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Abstract.  

Snowpack microstructure controls the transfer of heat to, and the temperature of, the underlying soils. In situ measurements of 

snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) 

were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest 20 

Territories, Canada. Snow MicroPenetrometer profiles allowed snowpack density and thermal conductivity to be derived at 

higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm 

vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity 

by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 ℃). Two different approaches were taken 

to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All 25 

the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that 

of Sturm et al. (1997) having the greatest impact (RMSE = 2.5 ℃). The required correction factor is strongly related to snow 

depth (R2 = 0.77, RMSE = 0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach.  

Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an 

important control on subnivean soil respiration, and hence impact Arctic winter carbon fluxes and budgets.  30 

1 Introduction 

Seasonal snow is an effective insulator, with snow thermal properties influencing the soil microclimate (Lawrence and Slater, 

2009; Wilson et al., 2020) and the distribution and state of permafrost (Biskaborn et al., 2019; Goncharova et al., 2019; Zhang, 

2005). The temperature of the subnivean environment, particularly the extent to which it allows for the presence of small 

amounts of liquid water, acts as an important control on biogeochemical cycling, including soil respiration (Semenchuk et al., 35 

2015; Sullivan et al., 2008; Williams et al., 2009). In addition, the soil temperature also impacts hydrology through controls 

on soil infiltration and runoff (Niu and Yang, 2006; Quinton and Marsh, 1999). Accounting for how well the thermal and 

hydrological conditions of subnivean soils (including the physical state of soil water content) are simulated is therefore critical 

for understanding how well current land models such as the Community Land Model (CLM; Lawrence et al. (2019))  simulate 

winter carbon fluxes (e.g. Natali et al. (2019)) and permafrost evolution (Koven et al., 2012).  40 

The depth, [micro]structure, and stratigraphy of a snowpack determine its capacity to insulate the underlying soil and are in 

turn influenced by the temperature of the ground surface. Tundra snowpacks typically consist of a basal depth hoar layer, 

formed as strong temperature gradients within the snowpack induce kinetic metamorphism, overlain by an upper wind slab 
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layer, compacted and densified over the course of a snow season by strong Arctic winds (Sturm et al. (1995), Derksen et al, 

(2009; 2014); Rees et al. (2014), among others). Between these two layers, an indurated hoar layer may also be formed (Sturm 45 

et al., 2008), where the lower part of the wind slab takes on some of the microstructural properties of depth hoar (e.g faceted 

grains) while maintaining the density and hardness of a wind slab (Derksen et al., 2009).  

The thermal influence of the snowpack on the underlying soil can be considered in terms of an effective snow depth (Sdepth,eff), 

which describes the insulative properties of the snowpack by weighting the mean monthly snow depth by its relative position 

in the season at a given location across an entire winter (October – March) (Slater et al., 2017), emphasizing the timing of 50 

snow accumulation as more important than the end of season snow depth in determining wintertime soil temperatures 

(Lafrenière et al., 2013). Rapid snow accumulation and snowpack establishment early in the winter will insulate the ground 

thereby dampening soil temperature fluctuations, leading to a higher Sdepth,eff  than steady accumulation throughout the entire 

winter, even if the total amount of precipitation is the same (Slater et al., 2017). The relationship between Sdepth,eff and the 

normalised temperature difference between air and soil (Anorm) can be used to understand heat transfer between the air and the 55 

soil and through the snowpack (Slater et al., 2017). The deviation of this relationship from the expected exponential form 

(Slater et al. (2017) - Fig. 3), termed the Snow Heat Transfer Metric (SHTM), can be calculated and used to evaluate simulated 

heat transfer processes in the soil and snowpack as was undertaken by Slater et al. (2017) for the land surface components of 

participating models in the CMIP5 model intercomparison project (Taylor et al., 2012). The closer the value of the SHTM is 

to one, the smaller the disagreement between modelled and observed air and soil temperature differences. Being able to 60 

quantitatively assess snow heat transfer is of particular importance because model parameterisations of snow physical 

properties can lead to differences in soil temperature and therefore contribute to uncertainties in estimates of Arctic winter 

carbon fluxes and budgets, which are currently not well constrained (Fisher et al., 2014; Natali et al., 2019; Virkkala et al., 

2021).  

The effective thermal conductivity of the snowpack (Keff; heat conducted through ice and interstitial air) determines the rate 65 

of heat transfer to underlying soil (Domine et al., 2015; Jafarov et al., 2014). From here on, we refer to the effective thermal 

conductivity of the snowpack as snow thermal conductivity for brevity, after Jafarov et al. (2014). Snow has a low thermal 

conductivity, typically in the range 0.01 – 0.7 Wm-1 K-1 (Gouttevin et al., 2018). Typical Keff values for tundra snowpacks are 

at the lower end of this range, for example Domine et al. (2016) found a maximum value of 0.33 Wm-2 K-1. Measurement of 

snow thermal conductivity is typically undertaken using a heated needle probe (Morin et al., 2010), although snow anisotropy 70 

causes 29 % uncertainty in these estimates of Keff (Domine et al., 2015), which is a notable limitation to this method (Riche 

and Schneebeli, 2013). Models typically parameterise Keff as a function of the simulated snow density (Gouttevin et al., 2018), 

for which a number of different statistical relationships have been proposed (e.g. Sturm et al. (1997); Calonne et al. (2011)). 

This study characterises the variability of the thermal properties of tundra snow and resultant soil temperatures at Trail Valley 

Creek, Northwest Territories, Canada, over the 2017 - 18 and 2018 - 19 winters using in situ measurements. We then use these 75 

measurements to evaluate an ensemble of simulations from the Community Land Model (CLM5.0), particularly with regard 

to how thermal properties are simulated and the sensitivity of soil temperatures and SHTM to the properties of the snowpack. 

2 Data and methods 

2.1 Study location 

Trail Valley Creek (TVC; 68°45’N, 133°30’W) is a 57 km2 boreal-tundra transition research watershed located in the Inuvialuit 80 

Settlement Region, approximately 55 km northeast of Inuvik, NWT, Canada. TVC has an average elevation of approximately 

99 m above sea level (Marsh et al., 2008) and a mean annual air temperature of -7.9 ℃ for the period 1999 - 2018 (Grünberg 

et al., 2020). Land cover at TVC predominately consists of graminoid tundra, with some lakes, small clusters of willow and 

alder shrubs and some isolated black spruce stands (Essery and Pomeroy, 2004; Grünberg et al., 2020; King et al., 2018). The 
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terrain consists of mineral soil hummocks of up to a metre in diameter, and peaty inter-hummock hollows (Quinton and Marsh, 85 

1998). The ground is underlain by continuous permafrost to a depth of 350 - 500 m (Wilcox et al., 2019), with a maximum 

active layer depth of up to 1 m at the end of the summer (Grünberg et al., 2020). Snow cover at TVC has a typical duration of 

8 months (Pomeroy et al., 1993), with typical depths of 0.2 - 0.5 m, though drifts exceeding 1 – 2 m occur surrounding tall 

shrubs and in proximity to steep slopes (Marsh and Pomeroy, 1999).  

2.2 Field methods 90 

Comprehensive snow and soil data are used from four winter season intensive measurement periods (14 - 21 March 2018; 12 

- 18 November 2018, 11 – 20 January 2019, and 18 – 27 March 2019). Additionally, meteorological data for the entirety of 

the study period (1 August 2017 – 31 August 2019; plus model spin-up), measured at the TVC eddy covariance tower (AWS) 

were also used. Half-hourly 2 m air temperatures were measured using a HMP35CF sensor (Campbell Scientific, Logan, Utah) 

and precipitation totals were measured using a weighted T-200B gauge (Geonor Inc., Branchville, New Jersey). Precipitation 95 

gauge under-catch is common in tundra environments such as TVC (Smith, 2008; Watson et al., 2008; Gray and Male, 1981), 

therefore precipitation was corrected as per Pan et al. (2016). Automated snow depth measurements used were from the nearby 

Meteorological Service of Canada station and measured by a SR50a sensor (Campbell Scientific). Soil temperature profiles 

(Boike et al., 2020) were measured at 2, 5, 10 and 20 cm depths using 107B Thermistors (Campbell Scientific). Soil moisture 

content (Boike et al., 2020) was profiled at the same depths using CS615 soil water content reflectometers (Campbell 100 

Scientific). 

Spatially distributed Snow MicroPenetrometer (SMP; Schneebeli and Johnson (1998)) profiles (n = 1050) were measured 

across the TVC sub-catchment. The SMP provides vertical profiles of force at 40 µm resolution (Proksch et al., 2015). Bespoke 

coefficients for tundra snowpacks were calculated based on the methodology of King et al. (2020b) to derive high vertical 

resolution snow density profiles from the SMP force profiles (see Appendix A for detailed methodology). Briefly, a K-folds 105 

recalibration was used to derive new coefficients (Table A1) from 36 co-located snowpits and SMP profiles across the TVC 

catchment. These coefficients were then applied to all 1050 SMP force profiles from the 3 campaigns over a 2.5mm rolling 

window to give recalibrated density profiles. These density profiles were then used to approximate profiles of thermal 

conductivity using the Keff relationships derived by Sturm et al. (1997), Calonne et al. (2011), Jordan (1991), and Fourteau et 

al. (2021b), denoted Keff-Sturm, Keff-Calonne, Keff-Jordan and Keff-Fourteau respectively. Use of the SMP allows for a large increase in 110 

both the number of sites and the vertical resolution at each site compared to traditional snowpits, but some coincident snowpit 

measurements are still required to derive the coefficients to estimate snow density. Sources of uncertainty in the SMP 

measurements include interactions with vegetation within the snowpack and collapse of the depth hoar layer during 

measurement; an experienced SMP user can easily identify and remove profiles which are affected by these issues. A positive 

bias in derived depth hoar density occurs because of large distances between snow grain failures (see Appendix A and King et 115 

al., 2020b for more details).  

During the March 2018 and March 2019 campaigns, thermal conductivity was also measured using a TP02 needle probe 

(Hukseflux, Delft, Netherlands) after Morin et al. (2010). Measurements of thermal conductivity of each snowpack layer, a 

total of 105 measurements from 37 different snowpits were made across these two campaigns. Almost 36,5000 GPS located 

snow depths (Toose et al., 2020; King et al., 2020a) were measured across the 4 campaigns using a Magnaprobe instrument 120 

(Sturm and Holmgren, 2018), allowing spatial distributions of snow depths across the catchment to be examined. Vertical 

profiles of snow density, using a 100 cm3 box cutter (Conger and Mcclung, 2009), and snowpack temperature were measured 

at all snowpit locations for each campaign. Stratigraphic information profiled in each snowpit (n = 115) was used to assign 

one of four different layer types (surface snow, wind slab, indurated hoar and depth hoar) to the measured densities (Fierz et 

al., 2009) in order to assess spatial variability in the thickness and properties of different snowpack layers. 125 
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2.3 Snowpack simulations 

The Community Land Model v5.0 (CLM; Lawrence et al. (2019)) is the land surface component of the Community Earth 

System Model v2.0, which can be run at a variety of spatial scales. In this study, 1D “point mode” (a 0.1° x 0.1° grid cell) 

CLM (PTCLM; Kluzek (2013)) simulations were centred at the location of the TVC station. Minor adjustments were made to 

the model in order to better emulate snow accumulation and melt at the point scale; the snow accumulation factor was increased 130 

(Swenson and Lawrence, 2012) from 0.1 to 2.0 and the standard deviation of elevation set to 0.5 m after Malle et al. (2021; 

Figure S4). These adjustments limit the period of fractional snow cover, so that PTCLM represents a binary state of snow 

presence or absence over a flat surface. PTCLM simulations were run from August 2017 to August 2019, with model spin-up 

from January 2013. Spin-up of PTCLM was necessary in order to allow soil temperatures to equilibrate. Variation between 

model runs with the same parameterisation after more than 2 full years of spin-up is limited to ~ 1 oC throughout the top 5 m 135 

of the soil column. The impact of spin-up on soil temperature is further discussed in Appendix B. 

Simulations were forced with gap-filled AWS data from TVC. Following Essery et al. (2016), gaps of 4 hours or less were 

filled using linear interpolation and larger gaps filled using ERA5 reanalysis data (Hersbach et al., 2020). Gapfilling was only 

required for measurements of incoming longwave and shortwave radiation, and comparison of observations and reanalysis 

data showed an offset of less than 60W m-2.  Bias correction of reanalysis data was not undertaken due the small size of this 140 

offset. Daily precipitation amounts from the AWS were converted to the hourly resolution required by CLM using the fraction 

of daily precipitation at each hourly timestep from ERA5. ERA5 reanalysis data was also used to partition precipitation into 

rain and snow for comparison against the linear ramp used by CLM. All precipitation falling when air temperatures are below 

0 ℃ is classed as snow, after which point an increasing proportion of the precipitation is classed as rain until air temperatures 

are above 2 ℃ where all precipitation is classed as rain (Lawrence et al., 2019). 145 

Developments between CLM4.5 and CLM5.0, as outlined in Van Kampenhout et al. (2017) improved the snow scheme in 

CLM. The version of the model used herein produces a computationally-layered snowpack, with the number of snow layers 

dependant on the snowpack depth, up to a theoretical maximum of 12 layers (as opposed to the 5 layer maximum in previous 

versions of CLM).  Once the total snow depth exceeds a given threshold, the initial snow layer is subdivided into two layers 

with equal properties. Snow layer formation continues in this manner as layer thicknesses surpass the prescribed ranges given 150 

in Jordan (1991). When a layer divides, the new layer is formed beneath it, rather than new layers being formed at the surface 

by new snowfall. As this process is not stratigraphically representative, layers are not described by snow type (for example, as 

per Fierz et al. (2009)), but instead numbered from the snow surface down. Layer thicknesses are also influenced by snow 

compaction, parameterised following Anderson (1976). Unsaturated layers may compact due to overburden pressure, the 

breakdown of new snow crystals or melting, with the thickness of a snow layer a function of the snow thickness at the previous 155 

timestep and the rate of compaction. Snow depths below 1 cm are not discretely modelled and are instead combined into the 

surface soil layer.  

Density, thickness and thermal conductivity are output as a daily mean for each layer. CLM calculates snow density as a 

function of the relative proportions of ice (mass of ice =  𝑚𝑖) and liquid water (mass of liquid water =  𝑚𝑙𝑤), weighted by the 

snow cover fraction (𝐹𝑠𝑛𝑜) for each grid cell (Lawrence et al., 2018):  160 

 

𝜌 =  
𝑚𝑖 + 𝑚𝑙𝑤

𝐹𝑠𝑛𝑜  ×  ℎ𝑠𝑙

(1) 

 

In practice, due to the adjusted snow cover fraction and as liquid water in the snowpack is zero until the start of melt out, the 

computed snow layer density simplifies to the mass of ice (𝑚𝑖) divided by the height of the snow layer (ℎ𝑠𝑙). Changes 165 

implemented in CLM5.0 also include a new snow densification scheme, whereby fresh snow density is parameterised as a 

function of temperature and windspeed. The density of fresh snow can increase through the process of wind-driven compaction 
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if wind speeds exceed 0.1 m-1 (Van Kampenhout et al., 2017). Over time, the density of the snowpack evolves as a result of 

the compaction processes outlined above. CLM does not allow for temperature-gradient metamorphism, and thus does not 

represent the development of depth hoar layers (Van Kampenhout et al., 2017).  170 

The computed snow layer densities are then used to calculate snow layer effective thermal conductivities (Keff), as per Jordan 

(1991): 

 

𝐾𝑒𝑓𝑓 =  𝐾𝑎𝑖𝑟 + (((7.75 × 10−5 ×  𝜌) + (1.105 × 10−6 × 𝜌2)) (𝐾𝑖𝑐𝑒 − 𝐾𝑎𝑖𝑟)) (2) 

 175 

Values for Kice and Kair, the thermal conductivities of ice and interstadial air, are given in Lawrence et al. (2018). Snow (and 

soil) temperatures are defined for the midpoint of each layer at an hourly resolution, with the soil column consisting of 25 

layers of increasing thickness (down to a depth of 49 m). Despite the simplicity of the snowpack scheme included in CLM, 

previous evaluation of snow heat transfer in CLM4.0 (Slater et al., 2017) suggests this modelling framework should perform 

well. 180 

3 Results 

3.1 Observed meteorological, soil moisture and thermal conditions 

Mean annual air temperature for 2017 - 2019 was -7.4 ℃, with minimum air temperatures of -33.9 ℃ (2018) and -36.9 ℃ 

(2019) reached in early January (Fig. 1a).  The cold period was twice as long as the growing season, with consistent subfreezing 

air temperatures from 10 October 2017 to 30 May 2018 (232 days) and from 23 September 2018 to 11 May 2019 (230 days).  185 

Figure 1c shows snowpack initiation in 2018 was 26 days earlier than in the previous year, with snow-on dates of 25 September 

2018 and 21 October 2017 respectively. A maximum snow depth of 51 cm (2017 - 18) and 59 cm (2018 - 19) was measured 

at the AWS on 14 April 2018 and 11 May 2019 respectively. Snow depth from spatially distributed magnaprobe measurement 

showed a greater difference between the two years than at the AWS, with mean March snow depths 11 cm higher in 2018 - 19 

than 2017 - 18. Magnaprobe measurements also show a higher mean March snow depth than the AWS, with March 2018 snow 190 

depths more heavily skewed than snow depths in 2019 (Fig. 2a). Snow-off date, as measured at the AWS snow depth sounder, 

was one week later in 2017 - 18 (30 May) than in the following year (23 May). 

Soil freeze-up began with the onset of snowfall (Fig. 1b and d); 5 cm soil temperatures dropped to 0 ℃ on 13 October in 2017 

and a month earlier on 15 September in 2018. Soil temperatures remained around 0 ℃ as the soil froze and released latent 

heat. Soil saturation increased with depth causing a slower soil freeze-up at 20 cm than 5 cm depth in both years. A longer 195 

freeze-up in 2018 was evident from the more gradual liquid soil moisture decrease, particularly at depth (20 cm). Deeper soil 

(20 cm) stayed at 0 ℃ for longer than soil nearer the surface (5 cm), and generally remained warmer until the start of the thaw 

period. Minimum 2017 – 18 soil temperatures at both 5 cm (-10.9 ℃) and 20 cm (-10.1 ℃) depths in winter were colder than 

the following year (-9.5 ℃ and -8.2 ℃), as the combined effect of earlier snowpack initiation and a deeper snow cover 

prevented colder soil temperatures being reached. Variations in soil temperature in response to diurnal and synoptic weather 200 

patterns of energy inputs from the atmosphere became increasingly muted with depth in the soil column once the snowpack 

was established.  Anomalously warm mid-winter air temperatures that approached 0 ℃ (22 December 2017 and 9 February 

2019) or exceeded 0 ℃ (18 and 31 March 2019, with a rain-on-snow event occurring on the latter of these dates) had only a 

muted influence on the soil temperature profile (Fig. 1d), with temperatures fairly stable until sharply increasing with thaw in 

early May. Soil temperatures at 5 cm increased above 0 ℃ for the first time on the final day of the snowmelt period in both 205 

years (Fig. 1d), with a five (2017 - 18) to seven (2018 - 19) day lag in the 20 cm soil temperatures. 
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3.2 Measured snow properties 

Median density profiles from the SMP fall within the interquartile range of measured densities from volumetric sampling in 

snowpits (Table 2). Snowpacks in all three campaigns (Fig. 2b - d) had a very thin surface snow layer (composed of recent 210 

snowfall), with low near-surface snow densities (< 300 kg m-3) rapidly increasing in the top 5 % of the snowpack. A higher 

density (~ 320 kg m3) wind slab layer was evident between 5 - 30 % of normalised depth from the snow surface. The next ~ 

10 % of the profile was a transitional section where density decreased by about 100 kg m3.  The lowest ~ 60 % of the profiles 

is dominated by a lower density (~ 230 kg m3) depth hoar layer, the density of which increases slightly towards the base of the 

snowpack. Differences between median layer densities exceed the ~ 10 % sampling error associated with the use of density 215 

cutters (Proksch et al., 2016; Conger and Mcclung, 2009), and in all but one instance, there was no overlap in the interquartile 

ranges of different snow layers within a campaign (Fig. 3). Densities between 40 – 80 % of normalised depth (low density 

depth hoar) are likely overestimated due to microstructural assumptions made by the algorithm of Proksch et al. (2015), which 

prevent the calculation of SMP densities below 200 kg m3 (see Appendix A).  

The transitional section, or indurated hoar layer, with transitioning properties between wind slab and depth hoar, evident at 220 

between ~ 30 – 40 % depth, is often difficult to capture through traditional snowpit density profiles due to the 3 cm vertical 

resolution of density cutters and the layer being more defined by its crystal shape than density alone. The SMP enabled the 

detection of such features due to the increased vertical resolution and vastly reduced sampling times compared to traditional 

snow pits. Indurated hoar in SMP profiles was more pronounced in the 2019 campaigns; well-defined layers were not as clearly 

visible in the SMP measurements from March 2018 (Fig. 2b), despite different layer densities being statistically separate in 225 

the snowpit measurements, regardless of which year or when in the winter season the measurements were taken (Fig. 3). Ice 

lenses were present in March 2018, but not during the 2019 campaigns. Throughout the course of the 2018 - 19 winter, slight 

increases in the density of wind slab and depth hoar layers occurred as the snowpack developed. Late season snow densities 

in both 2018 and 2019 were similar, with the exception of surface snow. The density of this layer became more variable as 

each winter progressed due to the competing processes of wind compaction (increasing density) and temperature-gradient 230 

metamorphism (decreasing density). The timing of sampling relative to fresh snowfall events, noted during both March 

campaigns, also influenced measured surface snow densities.  

SMP density profiles were used to parameterise profiles of thermal conductivity for the full depth of the snowpack. Patterns 

in parametrized thermal conductivity profiles (Fig. 4) resemble those in SMP densities from which they were derived (Fig. 2b 

- d). Surface snow thermal conductivities were low (Keff-Sturm ≈ 0.1 Wm-1 K-1, Keffs-Calonne, Jordan, Fourteau ≈ 0.2 Wm-1 K-1), but 235 

sharply increased with depth for the upper 5 % of the snowpack (Fig. 4b and c). Below this, at normalised depths of ~ 5 –– 30 

%, thermal conductivity reached maximum values (Keff-Sturm ≈ 0.15 Wm-1 K-1,  Keff-Fourteau ≈ 0.25 Wm-1 K-1, Keff-Calonne ≈ 0.3 

Wm-1 K-1, Keff-Jordan ≈ 0.35 Wm-1 K-1). Between ~ 25 - 40 % normalised depth, thermal conductivity declined before stabilising 

at minimum values (Keff-Sturm ≈ 0.1 Wm-1 K-1, Keff-Fourteau ≈ 0.15 Wm-1 K-1, Keffs-Calonne, Jordan ≈ 0.2 Wm-1 K-1) in the lower ~ 60 

% of the snowpack. All 3 parameterisations showed similar variation in thermal conductivity with depth. Analysis of variance 240 

showed the mean Keff from the Sturm et al. (1997) and Fourteau et al. (2021b) parameterisations to statistically significantly 

differ from those using the parameterisation of either Calonne et al. (2011) or Jordan (1991) and each other in all three months 

(FMarch2018 = 3168, FJan2019 = 656, FMarch2019 = 636). No significant difference was found between the Calonne et al. (2011) or 

Jordan (1991) parameterisations in either of the 2019 campaigns. All statistical tests herein gave a p-value less than 0.001, 

denoting significance at the 99.9% level. 245 

Profiles of snowpack thermal conductivity were temporally consistent, with similar shape and values in January and March 

2019. In March 2018, the amplitude of the thermal conductivity profiles was less pronounced than January and March 2019, 

particularly for the parameterisation of Sturm et al. (1997). We recognise that the thermal conductivity of a snowpack is 

dependent on more than just its density (Sturm et al., 2002), with other factors such as snow microstructure and temperature 
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also having an influence (i.e. Calonne et al. (2011)) but these profiles still provide novel insights and a useful first-order 250 

approximation of snow heat transfer for model evaluation.  

3.3 Modelled snowpack properties and comparison with observations 

Simulated snow depths (Fig. 5a and d) were consistently lower than observations (from either Magnaprobe measurements 

(mean value) or the acoustic sounder depth on the 31 March at the AWS; Fig. 1b, Table 1). Timing of simulated snowpack 

accumulation leads to an effective snow depth in 2018 - 19 (Sdepth,effCLM2018-19 = 66 cm) more than double that in 2017 - 18 255 

(Sdepth,effCLM2017-18 = 24 cm) with earlier snow onset allowing a greater degree of soil insulation. Simulated snow onset (11 

October) and melt-out dates (25 May) were both approximately a week earlier than observed at the AWS in 2017 - 18; for the 

following year the length of this offset was reduced to just one day. Observations of effective snow depth (Sdepth,effObs2017-18 = 

57 cm, Sdepth,effObs2018-19 = 101 cm) similarly reflect greater insulation of the soil surface in 2018-19 compared to 2017-18.  

The physical properties of the simulated snow layers do not correspond to observations, with the number and thickness of 260 

snow layers only a function of overall snowpack depth. Figs. 5 b & e show three (or four) relatively homogenous layers, with 

a slight increase in density with depth. The highest mean (329 kg m3) and median (340 kg m3; Table 2) density are found in 

third snow layer (dark blue in Fig. 5).  

This is in contrast to the three observed layers (surface snow, wind slab and depth hoar) consistently identified in the snowpit 

observations. Similar to other snow models (Domine et al., 2016; 2019) the physical characteristics of the depth hoar layer at 265 

the base of the snowpack (large faceted grains; low density) are not clearly distinct from an overlying wind slab layer (small 

rounded grains; high density). This is the result of the lack of representation of depth hoar layer development in CLM (Van 

Kampenhout et al., 2017). These discrepancies between modelled and measured snow density and stratigraphy negatively 

impact the simulation of Keff, as layer thermal conductivities were dependent on density of each layer (Eq. 2).  

CLM overestimated the thermal conductivity of tundra snowpacks compared to in-situ measurements using needle probes or 270 

estimated from SMP profiles (Fig. 6a). Median simulated snow thermal conductivities (0.34 Wm-1 K-1) were at least three 

times greater than either needle probe measurements (0.08 Wm-1 K-1) or SMP-derived estimates using the Sturm 

parameterisation(xKeff-Sturm = 0.11 Wm-1 K-1), with the median thermal conductivity using the Calonne, Fourteau and Jordan 

approximations still lower (xKeff-Calonne = 0.25 Wm-1 K-1, xKeff-Fourteau = 0.21 Wm-1 K-1, xKeff-Jordan = 0.27 Wm-1 K-1) than simulated 

thermal conductivities. SMP Keff parameterisation from Sturm et al. (1997; derived from snow measurements in the Alaskan 275 

Arctic), are closer to values from needle probe measurements than SMP Keff derived using Calonne et al. (2011) (Fig. 6a). The 

modelled thermal conductivity of simulated snow layers was relatively homogenous between layers in contrast to thermal 

conductivities derived from either the SMP (Fig. 4) or the needle probe measurements (Table 2).  Analysis of variance only 

shows simulated snow layer thermal conductivities significantly differ from that of the surface layer (F = 39.74). Needle probe 

measurements of the depth hoar layer had low thermal conductivities (0.05 Wm-1 K-1), with a slight increase in mean thermal 280 

conductivity for indurated hoar (0.09 Wm-3 K-1) and a further increase for the mean wind slab thermal conductivity (0.20 Wm-

1 K-1). Distributions of simulated snow thermal conductivities were statistically significantly different from all measurement 

methods at the 0.01 level using a Kruskal-Wallis test. Differences between the distribution of needle probe measurements and 

SMP with the Sturm parameterisation were not statistically significant.  

3.4 Improving simulated soil temperatures, snow thermal conductivity and snow heat transfer  285 

Simulated soil temperatures were considerably colder than observations (RMSE = 5.0 ℃, Bias = - 2.2 ℃), especially during 

the maximum annual duration of continuous simulated snow cover (15 Sept – 31 May; RMSE = 5.8 ℃). Two approaches were 

taken to reduce simulated snow thermal conductivities, both of which resulted in warmer soil temperatures closer to observed 

values (Fig. 7a & b). 
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In order to see how results from the SMP (Fig. 6a) manifested in simulations of soil temperature from CLM, we re-ran the 290 

model substituting the default parameterisation for snow thermal conductivity (Eq. 1; Jordan (1991)) for those of Sturm et al. 

(1997), Calonne et al. (2011) and Fourteau et al. (2021b). The Sturm parameterisation resulted in lower simulated thermal 

conductivities (Fig. 6b) and closer temperatures to observations (Fig. 7b; RMSE = 2.5℃). Soil temperatures in 2017-18 were 

still too cold regardless of parameterisation used, likely due to model underestimation of snow depth (Fig. 7c). As for the SMP, 

thermal conductivity values derived using the Calonne and Fourteau parameterisations are closer to the default  Jordan (1991) 295 

parameterisation than those derived using the Sturm et al. (1997) parameterisation (Fig. 6b). The impact of either of these 

parameterisations on simulated wintertime soil temperatures is limited (Fig. 7a), particularly that of Calonne et al. (2011) 

which reduces the RMSE by only 0.2 ℃.  However, all 3 alternative parameterisations tested do show an improvement in 

simulated snow thermal conductivities (Fig. 6b) and soil temperatures (Fig. 7a), with an increase in the value of the SHTM in 

each case.      300 

We also tested the application of a multiplier (α) to the ice content term in Eq. 1: 

 

𝜌 =  
(𝛼 × 𝑚𝑖) × 𝑚𝑙𝑤

𝐹𝑠𝑛𝑜 × ℎ𝑠𝑙

(3) 

  

Although appearing to be a function of density, this multiplier is added separately from the calculation of layer snow densities, 305 

and only feeds into the calculation of snow thermal conductivity, and thus snow mass is conserved. Values of α were chosen 

which would reduce simulated densities to the range of observed values, with an α of 0.65 giving the Keff for snow with a 

density between the interquartile range of observed values for all snow types (73 – 365 kg m3). A set of sensitivity tests were 

then carried out where the value of α was iteratively changed from 0.75 to 0.25 in 0.05 increments. As the RMSE and the 

SHTM quantify changes over slightly different time periods (RMSE = entire winter, SHTM = Oct – March), different metrics 310 

may imply different adjustments give the best model performance. In 2018-19, a value of α between 0.65 and 0.6 resulted in 

the optimal model performance, with a SHTM value of 0.991 (or 0.979) and a RMSE of 1.5 ℃ (or 1.2 ℃). However, a smaller 

value of α was required for best model performance in 2017-18, with an α of 0.4 giving the lowest RMSE of 1.6℃ and highest 

SHTM of 0.986. Reducing simulated snow density in Eq. 3 (0.3 ≥ α ≥ 0.55) below the lowest quartile of observed values was 

required to increase soil temperatures to the observed range, particularly for 2017 – 18 where wintertime minimum soil 315 

temperatures are up to 12.8 ℃ warmer relative to the baseline model run (Fig. 7b). Different α will better fit different years of 

the simulation, though using the same best-fit value of α for the entire model run can still give good model performance, with 

a maximum value for the SHTM of 0.987 for an α of 0.40 

Errors in the timing and depth of simulated snow cover (Fig. 7c) impact the magnitude of insulation it provides, and thus the 

best-fit value of α (Fig. 8). A multiple linear regression was undertaken to quantify the influence of snow depth and snow 320 

depth error on the value of the best fit correction factor, for the period from snow onset to the start of simulated snow melt 

(when the simulated snow cover fraction was equal to one). This showed errors in the simulated snow depth can be 

compensated by a greater adjustment to snow thermal conductivity (Fig. 8b): 

 

𝛼 = 0.22 + 1.14𝑆 − 0.26𝐸 + 0.55𝑆𝐸 (4) 325 

 

where 𝑆 equals the simulated snow depth, and 𝐸 equals the simulated snow depth error. Best fit correction values were strongly 

related to snow depth (R2 = 0.77, RMSE = 0.066), with different values of α more appropriate for deep (> 25 cm, α ≈ 0.6) and 

shallow (< 15 cm, α ≈ 0.3) snow (Fig. 8a).  

 330 
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4 Discussion 

4.1 Variability of snow thermal properties 

SMP profiles, processed as detailed in Appendix A, produced snow layer densities closely matched to density cutter 

measurements at TVC (Fig. 3) and consistent with measurements from other Arctic and sub-Arctic environments, e.g. ρSS = ~ 

100 kg m3, ρWS = 300 - 500 kg m3, ρDH = 150 - 250 kg m3 in Barrere et al. (2017); Benson and Sturm (1993); Derksen et al. 335 

(2014); Domine et al. (2002; 2012; 2016). SMP profiling has considerably increased the vertical resolution of density 

measurements and vastly reduced sampling times compared to traditional snowpits, enabling a far greater number of 

measurement profiles to be made across a wider distribution of snowpack conditions. Deriving profiles of thermal conductivity 

for the full depth of the snowpack, as facilitated by the SMP, is a novel approach, with most previous studies of snow thermal 

conductivity based on values sampled at a resolution of ~ 5 - 10 cm (Domine et al., 2012; 2015; 2016; Gouttevin et al., 2018; 340 

Morin et al., 2010). 

Depth normalisation of SMP profiles (n > 200 per measurement campaign) allowed comparison of snow properties with 

varying absolute depth. Snow depth distributions from all campaigns matched the shape and median values of tundra snow 

depths acquired across a ~ 1500 km traverse as described in Derksen et al. (2009), which suggests transferability across wider 

Arctic tundra regions. Relative depth profiles of density at TVC remain consistent for all sampling campaigns, regardless of 345 

overall snowpack depth. Densities in the portion of the depth hoar layer located between 40 - 80 % depth were likely 

overestimated (although SMP estimates remain within the interquartile range of snowpit measurements) due to an assumption 

of heteroscedasticity made by the algorithm of Proksch et al. (2015), which may not apply for a material as anisotropic as 

depth hoar (Fig. A2). Additionally, pressure exerted on the ice matrix by the SMP may have caused wider collapse of the weak 

depth hoar structure during measurement (although SMP operators are easily able to profiles that are obviously affected by 350 

depth hoar collapse). As a result, the force required to penetrate the snow may be reduced (potentially below the detection 

limit of the SMP) in the gaps where the ice matrix has collapsed; required penetration force will conversely increase towards 

the base of the snowpack where the collapsed depth hoar has accumulated. This, plus an increased probability of SMP-

vegetation interactions at the base of the snowpack, is likely the cause of density (and density-derived Keff) increases in the 

lower ~ 20 % of all profiles. While exact impact of ice matrix collapse in depth hoar is not possible to quantify directly, this 355 

limitation is not without comparison in other direct, contact measurements of snow properties such as volumetric sampling of 

density (Conger and Mcclung, 2009; Proksch et al., 2016) and μ-CT (Zermatten et al., 2011).  

The higher vertical resolution of SMP density profiles (1.25 mm, or 0.25 % of snowpack depth) relative to traditional snowpit 

measurements (3 cm) allows snowpack features to be much more finely resolved (Calonne et al., 2020; King et al., 2020b; 

Proksch et al., 2015). Moving away from bulk sampling of layers with boundaries defined by abrupt binary transitions as 360 

identified by traditional stratigraphic techniques, to more continuous profiles enables features such as indurated hoar, typically  

a subtle transitional layer, to be captured and quantified (Pielmeier and Schneebeli, 2003; Proksch et al., 2016). Higher 

resolution measurements (µ-CT, SMP) of continuous profiles are increasingly implemented (e.g., Proksch et al. (2016); 

Calonne et al. (2020); Wagner et al. (2021)) but this conceptualisation of snow as a continuous profile rather than a series of 

discrete layers is not yet implemented in snowpack modelling, excepting the test case outlined by Simson et al. (2021).  365 

4.2 Evaluation of snowpack and soil temperature simulations 

Density profiles of Arctic snow from physical snow model simulations are inverted relative to observations, exhibiting low 

density snow in the upper part of the snowpack and high density snow at the base, similar to what would be expected in  alpine 

environments (Barrere et al., 2017; Domine et al., 2019). CLM is no exception, with the model producing three to four layers 

of uniformly high density snow, rather than a low density snow layer adjacent to the ground overlain by a higher density slab 370 

layer. Consequently, simulated density profiles are not representative of field measurements and the overall bulk density of 
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the snowpack is overestimated. This is common of other snow models of similar physical complexity, e.g. ISBA-ES (Barrere 

et al., 2017), and higher complexity, e.g. SNOWPACK (Bartelt and Lehning, 2001) and Crocus (Vionnet et al., 2012), because 

they do not account for unique arctic processes (Domine et al., 2016; 2019), such as the snowpack vapour flux necessary to 

form depth hoar. As Keff is simulated as a function of density, when models are unable to accurately describe the density 375 

profiles of Arctic snowpacks, this has a negative impact on how well Keff can be simulated (Gouttevin et al., 2018). Keff values 

from CLM are not only overestimated relative to field measurements, but also in comparison to simulations from more complex 

snow models in similar environments (Barrere et al., 2017; Domine et al., 2019). These problems with thermal conductivity 

simulations subsequently impact soil temperatures, with similar issues found for simulations of Arctic snowpacks using other 

models, i.e., Crocus, SNOWPACK, ISBA-ES (Barrere et al., 2017; Domine et al., 2016; 2019; Royer et al., 2021b).  380 

The impact of snow insulation on soil temperatures is dependent on both the depth and thermal conductivity of the snowpack 

(Gouttevin et al., 2012), as well as the timing of snow accumulation (Lafrenière et al., 2013). The start of the snow season is 

particularly important because erroneous modelled heat exchanges between air, snow and soil influence soil and snowpack 

properties and development, which are carried forward until the end of the snow season (Sandells et al., 2012). Temperature 

differences between soil and air induce a strong snowpack temperature gradient, leading to depth hoar formation and thus 385 

determining the structure of the snowpack and its capacity to insulate the soil (Domine et al., 2018).  

4.3 Impact of approaches to correct snow thermal conductivity  

Prescribing simulated snow thermal conductivity to a more physically representative value leads to an improvement in 

simulating soil temperatures in tundra environments, compared to both the findings herein and the permafrost model used in 

Yi et al. (2020). Cook et al. (2007) also found that reducing simulated snow thermal conductivity to the lower end of observed 390 

values (0.1 Wm-3) reduced soil temperature biases in an older version of CLM (CLM3.0). It has also been suggested that the 

simulation of wintertime soil temperatures at TVC may also be influenced by simulated soil properties and the impact of the 

snow cover on soil moisture content (Haagmans, 2021); bias is unlikely to be completely eliminated solely as a result of 

changes to snow thermal conductivity.  

The impact of alternative parameterisations of snow thermal conductivity on simulated soil temperatures was tested, with a 395 

reduction in the RMSE and an improvement in the SHTM found for all 3 alternative parameterisations tested. Changing the 

parameterisation of snow thermal conductivity in CLM from that of Jordan (1991) to that of Sturm et al. (1997) gives the 

largest improvement to the simulation of both snow thermal conductivity values and underlying soil temperatures. Use of the 

Sturm et al. (1997) thermal conductivity parameterisation also improved soil temperature simulation in Crocus (Royer et al., 

2021b), with a RMSE of 2.5 ℃ for soil temperatures from Crocus and CLM. The Sturm et al. (1997) parameterisation 400 

demonstrates transferability between tundra sites, having been derived from thermal conductivity measurements in the Alaskan 

Arctic and successfully applied to both CLM and SMP measurements at TVC. Although concern has been raised that the 

parameterisation of Sturm et al. (1997) may not be physically representative, we feel this provides the most feasible solution 

to improving soil temperature simulations in CLM given the sizeable improvement in RMSE and its use in more physically 

representative land surface models (Royer et al., 2021b). 405 

Application of the correction factor α improves the simulation of soil temperatures, increasing the value of the SHTM by up 

to 0.3. The impact of differences between simulated and observed snow depth can be compensated by a greater adjustment to 

snow thermal conductivity (Figs. 7b & 8). This bias compensation between underestimates of snow depth and underestimates 

of snow thermal conductivity is also seen in other land surface models, e.g. JULES, LPJ-GUESS (Wang et al., 2016).  

However, as discrepancies between observed and simulated snow depth can vary considerably between years, this results in a 410 

best-fit correction factor value which also changes between years. A similar bias compensation effect could apply for the use 

of alternative parameterisations of snow thermal conductivity. If snow depth bias was consistently positive, we suspect that 

the Calonne, Fourteau and Jordan parameterisations would likely compensate for an overthickened snowpack through 
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increased thermal conductivity. However, under a negative snow depth bias, the Sturm parameterisation remains more suitable; 

although the absolute magnitude of the improvement in soil temperatures using the Sturm parameterisation was lower when 415 

the snow depth bias was greater in 2017-18, the relative order of impact of the different parameterisations remained the same. 

These findings indicate that thermal conductivity correction factors are not the solution to soil temperature biases in models 

like CLM. 

Differences between absolute and effective snow depths from both the model and the observational record highlight the 

importance of the early season snowpack in regulating soil temperatures for the entire snow season. Simulations are sensitive 420 

to latent heat release during soil freeze-up, which maintains soil temperatures close to 0 ℃ for an extended period of time at 

the beginning of the winter (Yi et al., 2019). At this time, the soil thermal regime is also more sensitive to snow depth as snow 

depths are lower and have not yet reached a point where their insulative capacity has become saturated (Zhang, 2005; Lawrence 

and Slater, 2009; Slater et al., 2017), therefore a stronger correction is needed when snow cover is below ~25 cm. Shallow 

snowpacks are likely to consist of a lower proportion of wind slab (Rutter et al., 2019) and thus their microstructural properties 425 

are less accurately represented by CLM, which does not simulate depth hoar (Van Kampenhout et al., 2017), stipulating the 

need for a larger adjustment to α. We note that issues in simulating the initial accumulation of the snowpack are likely linked 

to uncertainties in the forcing data caused by measurement limitations surrounding the use of precipitation gauges in tundra 

environments (Smith, 2008; Watson et al., 2008; Pan et al., 2016). However, attempting to correct for snow depth errors 

through adjustment to the precipitation forcing beyond the corrections outlined in Pan et al. (2016) is not advisable due to high 430 

variability of snow depth (Fig. 2a) over short spatial scales (metres to tens of metres). Additionally, Fig. 7c suggests that the 

timing of the snow onset is more important in determining the soil temperature than the absolute snow depth error, as in 2018-

19 soil temperatures simulated using the Sturm parameterisation are closer to observations than in the previous year, despite 

an absolute snow depth error of up to 0.2 m. Regardless of  approach, these changes to the model are most applicable where 

snowpack structure is considerably influenced by depth hoar, as can be approximated by grid-cell plant functional type or 435 

climatology (Royer et al., 2021a; Sturm and Liston, 2021). 

Ekici et al. (2015) suggests that representation of snow thermal conductivity in land surface models is less important for 

accurate simulation of soil temperatures than other processes not currently well represented in most land surface schemes, such 

as blowing snow and depth hoar formation. Further improvements in SHTM in future iterations of CLM will require a 

physically representative approach to snow density and thermal conductivity through explicit inclusion of vapour transport 440 

within the snowpack, currently under development in stand-alone snow microphysical models (Fourteau et al., 2021a; Jafari 

et al., 2020; Schürholt et al., 2021). However, this presents computational and mathematical challenges, as outlined in Jafari 

et al. (2020). The inclusion of physically representative parameterisations of snow properties in land surface models, such as 

that of Royer et al. (2021b) where the densities of lower snow layers are not allowed to exceed a maximum observation-based 

threshold, are more likely in the near future than the explicit representation of snowpack vapour transport. Meanwhile the 445 

substitution of the Sturm et al. (1997) thermal conductivity parameterisation provides a computationally efficient compromise, 

reducing both the value of Keff and the cold bias of simulated wintertime soil temperatures considerably (RMSE reduction of  

3.3 ℃). 

Model underestimates of soil temperatures follow through into calculations of soil respiration, further contributing to 

uncertainties surrounding estimates of wintertime carbon flux (Natali et al. 2019) and suggesting that such modelled values 450 

are likely to be an underestimation of the true magnitude of these fluxes. Being able to accurately model fluxes outside of the 

growing season is important as these make a considerable contribution to the annual carbon budget (Natali et al., 2019; Schuur 

et al., 2021). A low soil temperature bias due to poorly simulated snow insulation also has consequences for predicting the 

evolution of permafrost (Barrere et al., 2017; Burke et al., 2020) and resultant carbon emissions when it degrades (Peng et al., 

2016).    455 
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5 Conclusions 

A new recalibration to derive profiles of tundra snow density and thermal conductivity from SMP profiles of penetration force 

is presented, with resulting densities and thermal conductivities then used to evaluate the performance of CLM5.0. SMP-

derived density profiles show good agreement with measured snow layer densities at TVC. Comparison of measured snowpack 

properties from in situ SMP and needle probe techniques with simulations show the model tends to overestimate snow layer 460 

thermal conductivities by a up to factor of three, with implications for how well wintertime soil temperatures are simulated. 

Alternative relationships between snow density and snow thermal conductivity were considered, all of which improved the 

simulation of wintertime soil temperatures (RMSE reduction of 0.2 – 3.3 ℃). Reducing simulated thermal conductivities 

through the use of a correction factor (α) also improves simulation of soil temperature (RMSE reduction of 3.7 ℃ for an α of 

0.45). The optimal magnitude of this reduction is strongly linked to snow depth (with a greater reduction needed for shallower 465 

snowpacks).  Different optimal correction factors for different snow seasons illustrate the limitations of this approach, but the 

results are still instructive as a diagnostic for model sensitivity to the treatment of snow thermal conductivity 

Further improvements to simulated snow properties will require more explicit representation of key processes not currently 

accounted for in CLM, chiefly the formation of depth hoar. A more physically representative snowpack should also improve 

simulation of wintertime soil thermal conditions. Snowpack vapour kinetics are not currently included within global land 470 

surface models, which also have to consider a large variety of other processes and avenues for future development (Blyth et 

al., 2021; Fisher and Koven, 2020), although developments are being made to consider these in complex microscale snow 

physics models. Empirical scaling of snow thermal conductivity provides a computationally efficient interim solution with a 

similar impact on soil temperatures as the explicit representation of a large depth hoar fraction in point-scale simulations by 

Zhang et al. (1996), but the value of the required scaling factor changes with snow depth. Different parameterisations of snow 475 

thermal conductivity also improve simulation of soil temperatures, with that of Sturm et al. (1997) more appropriate for Arctic 

snowpacks (RMSE reduction of 3.3 ℃) than that of Jordan (1991) which is used by default in CLM. Improving the accuracy 

with which Arctic wintertime soil temperatures can be simulated may help to reduce sizable uncertainties (Natali et al., 2019) 

surrounding current projections of wintertime carbon fluxes.  

6 Appendix A: SMP Processing 480 

Differences between study environments (the original SMP coefficients were not derived for tundra snow) and SMP hardware 

for different versions of the SMP used by Proksch et al. (2015) and this study required new coefficients to be derived in order 

to relate penetration force to snow density. Methods from King et al. (2020b) were adapted to recalibrate SMP measurements 

from TVC in January and March 2019, described in detail in Fig. A1. Co-incident SMP profiles and snowpit density 

measurements were available at 36 locations across the TVC catchment. A K-folds process is then used to derive new 485 

coefficients (a – d; Table A1) for Eq. A1 (Eq. 9 in Proksch et al. (2015)): 

 

𝜌𝑆𝑀𝑃 = 𝒂 + 𝒃𝑙𝑛(�̃�) + 𝒄𝑙𝑛(�̃�)𝐿 + 𝒅𝐿 (A1) 

 

where �̃� is the median force value over the vertical distance where density is calculated and 𝐿 is the element size, the distance 490 

between points where force is exerted by the SMP - approximately the distance between snow grains (Löwe and Van 

Herwijnen, 2012). Individual pairs of SMP derived and snowpit measured densities above the 95th percentile of absolute error 

were removed (Fig. A1 – Step 7), and the K-folds recalibration repeated (Step 8) to produce revised coefficients to recalibrate 

the entire SMP dataset (Step 9). This process was iterated until paired SMP-snowpit profiles with an R2 of less than 0.7 were 

removed. Poor fitting between some paired SMP-snowpit profiles was due to the spatially heterogeneous nature of the 495 

snowpack (King et al., 2020b), as microtopographic variation in hummocky tundra can lead to considerable sub-metre 
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snowpack variability. Coefficients (Table A1) were ultimately derived from 21 paired SMP-snowpit density profiles; 16 from 

the January 2019 campaign, and 5 from the March 2019 campaign (R2 = 0.88, p < 0.001). These coefficients give a RMSE of 

25.2, compared to an RMSE of 125 for those of Proksch et al. (2015).   

These coefficients were used to calculate density profiles for all 640 profiles from the 2019 campaigns (Fig. A1 – Step 12). 500 

Densities for SMP profiles from the March 2018 campaign were also derived from these, but measurements from this campaign 

were not included in the recalibration dataset. Metrics were calculated over a 2.5mm sliding window with 50 % overlap, (ie. 

1.25mm resolution) as per Proksch et al. (2015). Profiles of thermal conductivity were then calculated from SMP densities, 

using the density: Keff relationships derived by Sturm et al. (1997), Calonne et al. (2011), Jordan (1991), and Fourteau et al. 

(2021b) (Fig. A1 - Step 17). It is important to note that the thermal conductivity of a snowpack is dependent on more than just 505 

its density (Sturm et al., 2002; Fourteau et al., 2021b), but these parameterisations provide a useful first-order approximation.  

Prior to recalibration, negative force values were removed from the SMP profiles. These are erroneous values which can occur 

in the SMP output when ice gets caught in the cog wheel of the SMP or if part of the instrument is damaged (Lutz, 2009). 

Buried vegetation may also be present in the lower part of tundra snowpacks, and interaction between SMP and dense shrubs 

or branches may cause the SMP signal to overload and affect the quality of lower sections of the profile. A normalised 510 

percentage depth scale (with profiles rescaled to a resolution of 0.25 % of total depth using linear interpolation) was used to 

compare SMP-derived profiles of density and Keff from different snow depths (Steps 15 and 18). Any negative densities or 

thermal conductivities were removed during the depth normalisation process. 

Recalibrated density profiles from the SMP do not produce values below 200 kg m3, despite observations of lower snow 

densities in Arctic depth hoar, including some from this campaign (Fig. 2). Figure A2b shows a large spread in the value of L 515 

for the depth hoar samples, over a relatively small set of snowpit densities. Large element sizes, or distances between snow 

grain failures, are not unexpected in depth hoar but this results in a low signal to noise ratio (King et al., 2020b). Figure A2 

shows the relationship between �̃� and L is not heteroscedastic as initially assumed, leading to an overestimation of the density 

(and density-derived Keff) of this layer. Proksch et al. (2015) state that their model does not yet fully account for the anisotropic 

structure of some snow types, which is of particular relevance to depth hoar.  520 

7 Appendix B: Model Spin-up 

In order to determine the amount of model spin-up required for soil temperatures to equilibrate, iterative runs of PTCLM with 

an additional year of spin-up were undertaken from 1 January 2017 to 1 January 2013. Soil temperatures throughout the soil 

column were compared; 3 depths are shown in Fig. B1. Internal system variability results in a difference of ~ 1 ℃ between 

model runs, with a minimum of 2 years of spin-up required for Keff adjusted runs to converge at a 10cm soil depth. Deviation 525 

between different spin-up start times takes longer to level out deeper in the soil column, but as we only examine soil properties 

within the top 20cm of the soil column, we feel this length of spin-up is sufficient. Changes to snow thermal conductivity were 

evident at all depths in the soil profile, and have an impact on the thickness of the active layer with seasonal thawing seen to a 

depth of 1.7 m (Fig. B1b), in comparison to 1.35 m for the unadjusted CLM runs and the 1 m active layer depth reported by 

Grünberg et al. (2020).  530 

Code & Data Availability 

Code and data to produce figures is available at: https://github.com/V-Dutch/TVCSnowCLM 
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Figure 1: Daily averaged meteorological and soil conditions at Trail Valley Creek from 1 August 2017 to 31 August 

2019; a) 2 m air temperature, b) precipitation: snow (purple) and rain (green), c) snow depth, d) soil temperatures at 

depth of 5 cm (blue) and 20 cm (orange) and e) volumetric soil water content at 5 cm (blue) and 20 cm (orange) depths. 

 805 

 Snow Depth [cm] 

March  

2018 

March 

 2019 

AWS 35 56 

Magnaprobe 33 ± 15.7 

(n = 14,966) 

44 ± 14.4 

(n = 8541) 

CLM 18 34 

 

Table 1: End of March snow depth summary. Mean and standard deviation of spatially distributed measurements with 

a sample size greater than n = 1 are shown, otherwise the daily value for 31st March is shown.  
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Figure 2: a) Frequency distributions of magnaprobe depths for each sampling campaign where Snow 

MicroPenetrometer (SMP) measurements are available; b-d) Profiles of median SMP-derived densities (colour-coded 

for the respective campaigns (Fig. 3a); interquartile range shaded in grey), with snow stratigraphy as per Fierz et al. 

(2009) superimposed.  815 
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 # of 

Layers 

Layer Median Interquartile Range 

D
en

si
ty

 

[k
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-3

] 

S
n
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w

p
it

 

O
b

s.
 

3 

Surface Snow 89 73 152 

Wind Slab 334 300 365 

Depth Hoar 249 228 270 

C
L

M
 

4 

1 270 209 328 

2 328 285 346 

3 340 282 346 

4 309 291 326 

T
h
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al
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d
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iv
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[W
 m

-1
 K

-1
] S
n

o
w

p
it

 

O
b

s.
 

3 

Surface Snow - - - 

Wind Slab 0.20 0.15 0.28 

Depth Hoar 0.05 0.04 0.06 

C
L

M
 

4 

1 0.25 0.17 0.35 

2 0.35 0.28 0.38 

3 0.37 0.27 0.38 

4 0.32 0.29 0.35 

Table 2: Summary of modelled (CLM) and measured snow densities and thermal conductivities (from the manual 

density profiles and the needleprobe, respectively). 

 

 820 

Figure 3: Distributions of measured layer densities (SS = surface snow, WS = wind slab, DH = depth hoar) from four 

sampling campaigns: box (interquartile range), blue line (median), and whiskers (dashed lines) extend from the end of 

each box to 1.5 times the interquartile range; outliers beyond this range (blue crosses). 

 



22 

 

 825 

Figure 4: Median thermal conductivity profiles (lines) and interquartile range (shaded areas) approximated from SMP 

densities, using the parameterisations of Calonne et al. (2011) in black/grey, Sturm et al. (1997) in blue, Jordan (1991) 

in red and Fourteau et al. (2021b) in yellow. 
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Figure 5: Simulated snow layers and their properties for winter 2017-18; a) simulated snow layer thicknesses, b) snow 

layer densities, c) snow layer thermal conductivities; d) to f) as before but for winter 2018-19. Each colour represents 

a different computational snow layer.  835 
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Figure 6: a) Histograms of measured and simulated thermal conductivity from March 2018 and 2019 sampling 

campaigns; dashed lines show the four different thermal conductivity parameterisations applied to the SMP densities, 

b) Sensitivity testing of simulated thermal conductivities for the same time period using both the default CLM snow 840 

thermal conductivity parameterisation, application of the α correction (solid lines), and alternative snow thermal 

conductivity parameterisations ( (Calonne et al., 2011; Fourteau et al., 2021b; Sturm et al., 1997) ; dashed lines). Note 

the different scales on the y-axes. 
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Figure 7: a) Simulated 10cm soil temperature timeseries using the 4 different parameterisations of snow thermal 845 

conductivity compared to field measurements, b) Timeseries of 10cm soil temperatures when using different values of 

the correction factor α compared to field measurements, c) Observed and simulated snow depths for the same time 

period.  
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Figure 8: Influence of observed (x-axis; a) and modelled (y-axis; both) snow depth and snow depth error (x-axis; b) on 

the best fit correction (colour) at each timestep for both the 2017-18 (circles) and 2018-19 (squares) snow seasons.  855 
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Figure A1: Recalibration process for SMP densities. Steps 2-9 (purple) mirror the process of King et al. (2020b), with 

Step 10 providing a quantitative threshold to assess whether the recalibration attempt is successful. Steps 11 to 19 (blue) 

apply the recalibration to the TVC dataset and derive thermal conductivity profiles from the recalibrated SMP 

densities. 860 
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 a b c d 

Proksch (2015) 420.47 102.47 -121.15 -169.96 

King (2020b) 312.54 50.27 -50.26 -88.15 

This Study 307.36 43.51 -38.95 -79.36 

Table A1: Coefficients used to calculate density from SMP measurements. 
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Figure A2: Relationships between the snowpit densities and SMP microstructural metrics from the paired profiles in 

the recalibration dataset, after Figure 5 of King et al. (2020b). 
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Figure B1: Soil temperatures at a) 10 cm, b) 1.7 m and c) 4.3 m (third, eleventh and sixteenth CLM soil layers) for 

varying lengths of model spin-up (line styles; all spin-ups from 1 January, year given in legend), for both baseline (α = 

1; dark red) and Keff adjusted (α = 0.3; navy blue) model conditions.   


