table 5). Melton et al. (2019) used the spectral method instead of the empirical

exponential decay function in order to apply the results of Wiscombe and Warren (1980) that the growth of snow particles,545

soot/dirt precipitation affects snow albedo. BATS’s snow albedo parameterization method was actively accepted in CLASS,

and there was a slight difference in applying to freshly fallen snow with a near-infrared value of 0.73, unlike BATS’s 0.65. In
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addition, the structure of the equation reflecting the effect of the solar zenith angle was slightly different. The CLASS model in

CLASSIC shows the most significant difference from other land surface models in that they reflected canopy albedo (Bartlett

and Verseghy, 2015; Melton et al., 2020). In particular, CLASS has the lowest albedo bias among the JULES-I, JULES-GL7,550

JULES-UKESM, Surfex-ISBA, CLM 5, CLASS, and HTESSEL from Menard et al. (2021) (Figure 5). Thus, in future studies,

the improvement of snow albedo simulation that reflects the effect of vegetation is crucial.

Since many LSMs calculate the snow depth as the SWE ratio to the snow density, it is vital to parameterize the new snow

density affected by fresh snowfall. The new snow density’s minimum value differed slightly depending on the type of LSM

or the study area, so it was necessary to adjust the parameter value. In the snow density parameterization, although CLM555

5, HTESSEL, and ISBA took wind and temperature into consideration when calculating the new snow density (Noah LSM,

Noah-MP only considered temperature), various other variables may affect the new snow density.

Föhn (1976, 1985) raised the question of the representativeness of the measurement of the new snow depth in precipitation

gauges in the mountains because they ignored the topographical characteristics such as the mountain peak, the wind-slope,

and the leeward slope or depressions. Since records from rainfall gauges surrounded by valley plains help infer the depth560

of new snow depths over large areas (Föhn, 1976, 1985). Therefore, it is imperative to reflect the influence of topographic

conditions’ variation (elevation and slope) for mountainous areas’ snow depth. Clark et al. (2011) proposed to derive snow

depth by considering topographic variations such as wind slope vs. leeward slope, depression, crests, and the variation of

critical elevation. Spatial variation of snow depth and temporal consistency of snow cover diversified due to snow freezing

temperature, slope, aspect, and radiation. Hojatimalekshah et al. (2020) examined the relationship between tree canopy and565

snow depth and Kantzas et al. (2014) investigated the change of the snow regime according to vegetation dynamics through a

ground model; these studies show that consideration of the vegetation effect is necessary for the snow parameterization method.

Therefore, snow density parameterization regarding snow depth needs to include vegetation density, Leaf Area Index (LAI),

Stem Area Index (SAI), vegetation type, and snow behavior in sheltered areas. In breif, geomorphic and vegetation-related

variables can affect the spatial-temporal variation of the snow depth.570

6 Conclusions

Examining the eight LSM’s snow physics parameterizations allowed us to find each parameterization’s vulnerabilities. De-

pending on the purpose of each LSM, we presented a comparison table so that readers can identify the variables already

reflected in various LSMs which have enough information on snow-related schemes. We mainly focused on parameterization

methods related to snow cover, snow albedo, and snow density. This study confirmed that snow cover, snow albedo, and snow575

density parameterization differ for each land surface model in terms of complexity and significant variables or parameters. The

comparative analysis for each element is summarized as follows.

In the snow cover case, the snow decay scheme’s parameterization method in CLM 5 considers the subgrid’s topographical

variation. Besides JULES, BATS, ISBA, and Noah MP used snow depth and roughness length for calculating the snow cover

fraction. BATS and ISBA consider vegetation fraction, while Noah MP accounts for the melting factor using snow density.580
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For the snow albedo parameterization, Noah LSM, CLM 5, and JULES use the snow cover fraction. Noah LSM, CLM

5, BATS, and HTESSEL used the maximum snow albedo for each vegetation type or applied the green vegetation fraction.

Especially BATS, CLM 5, and JULES considered solar zenith angle, ice grain size to calculate snow albedo using direct

& diffuse albedo and visible & near-infrared albedo. BATS and CLM 5 take into account the effect of impurities like dust or

carbon on snow. CLASS does not consider solar zenith angle and was recently upgraded by calculating visible and near-infrared585

albedo for dry and melting snow, respectively.

In terms of snow density, while Noah LSM and Noah-MP consider only temperature, HTESSEL, CLM 5, and ISBA reflect

temperature and wind to parameterize the density of new snowfall. ISBA and JULES include the internal snow processes such

as vertical stress, snow temperature, and snow viscosity. In particular, ISBA accounts for the wind-driven snow compaction

precisely. BATS calculates snow density using the growth of snow particle size and the accumulation of dust and soot. CLASS590

calculates the maximum snow density as a function of snow depth, which increases exponentially over time with wet snow.

Noah LSM, BATS, CLASS, Noah-MP, HTESSEL, and CLM 5 considers SWE or snowfall rate and snow density for parame-

terizing snow depth, and HTESSEL and CLM 5 use the snow cover fraction additionally to the snow depth parameterization.

We suggested what variables need to be taken into account to properly reflect the snow’s physical properties in the future

outlook section. In particular, at a high-resolution spatio-temporal scale, we highlight the importance of geomorphic and veg-595

etation conditions in snow parameterization. First, topographic features such as slope aspect, slope gradient, and altitude have

great importance in snow ground physics. Second, we found that vegetation-related factors such as vegetation density, vege-

tation type, vegetation cover fraction, LAI, and SAI are crucial for snow parameterization at the local scale. In future LSM

improvement studies, we recommended a parameterization method that considers the topography and vegetation characteris-

tics.600
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Figure 1. Original (Eq. (d) in Table 2: ground fraction covered by snow, Eq. (e): vegetation fraction covered by snow) and new formulation

(Eq. (f): snow cover fraction depending on the surface type) for snow cover fraction in BATS model (Yang et al., 1997) when land cover type

is short grass (z0 = 0.02 m).

Figure 2. Depletion curves of Snow Cover Fraction (SCF) depending on the shape parameter Nmelt (from Swenson and Lawrence, 2012,

Fig. 9; Copyright 2012 by the American Geophysical Union.). The x-axis is snow depth in meters.

Tables

30

https://doi.org/10.5194/tc-2021-319
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 3. The relationship between the 2 m air temperature (◦C) and the new snow density (g m−3) in Noah LSM.

Figure 4. Conceptual diagram key variables of snow cover fraction by snow model intercomparison of this study and the ESM-SnowMIP
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Figure 5. Model ranking by albedo biases from negative to positive (from Menard et al., 2021, part of Fig. 2; Bulletin of the American

Meteorological Society 102, 1; 10.1175/BAMS-D-19-0329.1, © American Meteorological Society. Used with permission.). CLASS has the

lowest albedo bias among CLM 5, CLASS, and HTESSEL. The site names are abbreviated as follows. CDP = Col de Porte, SAP = Sapporo,

RME = Reynolds Mountain East, SNB = Senator Beck, SOD = Sodankylä, SWA = Swamp Angel, and WFJ = Weissfluhjoch.

Table 1. Variables or parameters for parameterization of snow cover in eight LSMs.

Variables or parameters
Land surface model

Noah LSM HTESSEL BATS CLASS Noah-MP CLM 5 JULES ISBA

SWE O O O O O

Snow depth O O O O O

Snow density O O O

Thresholds of SWE O O

Thresholds of Snow Depth O O

Roughness length O O O O

Melting Factor O

Distribution shape parameter O

Consideration of land surface type O O O

Vegetation fraction O O

Consideration of elevation O
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Table 2. Snow cover parameterization in eight different LSMs.

Land surface model Expressions Reference

Noah LSM (a) fs = 1− exp(−Ps
Ws

Wmax
)+ Ws

Wmax
exp(Ps) Koren et al. (1999)

HTESSEL
(b) fs = min(1, Ws

15
)

Dutra et al. (2009)
(c) fs = min(1, Ws

ρsn
0.1)

BATS

(d) fs,g = Dsn/(0.1m + Dsn)
Dickinson et al. (1993)

(e) fs,v = Dsn/(10z0v + Dsn)

(f) fs,i = tanh Dsn

2.5zi
0

Yang et al. (1997)

CLASS

(g) fs = Dsn/Dsn,lim
Verseghy (2012)

(h) Dsn = Ws
ρsn

(i) fs = 1− 0.01(15− 100Dsn)1.7 Brown et al. (2003)

Noah-MP

(j) fs = tanh(Dsn/2.5z0Fmelt)

Niu and Yang (2007)(k) Fmelt = (ρsn/100)M

(l) ρsn = S
Dsn

CLM 5

(m) fn+1
s = 1− [(1− tanh(kaccumqsnow∆t))(1− fn

s )]

Lawrence et al. (2018)(n) fs = 1− [ 1
π
acos(2 Ws

Wmax
− 1)]Nmelt

(o) Nmelt = 200
max(10,σtopo)

JULES (p) fs = Dsn/(10z0 + Dsn) Best et al. (2011)

ISBA
(q) fs,g = min(1,Dsn/Dsn,lim)

Decharme et al. (2016)
(r) fs,v = Dsn/(2z0v + Dsn)

Symbols: fs :fractional snow coverage; Ps: distribution shape parameter; Ws: snow water equivalent; Wmax: threshold SWE above which

fs is 100%; ρsn: snow density; fs,g : fraction of ground covered by snow; Dsn: snow depth; fs,v : fraction of vegetation covered by snow;

z0v : roughness length on vegetated area; fs,i: snow cover fraction depending on surface type, ex) bare soil or grass; zi
0: roughness length

depending on surface type; Dsn,lim: maximum limit of snow depth above which fs is 100%; z0: the ground roughness length (m)

(z0 = 0.01 m in the Noah-MP); Fmelt: melting factor for snow cover fraction; M : melting factor determining the curves in melting season

(M = 1.0 in the Noah-MP, a larger value for a larger scale generally); S: snow mass (kg m−2);fn+1
s : updated snow cover fraction; fn

s :

snow cover fraction from the previous time step; kaccum: a constant (default value = 0.1); qsnow∆t: amount of new snow; Nmelt:

parameter that depends on the topographic variability within the grid cell; σtopo: standard deviation of the elevation within a grid cell

calculated from a high resolution DEM (1 km DEM is used for CLM 5)
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Table 3. Typical ranges for surface albedo (Armstrong and Brun, 2008).

Snow condition and land surface types Surface albedo

Fresh, dry snow 0.80–0.95

Old, dry snow 0.70–0.80

Wet snow 0.50–0.70

Melting ice/snow 0.25–0.80

Snow-covered forest 0.25–0.40

Snow-free vegetation/soil 0.10–0.30

Water (high solar elevation) 0.05–0.10
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Table 4. Variables considered for snow albedo parameterization in eight LSMs.

Variables or parameters
Land surface model

Noah LSM HTESSEL BATS* CLASS* CLM 5 JULES** ISBA

Separate direct and diffuse albedo O O O

Separate visible and near-infrared area O U O O O

Thresholds of SWE O

Thresholds of Snow depth V

Snow depth V

Fresh snowfall rate O O

Snow cover fraction O O O

Consideration of vegetation effects (land surface type) O O O O V

Solar zenith angle O O O

Black carbon, mineral dust, organic carbon O O

Ice grain size O O O O

Age of the first snow layer O

Near surface atmospheric pressure O

Melting snow and dry snow U

Surface temperature V

*Noah-MP has two options for snow albedo parameterization from BATS or CLASS. Especially, CLASS is updated (U) for CLASSIC earth system model. **JULES has two snow

albedo options, the diagnostic scheme (V) and the prognostic albedo scheme (O).
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Table 5. Snow albedo parameterization in eight different LSMs.

Land surface model Expressions Reference

Noah LSM

(a) α = α0 + fs(αsn−α0)

Livneh et al. (2010)
(b) α = α0 +(1−σf )fs(αsn−α0)

(c) αmax = αmax,sat + C(αmax,CofE −αmax,sat)

(d) αsn = αmax ∗AtB

HTESSEL

(e) αt+1
sn =

 αt
sn− γa∆t/γ1 Msn = 0(

αt
sn−αmin,H

)
exp(−γf∆t/γ1)+ αmin,H Msn > 0 or Tsn ≥ Tf − 2


Dutra et al. (2009)

(f) αt+1
sn = αt

sn +min(1, F∆t
10

)(αmax,H −αt
sn)

BATS

(g) αsn,vis = 0.95 ∗ (1− 0.2 ∗Fage)

Dickinson et al. (1993)
(h) αsn,nir = 0.65 ∗ (1− 0.5 ∗Fage)

(i) αµ
sn,vis = αsn,vis +0.4 ∗Fzenith ∗ (1−αsn,vis)

(j) αµ
sn,nir = αsn,nir +0.4 ∗Fzenith ∗ (1−αsn,nir)

CLASS

(k) αt+1
sn = αt

sn +min(1, F∆t
Wmax

)(αmax−αt
sn)

Verseghy et al. (2012)
(l) αt

sn = 0.55+ (αt−1
sn − 0.55) ∗ exp(−0.01∗∆t

3600
)

(m) αt
sn,total = αsn,total,old +(αt−1

sn −αsn,total,old) ∗ exp(−0.01∗∆t
3600

)

Melton et al. (2019)

(n) αsn,vis = 0.7857αsn,total +0.29

(o) αsn,nir = 1.2142αsn,total− 0.29

(p) αsn,vis = 0.9706αsn,total +0.1347

(q) αsn,nir = 1.0294αsn,total− 0.1347

CLM 5

(r) αµ
g,Λ = αµ

soil,Λ(1− fs)+ αµ
sno,Λfs

Lawrence et al. (2018)

(s) αg,Λ = αsoil,Λ(1− fs)+ αsno,Λfs

(t) αµ
soil,vis = αsoil,vis = 0.6

(u) αµ
soil,nir = αsoil,nir = 0.4

(v) αµ
soil,Λ = αsoil,Λ = 0.05(µ +0.15)−1

(w) αµ
soil,Λ = αsoil,Λ = (αsat,Λ +∆)≤ αdry,Λ

Symbols: α: albedo; α0: snow free albedo; αsn: snow albedo; fs: fractional snow coverage; σf : green vegetation fraction (0≤σf ≤ 1);αmax: maximum albedo value of fresh fallen

snow; αmax,sat: satellite-based maximum snow albedo; C: proportionality coefficient (0.5); αmax,CofE : maximum snow albedo from U.S. Army Corps of Engineers (1956) (0.85); A:

0.95 for accumulation phase and 0.58 for ablation phase; B: 0.82 for accumulation phase and 0.46 for ablation phase; t: number of days since the last snowfall; αt+1
sn : snow albedo at the

next time step; αt
sn: snow albedo at the current time step; γa: linear coefficient for decrease of albedo of non-melting snow (γa=0.008); ∆t: model time step; γ1: length of day

(γ1=86400); Msn: melting snow amount; αmin,H : minimum albedo of exposed snow (αmin,H =0.5 for HTESSEL); γf :coefficient for exponential decrease of snow density and melting

snow albedo; Tsn: snow temperature (K); Tf : freezing temperature (Tf =273.16 K); F : mass fluxes of snowfall (kg m−2s−1);αmax,H : maximum albedo of exposed snow

(αmax,H =0.85 for HTESSEL); αsn,vis: diffuse snow albedo for visible area; αsn,nir : diffuse snow albedo for near-infrared area; Fage: factor to account for snow aging; αµ
sn,vis:

direct beam snow albedo for visible area; αµ
sn,nir : direct beam snow albedo for near-infrared area; Fzenith: factor to account for solar zenith angle impact; αt

sn,total: total snow albedo

at the current time step; αsn,total: total snow albedo for visible and near-infrared area; αsn,total,old: set to a value of 0.5 for melting snow, 0.7 for dry snow; αµ
g,Λ: direct beam ground

albedo; αµ
soil,Λ: direct beam soil albedo; αµ

sno,Λ: direct beam snow albedo; αg,Λ: diffuse ground albedo; αsoil,Λ: diffuse soil albedo; αsno,Λ: diffuse snow albedo; αµ
soil,vis: direct

beam soil albedo for visible area; αsoil,vis: diffuse soil albedo for visible area; αµ
soil,nir : direct beam soil albedo for near-infrared area; αsoil,nir : diffuse soil albedo for near-infrared

area; µ: cosine of the solar zenith angle; αsat,Λ: saturated soil albedo; αdry,Λ: dry soil albedo
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Table 5. (Continued).

Land surface model Expressions Reference

JULES

(x1) αsn = αcds + k1(α0−αcds)(Tg −Tc)

Best et al. (2011)
(x2) α = α0 +(αsn−α0)(1− e−Dsn/Dm)

(y1) αvis = 0.98− 0.002(r1/2− r
1/2
0 )

(y2) αnir = 0.7− 0.09ln(r/r0)

ISBA

(z1) αsn(1) = max
[
0.6,min

(
0.92,0.96− 1.58

√
dopt(1)

)

Decharme et al. (2016)

−min
(
1,max

(
1
2
, Pa

Pref

))
× 0.2Asn(1)

Aref
]

(z2) βsn(1, i) = max
[
40,0.00192ρs(i)/

√
dopt(i)

]
(z3) αsn(2) = max

[
0.3,0.9− 15.4

√
dopt(1)

]
(z4) βsn(2, i) = max

[
100,0.01098ρs(i)/

√
dopt(i)

]
(z5) αsn(3) = 0.88+346.2d′− 32.31

√
d′ with d′ = min[0.0023,dopt(i)]

(z6) βsn(3, i) = +∞

Symbols: α: albedo; α0: snow free albedo; αsn: snow albedo; αcds: cold deep snow albedo; k1: snow aging parameter; Tg : surface temperature; Tc: snow albedo

threshold temperature; Dsn: snow depth; Dm: surface masking snow depth; αvis: snow albedo for visible area; αnir : snow albedo for near-infrared area; r: grain

size; r0: fresh snow grain size (r0 = 50 µm);dopt(i): optical diameter of snow in each layer i; Pa: near surface atmospheric pressure; Pref: reference pressure, 870

hPa; Asn: age of the first snow layer expressed in days; Aref: reference age of snow decreasing due to impurities, 60 days; ρs(i): snow density in ith layer

Table 6. Typical albedo values for fresh snow, old dry snow, and melting snow in CLASS model (Verseghy et al., 2020).

Snow characteristics Total albedo Visible albedo Near-infrared albedo

Fresh snow 0.84 0.95 0.73

Old dry snow 0.70 0.84 0.56

Melting snow 0.50 0.62 0.38
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Table 7. Variables considered for snow density and snow depth parameterization.

Variables or parameters
Land surface model

Noah LSM HTESSEL BATS CLASS Noah-MP CLM 5 JULES ISBA

Air temperature N N N N N

Snow temperature T S

Wind speed N N N, T

Snow cover fraction D D

SWE D D D D

Snowfall rate D D

Liquid water content T S

Ice content T S

Snow depth T V

Snow density D D D D, T D D T V, S

Ice grain size T

Snow viscosity T T

Vertical stress T T

Dust, soot T

Different symbols, N / T / V / S / D stands for considering variables for parameterizing New snow density / Snow density depending on time / Vertical

Stress / Snow viscosity / Snow depth, respectively.
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Table 8. Snow density parameterization in eight different LSMs.

Land surface model Expressions Reference

Noah LSM

(a) ∆Zsno = Ws
ρsn

Gottlib (1980); Koren et al. (1999)
(b) ρsn =

 0.05+ 0.0017(T2m +15)1.5 , −15 < T2m

ρsn = 0.05, T2m ≤−15


HTESSEL

(c) Dsn = S
ρsn∗fs Dutra et al. (2009)

(d) ρsn = asn + bsn(Tatm −Tf )+ csn(Va)1/2

BATS
(e) Dsn = S

ρsn Dickinson et al. (1993); Wang et al. (2020)
(f) ρsn = 0.1 + 0.3FAGE

CLASS

(g) Dsn = Ws
ρsn

Verseghy et al. (2012)(h) ρs(t +1) = [ρs(t)− ρs,max] exp
[
− 0.01∆t

3600

]
+ ρs,max

(i) ρs,max = As−
[

204.70
Dsn

][
1.0− exp

(−Dsn
0.673

)]
Brown et al. (2003)

Noah-MP

(j) Dzs =
Psg

BDfall

Yang et al., (2011)(k) BDfall =

 120 120 > ρsn

ρsn 120 < ρsn


(l) ρsn = 67.92 + 51.25e

(Tatm−Tf )
2.59

CLM 5

(m) ∆zsno =
qgrnd,ice∆t

fsρsn

Anderson et al. (1976); Lawrence et al. (2018);

(n) ρsn = ρT + ρw

(o) ρT =


50+ 1.7(17)1.5,Tatm > Tf + 2

50+ 1.7(Tatm −Tf + 15)1.5 ,Tf − 15 < Tatm ≤ Tf +2

−3.833(Tatm −Tf )− 0.0333(Tatm −Tf )2 , Tatm ≤ Tf − 15


(p) ρW = 266.861

(
1+tanh

(
Watm

5

)
2

)8.8

van Kampenhout et al. (2017)

JULES (q) δρk
δt

= ρkgMk
η0

exp
(

ks
Tm

− ks
Tk
− ρk

ρ0

)
Best et al. (2011)

ISBA

(r) ∂ρsn(i)
∂t

= ρsn(i)σ(i)
η(i)

+max
(
0, ρWmax−ρsn(i)

τW(i)

)
Decharme et al. (2016)

(s) σ(1) = g∆z(1)ρsn(1)
2

(t) σ(i) = g
∑i−1

j=1 [∆z(j)ρsn(j)] ∀i > 1

(u) η(i) = η0
fW(i)

ρsn(i)
ρ0

exp(aη ×min(∆Tη,Tf −Tsn(i))+ bηρsn(i))

(v) fW(i) = 1+10×min
(
1.0, Wl(i)

Wlmax(i)

)
Symbols: ∆Zsno: new snow depth; Ws: snow water equivalent; ρsn: new snow density; T2m: 2m temperature; Dsn: snow depth (m) ; S: snow mass (kg m−2);fs: snow cover

fraction; Va: the near surface wind speed (ms−1);Tatm: atmospheric temperature (K); Tf : freezing temperature of water (K); FAGE : snow age factor; ρs,max: maximum snow

density; As: empirical constant; Psg : snow on the ground; BDfall: bulk density snowfall; 10 m wind speed; qgrnd,ice: rate of solid precipitation reaching the ground; ∆t:

model time step; ρT : new snow density of temperature dependent term; ρW : new snow density of wind dependent term; Watm: wind speed; ρk: density of the k-th snow layer;

ρ0: reference snow density; Mk: the mass of snow above the middle of the layer; Tm: temperature of the melting point for water; Tk: temperature of the k-th snow layer; η0:

compactive viscosity; ρsn(i): snow density in each layer; g: acceleration of gravity; σ(i): vertical stress in each layer; ∆z: snow depth changes per time step; η(i): snow

viscosity in each layer; Tsn(i): snow temperature in i-th layer; ρWmax: maximum snow density; τW(i): wind-driven compaction rate in each layer; fW(i): the decrease of

viscosity in the presence of liquid water; Wlmax(i): maximum liquid-water-holding capacity; Wl(i): liquid water content in i-th layer
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Table 9. Spatial variability of snow depth and related processes and predictors (from Clark et al., 2011, Table 2; Copyright 2011 by the

American Geophysical Union.).

Process Predictors Spatial Scale (m) References

Variability in microtopography - 1 Watson et al. (2006)

Snow interception/sublimation distance from trunk; spacing
10

Faria et al. (2000);

from the forest canopy of trees; leaf area index Pomeroy et al. (2002)

Trapping of snow by tall shrubs vegetation type changeable
Essery and Pomeroy (2004);

McCartney et al. (2006); Pomeroy et al. (2006)

Preferential deposition of snow

sheltering indices 10–100

Shook and Gray (1996); Lapena and Martz (1996);

in sheltered areas and scouring Luce et al. (1998); Winstral et al. (2002);

and redeposition of snow by wind Anderton et al. (2004); Erickson et al. (2005);

Trujillo et al. (2007)

Sloughing and avalanching slope 10–1000a Elder et al. (1991); Blöschl and Kirnbauer (1992)

Variability in freezing levels elevation 100–1000b

Blöschl and Kirnbauer (1992); Elder et al. (1998);

Balk and Elder (2000); Winstral et al. (2002);

Marchand and nund Killingtveit (2005)

Watson et al. (2006)

Variability in melt energy

elevation; slope;

50–1000

Elder et al. (1991); Luce et al. (1998);

aspect; radiation loading Balk and Elder (2000);

Watson et al. (2006)

aThe horizontal scale associated with sloughing and avalanching is often much smaller than the vertical scale.
bThe horizontal scale associated with variability in freezing levels is often much larger than the vertical scale.

40

https://doi.org/10.5194/tc-2021-319
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.


