
1 

 

Insensitivity of mass loss of Icelandic Vatnajökull ice cap to solar 

geoengineering 

Chao Yue1, Louise Steffensen Schmidt2, Liyun Zhao1,3, Michael Wolovick1,4, John C. Moore1,5,6 

1College of Global Change and Earth System Science, Beijing Normal University, 100875 Beijing, China 
2Department of Geosciences, University of Oslo, 0316 Oslo, Norway  5 
3Southern Marine Science and Engineering Guangdong Laboratory, 519000 Zhuhai, China 
4Alfred Wegener Institute, 27570 Bremerhaven, Germany 
5CAS Center for Excellence in Tibetan Plateau Earth Sciences, 100101 Beijing, China 
6Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland 

Correspondence to: Liyun Zhao (zhaoliyun@bnu.edu.cn), John C. Moore (john.moore.bnu@gmail.com) 10 

Abstract. Geoengineering by stratospheric aerosol injection (SAI) may reduce the mass loss from Vatnajökull ice cap (VIC), 

Iceland, by slowing surface temperature rise, despite relative increases in ocean heat flux brought by the Atlantic Meridional 

Circulation (AMOC). Although surface mass balance (SMB) is affected by the local climate, the sea level contribution is also 

dependent on ice dynamics. We use the Parallel Ice Sheet Model (PISM) to estimate the VIC mass balance under the CMIP5 

(Coupled Model Intercomparison Project Phase 5) RCP4.5, 8.5 and GeoMIP (Geoengineering Model Intercomparison Project) 15 

G4 SAI scenarios during the period 1982-2089. The G4 scenario is based on the RCP4.5, but with additional 5 Tg yr-1 of SO2 

injection to the lower stratosphere. By 2089, G4 reduces VIC mass loss from 16 % lost under RCP4.5, to 12 %. Ice dynamics 

are important for ice cap loss rates, increasing mass loss for RCP4.5 and G4 by 1/4 to 1/3 compared with excluding ice 

dynamics, but making no difference to mass loss difference under the scenarios. We find that VIC dynamics are remarkably 

insensitive to climate forcing partly because of AMOC compensation to SMB and low rates of iceberg calving making ocean 20 

forcing close to negligible. But the exceptionally high geothermal heat flow under parts of the ice cap which produces 

correspondingly high basal melt rates means that surface forcing changes are relatively less important than for glaciers with 

lower geothermal heat flow. 

1 Introduction 

Iceland in the northern North Atlantic is strongly affected by the warm Irminger and cold East Iceland ocean currents, leading 25 

to a relatively wet, oceanic climate with high precipitation, mild winters around 0 ℃ and a mean annual temperature of about 

5℃ near the southern coast (Einarsson, 1984). The unique climate has allowed 11% of the country to be covered by glaciers 

(Björnsson and Pálsson, 2008). Glaciers in Iceland are temperate, with a high annual mass turnover having both high 

accumulation and high melt rates, which since maritime glaciers are more sensitive to climate variations than continental ones, 

might be expected to make Icelandic glaciers bellwethers of glacier response to climate warming. Indeed, as the climate has 30 

warmed, glaciers in Iceland have experienced considerable mass loss in recent decades, with melting expected to accelerate 
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throughout this century (Schmidt et al., 2017; Schmidt et al., 2020; Aðalgeirsdóttir et al., 2020). Although their contribution 

to global mean sea-level rise would be just 1 cm, even if all the ice melted (Björnsson and Pálsson, 2008), the local impacts of 

rapid glacier loss will be obvious and deeply moving for Icelanders and cause profound changes in hydrology.  

 35 

Vatnajökull ice cap (VIC), the largest nonpolar ice cap in Europe with a volume of 2870 km3 and an area of 7700 km2 

(Aðalgeirsdóttir et al., 2020), is shrinking at an increasing rate (e.g., Björnsson et al., 2013). Surface mass balance (SMB, the 

sum of accumulation and ablation) significantly decreased from a slightly positive balance in the 1980s to -0.8 m yr-1 during 

1995-2014 (Pálsson et al., 2017). Projections show that VIC volume will decrease 51-94 % by the year 2300 under the 

representative concentration pathway (RCP) 8.5 scenario (Schmidt et al., 2020). 40 

 

Geoengineering by stratospheric aerosol injection (SAI) may help to meet IPCC (Intergovernmental Panel on Climate Change) 

targets of limiting global mean temperature rises to less than 2℃, since present greenhouse gas emissions trajectories suggest 

temperatures over much of the latter half of the 21st century will exceed this limit (MacMartin et al., 2018). Moreover, SAI 

may be a relatively cheap way to offset temperature rises on the global scale (Smith and Wagner, 2019). SAI does reduce 45 

surface runoff over VIC compared with RCP4.5 and RCP8.5 (Yue et al., 2021), but by relatively little compared with the SAI 

induced reductions in mass loss from both Greenland (Moore et al., 2019) and smaller mountain glaciers (Zhao et al., 2017). 

However, Yue et al. (2021) did not consider non-surface mass balance generated by changes in ice flow and discharge (e.g., 

calving of ice and basal melting) that are driven by changing climate or impacts due to the warming ocean in contact with the 

ice. It is this component that we tackle here. Although there are many other potential impacts that might be expected if SAI 50 

were ever undertaken, here we focus only on the mass balance of a single ice cap in Iceland. While this is a very narrow focus, 

the study is topical and of wider relevance because of the atypical behaviour of the North Atlantic under both greenhouse gas 

forcing and SAI, primarily because of the compensatory effects the climate forcing has on the AMOC. The AMOC is simulated 

as slowing considerably under greenhouse gas forcing (Cheng et al., 2013), while slowing much less under geoengineering 

(Hong et al., 2017; Yue et al., 2021). Furthermore, the Arctic is currently warming at least twice as fast as the global mean 55 

temperature, leading to concerns on the stability of the Arctic cryosphere and examination of possible roles for geoengineering 

methods its preservation (Lee et al., 2021). Thus, the North Atlantic Arctic sector is a key region for examination of unwelcome 

impacts from geoengineering. 

 

We simulate the response of the VIC with the state-of-the-art Parallel Ice Sheet Model (PISM) driven by monthly surface mass 60 

balance  from 2006-2089 under SAI and greenhouse gas climates. The RCP4.5 emissions scenario (Thomson et al., 2011) is 

close to future emissions under the 2015 Paris climate agreement (Kitous and Keramidas, 2015), while the RCP8.5 scenario 

(Riahi et al., 2011) is a “business-as-usual” extreme failure to mitigate scenario. The SAI G4 scenario branches off the RCP4.5 

scenario at 2020, specifying 5 Tg yr-1 of SO2 to be injected into the equatorial lower stratosphere until 2069, and then continues 

with RCP4.5 forcing to 2089 (Kravitz et al., 2013). 65 
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2 Model and Verification 

The PISM model (version 1.0; Bueler and Brown (2009); https://pism-docs.org/wiki/doku.php) is an open-source ice sheet 

thermo-dynamic model that has been used in numerous studies of a wide range of ice sheets and glaciers (e.g., Aschwanden 

et al., 2019; Yan et al., 2020). PISM includes a hybrid stress balance model (Bueler and Brown, 2009) with both Shallow Ice 

Approximation (SIA; Hutter, 1983) and Shallow Shelf Approximation (SSA; Morland, 1987) to solve ice vertical deformation 70 

and longitudinal stretching allowing simulation of both slowly flowing ice cap interiors and fast flowing outlet glaciers. 

Schmidt et al. (2020) optimized the free parameters in PISM using observations over Vatnajökull, and we use these choices 

for all our simulations, with the SIA+SSA hybrid schemes for ice stress balance, the isothermal Glen flow law for ice flow, 

the pseudo-plastic flow law for ice basal sliding, and the Eigen scheme for ice calving. 

 75 

To initialize PISM over the VIC, we need the boundary conditions of the surface elevation, bedrock altitude, ice thickness, 

upward geothermal flux, ice temperature, and surface mass balance (Fig. 1). We re-grided these to 500 m×500 m resolution. 

As with Schmidt et al. (2020), we prescribe temperate ice at 0℃ for the whole VIC. We use the daily SMB field (Yue et al., 

2021) from the surface energy and mass balance model of intermediate complexity, SEMIC, (Krapp et al., 2017) under the 

historical, G4, RCP4.5 and RCP8.5 scenarios during 1982-2089 driven by the four ESMs with data available: BNU-ESM (Ji 80 

et al., 2014), HadGEM2-ES (Collins et al., 2011), MIROC-ESM (Watanabe et al., 2010), and MIROC-ESM-CHEM (Watanabe 

et al., 2010). These ESMs were statistically downscaled and bias corrected using ISI-MIP (Hempel et al., 2013) and lapse rate 

approaches to achieve a spatial resolution of 0.025°×0.025°. The derived SMB (Fig. S1) is in reasonable agreement with 

observations over VIC. 
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 95 

Figure 2. Changes in Vatnajökull ice cap volume from the 2000-year climate spin-up driven by repeated 1982-1999 SMB 

fields from PISM forced with BNU-ESM, HadGEM2-ES, MIROC-ESM and MIROC-ESM-CHEM. The equilibrium volume 

is slightly different than present day by -1.3% for BNU-ESM, -0.5% for HadGEM2-ES, and 0.8% for both MIROC models. 

Lower left corner subplot is the ensemble mean of spatial distribution of VIC thickness differences (ice thickness after spin-

up minus present ice thickness) from PISM. The black curves represent the present ice cap extent. The magenta curves 100 

represent the extent after spin-up. 

 

The SMB-altitude feedback alters SMB as VIC topography evolves. VIC surface elevation and historical SMB over 1982-

2005 are significantly correlated (R2>0.7, p<0.01). We therefore correct the annual SMB forcing with the ESM-dependent 

“SMB lapse rate” k, and the ice thickness change modeled by PISM in year t from 2006 to 2089: 105 

 

𝑆𝑀𝐵𝑡
𝑎𝑑𝑗

= 𝑆𝑀𝐵𝑡
𝑆𝐸𝑀𝐼𝐶 + 𝑘 × (ℎ𝑡−1

𝑃𝐼𝑆𝑀 − ℎ0
𝑃𝐼𝑆𝑀)             

 

Where 𝑆𝑀𝐵𝑡
𝑎𝑑𝑗

 and 𝑆𝑀𝐵𝑡
𝑆𝐸𝑀𝐼𝐶  are the corrected and SEMIC modeled SMB in year t, ℎ𝑡−1

𝑃𝐼𝑆𝑀 is the ice thickness in the year t-

1 modeled by PISM, and ℎ0
𝑃𝐼𝑆𝑀 is the ice thickness in 2005. The values of k in Eqn. (1) are {4.59, 4.34, 4.28, 4.28} mm m-1 110 

for BNU-ESM, HadGEM2-ES, MIROC-ESM and MIROC-ESM-CHEM, respectively.  

 

During spin-up, VIC volume changes by between -1.3% and 0.8% for the four ESMs relative to present day, while area is 

reduced by around 16% (Fig. 2). Ice area loss is mainly over the outlet glaciers of Dyngjujökull, Brúarjökull and Síðujökull 
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(Figs. 1, 2) where the ice thicknesses are less than 100 m. Changes in VIC geometry are largely determined by the SMB field 115 

and are consistent across all the ESMs because their climate variables (e.g., surface air temperature, downward longwave and 

shortwave radiation) that drive SMB are bias-corrected with ERA5 reanalysis. This tends to impose a fixed spatial pattern to 

SMB while preserving the long-term trends in the ESM forcing fields, which are small during the 1982-1999 period. The 

largest discrepancies between the spin-up and present area for VIC, especially the reductions over the northern glaciers and 

increased thickness over Skeiðarárjökull, are likely caused by the quasi-periodic surging glaciers that are not parameterized 120 

by PISM, but which cover about 75% of the VIC (Björnsson et al., 2003). VIC surges occur on timescales from several years 

to centuries, and rapidly move accumulated ice from the upper glacier towards the terminus, meaning that the upper and lower 

glacier are usually out of steady state. Thus, the spin-up is unlikely to achieve a present-day area coverage, although total 

volume is close to observed. 

 125 

We next compare the present-day VIC volume and ice surface velocity to observations. Pálsson et al. (2015) record a 3% 

reduction in volume between 1991-2014, which is more than we simulate (Table 1), partly due to the slight overestimation of 

VIC SMB used to force PISM compared with measurements (Schmidt et al., 2020; Yue et al., 2021), and the disappearance of 

fast melting regions. Sentinel-1 satellite observed and PISM modeled VIC ice velocity (Fig. 3) show very similar spatial 

patterns during 2015-2020, with a maximum of >350 m yr-1 over Skeiðarárjökull and Breiðamerkurjökull, and relatively lower 130 

velocities of <100 m yr-1 over almost the whole northern VIC. However, there are some large differences mainly over the 

eastern outlet glaciers where PISM overestimates the velocity by more than 100 m yr-1. The likely reason is that spin-up 

produces a somewhat different ice cap geometry from observed (Fig. 2). 
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Figure 3. Across-ESM ensemble and RCP4.5 and RCP8.5 scenario average spatial distribution of mean surface velocity over 135 

VIC during 2015-2020 (upper left; calculated by the mean of surface velocity under RCP4.5 and RCP8.5), satellite observation 

from Sentinel-1 100 m spaced product (Wuite et al., 2021) (upper left), and their difference (bottom): PISM output-Sentinel.  

3 Ice cap volume and area from 1982 to 2089 

Table 1 and Fig. 4, shows how the simulated VIC volume slightly increased, while area reduced during the historical period 

1982-2005, and then decreases under all future scenarios along with the decreased SMB (Fig. S1). By the end of the year 2089, 140 

the across-ESM ensemble mean of VIC volume is decreased by as little as 12% under G4 to as much as 22% under RCP8.5 

(Table 1). G4 reduces the VIC volume 7-8% relative to RCP4.5 with the BNU-ESM and HadGEM2-ES forcing, but the two 

MIROC models predict little differences, due to their statistically insignificant differences of SMB in these scenarios. By 2089, 

all four ESMs simulations produce surface thinning over the whole VIC especially over Tungnaarjökull, Brúarjökull and 
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eastern small outlet glaciers (Fig. 5). Surface thinning under G4 is smaller than that under RCP4.5 and RCP8.5. G4 increases 145 

ensemble ice thickness by around 10-20 m relative to RCP4.5, and 40-70 m relative to RCP8.5. 

 

Figure 4. Time series of Vatnajökull ice cap volume (upper) and area (bottom) change during 1982-2089 driven by (from left 

to right) BNU-ESM, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM and ensemble mean under historical (magenta), G4 

(red), RCP4.5 (blue) and RCP8.5 (black) scenarios. Estimates considering ice dynamic from PISM are shown in solid curves, 150 

with volume change only caused by SMB as dashed curves. Vertical dashed lines mark the beginning and end of the SAI 

geoengineering.  
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Figure 5. The ice thickness differences from PISM outputs between the year 2089 and 1982 over Vatnajökull ice cap under 

G4 (1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row) scenarios, and their differences (G4-RCP4.5, 4th row; G4-RCP8.5, 5th 155 

row) by (from left to right), BNU-ESM, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM and ensemble mean. 
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Table 1. Vatnajökull ice cap volume and area change (%) by 2089 relative to 1982 under G4, RCP4.5 and RCP8.5 scenarios 

modeled by PISM forced by BNU-ESM, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM, the ensemble mean and 95% 

confidence intervals, N=4 Numbers in brackets represent changes without considering SMB-elevation feedback.  160 

  BNU-ESM HadGEM2-ES MIROC-ESM MIROC-ESM-CHEM Ensemble 

Volume 

G4 14 (13) 10 (10) 11 (11) 13 (12) 12±2 

RCP4.5 21 (20) 18 (17) 11 (11) 13 (13) 16±4 

RCP8.5 25 (23) 23 (22) 20 (20) 22 (21) 22±2 

1991-2014 2 2 0 0 1±1 

Area 

G4 10 (9) 6 (6) 8 (7) 9 (8) 8±2 

RCP4.5 14 (12) 11 (11) 8 (7) 9 (9) 10±3 

RCP8.5 15 (14) 14 (14) 12 (12) 13 (12) 14±1 

4 Ice cap SMB, MB and non-SMB from 2020-2089 

In Fig. 6 we separate the SMB and non-SMB (ice dynamics and basal melting) components of overall mass balance. SMB 

increases the ice thickness over the interior of VIC, with the maximum of more than 400 m over the southern region of VIC, 

while decreasing the ice thickness over the margins, especially over the outlet glaciers of Skeiðarárjökull and 

Breiðamerkurjökull. The degree of surface thinning under RCP8.5 is stronger than for the RCP4.5 and G4 scenarios, resulting 165 

in the smallest area of surface thickening. Non-SMB components display the opposite pattern to SMB. Positive non-SMB 

contributions are visible in all ESMs and scenarios over the margins, because as the negative SMB steepens the margins, it is 

compensated by increased ice flow from the interior and so dynamically thickens. Similarly, the drawdown of ice from the 

interior thins the higher elevation ice cap making the non-SMB component there negative. Basal melting is driven by non-

climate factors and so remains essentially unchanged under the scenarios. The pattern of non-SMB contributions for individual 170 

ESM are all quite similar, the largest differences being mainly over the ablation zone, with ensemble standard deviations of 

more than 10 m (Fig. S2). Fig. 6b demonstrates that surface height differences (G4-RCP4.5 and G4-RCP8.5) by 2089 are 

mainly caused by SMB rather than dynamic effects, SMB under G4 increases VIC mean surface height by around 20 m. SAI 

dynamically thickens the ablation zone relative to the RCP scenarios, while thinning the accumulation area. The dynamic 

impact on surface height change differences between G4 and RCP4.5 are confined to ±10 m, which is much less than 175 

differences from RCP8.5. 

 

Fig. 6c illustrates the across-ESM mean time series of modeled MB, SMB and non-SMB. MB is well-correlated (R2=0.98, 

p<0.01) with SMB, and generally exhibits a downward trend in all ESMs and scenarios, although with high annual variability. 

The non-SMB contributions, however, remain nearly constant (around -0.25 m yr-1) over time and across all scenarios (Fig. 180 

7). By 2069, ice dynamics are important for ice cap loss rates, increasing mass loss for  RCP4.5 and G4 by 1/4 to 1/3 compared 

with excluding dynamics, but making no difference to mass loss difference under the scenarios. 
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Figure 6. a) Ensemble mean of ice cap height differences, 2089 minus 2020 caused by SMB (first row) and non-SMB (i.e., 

ice dynamics and basal melting, (second row)) calculated as the difference between MB and SMB, under the G4, RCP4.5 and 185 

RCP8.5 scenarios. No change is marked by the dashed black curves. b) Ensemble mean differences (G4-RCP4.5 and G4-

RCP8.5) in ice cap thickness by 2089 due to SMB (first row) and ice dynamics (second row). c) Decadal ensemble means of 

modeled mass balance (solid curves), SMB (dashed curves) and non-SMB (dotted curves) under historical (magenta), G4 (red), 

RCP4.5 (blue) and RCP8.5 (green) scenarios. The vertical lines denote the beginning and the end of SAI geoengineering. 

Individual models are in Figs. S3-S6. 190 

 

https://doi.org/10.5194/tc-2021-318
Preprint. Discussion started: 19 October 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

SMB gradually declines, and accounts for 52±25% (95% confidence intervals; N=4) changes of MB (Figure 2c) during 

the SAI period 2020-2069 in G4. G4 increases MB by 0.21±0.17 m yr-1 and 0.33±0.22 m yr-1 (95% confidence intervals; 

N=4) compared with RCP4.5 and RCP8.5, although two MIROC models project almost no MB differences between G4 

and RCP4.5. The mean SMB and MB under G4 have much larger differences between the ESMs than the two RCP 195 

scenarios (Fig. 7).  

 

 

Figure 7. The mean MB, SMB, and non-SMB (MB-SMB) over VIC during 2020-2069 under G4, RCP4.5 and RCP8.5 by 

four ESMs and ensemble mean. Error bars represent 95% confidence intervals, N=4. 200 
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5 Discussion 

During the historical period, our simulations show the overall mass loss on VIC is about equally divided between SMB and 

non-SMB components, but as SMB becomes more negative, the non-SMB fraction becomes less important. Yue et al. (2021) 

simulate that SAI G4 (2020-2069) could reduce surface runoff by 6.2±6% (95% confidence intervals), relative to RCP4.5. 

Including the dynamic and basal melt components leads to 12±2% mass loss under G4, and 16±4% under RCP4.5 of present-205 

day mass by 2089. So, G4 saves 25% of mass lost relative to RCP4.5, while for High Mountain Asia (HMA) it saves 19% 

more than RCP4.5 (Zhao et al., 2017). The differences in efficacy are related to the degree of imbalance of the ice masses to 

present and recent climate, with most of HMA losing ice mass throughout the last century, so losses under RCP4.5 are 73%, 

and under G4 59%, of present-day glacier mass. Iceland has been closer to balance until recently.  

 210 

The relative effectiveness of SAI on reducing surface runoff over VIC is much smaller than for the Greenland Ice Sheet (Yue 

et al., 2021), largely due to the compensating impact of AMOC changes. How will this change in future when non-SMB 

components are also considered? Greenland ice sheet MB has been simulated by PISM under forcing from 4 ESMs simulating 

the RCP2.6, and RCP8.5 scenarios (Goelzer et al., 2021). AMOC declines during 2020-2089 irrespective of ESMs and 

scenarios (Fig. 8a), associated with weakened deep water convection over the northern North Atlantic, but clearly, ocean 215 

overturning near Iceland is more vigorous than Greenland (Fig. 8d, e). AMOC under G4 is significantly stronger than that 

under RCP4.5, producing about 10 W m-2 higher heat flux from ocean to atmosphere around Iceland than over Greenland (Yue 

et al., 2021). Fig. 8b-c shows that VIC MB is very significantly dependent on AMOC (R=0.91, p<0.01), while for Greenland 

its impact is not significant (R=0.42, p=0.35), consistent with the SMB behavior (Yue et al., 2021). Thus, AMOC plays a role 

through its impact on SMB and indirectly on dynamic change through the long-term changes in ice cap geometry. Because 220 

VIC is much thinner than the Greenland ice sheet, and has higher accumulation and ablation rates, the mass turnover time in 

VIC is at least 10 times faster than in Greenland meaning that surface climate may induce larger dynamic effects earlier. 
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Figure 8. a) Decadal mean AMOC during 2020-2089 from 8 ESMs under RCP2.6, 4.5, 8.5 and G4 scenarios. b-c) Linear 

regression between annual mean mass balance and relative differences of AMOC index relative to 1990-2005 over VIC (b) 225 

and Greenland ice sheet (c) during the period 2020-2089. The ESMs and scenarios plotted are all shown in panel a). Mass loss 

by PISM over Greenland is available for six ESMs for RCP8.5, but only one for RCP2.6 (Goelzer et al., 2021). The AMOC 

index is calculated as the annual mean maximum volume transport stream function at 30°N. d-e) Ensemble mean (only 

available for ACCESS1.3 and NorESM-M) ocean mixed layer depth during 2020-2029 (d) and 2080-2089 (e). 

 230 

Instead, we find that non-SMB accounts for 0.25 m yr-1 mass loss for all future scenarios. We find only an extra 0-2% volume 

and area loss by 2089 because of the SMB-elevation feedback on VIC geometry, consistent with the 1-3% found by Schmidt 

et al. (2019) who considered feedbacks based on temperature and precipitation lapse rates. The SMB-elevation feedback will 

become increasingly important in longer simulations e.g., VIC volume and area will additionally reduce by 9-14% and 9-20% 

by 2300 than without feedback corrections (Schmidt et al., 2020). For a period as short as the 50-year SAI application specified 235 
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in G4, the change in ice elevation feedback and the induced ice dynamical effects might be expected to be rather too small to 

be seen in large ice caps with a mass turnover time measured in hundreds or thousands of years. However, over Vestfonna ice 

cap (Svalbard), scenario-dependent impacts from 10 to 50% (RCP2.6 to RCP8.5) appeared on century timescales (Schäfer et 

al., 2015), and even over the large Greenland ice sheet, effects due to changing elevation-SMB and ice dynamics become 

detectable (5-8%) by 2100 (Edwards et al., 2014; Goetlzer et al., 2020) and amount to 14-31% after 200 years (Goetlzer et al., 240 

2013). Moreover, the extreme maritime environment of VIC would make it one of the glaciers most likely to exhibit a 

dynamical response to the SAI or RCP scenario, but we see no such effect. Perhaps the chief reason for the scenario-

insensitivity is that the proportion of calving in non-SMB is small; if the calving losses at the terminus are converted to an 

equivalent area-average ablation rate over the upper surface of the ice cap, they only amount to 0.06 m yr-1 (26%) over the 

recent few decades (Jóhannesson et al., 2020). The remaining 74% come from basal melt by geothermal heating, volcanic 245 

eruptions, and dissipation of potential energy. Furthermore, retreat of the margins from the ocean limits ocean losses as the 

result of increased calving into rapidly growing terminus lake in Jökulsárlón (location see Fig. 1). Hence it is perhaps not 

surprising we find no trend in dynamic losses in future scenarios. 

 

 250 

Some previous simulations of VIC had difficulty establishing present-day steady-state geometries (Aðalgeirsdóttir et al., 2005; 

Marshall et al., 2005; Flowers et al., 2005), and our projections are for smaller losses (16±4% for RCP4.5, and 22±2% for 

RCP8.5) than the e.g. 30% loss under RCP4.5 in Flowers et al. (2005). Our results are quite consistent with Schmidt et al. 

(2019), (17% volume loss for RCP4.5), perhaps unsurprisingly as we use the same ice dynamic model but with different SMB 

forcing, which leads to local differences in various basin ice thicknesses by 2089. 255 

 

The influence of volcanic deposits on snowpack albedo has not been incorporated into any snowpack simulations as yet, 

especially the relatively parameterized SEMIC model; in some (infrequent) years volcanic ash blankets some parts of the ice 

cap, drastically changing local ablation rates. The steep geometry of some outlet glaciers is still not perfectly captured by the 

0.025°×0.025° grid although the bias-correction using satellite observations of albedo compensates for the resolution in the 260 

higher resolution model grid.  

 

Of the four ESMs we utilize here, the two MIROC models share many of the same model parameterizations except for the 

atmospheric chemistry component coupled in MIROC-ESM-CHEM. Both models simulate little difference between G4 and 

RCP4.5 over VIC. Moore et al. (2019) evaluated de-weighting in each MIROC model in Greenland simulations, but this made 265 

little difference to the ensemble means, and in general the two ESM are considered independent in climate simulations. The 

new generation of ESMs that participated in CMIP6, and with new corresponding GeoMIP G6 experiment are slowly becoming 

available and could perhaps provide improved polar impact studies. 
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Although geoengineering by SAI is not particularly effective for VIC, and probably other Icelandic ice caps, it does still slow 270 

the rate of ice loss. Given the unique geographical location of the ice cap, we may infer that SAI as specified by G4 will not 

lead to greater mass loss of any glacier of ice cap in the northern hemisphere than expected under any plausible greenhouse 

gas scenario. However, we are not advocating that SAI be done. Arctic SAI would inevitably modify the entire global climate. 

If the population of Iceland wished to make local efforts to conserve their ice caps, locally targeted interventions may offer 

more palatable governance issues (Moore et al., 2020).  275 

6 Conclusions 

We simulate the VIC volume and area change during the period 1982-2089 using the ice sheet model PISM that forced with 

monthly SMB fields calculated by four ESMs. By 2089, the SAI we simulate reduces VIC mass loss by 4 percentage points, 

demonstrating that even in Iceland where the impact of AMOC is most felt, SAI could help preserve VIC from melting. The 

relative unimportance of calving losses due to lack of ocean terminating glaciers, the high basal melt due to active geothermal 280 

areas, and the compensating changes in temperature and accumulation due to AMOC mean that VIC is relatively insensitive 

to climate scenario, with the ice dynamics especially so. We find that ice dynamics are almost constant over both time and 

scenario because they are relatively unaffected by changing air and ocean temperatures.  

 

 285 

Code and data availability. All scripts used for simulations are available upon request from the authors. The modeled ice cap 

volume and area data by PISM are available at https://doi.org/10.5281/zenodo.5410852 
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